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Abstract

This article investigates the properties of the global attractor of hyperbolic
balance laws on the circle, given by :

ut + f (u)x = g(u). (H)

The new tool of sub-attractors is introduced. They contain all solutions on the
global attractor up to a given number of zeros. The article proves finite dimen-
sionality of all sub-attractors, provides a full parameterization of all sub-attractors
and derives a system of ODEs for the embedding parameters that describes the
full PDE dynamics on the sub-attractor.

1 Introduction

Existence of global attractors has been proven for many partial differential equations,
however in most cases few is known exceeding existence and bounds on the dimen-
sion of the attractor. An exception from this rule are hyperbolic balance laws with
dissipative source term:

ut(x, t)+ [ f (u(x, t))]x = g(u(x, t)). (H)

Despite the fact that the global attractor of (H) is infinite dimensional, a lot is known
about the structure of the attractor and the connecting properties of rotating waves.

We consider equation (H) for x ∈ S1 with S1 := R/(2πZ) which is equivalent to impos-
ing periodic boundary conditions on a domain of length 2π . By a scaling argument
all results remain true for the situation of periodic boundary conditions in a domain of
size L for any bounded and fixed L ∈R. u is a function mapping from S1×R→R. The
non-linearities f ,g map from R → R. Furthermore we require the following hypothe-
ses:

(H1) f is C2 and strictly convex (∃γ ∈ R s.t. f ′′ > γ > 0).

(H2) g is C1 and dissipative, i.e. there exists a constant M > 0 such that

ug(u) < M (1)

for all |u|> M.
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(H3) g has finitely many zeros at u1 < u2 < .. .un. All zeros are simple. (H2) implies
that n is odd.

(H1) - (H3) guarantee the existence of a global attractor (see next section). One of
the remaining questions regarding this attractor is its dynamic description. This article
closes this gap for all solutions on the attractor with arbitrary but finite zero set. For
our description we introduce sub-attractors for hyperbolic balance laws which will turn
out to be of finite dimension. This approach allows us to overcome several difficulties
arising from the infinite dimensionality of the full global attractor and from solutions
with infinite (countable and uncountable) zero set.

In addition the sub-attractors show some striking similarities with the analogously de-
fined sub-attractors of the parabolically regularized version of equation (H)

ut + f (u)x = εuxx +g(u)

for small viscosity ε . This relation is explored thoroughly in [3].

The article is organized as follows. The second section reviews what is known about
global attractors and the so called connection problem. It provides the necessary
background on hyperbolic balance laws for this article. In the third section the notion of
sub-attractors is introduced. Section four then formulates and proves the main result
of the paper: a parameterization of all sub-attractors, their finite dimensionality and
their dynamics. A section with examples follows. The paper concludes in section six
with a brief discussion of the results.
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2 Global attractors and the connection problem

We will present the tools and methods used in the proofs of the article and then
discuss key results concerning global attractors of scalar hyperbolic balance laws.
The initial value problem (Cauchy problem) of (H) can be solved by the method of
characteristics. The classical solution u(x, t) to a initial condition u(x,0) =: u0(x) is
given by:

u(χ(t), t) := v(t)
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where v,χ are curves that solve the following ODE:

χ ′(t) = f ′(v)
v′(t) = g(v)
χ(0) = x0
v(0) = u0(x0)

(2)

for all x0 ∈ S1. Classical solutions in general only exist for finite time. To overcome this
difficulty we work with weak solutions of equation (H).

In the weak framework solutions are in general not unique. To overcome this obstacle
a additional entropy condition can be imposed, that singles out a unique weak solu-
tion. This idea derives from the physical entropy in thermodynamics. Entropy condi-
tions for hyperbolic balance laws were first considered by Volpert [12] and Kruzhkov
[8]. We follow their approach and define an entropy or admissible solution of the hy-
perbolic balance law (H) in the following way:

Definition 2.1 We call u ∈ BV ([0,∞)× S1,R) an entropy or admissible solution of
equation (H) to the initial condition u0(x)

� if u(x,0) = u0(x);

� if it solves equation (H) in the weak sense:∫
S1×R+

[uϕt + f (u)ϕx−g(u)ϕ]dxdt = 0 (3)

for all ϕ ∈C1
0(S1×R+,R);

� and if the entropy condition

u(x+, t)≤ u(x−, t) (4)

holds for all t > 0.

Here u(x+, t) defines the right hand, u(x−, t) the left hand limit of u in x at time t and
BV ([0,∞)× S1,R) denotes the space of functions with bounded variation mapping
from [0,∞)×S1 to R.

Volpert [12] and later, and for more general initial conditions (L∞), Kruzhkov [8] were
able to prove the following result on the existence of solutions:

Proposition 2.2 If (H1) holds, then the Cauchy problem of equation (H) possesses a
unique entropy solution u with the property u : (0,∞)→ L1 is continuous in time and
u(·, t) ∈ BV (S1) for all times t > 0.
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Equation (H) together with (4) therefore defines a semiflow on BV (S1,R). We denote
that semiflow by

Φ : BV ×R+ → BV
u0, t 7→ Φ(u0, t) := u(·, t)

where u(·, t) is the unique entropy solution to the initial condition u0 at time t.

