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Abstract

We investigate optimal elliptic regularity (within the scale of Sobolev spaces) of anisotropic
div-grad operators in three dimensions at a multi-material vertex on the Neumann bound-
ary part of a polyhedral spatial domain. The gradient of a solution to the corresponding
elliptic PDE (in a neighbourhood of the vertex) is integrable to an index greater than three.
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1 Introduction

In recent years several elliptic regularity results were established in theW 1,q scale, see [12]
and [30] for the pure Dirichlet/Neumann Laplacian on domains with Lipschitz boundary,
[22] and [6] for Neumann and mixed problems on polyhedra, and [4, 19, 20, 24, 25, 3,
16, 21, 7, 9, 5] in case of discontinuous coefficients. Meanwhile, this covers quite a nice
zoo of geometries and coefficient functions, even including mixed boundary conditions.
What has not been treated, is optimal W 1,p↔W−1,p regularity in a neighbourhood of a
Neumann vertex when additionally heterogeneous materials are involved.

The interest in such problems essentially comes from the natural sciences and engi-
neering. Here, many phenomena are described by elliptic or parabolic equations, and
the influence of heterogeneous materials often is an important issue. For a detailed list
of such problems we refer to the introduction of [9], see also [4]. In particular, in the
investigations of quite a few nonlinear problems (see [10]) it is relevant that W 1,p admits
nice multiplier properties if p is larger than the space dimension. Alternatively, the
reader may think of a parabolic equation with a quadratic gradient term on the right
hand side. Then it is important to have, on one hand, Lp/2 ↪→ W−1,p (what implies, by
Sobolev embedding, that p must be larger than the space dimension) and, on the other
hand, an embedding for the domain of the elliptic operator into W 1,p, see [10], [11].
Recall that spaces of type W−1,q include distributional objects as e.g. surface densities
– necessary in many applications, see [29, Chapter 1].

In our main result we show, roughly spoken, that there is a p > 3, such that, for any
f ∈ (W 1,p′(Π))′, every solution v of −∇ · µ∇v = f is in W 1,p locally around any vertex
aN of Π, provided that Π is a polyhedral manifold with boundary and the coefficient
function µ satisfies some properties which allow to limitate the corresponding elliptic
edge singularities, see further details in Theorem 5.1.

Let us emphasise that the matrices which constitute the coefficient function µ may be
not diagonal and, in particular, not multiples of the identity, see [15, Ch. IV/V]. This
is motivated by the applications. Moreover, anisotropic coefficients are unavoidable in
view of (local) deformation of the domain, see Proposition 3.1. It should be noted that in
case of an anisotropic coefficient matrix µ the generic properties of the elliptic operator
∇ · µ∇ possibly differ dramatically from the case of a scalar coefficient function, see [7,
Remark 5.1], [8, §4], and [27, Ch. 5].

We solve the problem by localization, deformation and a reflection argument. In
particular, one has to flatten a part of the boundary in a way that this piece then becomes
part of a plane. In order to preserve the cellular structure of the constancy domains
for the transformed coefficient function, one must, additionally, take a piecewise linear
homeomorphism for the transformation. Since our aim was the treatment of general
vertices, we make heavily use of nontrivial – but classical – instruments from geometric
topology in dimensions 2 and 3. As a by-product, we get the (affirmative) answer (see
Theorem 3.10) to the question: “Does every TOP manifold have a LIP structure?” (see
[17, Ch. 9]) in case of three-dimensional polyhedra which form, additionally, a 3-manifold
with boundary.
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2 Notation

Throughout the text we will employ the following notation. By C := ]−1, 1[3 we denote
the open cube in R3, centered at 0, while C± := C ∩ {x = (x, y, z) ∈ R3 : y ≷ 0} and
Σ := C ∩ {x = (x, 0, z) : x, z ∈ R}.

Concerning the notion Lipschitz domain, we follow the terminology in [18, Ch. 1.1.9].
In all what follows, Γ ⊆ ∂Ω is always a relatively open part of the boundary ∂Ω. The
symbol W 1,p(Ω) denotes the usual (complex) Sobolev space on Ω and we use W 1,p

Γ (Ω)
for the closure of {

v|Ω : v ∈ C∞(R3), supp(v) ∩ (∂Ω\Γ) = ∅
}

in W 1,p(Ω). If Γ = ∅ we write as usual W 1,p
0 (Ω) instead of W 1,p

∅ (Ω). Finally, W−1,p′
Γ (Ω)

denotes the space of continuous antilinear forms on W 1,p
Γ (Ω).

The expression 〈·, ·〉X always indicates the pairing between a Banach space X and its
(anti-)dual; in case of X = Cd we mostly write 〈·, ·〉. If ω is a Lebesgue measurable,
essentially bounded function on Ω taking its values in the set of d× d matrices, then we
define −∇ · ω∇ : W 1,2

Γ (Ω)→ W−1,2
Γ (Ω) by

〈−∇ · ω∇v, w〉W 1,2
Γ

:=

∫

Ω

ω∇v · ∇w dx , v, w ∈ W 1,2
Γ (Ω).

3 Transformation of the problem

All our transformation techniques heavily rely on the fact that the general structure of
the problem is not altered by bi-Lipschitz transformations. Thus we first quote from
[9] the essential lemma that allows to transform elliptic divergence operators under bi-
Lipschitz mappings maintaining optimal regularity.

Proposition 3.1 ([9, Prop. 16]). Let Ω ⊆ Rd be a bounded Lipschitz domain and Γ be
an open subset of its boundary. Assume that φ is a mapping from a neighbourhood of Ω
into Rd, which is bi-Lipschitz and denote φ(Ω) = Ω? and φ(Γ) = Γ?. Then the following
assertions are true.

1. For any p ∈ ]1,∞[ the mapping φ induces a linear, topological isomorphism

Ψp : W 1,p
Γ?

(Ω?)→ W 1,p
Γ (Ω)

that is given by (Ψpf)(x) = f(φ(x)) = (f ◦ φ)(x).

2. The operator Ψ∗p′ is a linear, topological isomorphism between W−1,p
Γ (Ω) and W−1,p

Γ?
(Ω?).

3. If ω is a bounded measurable function on Ω, taking its values in the set of d × d
matrices, then

Ψ∗p′∇ · ω∇Ψp = ∇ · ω∇
with

ω(y) = (Dφ)(φ−1(y))ω(φ−1(y))
(
Dφ
)T

(φ−1(y))
1∣∣det(Dφ)(φ−1y)

∣∣ , (3.1)
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where Dφ denotes the Jacobian of φ and det(Dφ) the corresponding determinant.

