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Abstract

The performance of a multisection DBR semiconductor laser emitting around
1.06 µm is experimentally and theoretically investigated. Simulations and mode
analysis of the traveling wave model including temperature induced changes of
the refractive index explain experimentally observed nearly-periodic transitions
between neighboring cavity mode determined continuous wave states with in-
creasing injection current.

1 Introduction

Wavelength stabilized semiconductor lasers are required for many applications such
as frequency conversion, free-space communication, spectroscopy and metrology.
One possibility to achieve wavelength stabilization is the integration of a Bragg grating
into the semiconductor chip. The resulting distributed feedback (DFB) or distributed
Bragg reflector (DBR) lasers emitting several hundreds of milliwatts are ideally suited
for the above mentioned applications [1,2].

DFB lasers are typically single-section devices with the Bragg grating extending over
the whole amplifying cavity. In order to facilitate an operation in the same longitudi-
nal mode over a large power range at least the front facet is anti-reflection coated
to suppress side modes. However, this leads to a high sensitivity to feedback from
external surfaces and still does not exclude possible transitions between the two DFB
resonance modes.
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Figure 1: Scheme of a DBR semiconductor laser consisting of two amplifying sections
SA1, SA2 and DBR section SBG.

DBR lasers consists of a reflector section containing the Bragg grating and one or sev-
eral amplifying sections: see Fig. 1 showing a scheme of a DBR laser. In order to form
a resonator, the front facets have reflectivities of R ≥ 1% depending on the length of
the amplifying sections. Due to the fact that all sections are differently operated, DBR
lasers exhibit periodic undulations in the power-current characteristics and temporal
instabilities owing to longitudinal mode hopping. On the other hand, compared to DFB
lasers they are more robust to external perturbations and can be more cost-effective
fabricated due to the utilization of surface Bragg gratings [3–5]. Therefore, it is of great
practical interest to reduce the instability regions which often hinder the applicability
of DBR lasers.
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The main aim of our paper is a theoretical analysis of the mode-hopping phenomena
in DBR lasers, what allows to gain more insight into the underlying physics. Our math-
ematical model is given by the traveling wave (TW) equations for the complex slowly
varying amplitudes of the counter-propagating optical fields, coupled to equations for
the induced polarization functions and the excess carrier density [6]. Following [7, 8],
we relate the mode-hopping in DBR lasers with temperature induced shifts of the DBR
stopband and of full cavity resonances. In the considered TW model, these thermal
effects are represented by a linear nonlocal dependence of the refractive index on the
inhomogeneous injection current [9].

Our explanation of the mode transitions is based on observations and analysis of
instantaneous longitudinal optical modes [10] and their dynamics in edge-emitting
multisection lasers [9, 11, 12]. According to our inhomogeneous heating model, the
injection currents differently affect the refractive indices of separate laser parts and
thereby tune the relative phases of the optical modes at the interface of the amplifying
and reflector sections. This phase tuning is responsible for the transitions between
modes, observable both in optical experiments and in simulations.

Our paper is organized as follows. In Section 2 we give a short description of the
laser device and present some measured characteristics. After introducing the math-
ematical model in Section 3, we give a definition of optical modes, analyze relations
between them and their dependence on model parameters in Section 4. Section 5 is
devoted to the discussion of numerical simulation results. Finally, some conclusions
are drawn in Section 6.

2 Experiments

The DBR lasers under investigation consist of 2 mm and 1 mm long amplifying sec-
tions SA1, SA2 and a 1 mm long DBR section SBG (see Fig. 1). The sixth order Bragg
grating with a period of about 1 µm was defined by an i-line wafer stepper and dry
etched into the surface of epitaxial layer structure [3]. The effective reflection coeffi-
cient of the Bragg grating is about 55%. The front and rear facets were coated with
dielectric layers to obtain reflectivities of 1% and ≈ 0.01%, respectively. Fundamental
lateral mode operation is ensured by a 5 µm wide ridge waveguide. The active region
is a triple quantum well embedded non-centric in a super large optical cavity. More
details can be found in [13].

