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Abstract

We study extensions of the energy and helicity preserving scheme for the 3D
Navier-Stokes equations, developed in [23], to a more general class of problems.
The scheme is studied together with stabilizations of grad-div type in order to mit-
igate the effect of the Bernoulli pressure error on the velocity error. We prove sta-
bility, convergence, discuss conservation properties, and present numerical exper-
iments that demonstrate the advantages of the scheme.

1 Introduction

This paper extends the methodology of the enhanced-physics based scheme for the
3D Navier-Stokes equations (NSE) proposed in [23] (defined in Section 2) from its orig-
inal derivation for space-periodic problems to a more general class of problems. This
scheme is referred to as enhanced-physics because it is the only scheme that con-
serves both discrete energy and discrete helicity for the full 3D NSE. The key ingredient
for the dual conservation scheme is using the rotational form of the nonlinearity with a
projected vorticity, which allows the discrete nonlinearity to preserve both of the quan-
tities. Since the (continuous) NSE nonlinearity conserves both energy and helicity, and
jointly cascades them from the large scales through the inertial range to small viscosity
dominated scales [3, 5], if the discrete nonlinearity does not also conserve energy and
helicity it will introduce numerical error into the cascade, and bring into question the
physical relevance of computed approximations.

It is a widely held belief in computational fluid dynamics (CFD) that the more physically
correct a numerical scheme is, the more accurate its predictions will be, especially
over long time intervals. In systems of conservation laws for fluids there is typically a
second integral invariant in addition to energy, and its accurate treatment in a numer-
ical scheme generally produces more accurate simulations than do schemes that do
not specifically conserve this quantity. Beginning with Arakawa’s energy and enstrophy
conserving scheme for the 2D NSE [1] and related extensions [8], to energy and poten-
tial enstrophy schemes pioneered by Arakawa and Lamb, and Navon, [2, 19, 20], and
most recently to an energy and helicity conserving scheme for 3D axisymmetric flow
by J.-G. Liu and W. Wang [16], enhanced physics based schemes have provided more
accurate simulations, especially over longer time intervals.

The fundamental challenge in extending the scheme of [23] to non-periodic problems
is to avoid the large errors often present when the rotational form of the nonlinearity
and the Bernoulli pressure is used. In the usual a priori error analysis for the velocity
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approximation for the NSE, a consequence that the discrete divergence free velocity is
not exactly divergence free, is a pressure error contribution

C
ν

inf
qh∈Qh

‖p−qh‖ (1.1)

where ν = 1/Reynolds number denotes the kinematic viscosity [9, 15]. For problems
whose pressure gradients are small this term is often negligible. However, using the
rotational form of the NSE, and introducing the Bernoulli pressure p + 1

2 |u|
2 can bring

prominence to this term, since the gradient of the Bernoulli pressure may be large due
to boundary layers in the velocity field.

Following recent work in [14, 17, 4], a natural way to mitigate the pressure’s error influ-
ence on the velocity approximation is to introduce grad-div stabilization. As we show,
this reduces the effect of the Bernoulli pressure error. In the interest of physical fidelity,
we also introduce a modified grad-div stabilization having the same effect on the error,
but with less impact on the energy balance. Computational results show a slight im-
provement when this altered stabilization is used instead of usual grad-div stabilization.

This paper is arranged as follows. Section 2 presents mathematical preliminaries and
notation, and defines the scheme studied in the remainder of the article. Section 3 is
a study of stability and conservation laws for the scheme, and Section 4 presents a
rigorous convergence analysis. Section 5 shows a numerical example which clearly
illustrates the advantage of the scheme. Concluding remarks are given in Section 6.