Furthermore, if −∇ · ω∇ : W 1,p
Γ (Ω) → W−1,p

Γ (Ω) is a topological isomorphism, then
−∇ · ω∇ : W 1,p

Γ?
(Ω?)→ W−1,p

Γ?
(Ω?) also is (and vice versa).

3.1 Local flattening of the boundary by piecewise linear maps

In this section we will prove – under very general conditions – that the boundary of
a polyhedron in R3 may be locally flattened around any boundary point by means of
a piecewise linear homeomorphism. This means in particular that if the polyhedron
is subdivided into cells, on each of which the coefficient function of an elliptic opera-
tor is constant, then one can find a mapping which locally flattens the boundary and,
additionally, does not destroy this configuration.

In order to do so, we will need some notions and results from geometric topology,
which we introduce briefly. All this material is in the spirit of the books by Moise [23]
and Alexandroff & Hopf [1], see also Bing [2].

3.1.1 Some notions and results from geometric topology

If v0, . . . , vm ∈ R3, and the convex hull of these points contains a d-dimensional ball
and no (d + 1)-dimensional ball, then this convex hull is called the d-cell generated by
v0, . . . , vm. The sides, edges and vertices from the boundary of the d-cell are called faces.
If m ≤ 3 and the points v0, . . . , vm ∈ R3 lie in general position, then we call the cell a
simplex. Simplices in R3 are either tetrahedra, triangles, edges, or vertices.

A euclidean complex K is a locally finite collection of cells in R3 such that K contains
all faces of all elements of K and if σ and τ are two cells in K with σ∩ τ 6= ∅, then σ∩ τ
must be a face both of σ and τ (see [1, Ch. III]). We call a complex a simplicial complex, if
all cells involved are simplices. For a complex K in R3 we denote by |K| := ⋃σ∈K σ ⊆ R3

the polyhedron given by the complex K. If v is a vertex of the euclidean complex K,
then the set of all cells from K which contain v, together with all their faces, form the
star KF

v of v in K. All those faces in the star that do not have v as a vertex form the
link of v. The open star is the set-theoretic difference of star minus link. (The open
star is an open set in |K| and not carried by a subcomplex.)

If K is a finite simplicial complex such that |K| is additionally an m-dimensional
topological manifold (with boundary), then the complex K is a triangulated m-manifold
(with boundary) and the topological space |K| a polyhedral m-manifold (with boundary).
We denote by K∂ its boundary complex, which is generated by all the (m−1)-cells of the
complex that lie in exactly one m-cell. All the manifolds M considered in the following
are compact.

If K and K ′ are euclidean complexes in R3 with |K| = |K ′| and every σ ∈ K ′ is
contained in some element from K, then K ′ is called a subdivision of K. Below we
will repeatedly need the following important relation between euclidean complexes and
simplicial complexes:
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Proposition 3.2 ([1, Ch. III.2]). Every euclidean complex K admits a simplicial subdi-
vision K ′ without new vertices. Moreover, K ′ can be constructed such that all edges of
K ′ that come to lie in the open star of one specified vertex v ∈ K have v as an endpoint.

Let K be a complex in Rd. A continuous mapping f from |K| onto a subset of Rm is
piecewise linear, if there is a subdivision K ′ of K such that the restricted function f |σ
is linear for every σ ∈ K ′.

Remark 3.3. By Proposition 3.2 we may always assume that the cells on which a
piecewise linear mapping is linear are simplices.

If K is a finite complex and f is injective, then on f(|K|) one has the structure of
a complex, induced from K by f . In the case of simplicial complexes this definition
coincides with that in [23]; compare also [2, Ch. II]. See [23, Ch. 5] also for basics about
piecewise linear homeomorphisms.

Finally, we need different notions of “boundary” for manifolds and complexes. Let
M be an m-dimensional topological manifold in R3, with or without boundary. Then
all points in M having an open neighbourhood in M that is homeomorphic to Rm form
the interior Int(M) of M and the rest Bd(M) := M\Int(M) is the manifold-theoretic
boundary of M .

The expression ∂A stands for the topological frontier of a set A ⊆ Rd, i.e. ∂A =
A ∩ Rd\A, where the closure has to be taken in Rd.

Remark 3.4. Let K be a triangulated 3-manifold with boundary. Assume that µ is a
coefficient function on |K| that is constant on the interiors of all 3-cells from K, and
that φ : |K| → R3 is a piecewise linear mapping which establishes a homeomorphism
from |K| onto its image. Then the resulting coefficient function on φ(|K|) (see (3.1)) is
constant on the interiors of 3-cells whose pre-images are contained in the 3-cells of K.

In the sequel, we will exploit the following results from geometrical topology:

Proposition 3.5 ([2, Thm. I.2.A]). If K is a finite simplicial complex in R3, then there
is a triangulation KR3 of R3 which contains K as a subcomplex.

Proposition 3.6 ([17, Thm. 2.18], [28, p. 504]). Let K be a finite euclidean complex
in Rd and let φ : |K| → Rm be piecewise linear and continuous. Then φ is Lipschitz
continuous.

Proposition 3.7 (The 3D PL Schoenflies Theorem [23, Thm 17.12] [2, Thm. XIV.I]).
Let S be a polyhedron in R3, whose boundary is topologically a 2-sphere. Then there is
a piecewise linear homeomorphism φS : R3 → R3 which maps the interior of S onto the
interior of a tetrahedron σ3 and ∂S onto ∂σ3.

Remark 3.8. In the following, we will apply the 3D PL Schoenflies Theorem to get a
homeomorphism not to the boundary of a tetrahedron, but instead to the boundary of
the brick C+ = [−1, 1] × [0, 1] × [−1, 1] = {(x, y, z) ∈ [−1, 1]3 : y ≥ 0}. Moreover, we
need that a specified point a ∈ S is mapped to the point 0 ∈ ∂C+. Both these properties
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may be achieved by constructing a piecewise linear homeomorphism R3 → R3 that maps
σ3 onto C+ and carries a given point a ∈ ∂σ3 to 0. This is easily achieved by explicit
geometric construction, where we distinguish the three cases when a lies in the relative
interior of a triangle face, lies on an edge, or is a vertex of σ3.

Next, we prove the key lemma needed for the flattening theorem in the next subsection.

