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Abstract

We investigate optimal elliptic regularity of anisotropic div–grad operators in
three dimensions at the crossing of a material interface and an edge of the spatial
domain on the Neumann boundary part within the scale of Sobolev spaces.
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1 Formulation of the problem

In this paper we prove optimal regularity of elliptic div–grad operators

−∇·µ∇ : W 1,p
Γ (Ω) → W−1,p

Γ (Ω) (1.1)

for the spatio–material model constellations of Figure 1 and Figures 2,3 in three–
dimensional real space. The elliptic coefficient function µ on Ω takes its values in the
set of real, symmetric, positive definite 3×3 matrices and W 1,p

Γ (Ω) is the Sobolev space
with a homogeneous Dirichlet condition on ∂Ω \Γ, see Section 2 for details. The crucial
point is that two phenomena, each possibly causing singularities in the solution of the
elliptic equation do appear simultaneously in this setting: a geometric edge of the spa-
tial domain on the Neumann boundary part and a material heterogeneity. It should be
noted that we allow concave edges. More precisely, we get the following theorems.
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4142

Γ
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Figure 1: Right prism Ω = (41∪42∪P0Q0)×{h− < z < h+} of Theorem 1.1 with Neumann
boundary part Γ = (Q1P0 ∪ P1P0 ∪ {P0})× {h− < z < h+} (fair–grey) and material interface
Ξ (dark–grey). P ¦

0 is the point where the line {P0}×{h− < z < h+} and Ξ intersect.

Theorem 1.1. (Constellation of Figure 1.) Let 41, 42 be two open triangles in the
z = 0 plane of R3 which share one edge with vertices P0 and Q0. We define the open
right prism

Ω
def
= (41 ∪42 ∪ P0Q0)× {h− < z < h+}, h− < 0 < h+.

If P1, Q1 are the other vertices of 41 and 42 which share an edge with P0, then the
Neumann boundary part shall be

Γ
def
= (Q1P0 ∪ P1P0 ∪ {P0})× {h− < z < h+}.
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Furthermore Ξ is a plane in R3 which intersects Ω, but avoids its ground and upper
plate. We assume that the elliptic coefficient function µ takes its values in the set of
real, symmetric, positive definite 3×3 matrices and is constant on both components of
Ω \ Ξ. Then there is a p > 3 such that (1.1) is a topological isomorphism.

Theorem 1.2. (Constellation of Figures 2, 3.) Let 41, 42, be two open triangles in the
z = 0 plane of R3 with vertices P0, P1, P2 and P0, Q1, Q2, respectively. The triangles
41 and 42 share the vertex P0, and the vertex P1 of 41 is either on the open edge P0Q1

of 42 or P1 = Q1. We define the open right prism

Ω
def
= (41 ∪42 ∪ P0P1)× {h− < z < h+}.

The Neumann boundary part shall be

Γ
def
=

{
(Q1P1 ∪ {P1} ∪ P1P2)× {h− < z < h+}, if P1 6= Q1,

(P2P1 ∪ {P1} ∪ P1Q2)× {h− < z < h+}, if P1 = Q1.

Furthermore, we assume that the elliptic coefficient function µ takes its values in the set
of real, symmetric, positive definite 3×3 matrices and is constant on each of the open
subsets 41 × {h− < z < h+} and 42 × {h− < z < h+} of Ω. Then there is a p > 3 such
that (1.1) is a topological isomorphism.
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Figure 2: Right prism Ω = (41 ∪ 42 ∪ P0P1) × {h− < z < h+} of Theorem 1.2 with a
spatio–material edge (boldly dashed line) on the Neumann boundary part Γ (fair–grey) and
material interface Ξ (dark–grey) in the two cases P1 6= Q1 (left) and P1 = Q1 (right).

The constellation of Theorem 1.2 covers the benchmark problem of the three–dimensional
L–shape of different materials which was regarded in [7, Fig. 2], [35, Fig. 1], and [20,
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Figure 3: Constellation of Theorem 1.2 in the case P1 = Q1 (unnamed bullet) with a concave
spatio–material edge (boldly dashed line) on the Neumann boundary part Γ (fair–grey) of the
right prism Ω = (41 ∪42 ∪ P0P1)× {h− < z < h+} with material interface Ξ (dark–grey).

Fig. 7]. This kind of structure really plays a role in technology: Just have a look at a
ridge waveguide multiple quantum well laser, see for instance [3].

The proof of Theorems 1.1 and 1.2 is based upon the following fundamental result
by Maz′ya [31]: Let (1.1) be an elliptic div–grad operator with Dirichlet boundary
conditions (Γ = ∅) on a polyhedron Ω and a coefficient function µ which is constant
on each sub–polyhedron of a polyhedral partition of Ω. Then the maximal regularity of
(1.1) is delimitated by its edge singularities, see Proposition 3.3 below for details.

The main steps in proving Theorems 1.1, 1.2 are: First we transform the operators
(1.1) of Theorems 1.1, 1.2 into operators to which Maz′ya’s result applies. Next, we
check that regularity is invariant under this transformation. Then we delimitate the
edge singularities of the transformed problem. Thus, we get the maximal regularity of
the transformed and the original operator by Maz′ya’s result.
W 1,p regularity with p larger than the space dimension d has the following advantages:

Firstly, such W 1,p>d spaces have powerful multiplier properties, see [34], which can be
used in the treatment of quasilinear equations, see [22] and [21]. Secondly, W 1,p>d reg-
ularity plays a role in the analysis of general nonlinear systems. Applications are for —
among others — mathematical models in electrochemistry, see for instance [5], [15]; in
semiconductor device operation, see [12], [28]; in thermoelectrics, see [8], [23]; in porous
media, see [11]; in nonequilibrium thermodynamics, see [27]; and in inverse scattering,
see [30]. For a review of mathematical models in physics and technology where optimal
regularity of operators (1.1) is important, see for instance [19], [9], [10], [20]. In partic-
ular, W 1,p>d regularity often is the decisive instrument to show uniqueness of solutions,
see [13], [14].
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Furthermore, the W−1,p calculus allows for jumps in the conormal derivative of solu-
tions across internal interfaces. Thus, one can deal on the right hand side of the elliptic
equation with distributions which are concentrated on internal interfaces. In electrostat-
ics, for instance, a charge density on an interface causes a jump in the normal component
of the dielectric displacement, see for instance [37, Ch. 1].