Throughout this paper, both amplifying sections are shortened so that identical cur-
rent densities are injected. Experimental characteristics of the DBR laser driven in
continuous-wave mode are presented in Figs. 2 and 3. All these figures indicate
nearly-periodic changes of lasing states with increase of the total current IA injected
into the amplifying sections. Fig. 2 shows the emitted optical power at the front and
rear facets versus IA. The threshold current is 90 mA. At the front facet the power-
current characteristic is nearly linear with a slope efficiency of 0.75 W/A up to the
power of 600mW, except at periodically reappearing jumps.

2



0 200 400 600 800
injection current  I

A
    [mA]

0

10

20

30

po
w

er
   

   
   

   
 [m

W
]

0 200 400 600 800
0

0

200

400

600

0

200

400

600 a)

b)

Figure 2: Power-current
characteristics of the
DBR laser measured at
the front (a) and rear (b)
facets.
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Figure 3: Representation
of the measured optical
spectra (mapping) and
the emitted power (light
curve) at the front facet
of the laser as a function
of the increased injection
current. White slanted
lines indicate the esti-
mated slow (∂Iλs) and
fast (∂Iλ f ) red shifts of
the lasing wavelength,
compare Eqs. (6) and
(8).

We note, that while during these jumps the power emitted at the front facet increases
(panel a), the power emitted at the rear facet decreases (panel b). A non-smooth
increase of the power before each jump (best visible at the rear facet of the device)
can be explained by a non-stationary laser emission.

This non-stationary lasing involving two or more optical modes can be also recognized
in Fig. 3 where an evolution of the optical spectrum with the increase of IA is shown.
Here, each injection current “period” determined by a pair of neighboring vertical white
lines contains the following typical operation regimes.

� At the left part of each period the laser shows a single wavelength emission.

� With an increase of IA several neighboring spectral peaks start to grow indicating
the formation of periodic field intensity pulsations [11].

� At the right side of each period an abrupt change of the spectrum and field
intensities occur.
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� After such a jump the laser shows again a single wavelength operation at the
neighboring blue optical mode.

The step-like red shift of the spectral peaks within each period is due to a limited spec-
tral resolution of our measuring equipment. A ∼ 45 pm separation of the neighboring
spectral peaks corresponds to the field round-trip time in the laser cavity, i.e., to the
separation of the neighboring laser modes. The periodicity of the mode jumps, the
averaged slow and periodic fast red shifts of the lasing wavelength (indicated by the
slanted white lines in Fig. 3) as well as an increase or decrease of the field emission
from both laser facets during the mode jumps will be discussed below in this paper.

3 Traveling wave model

To simulate and analyze the dynamics of the DBR laser we use the traveling wave
(TW) model [6]. It governs the temporal-spatial evolution of the complex slowly varying
counter-propagating optical fields E±(z, t) (scaled so that |E|2 = |E+|2 + |E−|2 is the
local photon density) and the induced polarization functions p±(z, t):

ng
c0

∂tE± = (∓∂z− iβ (n, I)−D)E±− iκE∓ +F±
sp,

b.c. : E+(0, t)=r0E−(0, t), E−(L, t)=rLE+(L, t),

DE± = ḡ
2(E±− p±), ∂t p± = γ̄(E±− p±)+ iω̄ p±.

(1)

Here, t ∈ R+ denotes time, z ∈ [0,L] corresponds to the longitudinal propagation di-
rection, F± represents the spontaneous emission, r0 and rL are the complex field
reflectivities at the front and rear facets. The parameters ḡ, γ̄ and ω̄ denote the am-
plitude, the half width and the peak frequency of Lorentzian approximation of the
material gain profile [6], ng is the group index, and κ is the field coupling coefficient
which is different from zero only in the DBR section SBG.