Lemma 3.9. Let K be a triangulated 3-manifold with boundary in R3 and v be a vertex
in the boundary of |K|. Then the polyhedron |KF

v | of the star of v in K is homeomorphic
to the closed unit ball in R3. In particular, the boundary of KF

v is a polyhedral 2-sphere.

Proof. By [23, Thm. 17.1] and [23, Thm. 23.3] the boundary complex K∂ of K is a
2-manifold, and hence the star of the vertex v ∈ K∂, denoted KF

∂,v, is a disk (see [23,
Thm. 4.8]). Consider a sufficiently small ball B centered at v, small enough so that it
intersects only those faces of K that lie in KF

v , i.e., that contain v. One first observes
that KF

∂,v∩B is homeomorphic to KF
∂,v. Hence, the intersection of the disk KF

∂,v with the
boundary of B yields a Jordan curve in the 2-sphere ∂B, which by the 2D Schoenflies
theorem ([23, Thm 10.2]) divides the sphere into two disks, one of them being ∂B∩KF

v .
Thus radial projection from v shows that the star KF

v is a cone (with apex v) over a
disk, hence it is a ball; its boundary, which is the union of two discs, namely the star of
v in KF

∂,v and the link of v in KF
v , is a 2-sphere.

3.1.2 The PL flattening theorem

The aim of this section is to establish the following result.

Theorem 3.10. Let Π ⊆ R3 be a domain such that Π is a polyhedral 3-manifold with
boundary satisfying Π = Int(Π). Then Π is a Lipschitz domain and the local bi-Lipschitz
charts around the boundary points may be taken as piecewise linear homeomorphisms,
as follows.

Let KΠ be a euclidean complex with |KΠ| = Π and extend this to a triangulation
KR3 ⊃ KΠ of R3. Then for every a ∈ ∂Π there is a continuous, piecewise linear map
ϕa of the cube C = [−1, 1]3 ⊆ R3 onto a closed neighborhood Wa of a in R3 with the
following properties:

(1) 0 maps to a,

(2) Σ = ]−1, 1[× {0} × ]−1, 1[ maps to the boundary ∂Π of the domain Π,

(3) C+ = ]−1, 1[× ]0, 1[× ]−1, 1[ maps to the domain Π,

(4) C− = ]−1, 1[× ]−1, 0[× ]−1, 1[ maps to the exterior R3\Π of the domain Π.

Moreover, the complex LC which supports the mapping ϕa has the following properties:

(5) For every A ∈ LC, ϕa(A) is a subset of an element from the star of a in KR3. In
particlular, if A ∈ LC is a subset of C+, then ϕa(A) is a subset of an element from
the star of a in KΠ.
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(6) Every 3-cell of LC has one of its vertices in 0.

(7) Every edge from LC which intersects C connects 0 with a vertex on ∂C.

Remark 3.11. The crucial conditions are Π = Int(Π) and that Π is a manifold with
boundary. The first excludes cracks while the second forbids e.g. a prism with basis as
indicated in Figure 1, cf. Remark 4.3.

Figure 1: A pair of pincers is not a manifold with boundary, cf. Remark 3.11.

Proof. All the claims of this theorem are easy to establish if a is a relative interior
point of a boundary triangle of KΠ, and quite easy to prove in the case where a lies on
an edge of KΠ, since then a projection parallel to the edge reduces the situation to a
2-dimensional problem. The hard case is if a is a vertex of KΠ:

Lemma 3.9 in conjunction with the 3D PL Schoenflies Theorem – adapted according
to Remark 3.8 – provides a piecewise linear homeomorphism h : R3 → R3 that carries the
star KF

a onto the brick C+ = [−1, 1]× [0, 1]× [−1, 1], while mapping a to the boundary
point 0 ∈ ∂C+. Let Lref be a simultaneous refinement of both the complexes KR3 and
a triangulation of R3 that supports the piecewise linear homeomorphism h : R3 → R3

(with a subcomplex triangulating KF
a ). Modulo another refinement (which does not

reduce the polyhedron of the star of a) we may assume that the 3-cells of Lref are
tetrahedra; we perform this refinement, but maintain the notation Lref .

Let LF
a denote the star of a in Lref . Now we consider the complex h(LF

a ). The
polyhedron |h(LF

a )| is a neighbourhood of 0. Obviously, all cells of h(LF
a ) are again

tetrahedra – this time with one vertex in 0. Moreover, all edges which intersect the
interior of the polyhedron |h(LF

a )| originate in 0. Let εC be a cube that is situated in
the interior of |h(LF

a )|. Thus, the intersection with |h(LF
a )| induces on εC the structure of

a complex the cells of which have one vertex in 0. Furthermore, the mapping ϕa := h−1|εC
is linear on each of these cells. Thus, finally, rescaling x 7→ εx and definingWa := ϕa(C),
one obtains the asserted neighbourhood. The stated bi-Lipschitz property of ϕa follows
from Proposition 3.6.

4 Edge singularities

In this section, after some preparations, we recall the optimal regularity result from
[21] for heterogeneous Dirichlet problems on polyhedral domains and explain how to
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identify the occurring edge singularities. We first introduce some notions and notation
corresponding to our geometric situation of a polyhedral domain Π and the piecewise
constant coefficient function µ.

Definition 4.1. For ι, ϑ ∈ ]−π, π] with ι < ϑ we define the sector

Sϑι := {(r cos θ, r sin θ) : r > 0, θ ∈ ]ι, ϑ[}.

Definition 4.2. Let Ω ⊆ R3 be a Lipschitz domain, such that Ω is a polyhedral 3-
manifold with boundary, associated to the finite complex K. If {σk}k is the collection of
all 3-cells from K, then let µ be a matrix function on Ω which is constant on the interior
of each cell σk and takes real, symmetric, positive definite 3×3 matrices as values. Take
an edge E of any of the σk’s and consider an arbitrary point P of this edge that is not
an endpoint of it.

Choose a new orthogonal coordinate system (x, y, z) with origin at the point P such
that the direction of E coincides with the z-axis. We denote by OE the corresponding
orthogonal transformation matrix and by µE,P the piecewise constant matrix function,
which coincides for x from a neighbourhood of 0 ∈ R3 with AE,Px := OEµ(O−1

E x+P )O−1
E

and which satisfies

µE,P (tx, ty, z) = µE,P (x, y, 0), for all (x, y, z) ∈ R3, t > 0. (4.1)

By µE(·, ·) we denote the upper left 2× 2 block of µE,P (·, ·, 0).