Up to now there are optimal W 1,p regularity results for the following constellations
with nonsmooth data: The Laplacian on strong Lipschitz domains with Dirichlet and
Neumann boundary conditions has been treated in [26] and [39], respectively. The
papers [31], [9], and [10] deal with div–grad operators with discontinuous coefficients and
Dirichlet boundary conditions. Operators with mixed Dirichlet and Neumann boundary
conditions have been regarded in [6], [18], and [36] — and if there are, additionally,
discontinuous coefficients, in [19]. For more results concerning optimal regularity in the
W 1,q → W−1,q scale see for instance [33] with further references.

A numerical approach to multi–material elliptic problems has been taken in [1], [24],
[4], [38] and the references cited there.

The outline of the paper is as follows: In the next section we define the function
spaces and operators under consideration. Then we establish in Section 3 the bonding
between the regularity of (1.1) on a multi–material polyhedral compound and its edge
singularities. In Section 4 we deal with transformations of the problem. In particular, the
regularity of (1.1) is invariant under bi–Lipschitz transformations of the spatio–material
constellation, see Proposition 4.1. Generalising ideas from [25] and [9], we prove that the
set of singular values of an operator pencil remains unchanged, if a bijective, piecewise
linear transformation is applied to the two–dimensional spatio–material constellation,
see Theorem 4.3. Moreover, we justify the reflection argument which is crucial for
passing from a problem with mixed boundary conditions to a Dirichlet problem, see
Proposition 4.5. The Sections 5 and 6 are devoted to the proof of Theorem 1.1 and
Theorem 1.2, respectively.

2 Function spaces and basic operators

Let Ω ⊂ Rd be a Lipschitz domain and Γ ⊂ ∂Ω an open part of its boundary. W 1,p(Ω)
denotes the (complex) Sobolev space on Ω consisting of those Lp(Ω) functions whose
first order distributional derivatives also belong to Lp(Ω), see for instance [17] or [32].
We use the symbol W 1,p

Γ (Ω) for the closure of the set{
v|Ω : v ∈ C∞(Rd), supp v ∩ (∂Ω \ Γ) = ∅ }

in the space W 1,p(Ω). Furthermore, W−1,p′
Γ (Ω) denotes the space of continuous antilinear

forms on W 1,p
Γ (Ω), where 1/p+ 1/p′ = 1. As usual we write W 1,p

0 (Ω) instead of W 1,p
∅ (Ω)

and W−1,p(Ω) instead of W−1,p
∅ (Ω) when there are homogeneous Dirichlet conditions on

the whole boundary of Ω. If Ω is understood, we abbreviate Lp, W 1,p,. . . , dropping the
reference to Ω. Moreover, in the case of an interval Ω =]a, b[ we write Lp(a, b), W 1,p(a, b),
W 1,p

0 (a, b), and W−1,p(a, b).
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The sesquilinear pairing between a Banach space X and the space of antilinear forms
on X is written 〈·, ·〉X ; in the case X = Cd we write 〈·, ·〉 for short.

If µ is a Lebesgue measurable, essentially bounded function on Ω taking its values in
the set of real, symmetric d×d matrices, then we define the div–grad operator −∇·µ∇ :
W 1,2

Γ (Ω) → W−1,2
Γ (Ω) by

〈−∇·µ∇ψ1, ψ2〉W 1,2
Γ

def
=

∫
Ω

〈µ∇ψ1,∇ψ2〉 dr, ψ1, ψ2 ∈ W 1,2
Γ (Ω).

The maximal restriction of −∇·µ∇ to any of the spaces W−1,p
Γ (Ω), p > 2 is denoted by

the same symbol.
We now define the basic operators to be used in the investigation of edge singularities.

Definition 2.1. Let real numbers θ0 < θ1 < . . . < θn ≤ θ0 + 2π be given and, ad-
ditionally, real, symmetric, positive definite 2×2 matrices ρ1, . . . , ρn. We introduce on
]θ0, θn[\{θ1, . . . , θn−1} the matrix valued function ρ and three real valued coefficient func-
tions b0, b1 and b2, whose restrictions to each of the intervals ]θj−1, θj[ are given by

ρ(θ)
def
= ρj,

b0(θ)
def
= ρj

11 cos2 θ + 2ρj
12 sin θ cos θ + ρj

22 sin2 θ,

b1(θ)
def
= (ρj

22 − ρj
11) sin θ cos θ + ρj

12(cos2 θ − sin2 θ),

b2(θ)
def
= ρj

11 sin2 θ − 2ρj
12 sin θ cos θ + ρj

22 cos2 θ,

for θj−1 < θ < θj, j = 1, . . . , n. By

tλ[v]
def
=

∫ θn

θ0

b2 v
′ v̄′ + λb1v v̄

′ − λb1v
′ v̄ − λ2b0vv̄ dθ

we define for every λ ∈ C a quadratic form on each of the following Sobolev spaces:

W 1,2(θ0, θn) or W 1,2
0 (θ0, θn) if θn < θ0 + 2π,

W 1,2(θ0, θ0 + 2π) ∩ {v : v(θ0) = v(θ0 + 2π)} if θn = θ0 + 2π.

The operators on L2(θ0, θn) which are induced by these forms are An
λ, Ad

λ, and Aπ
λ,

respectively. This corresponds to Neumann, Dirichlet, and periodic boundary conditions.

Remark 2.2. One can check that

b2 ≥ ρ11 + ρ22

2
−
√

(ρ11 − ρ22)2

4
+ ρ2

12 > 0.

Hence, each of the forms tλ is sectorial for every λ ∈ C. A fortiori the induced operators
Aλ are sectorial, see [29, Ch. VI], where Aλ is any of the operators An

λ, Ad
λ, or Aπ

λ.
Moreover, all values λ from the right halfplane, for which the kernel of Aλ is nontrivial,
are located in the sector

S =

{
λ1 + iλ2 : |λ2| ≤ max

j

ρj
11 + ρj

22

2
√
Dj

λ1

}
,

where Dj is the determinant of the matrix ρj. In particular, the kernel of Aλ is trivial
for all λ on the imaginary axis, see [20, Thm. 2.9].
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3 Edge singularities

In this section we recall an optimal regularity result by Maz′ya et alii, see [31], for
the Dirichlet problem on a polyhedral multi–material compound. First we briefly de-
scribe the connection between elliptic three–dimensional edge singularities and two–
dimensional vertex singularities for such a compound.