The field equations (1) are coupled to the rate equations for the real excess carrier
density n(z, t):

∂t n(z, t) =
J(z)
eσ −

(

An+Bn2+Cn3
)

− c0
ng

ℜe

(

∑
ν=±

Eν∗ (g(n)−2D)Eν
)

,

J(z)
∣

∣

z∈Sk
= Ik

lk
, k ∈ {A1,A2,BG}.

(2)

Here, J(z) is the injection current density, lk and Ik are the length and the pump current
of the k-th laser section Sk, σ is the cross-section area of the active zone, A, B and
C are three coefficients of the cubic nonradiative and radiative spontaneous recom-
bination function. In the presented examples the contacts of the amplifying sections
SA1,A2 were shortened, so that J(z)|z∈SA1,A2=IA/lA, where l= lA1+ lA2 denotes the total
length of both amplifier sections.
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Table 1: Parameters used in simulations
Description Unit SA1 SA2 SBG

l section length mm 2 1 1
κ coupling coefficient 1/cm 0 9.6
J injection current density A/cm [0−3] 0
νA1,A2
· thermal detuning coefficients nm/A 0.75 0.2

νBG
· 0 0

ng group refractive index 3.6
α internal absorption 1/cm 2.7
δs static detuning 1/cm −10
ntr transparency carrier density 1/m3 1.3 ·1024

n∗ reference carrier density 1/m3 0.95·1024

g′ effective differential gain m2 7.26·10−21

ñ′ effective differential index m2 −7.26·10−21

σ cross-section area of AZ µm2 0.21
A recombination parameter 1/ns 0.4
B recombination parameter m3/s 1 ·10−16

C recombination parameter m6/s 1 ·10−41

ḡ Lorentzian gain amplitude 1/cm 50
2γ̄ Lorentzian FWHM 1/ps 100
ω̄ Lorentzian peak detuning 1/ps 2

λ0 central wavelength µm 1.064
r0 front facet reflection −0.1
rL rear facet reflection 0.01

The complex field propagation factor β is defined as

β = δ (n, I)+
i(g(n)−α)

2 , δ = δs+δn(n)+δT (I),

g(n) = g′ntr ln
(

max{n,n∗}
ntr

)

, δn(n) = ñ′(n−ntr) ,

δT,k(I) =
2πng

λ 2
0

∑r νr
k Ir, r,k∈{A1,A2,BG}.

(3)

Here, the parameters α and δs represent the internal absorption and the static detun-
ing. g′ and ñ′ are the differentials of the carrier dependent effective logarithmic gain
and linear index change functions g(n) and δn(n) at the transparency carrier density
ntr. n∗ is the reference carrier density for clamping the logarithmic gain function. The
coefficients νr

k of the linear thermal detuning function δT (I) determine the impact of
the injection currents Ir to the refractive index change within each laser section Sk [9].
λ0, c0 and e are the central wavelength, the speed of light in vacuum and the electron
charge, respectively. The values of the laser parameters used in our simulations are
given in Table 1.
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4 Mode analysis

Before switching to simulations of the TW model equations (1)-(3) let us discuss the
origin of the experimentally observed (see Figs. 2 and 3) periodically reappearing
state transitions with the increase of the injection current. For this reason we perform
an analysis of the instantaneous optical modes [10] which are determining different
continuous wave states observed in experiments.

For any fixed carrier distribution n(z) the optical field equations (1) and the assumption
E(z, t) = Θ(β (n),z)eiΩ(β (n))t give rise to the spectral problem

(

−∂z−iD(β ,Ω) −iκ
−iκ ∂z−iD(β ,Ω)

)(

Θ+

Θ−

)

= 0,

Θ+(β ,0)=r0Θ−(β ,0), Θ−(β ,L)=rLΘ+(β ,L),

D(β ,Ω) = β (n)+
ng
c0

Ω−χ(Ω), χ(Ω) = i ḡ
2

i(Ω−ω̄)
γ̄+i(Ω−ω̄) ,

(4)

where χ(Ω) is a frequency (wavelength) dependent contribution of the material gain
dispersion.