Remark 4.3. It is essential that – as the above notation suggests – the coefficient
function µE is the same for every point P from the (relative) interior of the edge E.

There exist angles θ0 < θ1 < . . . < θn ≤ θ0 + 2π, such that µE is constant on each of
the sectors S

θj+1

θj
and takes real, symmetric, positive definite matrices as values. In the

sequel we call such coefficient functions on a sector S ⊆ R2 sectorwise constant.
If µE corresponds to an interior edge E, then we have θn = θ0 + 2π, otherwise µE

is given on an infinite sector Sθn
θ0

that coincides near P with the intersection of the
transformed Ω with the x-y-plane.

Note that the appearance of a whole sector Sθn
θ0

in case of boundary edges is indeed

due to the fact that Ω is a polyhedral 3-manifold with boundary.

In order to cite the optimal regularity result from [21], we now introduce the Sturm-
Liouville operator associated to an edge and to the coefficient function µ.

Definition 4.4. Let numbers θ0 < θ1 < . . . < θn ≤ θ0 + 2π be given and, additionally,
real, symmetric, positive definite 2 × 2 matrices ρ1, . . . , ρn, which are asscociated to
the sectors Sθ1θ0 , . . . , S

θn
θn−1

. We introduce on ]θ0, θn[ \ {θ1, . . . , θn−1} coefficient functions
b0, b1, b2, whose restrictions to the interval ]θj, θj+1[, j = 0, . . . , n− 1, are given by

b0(θ) = ρj11 cos2 θ + 2ρj12 sin θ cos θ + ρj22 sin2 θ ,

b1(θ) = (ρj22 − ρj11) sin θ cos θ + ρj12(cos2 θ − sin2 θ) ,

b2(θ) = ρj11 sin2 θ − 2ρj12 sin θ cos θ + ρj22 cos2 θ .
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If θn 6= θ0 + 2π, then we define the space H as W 1,2(]θ0, θn[) in case of a Neumann
condition and as W 1,2

0 (]θ0, θn[) in case of a Dirichlet condition. If θn = θ0 + 2π – the
case of an interior edge – we define H as the periodic Sobolev space W 1,2(]θ0, θn[)∩ {υ :
υ(θ0) = υ(θn)}, which clearly may be identified with the Sobolev space W 1,2(S1) on the
unit circle S1. For every λ ∈ C we define the quadratic form tλ on H by

tλ[υ] :=

∫ θn

θ0

(
b2 υ

′ υ′ + λb1υ υ′ − λb1υ
′ υ − λ2b0υυ

)
dθ (4.2)

and Aλ as the operator which is induced by tλ on L2(]θ0, θn[), or on L2(S1), respectively.

As usual [19], we refer to the entity {Aλ}λ as the corresponding operator pencil in the
sequel.

Definition 4.5. Let E be any edge of the triangulation of Ω and Aλ as defined in
Definition 4.4 with ρ = µE. Then we call the number

inf{<λ > 0 : ker(Aλ) 6= {0}}

the singularity exponent associated to E. Generally, we call a number λ with <λ > 0
for which ker(Aλ) 6= {0} a singular value of the operator pencil Aλ.

We proceed by quoting the central linear regularity result [21, Thm. 2.3] – which
serves later on as the the main tool for the proof of our regularity result.

Proposition 4.6. Let Ω, {σk}k and µ be as in Definition 4.2. If for every edge, belonging
to the trinangulation {σk}k, the associated singularity exponent is larger than 1

3
, then

there is a p > 3, such that

−∇ · µ∇ : W 1,p
0 (Ω)→ W−1,p(Ω)

is a topological isomorphism.

Remark 4.7. It is known that in every strip {λ = λ1 + iλ2 : |λ1| ≤ c} there is only a
finite number of values λ, for which the kernel of Aλ is not trivial, see Corollary 3.11
from [21]. Therefore, it suffices to show that no Aλ with 0 < <λ ≤ 1

3
does admit a

nontrivial kernel.

In the next sections all edges resulting from our problem are inspected, concerning the
triviality of ker(Aλ). Here, two essential types are monomaterial edges and bimaterial
outer edges:

Definition 4.8. Let E be an edge in Ω that lies in ∂Ω. Then we define in the terminology
of Definition 4.2:

1. E is a monomaterial edge, if all relative interior points of E possess a neighbour-
hood in Ω on which µ is constant a.e. with respect to 3-dimensional Lebesgue
measure.
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2. E is a bimaterial outer edge, if the function [θ0, θn] 3 θ 7→ µE(cos(θ), sin(θ)), has
exactly 1 jump, and the lengths of both the constancy intervals of this function do
not exceed π. Here θ0 and θn are again the angles associated to E in Remark 4.3.

For the treatment of the corresponding singularities, we have the following two results,
see [7, Lemma 2.3] or [9, Thm. 24/25].

Proposition 4.9. For any monomaterial edge E the kernels of the associated operators
Aλ are trivial, when either a pure Dirichlet condition or a pure Neumann condition is
imposed, and if <λ ∈ ]0, 1/2].

Proposition 4.10. Let Sθ1θ0 , S
θ2
θ1

be two neighbouring sectors in R2 with θ1−θ0, θ2−θ1 ≤ π
and θ2 − θ0 < 2π. Let ρ1, ρ2 be two real, symmetric, positive definite 2 × 2 matrices
corresponding to the sectors Sθ1θ0 and Sθ2θ1 , respectively. Let tλ be the form defined in (4.2)

either on W 1,2
0 (]θ0, θ2[) or on W 1,2(]θ0, θ2[). Then there is an ε > 0, such that the kernel

of the corresponding operator Aλ (see Definition 4.4) is trivial for <λ ∈ ]0, 1/2 + ε].

In the rest of this section we collect some results on edge singularities which will be
needed in the sequel.

First we establish an invariance principle for the set of singular values of an operator
pencil Aλ when a sectorwise linear mapping is applied to the geometrical and coefficient
constellation.

Definition 4.11. Let S ⊆ R2 be a sector which splits up in the subsectors Ŝ1, . . . , Ŝm,
such that Ŝl, is neighbour of Ŝl−1 and Ŝl+1, l = 2, . . . ,m−1. Let A be a homeomorphism
from S onto another sector S•. We call A sectorwise linear if the restriction of A to each
Ŝl is a linear mapping, i.e. if for x, y ∈ Ŝl also x+y belongs to Ŝl, then Ax+Ay = A(x+y),
and A(tx) = tAx for x ∈ Ŝl and t > 0.

