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Abstract

We study relative stability properties of different clusters of closely packed
one- and two-dimensional localized peaks of the Swift-Hohenberg equation. We
demonstrate the existence of a “spatial Maxwell” point where clusters are al-
most equally stable, irrespective of the number of pes involved. Above (below)
the Maxwell point, clusters become more (less) stable with the increase of the
number of peaks.

Localized patterns (LP) are nonlinear bright or dark peaks in spatially extended sys-
tems. Such patterns observed in the transverse section of coherently driven optical
cavities are often called cavity solitons [1]-[6]. They are currently attracting growing
interest in optics due to potential applications for all-optical control of light and for
optical storage and processing of information [1]-[6]. Stationary localized peaks are
independent and randomly distributed in space when they are sufficiently well sepa-
rated from each other. However, when the distance between peaks decreases they
start to interact via their oscillating exponentially decaying tails. This interaction then
can lead to the formation of clusters [7]-[14].

In this Letter, we investigate how the number of peaks of clusters affects their stability
realtively to each other. This quastion has not been addressed so far. In 1D we show
numerically that there exist a “spatial Maxwell” point where all clusters are equally
stable, independently of the number of constitutive peaks. Above that point, clusters
become more stable as the number of peaks increases. However, beyond the “spatial
Maxwell point”, clusters formed by larger number of peaks become less stable than
those formed by smaller number of peaks. In 2D, we analyse the stability of hexagonal
closed packed clusters with respect the number of constitutive peaks. In this case, the
“spatial Maxwell” point is not a single point but rather a set of points. Apart from that,
the relative stability analysis with respect to the number of peaks leads to the same
conclusion as in 1D.

Our treatement is based on the Swift-Hohenberg equation (SHE) which is well known
paradigmatic model. The Swift-Hohenberg equation constitutes a paradigmatic model
in the study of spatial periodic or localized patterns. It has been used for that purpose
in hydrodynamics [30, 24], and in other fields of natural science, such as chemistry
[31], plant ecology [32], and nonlinear optics [33]. The SHE is valid close to the critical
point associated with bistability and close to the symmetry breaking instability (often
called Turing or modulational instability, [22]). The SHE reads

∂tU = Y +CU −U3 −Γ
(

∇2U +∇4U
)

, (1)
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where the Laplace operator ∇2 = ∂xx +∂yy acts in the (x,y)-plane. This equation gov-
erns the space-time evolution of the real order parameter U(x,y, t) which is propor-
tional to the deviation of the field variable from its value at the bistability threshold [23].
Y is the control parameter and C is the cooperativity.

The homogeneous steady states of Eq. (1) which satisfy the relation Y = Us(U2
s −C)

are monostable for C < 0 and bistable for C > 0. These states undergo a symme-
try breaking instability at Y± = ±(Γ−8C)U±/12, where U± = ±

√

(Γ+4C)/12 is the
amplitude Us evaluated at the symmetry breaking thresholds. The wavelength of the
pattern emerging from these bifurcation points is λ± = 2

√
2π . Weakly nonlinear anal-

ysis of the homogeneous steady states allows us to determine the condition under
which the symmetry breaking instability appears subcritically [34]. This condition is
defined by the inequality C > Csub = −552Γ/19. The threshold associated with the
formation of localized patterns is C = Csub. Although a weakly nonlinear analysis pro-
vides the threshold associated with appearance of localized patterns, it does not take
into account the non-adiabatic effects that involve fast spatial scales responsible for
their stabilization [24].

Demonstration of the existence of an infinite set of homoclinic solutions in a Hamil-
tonian system which is obtained by neglecting the time dependence in the SHE was
the first step towards understanding of the origin of localized patterns [25]. Such ho-
moclinic solutions correspond to stationary localized patterns with different number of
peaks. More recently, the approach based on dynamical systems theory was further
developed by different authors [26].

First we examine the case of one-dimensional monostable system in the subcritical
regime, i.e., C > −552Γ/19. In this regime, the homogeneous steady state coexists
with spacially periodic structure. In addition, the system exhibits a high degree of mul-
tistability in a finite range of parameters often called the pinning region. There is an
infinite number of localized patterns each of them characterized either by an odd num-
ber 2p−1 or even number 2p of peaks, where p is a positive integer. The configuration
that maximizes the number of peaks in the pattern corresponds to an infinite spatial
periodic distribution of the field. An example of localized patterns with p ≤ 6 having
odd and even number of peaks are shown in Figs. 1b and 1c, respectively. All patterns
shown in these figures are obtained for the same parameter values and differ only by
the initial condition. In the pinning region, the wavelength of the localized patterns is
close to that of the periodic structure, i.e., λ ≈ λ±. Since the amplitudes of localized
patterns having different number of peaks are close to one another, it is convenient
to plot the L2 -norm defined by the relation N =