The instantaneous, i.e., carrier dependent optical compound cavity modes are deter-
mined by the pairs [Θ(z),Ω], where the eigenfunction Θ and the eigenvalue (complex
frequency) Ω solve the spectral problem (4). The real and imaginary parts of Ω are
the optical angular frequency and the damping of the mode, respectively. Continuous
wave (cw) states of the system (1)-(3) are defined by the carrier distribution n̄(z) sat-
isfying balance of the carrier rate equation (2) and the corresponding optical mode
[Θ(β (n̄),z),Ω(β (n̄))] with the real eigenvalue Ω.

Let us consider some cw state of our TW model determined by functions n̄(z), Θs(β (n̄),z)
and (real) mode frequency Ωs(β (n̄)). In general, a change of laser parameters (e.g.,
injection currents) implies some changes of this cw state. Below we present two sim-
ple parameter tuning mechanisms preserving carrier and photon distributions n̄(z) and
|Θs(β (n̄),z)|2 of this state.

The first mechanism can be realized by a uniform change of the propagation factor β
in all sections by the same (real) factor ∆β . It follows from Eq. (4) that such modification
preserves all eigenfunctions Θ(β ,z) and shifts the corresponding eigenvalues Ω(β )
of the spectral problem (4):1

Θ(β +∆β ,z) = Θ(β ,z), Ω(β +∆β ) = Ω(β )−
c0

ng
∆β .

Since the mode frequencies Ω change by a real factor, the cw state frequency Ωs

remains real and the (modified) s-th mode [Θs(z),Ωs] defines a cw state again. This
mode frequency tuning mechanism determines the slow basic red shift ∂Iλs of the
lasing wavelength (see Fig. 3).

1We neglect small changes of the material gain dispersion for close located frequencies, i.e., as-
sume that ∂ξ χ(ξ )|ξ=Ω = 0.
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The second mechanism is determined by a shift of the detuning

δk
de f
=

1
lk

∫

Sk

δ (n, I,z)dz

in amplifying sections SA1 and SA2 alone. The field coupling κ in these sections van-
ishes and the eigenfunctions Θ are given by

Θ±(β ,z) = Θ±(β ,0)e∓i
∫ z
0 D(β (s),Ω)ds, 0≤ z ≤ lA.

The shift of the factor
ϕ = 2(lA1δA1+ lA2δA2)/2π (5)

by any integer number m preserves a complex ratio between the mode components
Θ+ and Θ− at the amplifier/reflector interface z = lA, and, therefore, the distributions
Θ±(z) within the DBR section SBG (up to the multiplier (−1)m). Consequently, an in-
teger shift of the phase factor ϕ preserves the modal frequencies Ω and the eigen-
function intensity distributions |Θ±(z)|2. As it will be shown below, such change of ϕ
is responsible for the periodically reappearing lasing mode transitions and for the fast
red shift ∂Iλ f of the lasing wavelength.
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Figure 4: Spectral anal-
ysis of the DBR laser
(black) and the related
Fabry-Perot-type laser
(gray). Bullets: complex
eigenvalues (a) and
wavelength separation
of the eigenvalue to its
closest blue-wavelength
neighbor (b). Curves:
changes of the above
mentioned quantities
with the changing phase
factor ϕ .