Remark 4.12. Note that the inverse of a sectorwise linear mapping is also a sectorwise
linear mapping.

Having this at hand, one can show the following

Theorem 4.13. Let, for the sector S ⊆ R2 a sector partition S1, . . . , Sn be given. Let
ρ be a coefficient function on S which takes on each sector Sl constantly the symmetric,
positive definite 2× 2-matrix ρl as value. Let A : S → S• be a homeomorphism which is
sectorwise linear.

1. The transformed coefficient function ρ (see Proposition 3.1) is also sectorwise con-
stant on S•.

2. If Aλ is the operator pencil associated to the coefficient function ρ and Aλ is
the corresponding operator pencil for the coefficient function ρ (cf. Definition 4.4)
then the singular values (cf. Definition 4.5) for Aλ and Aλ in fact coincide. In
particular, their singularity exponents are the same.
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Proof. The first assertion follows from the transformation formula (3.1). Furthermore,
the second assertion is proved in [13, Thm. 4.3] for the case θn 6= θ0 + 2π and that the
sector S splits up into only two subsectors Ŝ1, Ŝ2. The general case needs only obvious
modifications of this proof. The crucial point is the fact that a sectorwise linear mapping
is homogeneous of degree 1.

Remark 4.14. Note that the sector partitions S1, . . . , Sn and Ŝ1, . . . , Ŝm are completely
independent from each other. Nevertheless, one can introduce a common refinement.

Theorem 4.15. Let KE be a euclidean complex in R3 and let the following hypotheses
be satisfied.

1. Every 3-cell σ ∈ KE contains the edge E.

2. If P ∈ E is an abitrary (relative) interior point and H(P,E) is the plane which
contains P and is perpendicular to E, then |KE|∩H(P,E) coincides locally around
P with a complete sector.

3. ω is a coefficient function on |KE| which takes its values in the set of real, sym-
metric, positive definite 3× 3-matrices and is constant on every σ ∈ KE.
Assume that φ : |KE| → R3 maps |KE| homeomorphically onto its image and is
linear on every σ ∈ KE.

Then the transformed coefficient function (see Proposition 3.1)

ρ(y) = (Dφ)(φ−1(y))ω(φ−1(y))
(
Dφ
)T

(φ−1(y))
1∣∣det(Dφ)(φ−1y)

∣∣

on the polyhedron φ(|KE|) satisfies (mutatis mutandis) the above hypotheses 3. and,
additionally, the singular values for the corresponding operator pencils Aλ and Aλ (cf.
Definition 4.4) are the same. In particular, their singular exponents coincide, (cf. Defi-
nition 4.5).

Proof. We shall show that the coefficient functions ωE and ρφ(E) (cf. Definition 4.2) are
related via a sectorwise linear mapping – what makes Theorem 4.13 applicable.

Let us recall how the coefficient function ωE, defining the operator pencil Aλ, is
obtained: one considers the affine transformation AE,P that shifts an arbitrary point
P ∈ E to the origin and rotates the (shifted) edge E into the z-axis, see Definition 4.2.
The coefficient function ωE,P coincides on a sufficiently small neighbourhood V of0 ∈ R3

with the coefficient function, that results from ω under the transformation AE,P , cf.
Proposition 3.1, and is extended to the whole of R3 by (4.1). Finally, ωE is the upper
left block of ωE,P (·, ·, 0) — thus, not depending on P anymore, cf. Definition 4.2.

The same construction is applied to the complex φ(KE) and the corresponding coeffi-
cient function ρ — in this way defining the mapping Aφ(E),φ(P ) and the operator pencil
Aλ. The mapping B := Aφ(E),φ(P )φA

−1
E,P : AE,P |KE| → Aφ(E),φ(P )φ(|KE|) is a homeo-

morphism which acts linearly on any wedge Sl × ]−∞,∞[, where Sl is any from the
sectors defined in Remark 4.3 — here corresponding to the coefficient function ω. Note
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that B maps 0 ∈ R3 onto itself and transforms the vector (0, 0, 1)T into a vector (0, 0, τ)T

with τ 6= 0. Hence, the restriction of B to any of these wedges must be a linear mapping
of the form

Bl =




b11 b12 0
b21 b22 0
b31 b32 τ


 .

The value τ does not depend on the specific wedge, but |τ | is the stretching factor of E
with respect to φ. According to the transformation formula (3.1), one has, for points x
from the corresponding image wedge which are, additionally, close to Aφ(E),φ(P )φ(E),

ρφ(E),φ(P )(x) =
1

|det(Bl)|
BlωE,P (B−1

l (x))BT
l . (4.3)

But, due to (4.1), equation (4.3) extends to the whole image wedge. For a 3× 3 matrix

M let M̂ denote the upper left 2 × 2 block. B̂ induces a sectorwise linear mapping on
the corresponding sector – which is part of the x-y-plane. The special form of B, namely
the property b13 = b23 = 0, then yields the equation

ρ̂φ(E),φ(P )(x) =
1

|det(B)|B̂ω̂E,P (B−1(x))B̂T =
1

|τ |
1

|det(B̂)|
B̂ω̂E,P (B−1(x))B̂T ,

for x ∈ Aφ(E),φ(P )φ(|KE|). This gives

ρφ(E)(x, y) = ρ̂φ(E),φ(P )(x, y, 0) =
1

|τ |
1

|det(B̂)|
B̂ω̂E,P (B−1(x, y, 0))B̂T . (4.4)

Further, again the special form of B provides

B−1 =

(
B̂−1 0

0
c1,3 c2,3 1/τ

)
.

Inserting this into (4.4) one obtains

ρφ(E)(x, y) =
1

|τ |
1

|det(B̂)|
B̂ω̂E,P (B̂−1(x, y), z)B̂T (4.5)

for z = c1,3x+c2,3y ∈ R. However, the coefficient functions ωE,P and ω̂E,P do not depend
on z such that we finally get

ρφ(E)(x, y) =
1

|τ |
1

|det(B̂)|
B̂ω̂E,P (B̂−1(x, y) , 0)B̂T =

1

|τ |
1

|det(B̂)|
B̂ωE(B̂−1(x, y))B̂T

Thus, the coefficient function ρφ(E) results from the coefficient function ωE via a sector-
wise linear mapping (modulo the constant, scalar prefactor 1

|τ |) – and vice versa. Hence,
kerAλ is trivial if kerAλ is trivial, due to Theorem 4.13.
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The final result in this section reverses in some sense the reflection argument (cf.
Lemma 6.3/Lemma 6.4 below): it allows us to delimitate the singularities at edges in Σ
which result from the even reflection across the former Neumann boundary part.