Definition 3.1. Let Ω ⊂ R3 be a polyhedral Lipschitz domain and let there be a
finite set {Ωk}k of polyhedral domains such that Ω is the interior of the closure of
the disjoint union of all Ωk. Moreover, the faces of the sub-polyhedra Ωk, which are
open sets with respect to the surface measure, shall be either in the interior of Ω or
carry Neumann boundary conditions or carry Dirichlet boundary conditions. We define
Γ as the interior of the closure of the union of all faces carrying Neumann boundary
conditions. Furthermore, µ shall be a matrix function on Ω which is constant on each
Ωk and takes real, symmetric, positive definite 3×3 matrices as values. We regard now
the edges of the sub-polyhedra Ωk, which are open sets with respect to the curve measure,
thus do not contain any vertex of Ωk. Let E be such an edge and let P be an arbitrary
interior point of this edge. Choosing a new orthogonal coordinate system (x, y, z) with
origin at the point P such that the direction of E coincides with the z axis, we denote by
ω the corresponding orthogonal transformation matrix and by µω the piecewise constant
matrix function which satisfies in a neighbourhood O of the origin

µω(x, y, z) = ωµ
(
ω−1(x, y, z)

)
ω−1 for all (x, y, z) ∈ O,

µω(tx, ty, z) = µω(x, y, 0) for all (x, y, 0) ∈ O, z ∈ R, and t > 0.

Finally, we denote by ρ the upper left 2×2 block of µω at z = 0.

Remark 3.2. Obviously, ρ in Definition 3.1 does not depend on the choice of the point
P . The matrix ρ is given on a sector

Kb
a

def
= {(r cos θ, r sin θ) : r > 0, θ ∈]a, b[}, a < b ≤ a+ 2π

which coincides near P with the intersection of the x–y plane with the ω image of the
domain Ω. There exist uniquely determined angles

a = θ0 < θ1 < . . . < θn = b ≤ θ0 + 2π (3.1)

such that each K
θj+1

θj
coincides near P with the intersection of the x–y plane with the ω

image of exactly one domain Ωk. Thus, ρ is constant on each of the sectors K
θj+1

θj
and

takes real, symmetric, positive definite 2×2 matrices ρj as values. Indeed there are real
numbers µ̃j

13, µ̃
j
23, and µ̃j

33 such that

µω(x, y, z) = µj
ω =

(
ρj µ̃j

13

µ̃j
23

µ̃j
13 µ̃j

23 µ̃j
33

)
if z ∈ R and (x, y) ∈ Kθj+1

θj
.

For an interior edge E ⊂ Ω the sector Kb
a is the full plane that means θn = θ0 + 2π. On

the other hand for an outer edge E ⊂ ∂Ω there is θn < θ0 + 2π. If in particular E ⊂ ∂Ω
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belongs to the closure of exactly one sub-polyhedron Ωk, then n = 1 and we call E a
mono–material outer edge of Ω. Analogously, we call E a bi–material outer edge of Ω, if
E ⊂ ∂Ω and E belongs to the closure of exactly two sub-polyhedra. Mutatis mutandis
we term a multi–material outer edge of Ω. Thus, for an n–material outer edge there are n
angles in (3.1). However, this does not mean that necessarily n different materials meet
at an n–material outer edge since even for adjacent sectors the corresponding matrices
ρj can be equal.

We proceed by quoting Maz′ya’s central optimal regularity result for the Dirichlet
problem on a polyhedral compound conforming to Definition 3.1.

Proposition 3.3. [31, Thm. 2.3], [9, Remark 2.2]. Let us regard the constellation of
Definition 3.1. If for every edge E the induced operator

Aπ
λ in case of an interior edge E ⊂ Ω,

Ad
λ in case of an outer edge E ⊂ ∂Ω,

see Definition 2.1, has a trivial kernel for all λ with 0 < <λ < 1/3 + ε and some ε > 0,
then there is a p > 3 such that

−∇·µ∇ : W 1,p
0 (Ω) → W−1,p(Ω)

is a topological isomorphism.

For a detailed discussion of how to find the parameters λ for which the operators Aπ
λ

and Ad
λ have only a trivial kernel we refer to [19].

At a mono–material outer edge on the Dirichlet boundary we have the following result
about the corresponding operator Ad

λ.

Proposition 3.4. [19, Thm. 24], [9, Cor. 3.1]. For any mono–material outer edge
E, see Remark 3.2 and Definition 3.1, the kernels of the associated operators Ad

λ, see
Definition 2.1, are trivial in each of the following two cases:

0 < θ1 − θ0 ≤ π and 0 < <λ < 1,

π < θ1 − θ0 < 2π and 0 < <λ ≤ 1/2.

For bi–material outer edges we know the following.

Proposition 3.5. [19, Thm. 25], [9, Lem. 2.3]. For any bi–material outer edge E, see
Remark 3.2 and Definition 3.1, the kernels of the associated operators Ad

λ and An
λ (with

Dirichlet and with Neumann boundary conditions, respectively, see Definition 2.1) are
trivial if

θ1 − θ0 ≤ π, θ2 − θ1 ≤ π, θ2 − θ0 < 2π, and 0 < <λ ≤ 1/2.
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4 Transformations

We now collect results about the invariance of the regularity of an elliptic problem under
certain transformations of the spatio–material constellation. In particular we look at
bi–Lipschitz transformations and investigate the reflection of the problem at a singular
Neumann face.

Proposition 4.1. (Bi–Lipschitz transformation, see [19, Prop. 16] and [16, Thm. 2.10].)
Let Ω ⊂ Rd be a bounded Lipschitz domain and let Γ be an open subset of its bound-
ary. Further assume that φ is a mapping from a neighbourhood of cl Ω into Rd which is
bi–Lipschitz. If 1 < p <∞ and 1/p+ 1/p′ = 1, then:

1. The mapping φ induces a linear, topological isomorphism

Ψp : W 1,p
φ(Γ)(φ(Ω)) → W 1,p

Γ (Ω) given by (Ψpf)(r) = (f ◦ φ)(r) = f(φ(r)).

2. The mapping Ψ∗
p′ is a topological isomorphism between W−1,p

Γ (Ω) and W−1,p
φ(Γ) (φ(Ω)).