To get a deeper understanding of the periodic mode transitions we have performed
the mode analysis [10] of the considered DBR laser. The evolution of the complex
frequencies Ω computed with some fixed n(z) and tuned phase factor ϕ is summarized
in Figs. 4 and 5. Black bullets in Fig. 4(a) show the location of these eigenvalues in the
complex wavelength/damping plain. The black curves connecting these eigenvalues
represent their shift with changing ϕ . The eigenvalues moving along the curve are
replacing their next neighbor after a 1-periodic shift of this factor. Note also three
separated eigenvalues which move 1-periodic in ϕ around some small closed loops.
These separated loops are implied by the field coupling in the DBR section and can be
connected to the main curve or shifted to the large damping values by an appropriate
choice of the coupling strength or the field loss parameters.
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A mode with the zero damping determines the cw state of the device. The other 5-6
modes located within the stop band of the DBR can be excited by the spontaneous
emission noise and, therefore, can be recognized in the optical spectra and the spec-
tral mapping diagrams. To emphasize the mode selection by Bragg grating we con-
sider also the modes of a similar Fabry-Perot (FP) type laser with an increased rear
facet reflectivity and a zero coupling factor in the DBR part of the device (see gray
bullets and lines in the same diagram).

Another important feature of the DBR section is shown in Fig. 4(b). Here, the black
bullets represent the wavelength separation of a mode to its closest blue-wavelength
neighbor. In contrast to the FP-type laser (grey bullets and lines) where a ∼ 39 pm
mode separation is strictly related to the field round-trip time in the device, the mode
separation in the DBR laser varies depending on the mode wavelength and the value
of the phase factor ϕ (see the different positions of the black bullets and the varia-
tion of the thin black curve). Note, that the separation of the least damped modes at
the stop band of the DBR (∼ 47 pm in our case) is larger then the mode separation
governed by the FP cavity round-trip condition. This is in a nice agreement with the
experimentally observed ∼ 45 pm mode separation visible in Fig. 3. The increase of
the mode separation within the stop-band of the DBR can be explained by the de-
crease of the effective DBR (and the compound cavity) length for the monochromatic
fields with the corresponding optical frequencies.
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Figure 5: Changes of
the damping (a) and the
wavelength (b) of several
most important modes
(indicated by symbols)
with the changing phase
factor ϕ . The arrows and
the vertical dashed line
indicate the dominant
modes with the lowest
damping and the position
where transition between
these modes can be
expected. Gray lines
represent the related
Fabry-Perot-type laser.

Fig. 5 gives another representation of the thin curves of Fig. 4. Here we show how
the damping (panel a) and the wavelength (panel b) of several most important DBR
stop-band modes are changing with the change of the phase parameter ϕ . Due to
periodicity of this parameter, the curves leaving these two diagrams at the right side
(ϕ = 1) are reentering these diagrams from the left side (ϕ = 0).

While the black curves in panel (a) represent only a small change in the main mode
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damping, the nearly straight and almost parallel curves in panel (b) suppose an al-
most linear increase of the modal (and lasing) wavelength with the changing factor
ϕ which is nearly proportional to the injection current into amplifying sections. This
linear increase of the modal wavelengths corresponds to the difference between ex-
perimentally observed periodically reappearing fast red shift and slow red shift of the
lasing wavelengths (see Fig. 3).

The transitions between the modes seen in Fig. 3 occur when the damping of the
neighboring mode becomes smaller then the zero damping of the mode determining
a cw operation of the laser. A similar situation (even though we assume a fixed in
time carrier distribution n) can be recognized in Fig. 5(a). The exchange between the
dominant modes represented by bullets and squares is expected close to ϕ indicated
by the vertical dashed line.

The grey lines in Fig. 5 are representing a similar FP-type laser. The damping of the
modes is almost independent on the mode number or phase factor ϕ (see panel a).
The mode wavelengths are equidistant and change linearly with the factor ϕ (see
panel b). The mode separation is different from that one of the DBR laser (see dis-
cussion above). Consequently, the expected (fast) red shift of the wavelengths in this
FP-type laser is smaller than that one of the DBR laser.

Taking into account that the detuning δ changes in all laser sections simultaneously,
we conclude:

� The slow red shift of the lasing wavelength

∂Iλs ≈
(

λ 2
0/2πng

)

∂IAδBG (6)

observed experimentally occurs due to the changing detuning δBG.