Lemma 4.16. Assume that the half space {(x, y) : y > 0} splits up into the sectors
Sθ10 , . . . , S

π
θn−1

with the associated matrices

(
ρ1

11 ρ1
12

ρ1
12 ρ1

22

)
, . . . ,

(
ρn11 ρn12

ρn12 ρn22

)
. (4.6)

Assume that to the sectors S−θ10 , . . . , S−π−θn−1
the matrices

(
ρ1

11 −ρ1
12

−ρ1
12 ρ1

22

)
, . . . ,

(
ρn11 −ρn12

−ρn12 ρn22

)
(4.7)

are assigned. Let Aλ denote the operator that corresponds to the matrices (4.6), (4.7)
within the given sector partition of R2. Let further ADλ and ANλ denote the operators,
which correspond to the matrices (4.6) within the sectors in the half space {(x, y) : y > 0},
once combined with Dirichlet and once with Neumann boundary conditions. Then for
any number λ with <λ > 0 the kernel of the operator Aλ is trivial, if for this same λ
the kernels of ADλ and ANλ are trivial.

Proof. A proof is given in [9, Lemma 22] in the case of two sectors in the half space.
Mutatis mutandis, the proof can be carried over to the case of many sectors.

5 The optimal regularity result

We are now in the position to state our main result on optimal regularity of the elliptic
problem near a heterogeneous Neumann vertex.

Theorem 5.1. Let Π ⊆ R3 be a bounded domain, such that Π and Π have the same
boundary and its closure Π is a polyhedral 3-manifold with boundary. Let aN be a vertex
of Π and suppose:

1. The coefficient function µ on Π is elliptic and takes its values in the set of real,
symmetric, positive definite 3× 3 matrices.

2. There is a triangulation of Π by a (finite) euclidean complex K, such that µ is constant
on the interior of each 3-cell belonging to K.

3. Any edge in K, belonging to the boundary of Π and having one endpoint in aN, is a
monomaterial edge or a bimaterial outer edge.

4. For every interior edge with endpoint aN, resulting from the triangulation K, the
singularity exponent, associated to this edge, is larger than 1

3
.
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Then there is an open neighbourhood U of aN ∈ R3 such that, setting Π• := Π ∩ U and
Γ := ∂Π ∩ U , the operator

−∇ · µ|Π•∇ : W 1,p
Γ (Π•)→ W−1,p

Γ (Π•) (5.1)

is a topological isomorphism for some p > 3.

Remark 5.2. 1. Condition 2. in Theorem 5.1 says by no means that the coefficient
function µ has to take different values on different cells.

2. In case of the Laplacian (i.e. µ ≡ 1R3) Theorem 5.1 says that only the geometric
suppositions on Π suffice to guarantee the ismorphism property (5.1) – irrespective
how ’wild’ the local geometry of Π really is (compare [6]). Thus, one is here in
the same situation as in the Dirichlet case, cf. Proposition 4.6 and Proposition 4.9,
compare also [7, Thm. 2.1].

Unfortunately, for interior edges it seems to be extremely difficult to decide, whether
the kernels of Aλ are trivial or not in generality, see the detailed discussion in [7].
However, there are several important constellations, where this assumption is known to
be true:

Definition 5.3. Let angles −π = θ0 < θ1 < · · · < θn = π be given and let µ̂ be a
constant matrix on every sector Sj := S

θj

θj−1
, j = 1, . . . , n, in R2. Then µ̂ is distributed

quasi-monotonely, if there exist indices jmin, jmax ∈ {1, . . . , n}, such that

µ̂|Sjmax
≥ µ̂|Sjmax+1

≥ · · · ≥ µ̂|Sjmin−1
≥ µ̂|Sjmin

≤ µ̂|Sjmin+1
≤ · · · ≤ µ̂|Sjmax−1

≤ µ̂|Sjmax

and there exists a point x ∈ R2, such that x ∈ Sjmax and −x ∈ Sjmin
. Here the indices

are to be understood modulo n, i.e. Sn+1 is again S1.

Example 5.4. Condition 4. of Theorem 5.1 is satisfied in each of the following cases.

1. There is exactly one plane containing aN, which splits up Π in a neighbourhood
of aN into two pieces, such that the coefficient function is locally constant on both
intersections of Π with the half spaces, induced by the plane. Of course, then no
interior edges appear around aN.

2. There are exactly two planes containing aN and intersecting Π. The coefficient
function is constant in the induced four quarter spaces and scalar valued. This
sequence of scalars is monotonously increasing if starting with the smallest scalar
and then running from sector to sector, see [26, Thm. 6.4].

3. The matrices are distributed quasi-monotonely (compare [7, Lemma 2.1], see also
[14]). This is in particular the case, if µ is scalar valued, and R2 splits up into
three sectors, each of which has an opening angle less than π.

Remark 5.5. 1. Condition 3. of Theorem 5.1 in particular forbids a material con-
stellation M+,M−,M+ in three neighbouring sectors, despite the fact that only
two different materials are involved.

14



6 Proof of Theorem 5.1

6.1 Localization and reflection

Having in mind our aim to show optimal elliptic regularity in a neighbourhood of a vertex
a of the polyhedral domain Π, the next task will be to define a suitable neighbourhood
U of the point a under consideration, where we investigate the regularity of the solution.

Definition 6.1. From now on we always suppose that aN is a vertex of Π and that ϕaN
is chosen as in Theorem 3.10. Moreover, we define the euclidean complex K+

C as the

complex LC ∩ C+.

Now, let a cut-off function η ∈ C∞0 (Rd) with supp(η) ⊆ U and a right hand side
f ∈ (W 1,p′(Π))′ for some p ∈ ]3, 6] be given. The following lemma establishes an
equation for the truncated function ηv.

Lemma 6.2 ([10, Ch. 5.1]). Let p ∈ ]3, 6] and assume that U ⊆ R3 is open such that
Π• := Π ∩ U is again a Lipschitz domain. Define Γ := ∂Π ∩ U and let v ∈ W 1,2(Π) be
the solution to

−∇ · µ∇v + v = f ∈
(
W 1,p′(Π)

)′
. (6.1)

Then ηv ∈ W 1,2
Γ (Π•), and it holds

−∇ · µ|Π•∇(ηv) = g ∈ W−1,p
Γ (Π•), (6.2)

where g continuously depends on f .