2 Mathematical Preliminaries

We assume that Ω denotes a polyhedral domain in R3. The L2(Ω) norm and inner prod-
uct are denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω)
norms are denoted ‖ ·‖Lp and ‖ ·‖W k

p
, respectively. For the semi-norm in W k

p (Ω) we use

| · |W k
p
. Hk is used to represent the Sobolev space W k

2 (Ω), and ‖·‖k denotes the norm in

Hk. For functions v(x, t) defined on the entire time interval [0,T ], we define (1≤m < ∞)

‖v‖∞,k := ess sup
[0,T ]

‖v(t, ·)‖k , and ‖v‖m,k :=
(∫ T

0
‖v(t, ·)‖m

k dt
)1/m

.

For the analysis in this paper, we assume no slip (i.e. homogeneous Dirichlet) boundary
conditions for velocity and therefore use as our velocity and pressure spaces

X := (H1
0 (Ω))d, Q := L2

0(Ω) ,

where Q is denoting the mean zero subspace of L2(Ω).

We use as the norm on X the H1 seminorm which, because of the boundary condition,
is a norm, i.e. for v ∈ X , ‖v‖X := ‖∇v‖. We denote the dual space of X by X?, with the
norm ‖ · ‖?. The space of divergence free functions is defined by

V := {v ∈ X : (∇ · v,q) = 0 ∀q ∈ Q} .
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We denote conforming velocity, pressure finite element spaces based on a regular
tetrahedralization, Th, of Ω (with maximum tetrahedron diameter h) by

Xh ⊂ X , Qh ⊂ Q.

We assume that Xh, Qh satisfy the usual inf-sup condition necessary for the stability of
the pressure, i.e.

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖vh‖X

. (2.1)

Specifically, we assume that (Xh,Qh) is made of (Pk,Pk−1), k ≥ 2 velocity pressure
elements. Thus we have, for a given regular tetrahedralization Th,

Xh :=
{

vh : vh|e ∈ Pk(e), ∀e∈Th , vh ∈ [C0(Ω)]3,vh|∂Ω = 0
}

,

Qh :=
{

qh : qh|e ∈ Pk−1(e), ∀e∈Th , qh ∈C0(Ω), qh ∈ L2
0(Ω)

}
.

The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh,qh) = 0 ∀qh ∈ Qh} .

We also use a more general space for the discrete vorticity space. Even though the
velocity satisfies homogeneous Dirichlet boundary conditions, it is believed to be in-
appropriate to enforce homogeneous Dirichlet boundary conditions for the vorticity. A
more physically consistent boundary condition is instead a no-slip boundary condition
along the boundary, and hence we define the space

Wh :=
{

vh : vh ∈ [C0(Ω)]3,∀e∈Th(vh)|e ∈ Pk(e),vh×n|∂Ω = 0
}
⊃ Xh .

We use tn := n∆t, and for both continuous and discrete functions of time

vn+ 1
2 :=

v((n+1)∆t) + v(n∆t)
2

.

2.1 Enhanced-physics based numerical schemes

We study three variations of the enhanced-physics based scheme of [23] extended
to homogeneous Dirichlet boundary conditions for velocity. The first is a direct exten-
sion of the scheme to homogeneous boundary conditions. The second scheme adds
usual grad-div stabilization (see [22]), that is, it adds the term γ(∇ ·(un+1

h +un
h)/2,∇ ·vh)

to a Crank-Nicolson scheme. This term is derived from adding the (identically zero)
term −γ∇(∇ ·u) at the continuous level. Discretely, this term penalizes for lack of mass
conservation, and is known to reduce the effect of the pressure error on the velocity
error for large Reynolds number problems [14, 17, 22]. In finite element computations
of rotational form models the (Bernoulli) pressure error tends to be the dominant error
source because it is as complex as the velocity but is approximated with lower degree
polynomials, and its effect on the velocity error is amplified by the Reynolds number.
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The potential downside from using this stabilization is a change in the energy balance.
However, in practice this tradeoff is worthwhile.