� The periodicity of the mode transitions with the increasing injection current in
the amplifier sections can be approximated by

Iper = 1/∂IAϕ̃, ϕ̃ = ϕ − lAδBG/π. (7)

The periodic mode transitions occur due to a nearly linear increase of the rela-
tive index change function ϕ̃ .

� The fast red shift of the lasing wavelength can be approximated by

∂Iλ f ≈ ∂Iλs −∆λ /Iper, (8)

where ∆λ denotes the wavelength separation between jumping dominant modes.

The mode analysis presented above gives us an explanation of the experimentally
observed mode transitions and allows us to estimate some of the coefficients νr

k en-
tering the thermal detuning model δT in Eq. (3). For this reason we estimate the slow
wavelength shift ∂Iλs and the mode transition period Iper from Fig. 3, and assume that
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the impact of electronic detuning δn to the changes of the full detuning δ is small:
∂Irδk ≈ ∂IrδT,k. The uniform pumping of both amplifying sections implies

∂IAδk ≈
νA1

k lA1+νA2
k lA2

lA
, k ∈ {A1,A2,BG}.

Eqs. (6) and (7) together with the assumptions νA1
A1 = νA2

A2 and νA1
k = νA2

k with k ∈
{A1,A2,BG} allow us to fully determine the thermal detuning functions δT .

5 Simulations

In this section we present our simulation results and discuss some parameter fitting
procedures.
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Figure 6: Power-current
characteristics of the
DBR laser at the front
(a) and rear (b) facets.
Black: theory. Gray:
experiments.

Fig. 6 shows simulated and experimental power-current characteristics of the consid-
ered DBR laser. Several basic features such as

� periodically occurring undulations of the emitted power,

� transitions characterized by a sudden increase (decrease) of the power emitted
from the front (rear) facets,

� a non-monotonous growth of the power emitted from the rear facet (typical for
non-stationary lasing states) before state transitions

are properly reproduced by our simulations. The power increase slopes at both facets
of the laser are comparable to experiments and were obtained by a careful choice of
the field coupling coefficient κ in the DBR section.

The lasing threshold was fitted mainly by the choice of the logarithmic gain clamping
density n∗. Without this factor the modeled field absorption α −g(n) in the un-pumped
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creasing injection current
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(c) is the function ϕ̃ with
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DBR section at the subthreshold regime is un-physically high, what implies an in-
crease of the theoretical threshold current. The difference of these two approaches
at small injection currents is illustrated by thick black (clamped model) and thin gray
(non-clamped model) dashes in Fig. 7(b). The simulated carrier density values, how-
ever, in both these approaches are approximately the same (see panel (a) of the same
figure).
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Figure 8: Representation
of the simulated optical
spectra (mapping) and
the emitted power (light
curve) at the front facet
of the laser as a function
of the increased injection
current.

Fig. 8 represents an evolution of the simulated optical spectrum with the increase
of IA. Like in experiments (see Fig. 3) we can observe here periodically occurring
jumps to a blue neighboring mode in optical spectra, a multiple peak optical spectra
before and a single mode emission after the state transitions. The mode separation
in simulations is ∼ 47 pm, what is comparable to the experiments and is significantly
larger than the mode separation in similar FP-type laser. Finally, in both theoretical
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and experimental cases the wavelength shift within single “period” of injection current
is nearly linear.

Along with similarities Figs. 3 and 8 show us also several discrepancies between
simulations and experiments. Comparing to experiments, in simulations we have

� a much more regular periodicity of mode transitions, and

� a less pronounced general slow red shift for larger (> 400mA) and a blue shift
for smaller (< 400mA) currents.

The first discrepancy is due to our assumption of the linear thermal detuning model.
Actually, different experimental mode transition periods correspond to different ther-
mal detuning factors ν in Eq. (3).