For the weak framework Dafermos introduced generalized characteristics [1]:

Definition 2.3 A Lipschitz curve x = χ(t), defined on the interval [a,b] ⊂ R is called
a generalized characteristic associated with the solution u of (H) if it satisfies the
inequality

χ̇ ∈ [ f ′(u(χ+, t)), f ′(u(χ−, t))] (5)

for almost all t ∈ [a,b].

Generalized characteristics coincide with classical characteristics χ(t) defined in (2),
wherever the solution is differentiable. Filippov was able to show in [6] that there is at
least one forward and one backward characteristic through any point (x, t) ∈ S1×R+.
Equation (5) suggest that there is a lot of freedom in computing forward characteris-
tics. That this is in fact not the case is shown by a proposition found in [6]:

Proposition 2.4 Let χ : [a,b]→R be a generalized characteristic. Then the following
holds for almost all t ∈ [a,b]:

χ̇(t) =

{
f ′(u(χ(t)±, t)) if u(χ(t)−, t) = u(χ(t)+, t)

f (u(χ(t)+,t))− f (u(χ(t)−,t))
u(χ(t)+,t)−u(χ(t)−,t) if u(χ(t)−, t) > u(χ(t)+, t) .

Hence, χ̇(t) is uniquely defined even at the position of shocks. If the solution u(x, t)
possesses a shock at position x0 then the shock speed is given by the Rankine-
Hugoniot condition for shock speeds

cshock =
f (u(x0+))− f (u(x0−))

u(x0+)−u(x0−)
. (6)

To distinguish between generalized characteristics and the characteristics of classical
solutions the notion of genuine characteristics is important:

Definition 2.5 A characteristic on the interval [a,b] is called genuine, if

u(χ(t)−, t) = u(χ(t)+, t) for almost all t ∈ [a,b].

The set of backward characteristics through a point (x̄, t̄) spans a funnel between the

� minimal backward characteristic χ−(t; x̄, t̄) and the

� maximal backward characteristic χ+(t; x̄, t̄).
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The additional properties of characteristics that are of importance for us are summa-
rized in the next propositions. For proofs we refer to Dafermos’ article [1].

Proposition 2.6 Let (x̄, t̄) ∈ S1×R be arbitrary. Then the minimal backward charac-
teristic χ−(t; x̄, t̄) and the maximal backward characteristic χ+(t; x̄, t̄) are genuine.

Proposition 2.7 Genuine characteristics intersect only at their end points; backward
characteristics do not intersect in particular.

We direct our attention to the existence of global attractors for equation (H). Fan and
Hale [5] have settled the existence question for hyperbolic balance laws:

Proposition 2.8 Assume (H1), (H2) and (H3) hold. Then

A :=
{

u0 ∈ BV (S1,R) : Φ(u0, t) exists for all t ∈ Rand is bounded
}

(7)

is the global attractor of (H) in Lp(S1), for any p ∈ [1,∞], i.e. it is invariant and attracts
bounded sets in Lp(S1).

This settles the existence of A . We turn to the structure of the global attractor.

Several authors proved Poincaré Bendixson type results for the scalar balance laws.
See for example Fan and Hale [4], Sinestrari [11] or Lyberopoulos [9]:

Proposition 2.9 For t →∞ any solution of (H) tends either to a homogenous solution
u≡ ui for some i ∈ {1, ...n} or it converges to a rotating wave solution

u(x, t) = v(x− ct)

where the wave-speed c can only take the values c = f ′(u2i) for i ∈ {1, · · · , n−1
2 }.

For global solutions a theorem similar to 2.9 holds true in backward time. This leads
to a description of the global attractor A as the unification of the homogenous steady
states, the frozen and rotating waves and heteroclinic connections between all these
objects. A rotating wave is a solution of (H) of the form

u(x, t) = v(x− ct)

for a profile v : S1 → R; c is called the wave speed. If c = 0 the wave is called frozen.
For the definition of heteroclinic connections we define:

� E the set of homogenous equilibria of (H);

� F the set of frozen waves of (H);

� R the set of rotating waves of (H).
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A heteroclinic connection is a solution u(x, t) of (H) that has the property that

lim
t→+∞

u(x, t) ∈ E ∪F ∪R

lim
t→−∞

u(x, t) ∈ E ∪F ∪R.
(8)

If we denote the set of heteroclinic connections with H , then the global attractor A
of (H) can be described as

A = E ∪F ∪R ∪H . (9)

Fan and Hale showed in Theorem 3.7 in [5] that if two rotating waves are connected
by a heteroclinic orbit, then the waves must have the same velocity. Moreover, if a
heteroclinic orbit connects a homogenous equilibrium u≡ u j and a rotating wave with
speed f ′(u2i), then | j− 2i| = 1. It is a consequence of Proposition 1.5 in [5] that all
global solutions u(x, t) satisfy

u2i−1 ≤ u(x, t)≤ u2i+1

for some i ∈ {1, . . . , n−1
2 }. This implies that the homogeneous solutions u ≡ u2i±1 di-

vide the global attractor into separated pieces, connected only at the homogeneous
solutions. Hence we can treat all these pieces separately and restrict our analysis
to the case where g possesses only three zeros. Without loss of generality we can
rewrite assumption (H3) to

(H̃3) g has three simple zeros at u− < u0 < u+ and u0 = 0.

In our case this implies
c = f ′(0)

due to proposition 2.9. The hyperbolic balance law (H) is homogeneous in x and we
can perform a co-ordinate transformation

x 7→ x− f ′(0)t

which automatically freezes all rotating waves. Hence we can assume without loss of
generality

(H4) f ′(0) = 0.