This Lemma states that, given f ∈ (W 1,p′(Π))′ and the variational solution v of
(6.1), the function ηv is the variational solution of problem (6.2) with mixed boundary
conditions (in the sense that g ∈ L2(Π•) implies Neumann condition on Γ and Dirichlet
condition on ∂Π•\Γ). So, we may rephrase our original regularity problem about the
behaviour in the neighbourhood of a Neumann edge into a question about optimal
regularity for a mixed boundary value problem.

In a next step — from now on taking U := ϕaN(C) — we transform our problem by
the piecewise linear homeomorphism φ = ϕ−1

aN constructed in Theorem 3.10. As pointed
out at the beginning of Section 3, equation (6.2) then transforms into

−∇ · µ∇u = h ∈ W−1,p
Σ (C+) (6.3)

with u := (ηv) ◦ φ−1. Additionally we know that the regularity behaviour for constel-
lations which are related by only a bi-Lipschitz transform is just the same, cf. Propo-
sition 3.1. So, our decisive instrument for the proof of our main result in Theorem 5.1
will be to prove

Lemma 6.3. Let Π ⊆ R3, aN ∈ ∂Π and µ as in Theorem 5.1 and ϕaN as in Theorem 3.10.
Define Π• := U ∩Π = ϕaN(C)∩Π and µ as the coefficient function which is obtained on
C+ from µ|Π• under the bi-Lipschitzian transformation ϕ−1

aN , cf. Proposition 3.1.

Then −∇ · µ∇ : W 1,p
Σ (C+)→ W−1,p

Σ (C+) is a topological isomorphism for some p > 3.
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This is again a problem with mixed boundary conditions, but now the Neumann
boundary part Σ is planar. Thus, we may apply the standard reflection argument, see
[9, Proposition 17]. After this we end up with a Dirichlet problem on the cube C, which
will be treated afterwards. Thus, in order to prove Lemma 6.3, it suffices to show

Lemma 6.4.
−∇ · µ̂∇ : W 1,p

0 (C)→ W−1,p(C) (6.4)

is a topological isomorphism for some p > 3, where µ̂ is the coefficient function which is
obtained from µ by even reflection.

Obviously, (6.4) is a Dirichlet problem on a polyhedral domain. In order to identify
a triangulation of C, such that the coefficient function µ̂ is constant on its 3-cells, we
introduce the following

Definition 6.5. We define the complex KC as the union of all cells from the complex K+

C
together with all cells which are images of cells from K+

C under the mapping (x, y, z) 7→
(x,−y, z).

Remark 6.6. The triangulation KC of C is different from LC in general, but it coincides
with LC on C+. Furthermore, the triangulation KC is of such kind that the coefficient
function µ̂ is constant on the interior of all its 3-cells. Thus, this complex determines
the edges which are then the relevant ones for the Dirichlet problem in Lemma 6.4. For
this it is essential that the whole coefficient configuration on C relates to the original
coefficient configuration on Π in a way that lateron will allow us to restrict the elliptic
edge singularities via the invested assumptions on the coefficient function µ on Π.

According to Proposition 4.6, for the proof of Lemma 6.4 it suffices to delimitate the
edge singularities. We present the details in the next two subsections.

6.2 Identification of edges

In order to identify all these edges, we consider for a given vertex aN the coefficient
function µ̂ from Lemma 6.4. Recall in this context Definition 6.5 and Remark 6.6, as
well as the piecewise linear map ϕaN and the complex KC from the Definitions 6.1 and 6.5.

Definition 6.7. For all t0 > 0 and any vectors a ∈ R3 and b ∈ R3\{0} we call the
set {a + tb, t ∈ ]0, t0[} segment with starting point a. A segment in Π is monomaterial
if it is contained in the interior of one 3-cell from KΠ. A segment in Π is a bi-cellular
segment if it lies in the interior of a 2-face of KΠ.

Remark 6.8. Recall that the coefficient matrix µ need not have different values on the
two 3-cells which are adjacent to the 2-face which includes a bi-cellular segment.

The following facts about the edges from KC are essential in what follows.

Lemma 6.9. Let for the edge E the symbol E̊ denote its relative interior.
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1. Any edge from the complex KC, lying in ∂C, is either a monomaterial edge or a
bimaterial outer edge.

2. Any edge E from KC, which intersects C+ has one endpoint in 0. Consequently, the
segment ϕaN

(
E̊
)

has starting point aN. Thus, ϕaN

(
E̊
)

is either a monomaterial or
a bi-cellular segment in Π or it is contained in an edge of KΠ, i.e. in the starting
triangulation of Π.

3. For every edge E ⊆ Σ, ϕaN

(
E̊
)
⊆ ∂Π is a segment with starting point aN and is, hence,

a monomaterial segment or part of a monomaterial edge or part of a bimaterial outer
edge which was already present in the starting triangulation KΠ.

Proof. All three assertions follow from the definition of the triangulation of the poly-
hedron εC which is induced by the complex h(LF

a ), see the proof of Theorem 3.10.
1. Since the edges from ∂C− \Σ are the reflected edges from ∂C+ \Σ, it suffices to show

the assertion only for the edges within the latter set and for edges from ∂Σ. Concerning
the edges from ∂C+ \ Σ, it is important to remember that the value of ε was chosen
to assure that the whole link of h(LF

a ) is disjoint to εC. Thus, any edge, occurring
on ∂C+\Σ, is either a “natural” edge of ∂C or results from the intersection of a 2-cell
from h(LF

a ), having one of its vertices in 0, with ∂(εC). Since such 2-cells are adjacent to
exactly 2 tetrahedra, the resulting edge can be only monomaterial or bimaterial. Finally,
each edge E from ∂Σ is, by construction, an edge of exactly one element from K+

C (see
Definition 6.1). Recalling the Definition 6.5 of the complex KC it is then clear that E
is a monomaterial or a bimaterial edge within KC – depending whether the coefficient
function on the reflected cell is different from that on the coresponding cell in K+

C or
not.

2. By construction, all edges which intersect the interior of the polyhedron |h(LF
a )|

originate in 0. Clearly, this property does not get lost when intersecting with εC. Hence,
if E intersects C+, then ϕaN(E̊) must be a segment with aN as one of its endpoints. But
all such segments can only be monomaterial or bi-cellular or have to be part of an edge
of the original triangulation KΠ of Π.

3. Every edge in Σ is already present in h(LF
a ) and must, hence, have its starting point

in 0 ∈ R3. Thus, the assertion follows from (5) in Theorem 3.10.