In the interest of physical fidelity to the energy balance, in the third scheme we in-
troduce an alternative stabilization that provides the same effect on reducing the ef-
fect of the pressure error on the velocity error, but with minimal impact on the phys-
ical energy balance (Section 3). The added stabilization term arises by adding the
(also identically zero) term −γ∇(∇ · ut) at the continuous level, leading to the term
γ

1
∆t (∇ · (u

n+1
h − un

h),∇ · vh) in the FEM formulation. The computational results (Section
5) from using this stabilization show an improvement in accuracy over the usual grad-
div stabilization for our test problem. However, we note that for steady problems this
term will not have a stabilizing effect since it will be trivially zero.

There has been recent work done to optimally choose the constant γ that scales the
stabilization term. Herein, we simply choose γ = 1 in the computations, which the anal-
ysis suggests is an appropriate choice. However, one could also choose this parame-
ter element-wise, which would lead to better results [21]. We leave optimal parameter
choice for these schemes as an interesting topic of future study.

Algorithm 2.1 (Enhanced-physics based schemes for homogeneous Dirichlet bound-
ary conditions). Given a time step ∆t > 0, finite end time T := M∆t, and initial velocity
u0

h ∈Vh, find w0
h ∈Wh and λ 0

h ∈ Qh satisfying ∀(χh,rh) ∈ (Wh,Qh)

(w0
h,χh)+(λ 0

h ,∇ ·χh) = (∇×u0
h,χh), (2.2)

(∇ ·w0
h,rh) = 0. (2.3)

Then for n = 0,2, ...,M−1, find (un+1
h ,wn+1

h , pn+1
h ,λ n+1

h ) ∈ (Xh,Wh,Qh,Qh) satisfying
∀(vh,χh,qh,rh) ∈ (Xh,Wh,Qh,Qh)

(
un+1

h −un
h

∆t
,vh)+STAB− (pn+1

h ,∇ · vh)

+(wn+ 1
2

h ×u
n+ 1

2
h ,vh)+ν(∇u

n+ 1
2

h ,∇vh) = ( f (tn+ 1
2 ),vh) (2.4)

(∇ ·un+1
h ,qh) = 0 (2.5)

(wn+ 1
2

h ,χh)+(λ n+1
h ,∇ ·χh) = (∇×u

n+ 1
2

h ,χh) (2.6)

(∇ ·wn+ 1
2

h ,rh) = 0. (2.7)

where

STAB =


0 Scheme 1

γ(∇ ·un+ 1
2

h ,∇ · vh) Scheme 2
γ

∆t (∇ · (u
n+1
h −un

h),∇ · vh) Scheme 3

Remark 2.1. We have found it computationally advantageous to decouple the 4 equa-
tion system (2.4)-(2.7) into a velocity-pressure system (2.4)-(2.5) and a projection sys-
tem (2.6)-(2.7), then solve (2.4)-(2.7) by iterating between the two sub-systems. This
typically requires more iterations and linear solves to converge than solving the fully-
coupled system using a Newton method. However the linear solves are much easier
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in the decoupled system. Note also that for the decoupled system the work required is
only slightly more than a usual implicit Crank-Nicolson method (i.e. without vorticity pro-
jection) since the extra work is (relatively inexpensive) projection solves. Moreover, for
nonhomogeneous boundary conditions, this decoupling leads to a simplified boundary
condition for the vorticity: wh = Ih(∇×uh) on the boundary, where Ih is an appropriate
interpolation operator.

3 Stability, conservation laws, and existence of solu-
tions

In this section we prove fundamental mathematical and physical properties of the 3
schemes: unconditional stability, solution existence and conservation laws. We begin
with stability.

Lemma 3.1. Solutions to Algorithm 2.1 are nonlinearly stable. That is, they satisfy:
Scheme 1:

∥∥uM
h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

≤ ∆t
ν

M−1

∑
n=0

‖ f‖2
∗+
∥∥u0

h

∥∥2
= C(data) . (3.1)

Scheme 2:

∥∥uM
h
∥∥2

+∆t
M−1

∑
n=0

(
2γ

∥∥∥∥∇ ·un+ 1
2

h

∥∥∥∥2

+ν

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2
)
≤ ∆t

ν

M−1

∑
n=0

‖ f‖2
∗+
∥∥u0

h

∥∥2
= C(data) .