3. If µ is a bounded measurable function on Ω, taking its values in the set of d×d
matrices, then

Ψ∗
p′ (−∇·µ∇) Ψp = −∇·µφ∇

with

µφ(φ(r)) = Jφ(r)µ(r)JT
φ (r)

1

| det Jφ(r)| , r ∈ Ω, (4.1)

where Jφ denotes the Jacobian of φ. If, in particular, −∇·µ∇ is a topological iso-
morphism from W 1,p

Γ (Ω) to W−1,p
Γ (Ω), then −∇·µφ∇ is a topological isomorphism

from W 1,p
φ(Γ)(φ(Ω)) to W−1,p

φ(Γ) (φ(Ω)) and vice versa.

Remark 4.2. From the proof of Theorem 2.10 in [16] one can conclude that the assertion
of Proposition 4.1 mutatis mutandis holds true in the whole space case Ω = Rd.

The following theorem specifically concerns the piecewise linear, bijective transforma-
tion of an operator pencil.

Theorem 4.3. With respect to the constellation of Definition 2.1 let θn and γ be such
angles that

0 < γ − θ0 < π and 0 < θn − γ < π,

and L the line through 0 ∈ R2 with slope γ, see Figure 4. We denote by HA and HB the
two (closed) halfspaces lying to the sides of L. Furthermore, let A and B be two real,
nonsingular 2×2 matrices with the property A(cosγ, sinγ)T = B(cosγ, sinγ)T and φ the
mapping which acts as A on HA and as B on HB. If φ is additionally bijective, then
holds true:
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θ0

θ1

θ2

γ

θn−1

θn

x

y

HB HA

L

Figure 4: Spatial constellation of Theorem 4.3 where the line L with slope γ splits the plane
into the halfspaces HA and HB

1. The mapping φ induces a sector partition of the sector φ(Kθn
θ0

) such that the corre-
sponding coefficient function ρφ, see Proposition 4.1, is constant on each of these
sectors. More precisely, the nonempty elements of{

φ(HA ∩Kθj+1

θj
)
}n−1

j=0
∪
{
φ(K

θj+1

θj
∩HB)

}n−1

j=0

are a sector partition of φ(Kθn
θ0

) with angles θφ
0 < . . . < γφ < . . . < θφ

n and ρφ is
constant on each of these sectors. Thus, after transformation by φ we end up again
with a constellation as described in Definition 2.1 with possibly one more sector
than in the initial constellation.

2. For every λ ∈ C with <λ > 0, the operators An
λ and Ad

λ, associated with the
coefficient function ρ, have a nontrivial kernel iff the kernel of the corresponding
operator associated with the coefficient function ρφ is nontrivial.

Proof. 1. The nonempty elements of {HA ∩Kθj+1

θj
}n−1

j=0 ∪ {Kθj+1

θj
∩HB}n−1

j=0 form a sector

partition of Kθn
θ0

such that the function ρ is constant in the interior of each sector of this
partition. Moreover, the function φ is constant on each sector, given either by A or by
B. Thus, the image under φ of this sector partition is a sector partition of φ(Kθn

θ0
) such

that, due to (4.1), ρφ is constant on each of the transformed sectors.
2. According to (4.1) the coefficient function ρφ of the φ transformed problem is

almost everywhere given by

ρφ(x, y) =


Aρ(A−1(x

y ))AT

det A
if ( x

y ) ∈ A(HA ∩Kθn
θ0

),

Bρ(B−1(x
y ))BT

det B
if ( x

y ) ∈ A(HB ∩Kθn
θ0

).

(4.2)
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If w is a continuous function on an interval ]a, b[, with b < a+ 2π, then the function

w(r cos θ, r sin θ)
def
= w(θ), r > 0, a < θ < b (4.3)

is a continuous function on the sector Kb
a

def
= {(r cos θ, r sin θ) : r > 0, a < θ < b}. If in

particular w ∈ W 1,2(a, b) and λ ∈ R, then

∇ ((x2 + y2)λ/2w(x, y)
)∣∣

(x,y)=(r cos θ,r sin θ)
=
rλ

r

(
λw(θ) cos θ − w′(θ) sin θ
λw(θ) sin θ + w′(θ) cos θ

)
.

Thus, for all u, v ∈ W 1,2(θ0, θn) and the functions u and v associated by (4.3) holds true[
ρ(x, y)∇ ((x2 + y2)λ/2u(x, y)

)] · ∇ ((x2 + y2)−λ/2v(x, y)
)∣∣

(x,y)=(r cos θ,r sin θ)

=
1

r2

(
b2(θ)u

′(θ)v̄′(θ)− λb1(θ)u
′(θ)v̄(θ) + λb1(θ)u(θ)v̄

′(θ)− λ2b0(θ)u(θ)v̄(θ)
)
, (4.4)

where b0, b1, b2 are the functions from Definition 2.1 for the initial constellation. In-
tegrating (4.4) over the set K

def
= {(r cos θ, r sin θ) : 1 ≤ r ≤ 2, θ0 < θ < θn} one

obtains

log 2

∫ θn

θ0

b2(θ)u
′(θ)v̄′(θ)− λb1(θ)u

′(θ)v̄(θ) + λb1(θ)u(θ)v̄
′(θ)− λ2b0(θ)u(θ)v̄(θ) dθ

=

∫
K

[
ρ(x, y)∇ ((x2 + y2)λ/2u(x, y)

)] · ∇ ((x2 + y2)−λ/2v(x, y)
)
dx dy (4.5)

We now transform the integral on the right hand side by means of the mapping φ which
is A on K ∩HA and B on K ∩HB:∫

K

[
ρ(x, y)∇ ((x2 + y2)λ/2u(x, y)

)] · ∇ ((x2 + y2)−λ/2v(x, y)
)
dx dy

=

∫
A(K∩HA)

[(
Aρ(·)AT

detA
∇ (‖ · ‖λ

R2u(·))) · ∇ (‖ · ‖−λ
R2 v(·))] ◦ A−1 ( x

y ) dx dy

+

∫
B(K∩HB)

[(
Bρ(·)BT

detB
∇ (‖ · ‖λ

R2u(·))) · ∇ (‖ · ‖−λ
R2 v(·))] ◦B−1 ( x

y ) dx dy

(4.6)