6.3 Estimates for the edge singularities

In this section we want to finish the proof of Theorem 5.1. Basing on our considerations
in Section 4, we are done, if for all edges from the triangulation KC of C the induced
operators Aλ have a trivial kernel for all λ with <λ ∈ ]0, 1/3], see also Remark 4.7. The
occurring edges are the following:

I edges from ∂C, II edges from C+,

III edges from Σ, IV edges from C−.

It is not hard to see that the edges in IV may be treated analogously to the edges in
II. Thus, we will discuss the cases I – III in the following.
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I Edges from ∂C According to 1. of Lemma 6.9, any edge contained in ∂C is a
monomaterial edge or a bimaterial outer edge. Thus the corresponding operators Aλ
have a trivial kernel if <λ ∈ ]0, 1/2] by Proposition 4.9 and Proposition 4.10.

II Edges from C+ Let E be an edge from C+. Then E is an interior edge with
one endpoint in 0 ∈ R3, cf. 2. of Lemma 6.9. We consider the euclidean complex
KE ⊆ K+

C which contains exactly those tetrahedra σ ∈ K+

C for which E ⊆ σ. The

corresponding two-dimensional sector coincides in this case with the whole space R2.
Now we transform back to the original constellation in Π: i.e. we apply the piecewise
linear homeomorphism φ := ϕaN associated to aN by Theorem 3.10. Accordingly, E
passes then either to a monomaterial or a bi-cellular segment in Π (both viewed as edges
with a very peculiar coefficient constellation around in the sequel) or to an open part of
an edge of KΠ, i.e. in the starting triangulation of Π, cf. Lemma 6.9. In the first two
cases there are no edge singularities, i.e. kerAλ = {0} if <λ ∈ ]0, 1[ (cf. [7, Ch. 5.1]),
while in the third case we have kerAλ = {0} if <λ ≤ 1

3
+ ε by supposition. One now

simply applies Theorem 4.15.

III Edges from Σ Obviously, every edge from Σ is an interior edge relative to C
and by 2. of Lemma 6.9 one of its endpoints is 0 ∈ R3. If, for a given edge E from
Σ, the coefficient matrices, belonging to the corresponding sectors in the half space
{(x, y, z) ∈ R3 : y > 0}, are

M1 =




m1
11 m1

12 m1
13

m1
12 m1

22 m1
23

m1
13 m1

23 m1
33


 , . . . , Mn =




mn
11 mn

12 mn
13

mn
12 mn

22 mn
23

mn
13 mn

23 mn
33


 ,

then the corresponding matrices in the reflected sectors are

M1
− =




m1
11 −m1

12 m1
13

−m1
12 m1

22 −m1
23

m1
13 −m1

23 m1
33


 , . . . , Mn

− =




mn
11 −mn

12 mn
13

−mn
12 mn

22 −mn
23

mn
13 −mn

23 mn
33




see [9, Proposition 17]. According to Proposition 4.6, one has to perform a rotation in
the x-z-plane, which moves the edge under consideration to the z-axis. This means, one
has to consider the matrices




cosα 0 − sinα
0 1 0

sinα 0 cosα


M




cosα 0 sinα
0 1 0

− sinα 0 cosα


 ,

M taken as M1, . . . ,Mn,M1
−, . . . ,M

n
−, respectively, and α being the angle between the

corresponding edge and the z-axis. A straightforward calculation shows that the result-
ing upper 2× 2 blocks look alike

(
ρ1

11 ρ1
12

ρ1
12 ρ1

22

)
, . . . ,

(
ρn11 ρn12

ρn12 ρn22

)
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in the sectors within the half space {(x, y, z) ∈ R3 : y > 0} and

(
ρ1

11 −ρ1
12

−ρ1
12 ρ1

22

)
, . . . ,

(
ρn11 −ρn12

−ρn12 ρn22

)

on the reflected sectors within the half space {(x, y, z) ∈ R3 : y < 0}. Concerning this
constellation, we may apply Lemma 4.16, in order to reduce the problem, given on a
sector partition of the whole of R2, to a Dirichlet and a Neumann problem on a sector
partition of the half space.

Hence, it remains to prove the following

Lemma 6.10. Let µ be the transformed coefficient function on C+ and ADλ , ANλ be the
Sturm-Liouville operator pencils which correspond to an edge from Σ – once combined
with Dirichlet and once combined with Neumann condition. Then the kernels of ADλ and

ANλ are trivial, if <λ ∈
]
0, 1

2

]
.

Proof. Let E be an edge from Σ. This time, we consider the euclidean complex KE

which contains exactly all tetrahedra σ ∈ K+

C , for which E ⊆ σ, cf. Definition 6.1.
The projection of the polyhedron |KE| onto any plane that is perpendicular to E, is
locally around E, a sector, namely the corresponding half space in R2. This assures
supposition 2. of Theorem 4.15.

Now, we transform back the corresponding edge to the original setting in Π, i.e., we
apply the map φ := ϕaN in the sense of Section 3. The image of the edge E under this
map is necessarily either contained in a planar face of one cell from KΠ or part of a
monomaterial edge or part of a bimaterial outer edge which was already present in the
starting triangulation KΠ, see 3. of Lemma 6.9. Thus, a cut trough Π• perpendicular to
φ(E) in a neighbourhood of φ(E) looks like indicated in Figure 2. Note that, due to the

φ(Ε)

∂Π

Π Π

φ(Ε)

∂Π

Π

φ(Ε)

∂Π

Figure 2: Cut through Π• perpendicular to φ(E) for a monomaterial segment, a mono-
material edge and a bimaterial edge, respectively

definition of a bimaterial outer edge, the opening angles of the sectors in the third case
both do not exceed π.

For these constellations, the strip {λ : 0 < <λ ≤ 1
2
} does not contain singular values

of the corresponding operator pencils Aλ, thanks to Proposition 4.9 and Proposition
4.10. Thus, again an application of Theorem 4.15 gives the assertion.
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7 Concluding remarks

Remark 7.1. We suggest that our suppositions are in general also necessary. Namely,
if one of the appearing edges admits a singularity index < 1

3
, then [9, Lemma 14] permits

to construct a function on R3 whose gradient is not from L3. Applying an appropriate
cutoff-function one can arrange the support property in a suitable cone – with the
singularity also appearing at the vertex.

Remark 7.2. The regularity result of this paper easily carries over to problems with
Robin boundary conditions because the involved boundary operator is relativlely com-
pact with respect to the main part.
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