(3.2)
Scheme 3:

∥∥uM
h
∥∥2

+ γ
∥∥∇ ·uM

h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

≤ ∆t
ν

M−1

∑
n=0

‖ f‖2
∗+
∥∥u0

h

∥∥2
+ γ
∥∥∇ ·u0

h

∥∥= C(data) . (3.3)

Schemes 1,2,3:

∆t
M−1

∑
n=0

∥∥∥∥w
n+ 1

2
h

∥∥∥∥2

≤ ∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

= C(data) . (3.4)

Schemes 1,2,3:

∆t
M

∑
n=1

(
‖pn

h‖
2 +‖λ

n
h ‖

2
)
≤C(data) . (3.5)

C(data) is a constant dependent on T,ν ,γ, f ,u0
h and Ω.
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Proof. To prove the bounds on velocity for each of the schemes, choose vh = u
n+ 1

2
h

in (2.4). The nonlinear and pressure terms are then zero. The triangle inequality, and
summing over time steps then completes the proofs of (3.1),(3.2),(3.3).

To prove (3.4) choose χh = w
n+ 1

2
h in (2.6) and rh = λ

n+1
h in (2.7). After combining the

equations we obtain∥∥∥∥w
n+ 1

2
h

∥∥∥∥2

= (∇×u
n+ 1

2
h ,w

n+ 1
2

h ) ≤
∥∥∥∥∇×u

n+ 1
2

h

∥∥∥∥∥∥∥∥w
n+ 1

2
h

∥∥∥∥
≤ 1

2

∥∥∥∥∇×u
n+ 1

2
h

∥∥∥∥2

+
1
2

∥∥∥∥w
n+ 1

2
h

∥∥∥∥2

≤
∥∥∥∥∇u

n+ 1
2

h

∥∥∥∥2

+
1
2

∥∥∥∥w
n+ 1

2
h

∥∥∥∥2

.

Rearranging, and summing over time steps we obtain (3.4).

To obtain the stated bound for λ n
h , we begin with the inf-sup condition satisfied by

Xh (⊂Wh) and Qh and use (2.6) to obtain

‖λ
n
h ‖ ≤

1
β

sup
χh∈Xh

(λ n
h ,∇ ·χh)
‖χh‖X

≤ 1
β

sup
χh∈Xh

(∇×u
n− 1

2
h ,χh)− (wn− 1

2
h ,χh)

‖χh‖X

≤ 1
β

(
‖∇×u

n− 1
2

h ‖+‖w
n− 1

2
h ‖

)
≤ 2

β

(
‖∇u

n− 1
2

h ‖+‖w
n− 1

2
h ‖

)
.

Using the bounds for ∇u
n+ 1

2
h (see (3.1)-(3.3)) and w

n+ 1
2

h (see (3.4)) we obtain the bound
for λ n

h . The bound for the pressure is established in an analogous manner.

Lemma 3.2. Solutions exist to each of the three schemes presented in Algorithm 2.1.

Proof. For each of the schemes, this is a straight-forward extension of the existence
proof given for the periodic case in [23]. The result is a consequence of the Leray-
Schauder fixed point theorem, and the stability bounds of Lemma 3.1.

We now study the conservation laws for energy and helicity in the schemes. It is shown
in [23] that, when restricted to the periodic case, the non-stabilized scheme of Algorithm
2.1 (Scheme 1) conserves energy and helicity. In the case of homogeneous boundary
conditions for velocity, this physically important feature for energy is still preserved.
However, as one might expect, the stabilization terms in Schemes 2 and 3 alter the
energy balance. Lemma 3.3 shows these energy balances.