Using (4.2) this can be written as

=

∫
A(K∩HA)

[
ρφ(x, y)∇

(
(x2 + y2)λ/2uA(x, y)

)] · ∇ ((x2 + y2)−λ/2vA(x, y)
)
dx dy

+

∫
B(K∩HB)

[
ρφ(x, y)∇

(
(x2 + y2)λ/2uB(x, y)

)] · ∇ ((x2 + y2)−λ/2vB(x, y)
)
dx dy,

where uA is the complex function defined on φ(K ∩HA) by

uA(x, y)
def
=
‖A−1 ( x

y )‖λ
R2

‖( x
y )‖λ

R2

u
(
A−1 ( x

y )
)
.
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Mutatis mutandis uB vA vB. The functions uA, uB, vA, vB, are all homogeneous of
degree 0 since u and v are homogeneous of degree 0. Thus, there are uniquely determined
functions uA, vA : ]θφ

0 , γ
φ[→ C and uB, vB : ]γφ, θφ

n[→ C such that

uA(r cos θ, r sin θ) = uA(θ), uB(r cos θ, r sin θ) = uB(θ),

vA(r cos θ, r sin θ) = vA(θ), vB(r cos θ, r sin θ) = vB(θ).

The continuity of u and v and the relation A(cos γ, sin γ)T = B(cos γ, sin γ)T entail

uA(γφ) = uB(γφ) and vA(γφ) = vB(γφ). (4.7)

We define functions

uφ(θ)
def
=

{
uA(θ) if θφ

0 < θ < γφ,

uB(θ) if γφ < θ < θφ
n,

vφ(θ)
def
=

{
vA(θ) if θφ

0 < θ < γφ,

vB(θ) if γφ < θ < θφ
n,

which, due to (4.7), are from the space W 1,2(θφ
0 , θ

φ
n). Moreover, the mapping

W 1,2(θ0, θn) 3 u 7→ uφ ∈ W 1,2(θφ
0 , θ

φ
n)

is a topological isomorphism, and its restriction to W 1,2
0 (θ0, θn) is a topological isomor-

phism onto W 1,2
0 (θφ

0 , θ
φ
n).

In terms of the functions uφ and vφ associated to uφ and vφ by (4.3) one now can
write (4.6) in the form∫

K

[
ρ(x, y)∇ ((x2 + y2)λ/2u(x, y)

)] · ∇ ((x2 + y2)−λ/2v(x, y)
)
dx dy

=

∫
φ(K)

[
ρφ(x, y)∇

(
(x2 + y2)λ/2uφ(x, y)

)] · ∇ ((x2 + y2)−λ/2vφ(x, y)
)
dx dy.

Analogously to (4.4) the integrand on the right hand side of this equation can be ex-
pressed in terms of the functions bφ0 , b

φ
1 , b

φ
2 , see Definition 2.1, of the transformed con-

stellation. Please note that ρφ enters as determined in (4.2). Thus, one obtains for the
last integral

log 2

∫ θφ
n

θφ
0

bφ2(θ)u
′
φ(θ)v̄

′
φ(θ)− λbφ1(θ)u

′
φ(θ)v̄φ(θ)

+ λbφ1(θ)uφ(θ)v̄
′
φ(θ)− λ2bφ0(θ)uφ(θ)v̄φ(θ)dθ. (4.8)

Please note that due to the linearity of A and B the integral over the radial variable is∫ 2r(θ)

r(θ)
dr
r

= log 2 for each θ.

One concludes that, if there is a function u from W 1,2(θ0, θn) such that (4.5) vanishes
for all v from W 1,2(θ0, θn), then there is a function uφ from the space W 1,2(θφ

0 , θ
φ
n) such

that (4.8) vanishes for all vφ ∈ W 1,2(θφ
0 , θ

φ
n) and vice versa. That means the operator An

λ

has a nontrivial kernel iff the corresponding operator of the transformed constellation
has. The same argument holds for the Dirichlet case with the function spacesW 1,2

0 (θ0, θn)
and W 1,2

0 (θφ
0 , θ

φ
n).
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Remark 4.4. The result of Theorem 4.3 holds true also in the case of mixed boundary
conditions with the function spaces W 1,2

Γ (θ0, θn) and W 1,2
Γφ (θφ

0 , θ
φ
n), where Γ = {θ0} and

Γφ = {θφ
0} or Γ = {θn} and Γφ = {θφ

n}. Furthermore, one can apply Theorem 4.3
iteratively to get a similar result for a piecewise linear homeomorphism φ.

Now we regard even reflection of the three–dimensional problem at a (singular) Neu-
mann face.

Proposition 4.5. (Material reflection at a Neumann face, see [19, Prop. 17].) Let
Ω ⊂ R3 be a bounded, polyhedral Lipschitz domain and let Γ be an open subset of ∂Ω
such that

cl Ω ∩ {(x, 0, z) : x, z ∈ R} = cl Γ.

We define a new domain Ω̂ by reflecting Ω at the y = 0 plane:

Ω̂
def
= int (Ω ∪ {(x, y, z) : (x,−y, z) ∈ Ω} ∪ cl Γ) .

If µ is a bounded, measurable function on Ω taking its values in the set of real, symmetric
3×3 matrices, then we define a coefficient function µ̂ on Ω̂ by µ on Ω, by zero on Γ, and
if (x,−y, z) ∈ Ω by

µ̂(x, y, z)
def
=

 µ11(x,−y, z) −µ12(x,−y, z) µ13(x,−y, z)
−µ12(x,−y, z) µ22(x,−y, z) −µ23(x,−y, z)
µ13(x,−y, z) −µ23(x,−y, z) µ33(x,−y, z)

 .

If ψ ∈ W 1,2
Γ (Ω) satisfies the equation −∇·µ∇ψ = f in W−1,2

Γ (Ω), then the equation

−∇·µ̂∇ψ̂ = f̂ holds in W−1,2(Ω̂) with

ψ̂(x, y, z)
def
=

{
ψ(x, y, z), if (x, y, z) ∈ Ω,

ψ(x,−y, z), if (x,−y, z) ∈ Ω,

〈f̂ , ϕ〉W 1,2(bΩ)

def
= 〈f, ϕ̌〉W 1,2

Γ (Ω), ϕ ∈ W 1,2
0 (Ω̂),

where the function ϕ̌ ∈ W 1,2
Γ (Ω) is defined by

ϕ̌(x, y, z)
def
= ϕ(x, y, z) + ϕ(x,−y, z), (x, y, z) ∈ Ω.