The second of these effects in our simulations is due to the fast growth of n in DBR
section at small super-threshold currents: see the lower black curve in Fig. 7(a). For
these injection currents a (blue) electronic shift δn(n) in DBR section plays a significant
role. It counteracts and even exceeds the thermal red shift δT (I) in DBR section, what
in turn results a general blue wavelength shift visible for small IA in Fig. 8.

Another effect of this non-vanishing electronic detuning is represented by differences
in mode transition period lengths. The derivation of the heating parameters ν from the
experimentally estimated slow red shift ∂Iλs ≈ 20nm/A and the transition period Iper ≈
95 mA in Section 4 was made by neglecting the contribution of δn. For small super-
threshold currents electronic detuning δn(n) in the amplifying sections changes only
weakly, while in DBR section it decays significantly. This in turn implies an additional
positive shift of ϕ̃(I) which can be even larger then the thermal one: compare slopes of
the thin dashed line and thick black curve in Fig. 7(c) representing a pure thermal and
a full detuning, respectively. Since modulus 1 change of the function ϕ̃(I) at lower IA

can be realized much faster than at high IA, for low injection the mode switchings occur
within much shorter current intervals. For increased amplifier currents the intensity of
the optical field entering DBR section grows. The balance of the carrier rate equation
(2) in this section is kept by increasing the gain (decreasing the loss) function g(n)<0,
i.e., by increasing the carrier density which for high injections is slowly approaching the
transparency density ntr (see Fig. 7a). Due to a slow change of n at larger currents the
contribution of δn is by an order smaller than that on of δT , and the ≈ 84mA simulated
mode transition period here is only by ∼10% smaller than initially assumed one.

This discrepancy could be fixed if forbidding too small carrier densities in DBR section,
or assuming some different functional dependence of the index change function δn

with ∂nδn ≈ 0 at small n.

6 Conclusions

We investigated experimentally and numerically the electro-optical behavior of a mul-
tisection DBR semiconductor laser with an active region extending over all sections.
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The laser emits an optical power of 600 mW at a current of 900 mA. The power-current
characteristics show nearly periodically reappearing jumps, where the power at the
front facet increases and the power at the rear facet decreases. With an increase of
the injection current the laser device exhibits an averaged slow shift as well as period-
ically reappearing fast red shifts of the lasing wavelength. The corresponding periodic
jumps to adjacent short-wavelength cavity modes are connected with pulsations of
the field intensity.

The mode analysis and numerical simulations reveal the mechanisms of the peri-
odic mode jumps, the observed dynamic regimes and the slow or fast shifts of the
lasing wavelength. The periodicity of the mode transitions with an increase of injec-
tion current is caused by a difference in the refractive index tuning rates in DBR and
amplifying sections. The sequence cw operation – mode-beating pulsations – abrupt
change of the lasing wavelength is implied by the change of gain and damping of
the modes with the change of refractive indices. Here, mode-beating pulsations with
a consequent mode jumping are due to the vanishing damping of the neighboring
mode which later prevails the previously dominant one.

The averaged slow shift of the lasing wavelength is implied by the dependence of the
refractive index in the DBR section on the local carrier density and temperature. At
low power the increase of the carrier density due to optical pumping can dominate
over the thermal detuning and lead to an average blue shift of the lasing wavelength.
At higher power the carrier density in optically well pumped DBR section becomes
saturated, what reduces the impact of the electronic detuning with an increase of
injection current. The variation of the total detuning in DBR section now is dominated
by the increase of the temperature due to cross-heating from the electrically pumped
sections, leading to an averaged red shift of the lasing wavelength.

The fast shift is determined by the separation of the neighboring cavity modes, by the
length of the mode-transition period and, finally, by the slow wavelength shift rate. By
choosing proper dependencies of the refractive index in each section on the currents
injected into the same and the other section good agreement between experiment
and simulation was obtained.
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