The energy balance of Scheme 1, the unstabilized scheme, is analogous to that for
the continuous NSE. However, for Scheme 2, we see the effect of the stabilization on

the energy balance in the term γ∆t ∑
M−1
n=0

∥∥∥∥∇ ·un+ 1
2

h

∥∥∥∥2

on the left hand side of (3.7). For

most choices of elements, one may have that each term in this sum is small, but over
a long time interval this sum can grow to significantly (and non-physically) alter the
balance. The energy balance for Scheme 3 differs from Scheme 1’s energy balance in
the addition of only two small terms, instead of a sum. Hence this indicates that the
modified grad-div stabilization, for problems over a long time interval, offers a more
physically relevant energy balance than the usual grad-div stabilization (Scheme 2).
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Lemma 3.3. The schemes of Algorithm 2.1 admit the following energy conservation
laws.

Scheme 1:

1
2

∥∥uM
h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

= ∆t
M−1

∑
n=0

( f (tn+ 1
2 ),un+ 1

2
h )+

1
2

∥∥u0
h

∥∥2
. (3.6)

Scheme 2:

1
2

∥∥uM
h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

+γ∆t
M−1

∑
n=0

∥∥∥∥∇ ·un+ 1
2

h

∥∥∥∥2

= ∆t
M−1

∑
n=0

( f (tn+ 1
2 ),un+ 1

2
h )+

1
2

∥∥u0
h

∥∥2
.

(3.7)

Scheme 3:

1
2
(
∥∥uM

h
∥∥2

+ γ
∥∥∇ ·uM

h
∥∥2

)+ν∆t
M−1

∑
n=0

∥∥∥∥∇u
n+ 1

2
h

∥∥∥∥2

= ∆t
M−1

∑
n=0

( f (tn+ 1
2 ),un+ 1

2
h )

+
1
2
(
∥∥u0

h

∥∥2
+ γ
∥∥∇ ·u0

h

∥∥2
) . (3.8)

Proof. The proofs of these results follow from choosing vh = u
n+ 1

2
h in Algorithm 2.1 for

each of the schemes. The key point is that the nonlinear term vanishes with this choice
of test function, and thus does not contribute to the energy balance equations.

We now consider the discrete helicity conservation in Algorithm 2.1. We begin with the
case of imposing Dirichlet boundary conditions on the projected vorticity, i.e. Wh = Xh.
Although this case is nonphysical, analysis of it is the first step in understanding more
complex boundary conditions.

In this case, the schemes’ discrete nonlinearity preserves helicity, however the stabiliza-
tion terms do not. We state the precise results in the next lemma. Denote the discrete
helicity at time level n by Hn

h := (un
h,∇×un

h). Note that from (2.5),(2.6), Hn
h := (un

h,w
n
h).

Lemma 3.4. If Wh := Xh, the schemes of Algorithm 2.1 admit the following helicity con-
servation laws.

Scheme 1:

HM
h +2ν∆t

M−1

∑
n=0

(∇u
n+ 1

2
h ,∇w

n+ 1
2

h ) = 2ν∆t
M−1

∑
n=0

( f (tn+ 1
2 ),∇w

n+ 1
2

h )+H0
h . (3.9)

Scheme 2:

HM
h +2ν∆t

M−1

∑
n=0

(∇u
n+ 1

2
h ,∇w

n+ 1
2

h )+2γ∆t
M−1

∑
n=0

(∇ ·un+ 1
2

h ,∇ ·wn+ 1
2

h )

= 2∆t
M−1

∑
n=0

( f (tn+ 1
2 ),∇w

n+ 1
2

h )+H0
h . (3.10)
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Scheme 3:

HM
h +2ν∆t

M−1

∑
n=0

(∇u
n+ 1

2
h ,∇w

n+ 1
2

h )+2γ

M−1

∑
n=0

(∇ · (un+1
h −un

h),∇ ·w
n+ 1

2
h )

= 2∆t
M−1

∑
n=0

( f (tn+ 1
2 ),∇w

n+ 1
2

h )+H0
h . (3.11)