Moreover, if f ∈ W−1,p
Γ (Ω), then f̂ ∈ W−1,p(Ω̂) and if −∇·µ̂∇ : W 1,p

0 (Ω̂) → W−1,p(Ω̂)
is a topological isomorphism, then −∇·µ∇ : W 1,p

Γ (Ω) → W−1,p
Γ (Ω) also is a topological

isomorphism.

Next we look at how even reflection of the problem acts on edges in the mirror Neu-
mann face.

Lemma 4.6. (Material reflection of the operator pencil) Let us specify the constellation
of Definition 2.1 to the halfplane {(x, y) ∈ R2 : y > 0} that means θ0 = 0 and θn = π and

13



let Ad
λ and An

λ be the associated operator pencils with Dirichlet and Neumann boundary
conditions, respectively. By material reflection

ρ(x, y)
def
=


(

ρj
11 ρj

12

ρj
12 ρj

22

)
if ( x

y ) ∈ Kθj

θj−1
,(

ρj
11 −ρj

12

−ρj
12 ρj

22

)
if ( x−y ) ∈ Kθj

θj−1

one obtains a corresponding constellation in the full plane. Let Aπ
λ denote the operator

according to Definition 2.1 which corresponds to the latter constellation. Then for any
number λ with <λ > 0 the kernel of this operator Aπ

λ is trivial, if for this same λ the
kernels of Ad

λ and An
λ are trivial.

Proof. In [19, Lemma 22] a proof is given for the case of two sectors in the halfspace.
Mutatis mutandis, the proof can be carried over to the case of a finite number of sectors.

The next proposition in a way reverses the construction of an edge pencil by associating
a div–grad operator on R3 to such an operator on a sector partition of R2.

Proposition 4.7. [19, Lem. 14] With respect to the constellation of Definition 2.1 let
λ with <λ ∈]0, 1[ be a number such that there exists a (nontrivial) function vλ from the
kernel of Aπ

λ. Let µ13, µ23, and µ33 be real valued, bounded, measurable functions on R2

and let us define the coefficient function µ on R3 by

µ(x, y, z)
def
=

 ρj
11 ρj

12 µ13(x, y)

ρj
12 ρj

22 µ23(x, y)
µ13(x, y) µ23(x, y) µ33(x, y)

 if (x, y) ∈ Kθj+1

θj
. (4.9)

Then the function ψ, given by

ψ(x, y, z) = (x2 + y2)λ/2vλ(arg(x+ iy)), (x, y, z) ∈ R3 (4.10)

satisfies −∇·µ∇ψ = 0 on R3 in the sense of distributions. Consequently, for every com-
pactly supported function η from W 1,∞(R3) one has −∇·µ∇(ηψ) ∈ W−1,6(R3). Moreover,
if η ≡ 1 in a neighbourhood of 0 ∈ R3, then ηψ does not belong to W 1,2/(1−<λ)(R3).

Remark 4.8. In particular Proposition 4.7 applies to the matrix µω of Definition 3.1,
see also Remark 3.2.

5 Proof of Theorem 1.1

For the proof of Theorem 1.1 we first transform the spatio–material constellation under
consideration there while keeping the regularity of the elliptic div–grad operator invari-
ant. Then we discuss the edge singularities of the transformed problem to obtain the
regularity of (1.1) according to Proposition 3.3.
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•P0

•Q0

•
P1

Q1
•

•P0

•Q0

•
P1 Q1

•
x

y

H1

H2

φxy−→
41

42 41 42

Figure 5: Two–dimensional constellation which generates the right prism of Figure 1 under
consideration in Theorem 1.1, originally (left) and after piecewise linear transformation by φxy

(right). For the sake of simplicity the transformed objects bear the same name as the originals.
The trace of the Neumann boundary face is indicated by bold lines.

•P0

•
Q0

•P1

Q1•

•P
¦
0

Q¦
0

• Ξ

Ξ

41
42

Γ

Figure 6: Right prism of Figure 1 after transformation by φ (all objects keep their name after
transformation). The Neumann boundary part Γ (fair–grey) is planar after transformation
while the material interface Ξ (dark–grey) now is broken along the line through P ¦

0 and Q¦
0.

Thus, P ¦
0 Q¦

0 is a four–material edge.
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•
P0

Q0
•

•P1
Q1•

•
P+

0Q+

0•
•P+

1
Q+

1 •

•
P−

0

Q−
0

•
•P−

1

Q−
1 •

•
P ¦

0

Q¦
0

•
•P ¦

1

Q¦
1•

41
42

Figure 7: Right prism of Figure 1 after transformation by φ and even reflection. The triangles
41 and 42 are the image of the generating two–dimensional constellation. All other lines in
the figure represent edges to be discussed with respect to the regularity of the associated edge
pencil. The boldly dashed line P−

0 P+

0 is the image of the edge originally on the Neumann
boundary part Γ. The shaded areas are the image of the original material interface.

5.1 Transformation of the problem

Let us first regard the two–dimensional constellation which generates the right prism
under consideration in Theorem 1.1. The left hand side of Figure 5 shows the constel-
lation which generates the prism of Figure 1. Without loss of generality we can assume
that the point P0 has the coordinates x = 0 and y = 0 in the plane. The line through P0

and Q0 divides the plane into a halfplane H1 containing the triangle 41 and a halfplane
H2. By

P1 7→ ( −1
0 ) , Q0 7→ ( 0

1 ) and Q0 7→ ( 0
1 ) , Q1 7→ ( 1

0 )

two linear mappings of the plane are defined, respectively. Let φxy be the mapping which
is given on H1 by the first of these linear mappings and on H2 by the second one, see
Figure 5. Since the two linear mappings are identical on the line through P0 and Q0 the
mapping φxy is a bi–Lipschitz transformation of the plane. Now we define

φ : R3 → R3 by φ(x, y, z)
def
=

(
φxy(x, y)

z

)
. (5.1)

Thus, φ is a bi–Lipschitz transformation of the space R3. Hence, Proposition 4.1 applies.
Next, we reflect the problem as in Proposition 4.5 at the x–z plane that means at

the Neumann boundary, see Figure 7. We end up with an elliptic operator −∇·µ̂∇ :
W 1,p

0 (Ω̂) → W−1,p(Ω̂) with Dirichlet boundary conditions. According to Proposition 4.5,
in order to prove Theorem 1.1, it suffices that this operator is a topological isomorphism

16



for some p > 3. To this end we apply Proposition 3.3 and show that for each edge E of
the transformed constellation the edge pencil of Definition 3.1 induces by Definition 2.1
an operator Aπ

λ (interior edges) or Ad
λ (outer edges) which has a trivial kernel for all λ

with 0 < <λ ≤ 1/2. The occurring edges are the following, see also Figure 7:

• Mono–material outer edges like for instance Q−
1Q

−
0 .