This assumption fixes our co-ordinate system where all rotating waves have wave
speed c = 0, hence we have R = /0.

In [10] Sinestrari proved that for any possible wave speed c = f ′(u0) and for any closed
set Z ⊂ S1 there exists a unique rotating wave uZ with the property

Z = {y ∈ S1 : uZ(y) = 0}.
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The uniqueness automatically proves that these are all waves and hence F is fully
described. For the connection question we introduce the map Z (·) that assigns each
function u : S1 → R its zero set:

Z (u(·)) := {x ∈ S1;u(x) = 0}. (10)

In addition we define the zero-number

z(u) := ]Z (u),

if Z (u) is uncountable we define z(u) := ∞.

Härterich was able to prove the following three theorems A, B and C in [7] which settle
the connection question:

Theorem 2.10 (Theorem A) For any rotating wave u−∞ there exist heteroclinic orbits
which connect u−∞ to the homogenous states u≡ u− and u≡ u+.

Theorem 2.11 (Theorem B) For any rotating wave u+∞ there exist (several) hetero-
clinic orbits that connect the spatially homogenous solution u≡ 0 to u+∞.

Theorem 2.12 (Theorem C) Suppose that for two rotating waves u−∞ and u+∞ the
condition Z (u∞)⊂Z (u−∞) holds. Then there is a heteroclinic solution that approaches
u±∞ as the time t tends to ±∞.

3 Sub attractors An of order n

One of the main obstacles in the description of the global attractor of (H) is the huge
number of stationary solutions due to Sinestrary’s result. This results in an infinite
dimensionality of the attractor. To overcome this obstacle we introduce the notion of
sub-attractors in this section. The underlying idea is to only consider solutions with
bounded zero number and to define the sub-attractors in a way such that they remain
invariant as sets under the semi flow of the equation. This allows us to get rid of all
solutions with infinite or uncountable zero set.

Definition 3.1 Let n = 2α for α ∈ N. Then we define:

� En := {u≡ u+,u≡ u−};

� Fn := {u ∈F ;z(u)≤ α};

� Hn := {u ∈H ; limt→±∞ ∈ En∪Fn}.

Then we define the sub-attractor of order n of the hyperbolic balance law (H) by

An := En∪Fn∪Hn. (11)
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We first prove the following lemma:

Lemma 3.2 (i) Let An and Am be defined as above for some m,n ∈ N, then

An ⊂Am ⇔ n < m

(ii) We have the following alternative description for An:

An = {W u(Fn)}

(iii) An is invariant under the semi-flow Φ generated by equation (H).

Proof. (i) is obvious by the definition of An, (ii) directly follows through

An =
α⋃

β=1

{
W u(u0);u0 ∈F ,z(u0) = β

}
∪Fn∪En (12)

=
α⋃

β=1

{W u(u0);u0 ∈F ,z(u0) = β}

= {W u(Fn)} ,

(iii) is a direct consequence of the invariance of En and Fn.
�

At a first glance it seems strange to denote the sub-attractors by An and not Aα .
However one of the results in the following section will be dimAn = n, which justifies
the notation.

4 Parameterizations for An

We now turn to the question of parameterizing the sub-atractors An. We follow an
idea introduced by Härterich in [7]. In Section 4 Härterich presents an example of one
heteroclinic connection between two defined states for Burgers equation ( f (u) = u2

2 ).
The key idea is that the connection consits of stationary profiles which are separated
by shocks. The solutions on the connections only change if at all close to the shocks.
This idea guides the path towards the parameterization of the sub attractors by the
position of the stationary profiles on the one hand and the positions of the shocks on
the other. A key step in the proof is to show that this approach covers all heteroclinic
connections.

We begin with the definition of the stationary profiles.
Let φ(x) be the unique solution of the following equation:

vx =
g(v)
f ′(v)

(13)

v(0) = 0.
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Then φ(x) exists for all x ∈ R and

lim
x→−∞

φ(x) = u− lim
x→∞

φ(x) = u+.

Let n = 2α for some α ∈N be given. Then we choose a sequence of α zeros 0 < x1 <
x2 < · · ·< xα < 2π . Due to Sinestrari [10] there exists a unique frozen wave v(x) with

Z (v) = {x1, · · · ,xα}.

Without loss of generality we assume x1 = 0. All other cases can be generated by
a shift. Note that for every solution of equation (H) it is true that between two zeros
there must be a shock and between two shocks with sign changing left- and right-
hand states there must be a zero, see [2]. It is in particular true for vα . Hence there is
a unique sequence of shocks ŷ1, . . . , ŷα with

0 = x1 < ŷ1 < x2 < ŷ2 < · · ·< ŷα−1 < xα < ŷα < 2π

such that v is given by

v =
{

φ(x− xi) for x ∈ [xi, ŷi]
φ(x− xi+1) for x ∈ [ŷi,xi+1]

. (14)

For convenience let us define the notation

{xα} :={x1, · · · ,xα}

and denote the unique frozen wave with zero set xα by vxα
.

