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Abstract: We prove that in dimension d ::; 2 translation covariant Gibbs states describing rigid 
interfaces in a disordered solid-on-solid (SOS) cannot exist for any value of the temperature, in 
contrast to the situation in d ~ 3. The prove relies on an adaptation of a theorem of Aizenman 
and Wehr. 
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1. Introduction 

In this short note we want to conclude our analysis on the properties of interfaces in random 
environments by complementing our proof [BK] of the existence of Gibbs measures describing rigid 
interfaces in the SOS model with random surface tension (at low temperatures a~d weak disorder) 
in dimension d ~ 3 by showing that on the contrary, in dimension d ~ 2, such Gibbs states cannot 
exist at any temperature as soon as there is any disorder present. In contrast to the technically 
rather involved existence proof, the proof of the converse statement is simple; in fact it is a fairly 
straightforward application of a beautiful theorem of Aizenman and Wehr [AW] which they used 
to prove the uniqueness of the Gibbs state in the two-dimensional random field Ising model. For 
a extensive discussion of the history of the problem we refer to the introduction of our previous 
paper [BK]. 

The model we consider is defined as follows. A surface is described by ~-valued variables 
hx E ~' x E ~d. The Hamiltonian is given (formally) by 

(1.1) 
<x,y> x,k 

where {77x(k)}xEZ",kEZ is a family of independent identically distributed random variables on 
some abstract probability space ( n, :F, IP), with non-degenerate distribution IP. We assume that 
1E[17x(k)] = 0, .IE[17x(k)2] = 1, where IE denotes the expectation w.r.t. the distribution IP. As 
a matter of fact, our result will apply to a far more general class of Hamiltonians but we stick 
to the specific example for clarity. In [BK] we have proven that under suitable conditions on the 
temperature and on the distribution IP, for d ~ 3 infinite volume Gibbs states µH for this model 
can be constructed as weak limits of finite volume Gibbs measures where the heights on the bound-
ary were set to a fixed and constant value H. This reflected the fact that ground states of the 
Hamiltonian with such boundary conditions tend to be mostly flat interfaces with only rare and 
localized :fluctuations provoked by some large deviations of the random fields. In lower dimensions 
this is not expected to be the case; rather,on the basis of the Imry-Ma argument [IM], :fluctuations 
are expected to grow without bounds as the volumes increase, resulting in the fact that in the 
limit as the volume tends to infinity, the probability to observe the interface near the center of the 
volume at any given height should tend to zero meaning that an infinite volume Gibbs state does 
not exist. We want to prove a result that reflects this expectation. 

To this end we define, following Aizenman and Wehr [AW], the random equivalent of translation 
invariant Gibbs states, namely translation covariant Gibbs states. Let us first note that in the 
context of random systems, the corresponding random Gibbs measures are most naturally viewed 
a Gibbs-measure valued random variables on the space (f!, :F, IP), i.e. a measurable map from 
(f!, :F) into the space of Gibbs measures on the measure space of the dynamical variables, in our 
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case (7.Z:za:, B), where y_zza: is equipped with the product topology of the discrete topology on 7.Z 
and B is the corresponding finitely generated sigma-algebra (a recent exposition on some formal 
aspects of random Gibbs measures is given in [S]). 

Defi.nition 1: [AW] A random Gibbs state µ('TJ) is called translation covariant iff it satisfies, 
almost surely, 

(i) 

(ii) 

µ (('TJA(h) + t:,.'T/A(h), 'f/Ac(h))hez) ( · ) 
µ (('TJA(h), 'f/Ac(h))hez) ( · exp(-{3€ I::i:eA t:,.'T/x(hx))) 

= µ (('TJA(h), 'f/Ac(h))hez) (exp(-{3€ I::i:eA t:,.'T/x(hx))) 
for any finite volume perturbation t:,.'TJA(h) of the random fields, and 

µ (('T/x+y(h))xeza:,hez) (f (hx)xeza:) 

= µ ( ( 'T/:z:( h) )xeza: ,hEZ) (! ( hx-y ):i:eza:) 

for all y E y_zd. 

(1.2) 

(1.3) 

Let us note that if one translation covariant Gibbs state, say µ0 , exists, than there exists an 
infinite family of them, µH, for all HE 7.Z, where 

µH (('TJx(h)):z:e:za:,hez) (f (hx)xe:za:) 

= µo (('TJx(h + H))xeza:,he:Z) (! (hx + H)xe:za:) (1.4) 

We will prove the following Theorem: 

Theorem 1: Suppose that the distribution IP of 'T/x( h) either 

(i} has no isolated atoms or 

(ii} has compact support, 

then, if d ~ 2, f =/= 0, for all f3 < oo, the SOS model defined through {1.1} does not permit 
translation covariant random Gibbs states. 