• Bi–material outer edges like for instance Q¦
0Q

+

0 , Q+

0P
+

0 , P+

0 P
+

1 , P+

1 P
¦
1 , and P ¦

1Q
¦
0.

• The four–material interior edges P ¦
0P

+

0 and P−
0 P

¦
0 , the image of the edge on the

Neumann part Γ of the boundary.

• The four–material interior edges P ¦
0P

¦
1 and P ¦

0Q
¦
1, the image of the intersection of

the original Neumann face and the original material interface.

• The four–material interior edge P ¦
0Q

¦
0 and its reflection at the φ image of the

original Neumann face.

5.2 Discussion of the edge singularities

Due to the symmetry relations of the transformed problem, Proposition 3.4 and Proposi-
tion 3.5 provide for mono–material outer edges like for instanceQ−

1Q
−
0 and for bi–material

outer edges like for instance Q¦
0Q

+

0 that Ad
λ has a trivial kernel if <λ ∈]0, 1/2].

Next we consider the image of the edge on the Neumann part Γ of the boundary. Let
us first regard P ¦

0P
+

0 and make use of Lemma 4.6. Thus, we only have to show that
the operators Ad

λ and An
λ of the bi–material edge pencil both have a trivial kernel if

<λ ∈]0, 1/2]. This is provided again by Proposition 3.5. The same disquisition applies
to the four–material edge P−

0 P
¦
0 .

The image of the intersection of the original Neumann face with the original material
interface is made up of the four–material interior edges P ¦

0P
¦
1 and P ¦

0Q
¦
1. To get the edge

pencil of P ¦
0P

¦
1 we transform the problem according to Definition 3.1. The orthogonal

transformation matrix ω is given here by

ω =

cos ς 0 − sin ς
0 1 0

sin ς 0 cos ς

 with ς = ^P ¦
1P

¦
0P

+

0 .

A straightforward calculation shows that the matrix function ρ has the following struc-
ture:

ρ(θ) =


(

s11 −s12−s12 s22

)
if −θ ∈]ζ, π[,(

t11 −t12−t12 t22

)
if −θ ∈]0, ζ[,(

t11 t12
t12 t22

)
if θ ∈]0, ζ[,

( s11 s12
s12 s22 ) if θ ∈]ζ, π[

for some ζ ∈]0, π[, Thus, one gets the result as for the edge P ¦
0P

+

0 , using again Lemma 4.6
and Proposition 3.5.
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It remains to delimitate the singularities at the four–material interior edge P ¦
0Q

¦
0 and,

correspondingly, at its reflected counterpart. Again we transform the problem according
to Definition 3.1 to get the edge pencil of P ¦

0Q
¦
0 and we show that the operator Aπ

λ, see
Definition 2.1, has a trivial kernel if <λ ∈]0, 1/2].

Suppose that for some λ with <λ ∈]0, 1/2] there is a (nontrivial) function vλ in
the kernel of Aπ

λ. Then, by Proposition 4.7, there is a compactly supported element
f ∈ W−1,6(R3) such that the — also compactly supported — variational solution ψ ∈
W 1,2(R3) of the equation −∇·µ∇ψ = f does not belong to W 1,4(R3). Here µ is according
to (4.9). Since the support of ψ is compact, ψ cannot belong to W 1,6(R3). Additionally,
we may assume that both the support of f and ψ are arbitrarily small, hence suppψ ⊂
ωφ(Ω). Now we revoke the transformations ω and φ. By Proposition 4.1, applied with
the bi–Lipschitz transformation φ̃ = φ−1◦ω−1 one obtains a distribution fφ̃ ∈ W−1,6(R3)
and a function ψφ̃ ∈ W 1,2(R3) \W 1,4(R3) satisfying −∇·µφ̃∇ψφ̃ = fφ̃. By making the
support of ψ and f sufficiently small one can arrange that the matrix valued function µφ̃

equals in a neighbourhood of suppψ ∪ supp f the original coefficient function µ which
is constant above and below the plane Ξ. (Thus, the “artificial” edge we investigate
here has “disappeared” again.) By [10, Thm. 3.11], see also [2, Ch. 4.5], the operator
−∇·µφ̃∇ + 1 : W 1,p(R3) → W−1,p(R3) is a topological isomorphism for all p ∈]1,∞[
if µφ̃ is constant on two complementing halfspaces. But, this contradicts the above
supposition that the kernel of Aπ

λ is not trivial.
The proof for the reflected counterpart of P ¦

0Q
¦
0 is similar to that for P ¦

0Q
¦
0.

6 Proof of Theorem 1.2

As in the proof of Theorem 1.1 we first regularity invariant transform the spatio–material
constellation such that we meet the premise of Proposition 3.3. Then we discuss the
edge singularities of the transformed problem to obtain the regularity of (1.1) according
to Proposition 3.3.

With respect to the prisms under consideration inTheorem 1.2 (see also Figures 2&3)
we can assume without loss of generality that the generating two–dimensional domain
41 ∪ 42 ∪ P0P1 is in the x–y plane and that P1 is the origin in R3. This always can
be achieved by a shift and a rotation without changing the regularity properties, see
Proposition 4.1. Now we further transform the prism, treating the cases P1 6= Q1 and
P1 = Q1 separately.