We now define the solution u{xα ,yα} with α shocks located between the zeros {x1, · · · ,xα}
that consists piecewise of shifted copies of φ(x). In general u{xα ,yα} is not stationary.
Let 0≤ x1 ≤ y1 < x2 ≤ ·· ·< xα ≤ yα < 2π then we define

u{xα ,yα} =
{

φ(x− xi) for x ∈ [xi,yi]
φ(x− xi+1) for x ∈ (yi,xi+1]

(15)

for i = 1, . . . ,α .

Finally let us define the general solution ũ{xα ,yα} with α or less shocks that consists
piecewise of shifted copies of φ(x) where all shocks have sign changing left and right
states.
Let 0≤ ỹ1 ≤ ỹ2 ≤ ·· · ≤ ỹα < 2π then we define if ỹi < ỹi+1

ũ{xα ,yα} =
{

φ(x− xi) for x ∈ [xi, ỹi]
φ(x− xi+1) for x ∈ (ỹi,xi+1]

, (16)

and if ỹi = ỹi+1 = · · ·= ỹi+m

ũ{xα ,yα} =
{

φ(x− xi) for x ∈ [xi, ỹi]
φ(x− xi+m+1) for x ∈ (ỹi+m,xi+m+1]

. (17)
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Then the two sets A{xα} and Ã{xα} of all these solutions with fixed {x1, · · · ,xα}= {xα}
are given by

A{xα} := {u{xα ,yα};0≤ x1 ≤ y1 < x2 ≤ ·· ·< xα ≤ yα < 2π} (18)

and
Ã{xα} := {ũ{xα ,yα};0≤ y1 ≤ ·· · ≤ yα < 2π}. (19)

Then we have the following lemma:

Lemma 4.1 Let xα and xβ be given with xβ ⊂ xα . Then we have

(i) vxα
∈ A{xα} ⊂ Ã{xα}

(ii) Ã{xβ } ⊂ Ã{xα}

(iii) There is no u ∈ Ã{xα} with more than α shocks.

Proof. We only proof (iii). We first argue for two zeros: Assume that the solution has
a zero located at x1 = 0 and another zero at x2. We explicitly construct the set of all
admissible solutions u(x) that consist piecewise of shifted copies of φ(x− xi− 2πk j)
for some k j ∈Z and i∈ {1,2}; with the additional property that u(x1 = 0) = 0 and show
that in fact j = 2 necessarily.

Let us denote all shock positions by 0 < y1 < · · · < y j ≤ 2π . Due to the fact that
between zeros there has to be shock we obtain j ≥ 2. Let us define the sequence
of stationary profiles

...,φ(x+2π),φ(x+ x2),φ(x),φ(x− x2),φ(x−2π),φ(x− x2−2π), ... (20)

Because u(0) = 0 we start at x = 0 with u(x) = φ(x) locally. At each of the shocks yi
the solution jumps to a profile to the right in the above sequence due to the entropy
condition (4). However we have to end with u(x) = φ(x−2π) locally at x close to 2π .
Hence j ≤ 2 and therefore j = 2.

We now state the main theorem:

Theorem 4.2 Let n = 2α and α ∈ N. Then the following is true:

a) The local unstable manifold W u
loc(v{xα}) of v{xα} is given by A{xα} defined in

equation (18):
W u

loc(v{xα}) = A{xα} (21)

where v{xα} is the unique frozen wave of equation (H) with zeros at x1, . . . ,xα .

b) The global unstable manifold W u(v{xα}) of v{xα} is then given by

W u(v{xα}) =
{

Φ(u, t);u ∈ A{xα}, t ∈ R+}
(22)

where Φ denotes the semiflow in BV (S1,R) generated by equation (H).
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c) The dynamics on Ã{xα} defined in equation (19) can be described by the follow-
ing equation for the shock parameters y j:

ẏ j(t) =
f (φ(y j− x j))− f (φ(y j− x j+1)

φ(y j− x j)−φ(y j− x j+1)
. (23)

d) The dimension of the sub-attractors An of order n is given by

dimAn = n.

e) Let v1 be a frozen wave of equation (H) with

z(v1) = 1.

Then there exist unique heteroclinic connections ũ(·, t) and û(·, t) with

lim
t→−∞

ũ(·, t) = lim
t→−∞

û(·, t) = v1

lim
t→∞

ũ(·, t)≡ u+

lim
t→∞

û(·, t)≡ u−.

f) Let 0 ≤ x1 < x2 < · · · < xα < 2π and let v1 and v2 be frozen waves of equation
(H) with the property

Z (v1) = {x1, . . . ,xα}
and

Z (v2) = {xk1, . . . ,xkβ
}

with ki+1− ki ∈ {0,1} for all 1 ≤ i ≤ β − 1 where we have set β + 1 = α . Then
there exists an up to shifts in time unique heteroclinic connection u(x, t) with the
property

lim
t→−∞

u(·, t) = v1(·)

lim
t→∞

u(·, t) = v2(·).

The proof of the theorem will use the overflowing invariance of the sets Ã{xα} and
A{xα}, which we prove first:

Lemma 4.3 Let {xα} := {x1, . . . ,xα} with 0≤ x1 < · · ·< xα < 2π be given.

(i) The set Ã{xα} is overflowing invariant under the semiflow of equation (H). Over-
flowing means that if a solution u ∈ Ã{xα} leaves Ã{xα} at time t = t̃, hence we
have Φ(u, t) ∈ Ã{xα} for t < t̃ and Φ(u, t) /∈ Ã{xα} for t > t̃ then either y1 = x1 or
yα = 2π in u{xα ,yα} := Φ(u, t̃).