Remark: Translation covariant Gibbs states are the nice things one expects to get as weak limits 
with simple boundary conditions which in particular should not be too knowledgeable of the disor-
der. In particular, property (1.2) can only be violated if µH was constructed as a weak limit with 
boundary conditions that depended on the random fields in the finite set A. It is quite conceivable 
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that rather artificial Gibbs states violating the conditions (1.2) and (1.3) can be constructed in 
this model. E.g. it might be possible to choose a sequence of volumes An j .7Zd and a sequence of 
random boundary conditions carefully in such a way as to ensure that the corresponding ground 
states have height h0 = 0 at the origin. It is conceivable that such a sequence of measures could 
converge, but clearly they are 'physically' irrelevant. 

Remark: To prove Theorem 1 we will show that the assumption of translation covariant Gibbs 
states leads to a contradiction. One might hope that a more direct approach based e.g. on the 
renormalization group method could also work and give more precise information on finite volume 
quantities. Such an approach, however, appears to be exceedingly difficult. In [K] a result on the 
absence of stable interfaces based on that idea was proven, but only in a specific mean-field type 
limit of a hierarchical model. The reader may find it instructive to study that paper, since it hints 
at the complexities occurring in the problem. 

2. Proof of the theorem 

We will show that the assumption that there exist translation covariant states in d ~ 2 leads to 
a contradiction. Having realized what it is that we want to prove, the adaptation of the arguments 
of Aizenman and Wehr to our situation is almost trivial. To do so, we define the 'order parameters' 

M(h, h') = IE [µo (h:z: = h)] - IE [µ0 (h:z: = h')] (2.1) 

The point here is that if these quantities vanish, than the we have the following contradiction 

1 = IE L µ0 ( h:z: = h) = L IE µo ( h:z: = h) = L IE µo ( h:z: = h') (2.2) 
hEZ hEZ hEZ 

for any h'. In fact, if h* denotes any value for which IEµo (h:z: = h*) > 0, to arrive at the same 
contradiction it is enough to show that there exists an infinite number of values h such that 
M(h*,h)=O. 

Thus to prove the theorem, we only have to show that this is the case. Let us define, for fixed 
h, H, (3, and finite volume A the generating functions 

where :FA,h denotes the sigma-algebra that is generated by the random variables {11:z:(h)}xeA· Define 
further the random variable 

Tx(h, H) = IE [µo (hx = h) - µH (hz = h) l:Fzct,h] 
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Then we have the following 

Lemma 1: The functions r A(h, H) and r:r:(h, H) have the following properties: 

{O} 
(2.5) 

(i) For all x E A 
(2.6) 

(ii) 
IE [rx(h, H)] = M(h, h - H) (2S) 

(iii} For all positive {3, €, 

(2.8) 

and 
(2.9) 

(iv) 
lE[I' A(h, H)] = 0 (2.10) 

Proof: (2.5) follows from (1.3). (2.6) follows from (1.2). (2.7) is a consequence of the 'covariance 
w.r.t. height shift' expressed by (1.4). The bound (2.8) is obvious. To prove (2.9), just note that 

a [ 2 2 J BTJ:r:(h) r:r:(h, H) = €{3.lE µo (h:r: = h) - µo (h:r: = h) - µH (h:r: = h) + µH (h:r: = h) F~tl,h 

(2.11) 
(2.10) follows again from (1.4). 

Lemma 1 ensures that we are in the situation of [AW] Prop.6.1. which allows us to bound the 
:fluctuations of r A ( h, H) from below. 

In particular we have from Prop.6.1. 

lim inf 1E [exp (tr A ( h, H) / v'IAT)] ;::: exp ( t
2

2b
2 

) 
A=[-L,LJ<l,Ljoo 

(2.12) 

where (see [AW], Eq.(6.24)) 
(2.13) 
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We distinguish the cases (i) and (ii) in the hypothesis of our theorem. In case (i), Eq. A.3.2 and 
Proposition A.3.2, case ii. of [AW] immediately gives that 

b ~ eOp(M(h, H), 1/(ef3)) > 0 (2.14) 

if M(h, H) -f; 0. 

Under the assumption of case (ii), we show the following 

Lemma 2: Let h * be such that IE µ0 ( h:x: = h *) > 0. Then there exists H 0 < oo such that for all 
H~ Ho 

b ~ E[p(M(h*, H), 1/( ef3)) > 0 (2.15) 

if M(h*, H) # 0. 

Proof: From Proposition A.3.2, case iii. of [AW] (2.15) follows ifthe function 'T/o(h*) Hg ('TJo(h*)) = 
IE [r(h, H)IFo,h• ]('TJo(h*)) is monotone for all 'T/o(h*) E [A, B], where [A, B] is the convex hull of 
the support of the one field distribution IP. 