Let us first regard the case Q1 = P1 as exemplified on the right hand side of Figure 2
and in Figure 3. By rotation around the z axis we ensure that P0 is on the positive
y axis. If necessary, we achieve by reflection at the y–z plane that 41 is in the halfplane
x < 0 and 42 consequently in the halfplane x > 0, see also the left hand side of Figure 8.
Furthermore, we define a piecewise linear mapping φxy of the x–y plane onto itself which
is the identity on the y axis and is on x ≤ 0 such that P2 7→ ( −1

0 ) while on x ≥ 0
it is such that Q2 7→ ( 1

0 ) , see the right hand side of Figure 8. Thus, by (5.1) we get
a bi–Lipschitz transformation from R3 onto R3 which maps the originally right prism
Ω onto the direct product of the open triangle 4P0P2Q2 with some (open) interval on
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•P0

•P1 = Q1

•P2

Q2

•

•P0

•P1 = Q1

P2

•
Q2

•
x

y

H1 H2

φxy−→
41

42 41 42

Figure 8: Two–dimensional domain which generates the right prism Ω = (41∪42∪P0P1)×
{h− < z < h+} of Theorem 1.2 (case P1 = Q1) before (left) and after transformation (right)
by φxy. Without loss of generality one can assume that the domain 41 ∪ 42 ∪ P0P1 is in
the x–y plane and that P1 is the origin of R3 and that P0 lies on the positive y axis. The
transformation φxy maps the halfplane x ≤ 0 linearly onto itself such that it is the identity on
the y axis and maps P2 onto the negative x axis; it maps the halfplane x ≥ 0 linearly onto itself
such that it is the identity on the y axis and maps Q2 onto the positive x axis. The bold line
is the trace of the Neumann boundary part Γ and the dashed line is the trace of the material
interface Ξ. — Transformed objects bear the same name as before.
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the z axis; note that we keep names through the various transformations. Hence, the
Neumann boundary part is now a domain in the x–z plane and Proposition 4.5 applies
to the whole constellation. After material reflection at the Neumann boundary we end
up with a polyhedral multi–material compound with homogeneous Dirichlet conditions
on the whole boundary which conforms to Proposition 3.3.

•P0

•P1

•Q1

•P2

•Q2

•P

•P0

•P1

Q1

••P2

•Q2

•P

x

y
L

H1

H2

x

y
L

H1 H2

φxy−→
41

42

41

Figure 9: Two–dimensional domain which generates the right prism Ω = (41∪42∪P0P1)×
{h− < z < h+} of Theorem 1.2 (case P1 6= Q1) before (left) and after transformation (right)
by φxy. Without loss of generality one can assume that the domain 41 ∪ 42 ∪ P0P1 is in
the x–y plane and that P1 is the origin of R3. The line L which separates the halfspaces H1

and H2 has been chosen such that L cuts the triangle ∆2 but not ∆1. The piecewise linear
transformation φxy is the identity on H1 and maps H2 onto itself such that L is invariant and
the image of Q1 is on the positive x axis. The bold line is the trace of the Neumann boundary
part Γ and the dashed lines are traces of material interfaces. Before transformation there is
only the trace of the original material interface Ξ, while after transformation by φxy there
is another interface P1P . More precisely, the φxy image of 42 = 4P0Q1Q2 is the tetragon
¤P0P1PQ2 (which has the original material properties of42) plus the triangle4PP1P2 (which
has different material properties after transformation). — Transformed objects bear the same
name as before.

Next we consider the case Q1 6= P1 as exemplified on the left hand side of Figure 2.
By rotation around the z axis we ensure that P2 is on the negative x axis. If necessary,
we achieve by reflection at the x–z plane that 41 is in the halfplane y > 0, see also
the left hand side of Figure 9. We now choose a line L through the origin which splits
the x–y plane into halfspaces H1 and H2 such that L cuts the triangle ∆2 but not
∆1. Furthermore, we define a piecewise linear mapping φxy of the x–y plane onto itself
which is the identity on H1 and maps H2 onto itself such that L is invariant and the
image of Q1 is on the positive x axis, see the right hand side of Figure 9. The line L
cuts Q1Q2 in a point P . The φxy image of 42 = 4P0Q1Q2 is the tetragon ¤P0P1PQ2

(which has the original material properties of 42) plus the triangle 4PP1P2 (which has
different material properties after transformation). Thus, by (5.1) we get a bi–Lipschitz
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transformation from R3 onto R3 which maps the originally right prism Ω onto the direct
product of an open polygon (defined by the successional vertices P , Q1, P2, P0, and
Q2) with some (open) interval on the z axis; note that we keep names through the
various transformations. Hence, as in the previous case the Neumann boundary part is
now a domain in the x–z plane and Proposition 4.5 applies to the whole constellation.
After material reflection at the Neumann boundary we end up again with a polyhedral
multi–material compound with homogeneous Dirichlet conditions which conforms to
Proposition 3.3.

6.1 Discussion of the edge singularities

We now discuss the edge singularities of the transformed constellation according to
Proposition 3.3 for both cases P1 6= Q1 and P1 = Q1. First there are mono–material
outer edges, then bi–material outer edges, and finally an interior edge on the z axis which
is a four-material edge in the case P1 = Q1 and a six-material edge in the case P1 6= Q1.
For the outer edges we know by Propositions 3.4&3.5 that the kernels of the associated
edge pencil operators Ad

λ with Dirichlet boundary conditions, see Definition 3.1 and
Definition 2.1, are trivial for all λ with 0 < <λ ≤ 1/2. Note that the angle conditions
are fulfilled by construction.

It remains to show for the multi–material interior edge on the z axis that the induced
operator Aπ

λ, see Definition 2.1, has a trivial kernel for all λ with 0 < <λ < 1/3 + ε and
some ε > 0.

It follows directly from Proposition 4.5 that the left upper block ρ of the coefficient
matrix µω, see Definition 3.1, corresponding to the edge on the z axis is as in Lemma 4.6.

If P1 = Q1, in each halfplane y > 0 and y < 0 of the x–y plane there are two sectors.
Thus, according to Lemma 4.6 and Proposition 3.5 the kernels of the associated edge
pencil operators Ad

λ and An
λ, see Definition 2.1, are trivial for all λ with 0 < <λ ≤ 1/2.

If P1 6= Q1 we have to deal with three sectors in each of the halfplanes y > 0 and
y < 0. However, these three sectors, for instance in the halfplane y > 0, have been
obtained by a bi–Lipschitz transformation φxy from originally a two sector constellation.
Thus, by Lemma 4.3 and Proposition 3.5 we have kerAd

λ = kerAn
λ = {0} for all λ with

0 < <λ ≤ 1/2. Lemma 4.6 now ensures that kerAπ
λ is also trivial for these λ.
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