(ii) The set A{xα} is overflowing invariant under the semiflow of equation (H).
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Proof. Let u(x,0) ∈ Ã{xα} such that u(x,0) = u{xα ,yα} with y1 > 0 and yα < 2π .

Local forward invariance of Ã{xα} follows from the fact that the profiles φ that define
u{xα ,yα} are stationary. Hence u(x, t) is stationary except near the points y j, and so
we only have to prove invariance locally at the shock points. We only investigate the
shock located at y1, the argument works for any other shock equivalently.

Let therefore u(x,0) be given by

u(x,0) =
{

φ(x) for y1−δx≤ y1
φ(x− x2) for y1 +δx > y1

(24)

for some δ > 0. At y1 there is a unique forward characteristic χ(t) on which the shock
evolves. The other characteristics in a neighbourhood of y1 necessarily point towards
χ(t) for t > 0. Hence for x /∈ [y1−δ ,y1 +δ ] the solution u(x, t) is stationary and given
by φ(x) for x≤ χ(t) and by φ(x− x2) for x > χ(t). See the Figure 4 for illustration.
χ(t) is uniquely determined by the differential equation:

χ̇(t) =
f (φ(χ(t)))− f (φ((χ(t)− x2)))

φ(χ(t))−φ((χ(t)− x2))
(25)

χ(0) = y1.

The slope of χ(t) is bounded from above and hence, if t is sufficiently small we have
obtained local forward invariance of the shock.

χ̃(t0)

t = 0

χ+

χ−

characteristics

χ(t)t

φ(x)

φ(x− x2)

y1

Figure 1: Illustration for the proof of Lemma 4.3.

For the backward invariance we observe that for t < 0 a minimal characteristic χ−(t)
and a maximal backward characteristic χ+(t) emanate from y1. For the area between
χ− and χ+ there are in principle many possibilities to define the solution such that we
obtain u(x, t) for t ≥ 0 (there is no backward uniqueness!). For backward invariance it
is however enough if we can find one u(x, t) ∈ Ã{xα} for t < 0.

12



Let now t0 < 0 be sufficiently small. Then we define

ũ(x, t0) :=
{

φ(x) for x ∈ [χ−(t0), χ̃(t0)]
φ(x− x2) for x ∈ (χ̃(t0),χ+(t0)]

for some χ̃(t0) ∈ [χ−(t0),χ+(t0)]. Local backward invariance follows if we can prove
that there is one χ̃(t0) such that if we solve equation 25 with initial condition χ̃(t0) we
obtain

χ̃(0) = χ(0) = y1.

If we assume χ̃(t0) = χ−(t0), then monotonicity of φ and convexity of f imply χ̃(0) <
y1; if we assume on the other hand χ̃(t0) = χ+(t0), then the same argument yields
χ̃(0) > y1. The intermediate value theorem yields the existence of a ỹ∈ (χ−,χ+) such
that χ̃(t) with χ̃(t0) := ỹ has the desired property. Due to the convexity of f and the
monotonicity of φ the ỹ is even unique. Hence backward invariance follows.

Although ỹ is unique the backward solution is not unique in Ã{xα} in general, due to
the possibility of shock splittings in backward time direction. However if we assume
that no shock splitting occurs we even obtain uniqueness of the backward solution in
Ã{xα}.

For the overflowing property we assume u(x,0) ∈ Ã{xα} with y1 = 0. Then the forward
characteristic χ(t) in x1 = y1 = 0 is given by the equation

χ(t) =
− f (φ(yα −2π)
−φ(yα −2π)

< 0

for t ∈ [0,δ1), δ1 positive and small and χ(0) = 2π . Thus, after identification of 0 and
2π we obtain that the solution is locally given by

φ(x− x2) for 0 < x < y2
φ(x− x2−2π) for χ(t) < x < 2π

φ(x−2π) for yα < x < χ(t).

This proves the overflowing property of Ã{xα}, because the above solution is not in
Ã{xα} due to the fact that there are only α − 1 zeros but α shocks, one of which has
the same sign at the left and right states. This proves (i).

Due to the fact that A{xα} ⊂ Ã{xα} we conclude invariance of A{xα} by virtue of the
same construction. The overflowing property works just as for Ã{xα}, here the bound-
ary is given by the condition y j = x j or y j = x j+1 for some j ∈ {1, . . . ,α}. �

Corollary 4.4 For every u(x,0) ∈ A{xα} there is a unique backward orbit in A{xα}.

Proof. From the proof of the previous lemma we deduce that it is sufficient to show
that shocks in u cannot split in backward time. By construction any solution in A{xα}
has exactly α zeros and α shocks due to Lemma 4.1 (iii) shock splitting cannot occur.

�
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Proof of Theorem 4.2:
We have already proven part c). Equation (25) yields exactly equation (23) if we re-
place χ(t)± by the y j. Hence we can integrate solutions along the (invariant) manifold
A{xα} by using equation (23) for every y j (1≤ j ≤ n). Note that y j and y j+1 can meet.
Thus the y j are only lipschitz in t not C1.

For a) we prove that all solutions u(·,0) ∈ A{xα} converge in backward time to v{xα},
this shows

A{xα} ⊂W u(v{xα}). (26)

Then we show maximality of A{xα} by proving that all solutions u(·, t) converging to
v{xα} in backward time are contained in A{xα} for sufficiently small t < 0 which proves

W u
loc(v{xα})⊂ A{xα}. (27)

This yields a) for appropriately chosen local neighborhood in W u(v{xα}).