To prove the monotonicity, we proceed as follows. From (2.6) we get 

811:(h•) = eIE [r,,(h*,H)IFo,h· l 
= eIE [µo (h:x: = h*) j.ro,h·] - eIE [µH (h:r: = h*) j.ro,h*] 

(2.16) 

It is easy to see that (1.3) implies the deterministic bounds 

6H exp (-2{3e(B - A)) ~ IE [µH (h:r: = h*) l.ro,h• J ('TJo(h*)) ~ 6H exp (2{3e(B - A)) (2.17) 

for all 'T/o(h*) E [A, B] where 6H = IE [µH (hx = h*)]. Since 

L 6H = L IE [µo (hx = h* - H)] = 1 (2.18) 
HEZ HEZ 

there exists Ho such that 6H ~ 60 exp (-4{3e(B - A)) for all H ~ Ho. This implies by (2.16) the 
desired monotonicity for all H ~Ho. 0 

To conclude the proof of the theorem, we thus only have to to show that (2.9) with b2 > 0 
leads to a contradiction. This relies on the following lemma: 

Lemma 3: 
1r A(h, H)I ~ IHllBAI 

where l8AI = l{(x, y)lx EA, y E Ac, Ix - Yl2 = l}j. 
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In fact, (2.19) implies 

(2.20) 

which is the desired contradiction if A is chosen as e.g. a d-dimensional cube and d ~ 2. This 
concludes the proof of the theorem, if we assume Lemma 3. 0 

To conclude we prove Lemma 3. 

Proof: (of Lemma 3) We focus on one summand in (2.2) and write 

IE [lnµH ((11A(h),11A•(h))hEZ) ( exp(fl• ~ 71,,(h,,))) FA,h] 

= -IE [In µH ((OA, 11A•(h ))hEZ) ( exp(-fl• ~ 71,,(h,,))) FA,h] 

= -IE [1nµH ((OA, 11A•(h - H))hEZ) ( exp(-fl• ~ 71,,(h,,))) h,h] 

= -IE [lnµo ((OA,11A·(h))hEZ) (exp(-fl• ~ 71,,(h,, + H))) FA,h] 

(2.21) 

where the first equality is due to the transformation law (1.2) w.r.t. local perturbations, the second 
to the stationarity of the distribution of the random fields under the shift hx H hx + H for x E Ac, 
the third to (1.4). 

Let us now employ the DLR-equations (see [Ge]) to write 

µo ((OA, T/Ac(h))hez) (exp(-f3e L TJx(h:r: + H))) = j µo ((OA, 11A•(h))hEZ) (dhA• )x 
:r:EA 

( ) 
(2.22) 

l:hAezA exp -{3 I: <11,11> lhx - hyl - f3 I: <11,11> c lhx - hyl - f3e l:xeA T/x(hx + H)) 
X 11 .11EA 111EA,11EA 

l:hAezA exp (-f3 I: <=.11> Iha: - hyl - f3 E <111,11> lhx - hyl) 111 111EA 111EA,11EAc 

Note that only the numerator is H-dependent. Therefor we introduce h~ = hx + H for x E A 
estimate the boundary term in the 'surface-energy' in the exponential in the numerator uniformly 
by 

and 

L Iha: -hyl = L lh~ - hy-HI 
<=.11> <111,11> 

111EA,11EAc 111EA 111EAc 

< L lh~ - hyl + IHllBAI 
<111,11> 

111EA,11EAc 

L lhx - hyl ~ L lh~ - hyl - IHllBAI 
<11,11> <11.11> 

111EA,11EAc 111EA111EAc 
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From this we have 

h~A exp (-{J ~~~ lhz - hyl - fJ •• E.,>A' lhz - hyl - {Je ~ 'T/z(hz + H))) 

::; exp (,BIHllBAI) L exp (-,B L lh~ - h~I - ,B L lh~ - hyl - ,8€ L 1Jx(h~))) 
h~ EZA ~.~·~~ me<:.:tAc xEA 

(2.25) 
and a similar lower bound. Substituting these bounds in (2.12) and comparing the H = 0-term 
gives (2.10) directly. O 

To summarize the gist of the proof, Lemma 3 roughly the fact that when we deform a interface 
aver a local region A by shifting it up by a distance H, then this 'costs' no more than to build 
a boundary wall, i.e HI 8 LI- On the other hand, the Aizenman-Wehr theorem says that there 
are always regions around where such a price is compensated by a corresponding gain in random 
energy. In that sense, the proof really builds along the Imry-Ma argument. On the other hand, we 
see that to make this argument rigorous, one has to proceed quite carefully in order to avoid possible 
pathologies that could be produced by very "exotic' constructions of Gibbs states. This somewhat 
restricts the generality of our statement (namely that we only exclude translation covariant Gibbs 
states rather then 'any' Gibbs states) but such a restriction does not appear physically unreasonable. 
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