∫

dxdy|U −Us|2. Typical bifurcation
diagram illustrating the dependence of N on the control parameter Y is shown in Fig.
1a. It consists of two snaking curves: one corresponding to LP with odd number of
peaks and the other to even number of peaks in LP. As N increases, at each turn-
ing point where the slope becomes infinite, a pair of additional peaks appear in the
pattern. It is seen from Fig. 1a that this growth is associated with back and forth oscil-
lations around the pinning region. This behavior is referred to as homoclinic snaking
phenomenon [27, 28]. More recently, homoclinic snaking behavior was observed ex-
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Figure 1: (a) Bifurcation diagram of Eq. (1) showing two interweaved snaking curves,
one of them corresponding to odd numbers of peaks, and the other to even numbers
of peaks in the localized pattern. Solid (dotted) curves correspond to stable (unstable)
localized solutions. Parameters are C = −10−4 and Γ = 0.06. (b) localized patterns
with 1, 3 and 5 peaks (c) localized patterns with 2, 4, and 6 peaks. (b) and (c) are
obtained for the same values of paramters and Y = −0.002.

perimentally [19, 20]. Relative stability analysis of the localized patterns with different
number of peaks can be performed by calculating the Lyapunov functional of the SHE
model defined by Eq. (1). This equation can be rewritten in the gradient form:

∂tu = −δL

δu
, (2)

where the potential or Lyapunov functional is given by

L =
∫

dxdy

{

f (u)− Γ
2

(

∇2u+u
)2

}

, (3)

f (u) = −
(

C−3U2
s +

Γ
2

)

u2

2
+Usu

3 +
u4

4
.

Since ∂tL = −∫

dxdy(∂tu)2 ≤ 0, any initial distribution u(x,y) evolves with time to-
wards a homogeneous or an inhomogeneous (periodic or localized in space) station-
ary state corresponding to a local or global minimum of L compatible with the bound-
ary conditions. The results of numerical calculations of the Lyapunov functional as a
function of the control parameter Y are summarized in Fig. 2. Each stable localized
pattern corresponds to a local minimum of the Lyapunov function. As it is seen from
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the figure, there exist a “spatial Maxwell” point M located at Y = YM, where the values
of L corresponding to different branches of stable LP coincide with a good numer-
ical precision. For Y < YM, the Lyanunov functional L decreases with the decrease
of the number of peaks in LP and achieves its minimum at the single peak localized
solution (see branch A1 in Fig. 2). Therefore, localized patterns with greater number
of peaks are less stable than those with smaller number of peaks in this case. At the
point Y = YM all localized patterns are equally stable, independently of the number of
peaks. For Y > YM, the Lyapunov functional increases with the decrease of the num-
ber of peaks in the localized pattern. Hence, in this regime the pattern becomes more
stable with the increase of the number of peaks.

In two spatial dimensions the variety of different localized patterns is much larger than
in 1D. We focus on the situation where 2D peaks are hexagonal close-packed and,
therefore, exert rather strong mutual forces due to their overlapping oscillatory tails.
Transverse profiles of six simplest clusters are presented in Fig. 3a together with the
profile of a single peak solution. These profiles have been calculated numerically by
using periodic boundary conditions with different initial conditions leading to different
clusters. In order to study the relative stability of clusters shown in Fig. 3a, we have
calculated the dependencies of the Lyanunov functional L on the control parameter
Y for each of these clusters. The results of are shown in Fig. 3b. From this figure we
see that the four lines corresponding to the clusters B, C, D, and F intersect in a single
point M2, as it was in the case 1D LP. This may be related to the fact that clusters C, D
and F can be obtained from B, C, and D, respectively, by adding a single peak having
exactly two neighbors. On the contrary the two peaks cluster B is obtained from the
single peak solution A by adding a peak having only a single neighbor. Therefore,
the lines corresponding to these two spatial profiles intersect in the point M1 different
from M2. Furthermore, the seven-peaks cluster can be obtained from the six-peaks
one by adding a single peak having exactly three neighbors. Hence, the intersection
of the lines G and F in Fig. 3b is located at the third point M3, different from M1 and
M2. Similarly to the case of 1D patterns, below (above) a “Maxwell-point”, the pattern
with smaller number of peaks is more (less) stable than that with greater number of
peaks.

To conclude, we have shown that relative stability of clusters of close-packed peaks
depends on the number of peaks in the localized pattern. More precisely, at the
Maxwell point different clusters are equally stable independently of the number of
peaks. Below (above) that point, clusters consisting of a larger number of peaks are
less (more) stable than those with a smaller number of peaks. This means that the
most stable solution is a single peak state below the Maxwell point and the infinite
patterned state above this point.

M.T. is a Research Associate with the Fonds de la Recherche Scientifique F.R.S.-
FNRS, Belgium. A.V. is supported by SFB 787 project of the DFG. The financial sup-
port of Fonds Emile Defay is also acknowledged.
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Figure 2: Lyapunov functional L as a function of the control parameter Y . Solid (dot-
ted) curves correspond to stable (unstable) localized solutions. M is the Maxwell point.
Parameters are the same as in Fig. 1a. The branches A1, B1, and C1 correspond to
LP shown in Fig. 1(b). The branches A2, B2, and C2 correspond to LP shown in Fig.
1(c).
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Figure 3: Stable clusters of 2D hexagonal close-packed peaks of Eq. (1) (a) and de-
pendencies of the Lyapunov functional on the injection parameter Y for these clus-
ters (b). M1, M2, and M3 are the intersection points. Parameters are C = −0.05 and
Γ = 3/8. Maxima are plain black.
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