The first part is a consequence of Lemma 4.3 and the convexity of f : Let u(·,0) ∈
A{xα}. Because of the overflowing invariance and backward uniqueness (Corollary
4.4) we conclude

u(·, t) ∈ A{xα}

for all t < 0. In addition
lim

t→−∞
u(·, t) ∈F ∪E

due to proposition 2.9 v{xα} is the only frozen wave in A{xα} and hence

A{xα}∩E ∪F = {v{xα}}.

This yields equation (26).
For the other direction we argue indirectly. Assume there exists ũ(x, t) with

lim
t→−∞

ũ(x, t) = v{xα} and (28)

ũ(x, t) /∈ A{xα} for all t < 0 (29)

then for sufficiently small t̃ < 0 there exists x̃ ∈ S1 such that for all 1≤ j ≤ α +1

ũ(x̃, t̃) 6= φ(x̃− x j), (30)

where we have set xα+1 = 2π .
Due to the fact that ũ connects to v{xα} we can always choose (x̃, t̃) such that ũ(x̃, t̃)
is smaller than the maximum and larger than the minimum of the stationary solution
with one zero.
We now construct a contradiction by proving that limt→−∞ ũ(·, t) has a zero xs not coin-
ciding with one of the x1, . . . ,xα and therefore ũ cannot converge to v{xα} in backward
time. We use a stationary solution us coinciding with ũ(·,0) at x̃ to calculate explicitly
the backward characteristic of ũ emanating from (x̃, t̃).
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From equation (30) we deduce, that there is a stationary solution us ∈ F with the
following properties:

us(x̃) = ũ(x̃, t̃)
Z (us) = {xs}

where xs /∈{x1, . . . ,xα}. We investigate the (genuine!) backward characteristic (χ(t),v(t))
with

χ(t̃) = x̃
v(t̃) = us(x̃, t̃) = ũ(x̃, t̃)

Because us is stationary, the characteristic has the property that

lim
t→−∞

χ(t) = xs

and
lim

t→−∞
v(t) = 0

From this we deduce
⇒ lim

t→−∞
us(χ(t), t) = us(xs, ·) = 0,

this implies
lim

t→−∞
u(xs, t) = lim

t→−∞
us(xs, t) = 0

hence
lim

t→−∞
ũ(χ(t), t) = v{xα}(xs) = 0.

This contradicts xs /∈ {x1, . . . ,xα} and maximality of A{xα} is proved.

b) follows from the fact that due to unique forward solvability we obtain the global
unstable manifold by using the semiflow to forward–solve the local unstable manifold.
A{xα}⊂A ensures boundedness of the forward iteration, hence equation (22) follows.

For d) we use the fact that

dim
(
W u

loc(v{xα})
)

= dim
(
W u(v{xα})

)
(31)

which is true due to forward uniqueness of solutions.

The sub-attractor of order n = 2 consists by definition of all frozen waves with one
zero and heteroclinic connections from these waves to u±. In other words

A2 = W u(F2)∪E2

For fixed x1 we have
dim

(
W u(v{x1})

)
= dim(A{x1}) = 1.

From the uniqueness of frozen waves with given x1 ∈ S1 we deduce

dimA2 = 2

15



φ(x)

φ(x−2π)

φ(x− x2)

x2

u(x,0)

x1 = 0

y

φ(y− x2)

Figure 2: Unique shock-splitting of one shock in backward time in A{x1,x2}.

For n = 2α > 2 we use
An = {W u(u);u ∈Fn}∪En. (32)

First we prove
dim{W u(u);u ∈F ,z(u) = α}= 2α = n.

For each fixed set of zeros {0≤ x1 < · · ·< xα < 2π} we have by part a) of this theorem

dim
(
W u

loc(v{xα})
)

= dim
(
A{xα}

)
= α.

Moreover, all frozen waves v with zero-number z(v) ≤ α can be parameterized by
(x1, . . .xα) ∈

(
S1)α = Tα , hence

dimFn = dimTα = α.

Putting everything together we obtain by using equation (32)

dimAn = dimW u
loc({Fn}) = dimW u

loc(v{xα})+dimTα = α +α = n.

For e) we count dimensions to obtain uniqueness. For α = 1 the unstable manifold of
v1 is one dimensional, thus the connection must be unique.

For f) we argue in the following way: the condition ki+1− ki ∈ {0,1} implies that at
most every second zero can vanish, hence we can reduce the proof to the situation
where

Z (v1) = {0,x2}

and
Z (v2) = {0}.

Let us denote the unique shock position of v2 by y and the two unique shock positions
of v1 by y1 and y2.
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It is a consequence of c) that in the class of solutions A{x1,x2} all stationary shocks
are unstable. In order to obtain the solution v2 with only one shock, the two shocks
emanating form y1 and y2 consequently have to meet at the position y in such a way
that the resulting shock is stationary.

We define t = 0 as the time at which the two shocks collide. So the question of unique-
ness of heteroclinic connections reduces to the question of uniqueness of shock col-
lisions in A{x1,x2}, or in negative time direction the questions of uniqueness of the
splitting of shocks at a given position.

Let u(x, t) be the solution where two shocks meet at time t = 0 at position x = y then
the lower state of the left shock and the upper state of the right shock have to coincide.
By construction of Ã{x1,x2} it is given by φ(y− x2):

lim
x↘y

lim
t↗0

u(x, t) = lim
x↗y

lim
t↗0

u(x, t) != φ(y− x2).

See Figure 2 for illustration.

Hence uniqueness of the splitting follows by uniqueness of backward solutions in the
case of u ∈ A{x1,x2} with two shocks proved in Corollary 4.4 . This proves e) and the
Theorem is proven.

�

Note that for the situation of Theorem 4.2 e) we can explicitly parameterize the whole
heteroclinic connection from v1 to u±. The stationary solution v1 with Z (v1) = {x1}
has one unique shock at position y1. Then using Theorem 4.2 b) and c) we can pa-
rameterize the whole connection manifold W u(v1) as follows: for any k ∈ Z and any
y1 ∈ [2kπ,2(k +1)π) we define

u∗{x1,y1}(x) :=
{

φ(x− x1 +2kπ) for 0≤ x≤ y1−2kπ

φ(x− x1 +2(k−1)π) for y1−2kπ < x < 2π
. (33)

Then W u(v1) is given by

W u(v1) := {u∗{x1,y1} ∈ BV (s1,R);y1 ∈ R}. (34)

The next section will present a geometric representation of A2 = W u(F2)

Corollary 4.5 Again let α ∈ N and n = 2α . Then the set of heteroclinic connections
between two frozen waves with zero-number z≤ α is completely contained in

Ãn :=
{

Ã{xα};xα ∈ Tα and 0≤ x1 < · · ·< xα < 2π
}

. (35)

Proof Let v1,v2 be two frozen waves with

Z (v1) = {x1, . . . ,xβ}
Z (v2)⊂Z (v1)
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for some given 0 ≤ x1 < · · ·xβ < 2π and β ≤ α . Let u(x, t) denote a heteroclinic con-
nection between v1 and v2. Then

u(·, t) ∈ A{xβ } ⊂ Ã{xβ } ⊂ Ã{x1,...,xβ ,...,xα}

for some xβ+1, . . . ,xα and t sufficiently small.

Now assume u(·, t̃) /∈ Ã{x1,...,xβ ,...,xα} for some t̃ ∈ R. Then we conclude

u(·, t) /∈ Ã{x1,...,xβ ,...,xα}

for all t > t̃ due to the overflowing property of Ã{x1,...,xβ ,...,xα}.

This contradicts
lim
t→∞

u(·, t) = v2

because
v2 ∈ ˚̃A{x1,...,xβ ,...,xα}.

Here ˚̃A denotes the interior of Ã in the topology of the manifold Ã{x1,...,xβ ,...,xα}.
�

In the next section a geometric representation of the sub-attractors of order n = 2 and
n = 4 will be given.

5 Examples

5.1 The sub-attractor A2

According to the definition the sub-attractor A2 consists of all frozen waves with zero-
number z = 1, the two stable homogeneous equilibria u≡ u± and all heteroclinic con-
nections between these objects. The frozen waves can be represented as an S1.

Due to Theorem A (2.10) all frozen waves are connected to u(x) ≡ u±. Theorem C
(2.10) states that these are all heteroclinic connections in A2 and Theorem 4.2 e)
yields uniqueness of these heteroclinics. Equation (33) provides together with equa-
tion (34) an explicit parameterization of these connections. Hence we can define an
explicit embedding

Σ2 : S1×R→BV (S1,R)
(x1,y1) 7→Σ2(x1,y1) := u{x1,y1}

where u∗{x1,y1} is defined in equation (33). The flow on graph(Σ2) can be computed
explicitly and is given by equation (23).
By a stereographic projection we can map graph(Σ2) onto the surface of a ball, thus
obtaining a representation of A2 as an S2, shown in Figure 3.

The three diagrams on the right in Figure 3 show schematically how the shape of
these solutions evolves on the S2 along a heteroclinic connection.
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u(x, t)≡ u+

u(x, t)≡ u−

H2

H2

A2

F2=̂S1

Figure 3: Geometric representation of the sub attractor A2.

5.2 The sub-attractor A4

Following the definition of A4 := E4∪F4∪H4 we will first classify all homogeneous
equilibria and frozen waves. Due to Sinestrati the frozen waves can be uniquely pa-
rameterized by the position of their zeros x1,x2 hence form a two-torus:

F4 = T2 := S1×S1,

and again E4 = {u−,u+}.
Each element of this torus has a heteroclinic connection to the homogeneous equilib-
ria u ≡ u±. This can be depicted by a spindle with a quadratic horizontal section and
u± located at the top and bottom. See panel a) in Figure 4. The heteroclinic connec-
tions are drawn with arrows. The edges of the quadratic horizontal section have to be
identified in order to obtain the torus. The sub-attractor A2 is contained in this picture
as well and is depicted in green. Figure 3 is obtained after identification of the two
opposite corners on the torus F4. The spindle is completely filled with heteroclinics
starting in F4 and ending at u≡ u− or u≡ u+ respectively.

The more interesting part of A4 is the part of the attractor that consists of all hete-
roclinic connections between F4 and F2. Theorem C (2.12) yields that every frozen
wave ũ with zero-number z(ũ) = 2 is connected to two waves ũa, ũb with zero-numbers
z(ũa,b) = 1, Theorem 4.2 f) yields uniqueness of these connections.

Hence every point on the torus of frozen waves F4\F2 has two heteroclinic connec-
tions to two points on the diagonal curve on that torus representing F2. This is shown
in panel b) in Figure 4, where we have parameterized the torus by the zeros (x1,x2)
given as the horizontal and vertical axes. Some heteroclinics are shown as arrows
for illustration. The lines are vertical if the zero x1 persists, horizontal if the zero x2
persists. Two heteroclinics emerge from every point.
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x2

x1

2π

2π
filled with
heteroclinics

u−

u+a) b)

F2

F4=̂T2

F4=̂T2

F2

A2

Figure 4: Heteroclinic connections in A4 with targets u≡ u±.

Equations (16) and (17) provide an explicit parameterization of these connections.

To show the complete connection picture it is convenient to use another representation
that divides out the S1 symmetry. This representation is shown in Figure 5.

To understand the Figure it is best to start with the vertical vertical line. This line
represents F4/S1: the manifold that contains all frozen waves with zero-number z = 2
after having divided out the S1 symmetry. The center point on this line is the π-periodic
frozen wave with equidistant zeros.

The coordinates on the vertical manifold are given by the distance between the two
zeros x1 and x2. On the bottom the distance is zero, in the middle at the dot it is π and
then it goes to zero again towards the top. x1 and x2 change in such a way that the
two shocks always remain in the same position (for Burgers equation this means due
to symmetries that x1+x2

2 = π). Three of the solution profiles in Figure 5 show how the
solutions evolve along the vertical manifold. This manifold is also included in panels
a) and b) of Figure 4 as a dashed line with a dot on the torus T2.

Each of the frozen waves has two connections to frozen waves with z = 1, one con-
nection where the zero at x1 persists and one where the one at x2 persists. These are
represented by the black arrows connecting to the circle representing F2 (= frozen
waves with one zero). To the left x1 persists and to the right x2 persist, this induces
coordinates on the circle of frozen waves with zero-number z = 1. The eight remaining
solution profiles in Figure 5 indicate how solutions evolve along the circle. A clockwise
rotation along the S1 in the figure corresponds to a shift of the solution to the right.

Now we are ready to include the S1 symmetry in the figure that was divided out before.
To do this we just have to rotate the whole figure along a circle in transverse direction
attached to the dot representing the wave with two equidistant zeros. We obtain a
filled torus where we have a figure similar to the one in Figure 5 in every slice.
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x2− x1

F4/S1

u2

F2

Figure 5: Heteroclinic connections in A4 from frozen waves with zero-number z = 2 to
waves with zero-number z = 1. The S1 symmetry is divided out.

Inside the torus the vertical line and the heteroclinic connections rotate once around
the center point with higher symmetry and therefore form a spiral. Figure 6 shows a
geometric representation of this. We have plotted half of the torus. The thick halfcir-
cular line corresponds to the frozen waves in A4 with higher symmetry (equidistant
zeros). The heteroclinics are shown only in the beginning and the end. They rotate
with the vertical manifold. There is a colour gradient included to illustrate the rotation
of the heteroclinics. Note that the there is no rotation on the torus’ surface.
To obtain the full picture we have to identify all points on the surface of the torus with
the S1 labeled with F2, hence retract the torus surface to the S1 without rotating it!
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F4\F2

F2

u2

Figure 6: Torus representing W u(F4) ∩> W s(F2).

6 Conclusions and Discussion

Building on earlier results of Fan and Hale [5], Sinestrari [10] and Härterich [7] and
others this article closes on of the last remaining gaps in the full dynamic description
of the global attractor of hyperbolic balance laws. The introduction of finite dimensional
sub-attractors in Section 3 allowed us to overcome difficulties coming from the infinite
dimensional nature of the global attractor.

Theorem 4.2 and Corollary 4.5 provide explicit parameterizations of all finite dimen-
sional sub-attractors of the global attractor and allow a geometric interpretation of the
results as given in the examples section.

A remaining question concerns the uniqueness of heteroclinic connections in situa-
tions where the assumption in Theorem 4.2 f) is violated. It is unclear whether con-
vexity of f and monotonicity of the profiles φ is enough to guarantee uniqueness
of heteroclinic connections in case more than two shocks meet to form a stationary
shock.

In addition the question remains how to describe the remaining part of the global
attractor. In principle I believe that heteroclinic connections emanating from waves
with infinite zero set can be treated analogously. A uniform explicit parameterization
covering the whole attractor seems to be difficult, due to the infinite dimensional nature
of the global attractor.

Moreover I believe that the introduced sub-attractors are a suitable tool to investigate
the relation between global solutions of the hyperbolic balance law with global solu-
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tions of its parabolically regularized version the viscous balance laws given by

ut + f (u)x = εuxx +g(u). (36)

This relation is explored in [3]. Due to the non persistence result of the author in
[3] the relation of global solutions of the hyperbolic and parabolic equation is more
complicated than one might expect, however the sub-attractors help facilitating the
description of that relation.

Finally the explicit results on the structure of the connections between waves with
finite zero number in this article open an alternative door for the description of hetero-
clinic connections in the parabolically regularized equation (36) other than by proving
invariant manifold results by spectral methods, which despite serious efforts by many
people in the last decades is still an unsolved problem.
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