Proof. Choosing vh = w
n+ 1

2
h elimates the nonlinear term and the pressure term from

(2.4) for each of the 3 schemes, and reduces the time difference term to

1
∆t

(un+1
h −un

h,w
n+ 1

2
h ) =

1
∆t

(un+1
h −un

h,∇×u
n+ 1

2
h )

=
1

2∆t

(
(un+1

h ,∇×un+1
h ) + (un+1

h ,∇×un
h) − (un

h,∇×un+1
h ) − (un

h,∇×un
h)
)

=
1

2∆t

(
Hn+1

h −Hn
h
)

, (3.12)

as, for v, w ∈ H1
0 (Ω), (v,∇×w) = (w,∇× v).

Using (3.12) Scheme 1 becomes,

1
2∆t

(
Hn+1

h −Hn
h
)
+ν(∇u

n+ 1
2

h ,∇w
n+ 1

2
h ) = ( f (tn+ 1

2 ),wn+ 1
2

h ) (3.13)

Multiplying by 2∆t and summing over time steps completes the proof of (3.9).

The proofs of (3.10) and (3.11) follow the same way, except they will contain their
respective stabilization terms.

Lemma 3.4 shows that if we impose Dirichlet boundary conditions on the vorticity, then
the nonlinearity is able to preserve helicity. Hence for Scheme 1, we see a helicity
balance analogous to that of the true physics. However, the stabilization terms do not
preserve helicity, and thus appear in the helicity balances for Schemes 2 and 3.

Interestingly, if the term γ(∇ ·wn+1
h ,∇ · χh) is added to the left hand side of the vor-

ticity projection equation (2.6), one can show that Scheme 3 conserves both helicity
and energy. This results from the cancellation of the stabilization term in Scheme 3’s

momentum equation when vh is chosen to be w
n+ 1

2
h and χh is chosen as un+1

h and un
h

respectively. However, computations using this additional term with Scheme 3 were
inferior to those of Scheme 3 defined above.

Similar conservation laws for helicity, even for Scheme 1, do not appear to hold for the
nonhomogeneous boundary condition for vorticity, i.e. Xh 6= Wh. Due to the definitions
of these spaces, extra terms arise in the balance that correspond to the difference
between the projection of the curl into discretely divergence-free subspaces of Wh and
Xh. These extra terms will be small except at strips along the boundary, but nonetheless
global helicity conservation will fail to hold. However, more typical schemes, e.g. usual
trapezoidal convective form or rotational form [13], introduce nonphysical helicity over
the entire domain and thus the schemes of Algorithm 2.1 still provide a better treatment
of helicity than such schemes.
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4 Convergence

Three numerical schemes are described in Algorithm 2.1. We prove in detail conver-
gence of solutions of Scheme 3 to an NSE solution. Convergence results for Schemes
1 and 2 can be established in an analogous manner.

We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤M

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤M

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
M

∑
n=0

‖vn‖m
k ∆t

)1/m

, ‖|v1/2|‖m,k :=

(
M

∑
n=1

‖vn−1/2‖m
k ∆t

)1/m

.

We also let PVh : L2 →Vh denote the projection of L2 onto Vh, i.e. PVh(w) := sh where

(sh,vh) = (w,vh) ,∀vh ∈Vh .

For simplicity in stating the a priori theorem we summarize here the regularity assump-
tions for the solution u(x, t) to the NSE.

u ∈ L2(0,T ;Hk+1(Ω))∩L∞(0,T ;H1(Ω)), (4.1)
u(·, t) ∈ H1

0 (Ω), ∇×u ∈ L2(0,T ;Hk+1(Ω)) , (4.2)
ut ∈ L2(0,T ;Hk+1(Ω))∩L∞(0,T ;Hk+1(Ω)), (4.3)
utt ∈ L2(0,T ;Hk+1(Ω)) , (4.4)
uttt ∈ L2(0,T ;L2(Ω)) (4.5)
(u× (∇×u))tt ∈ L2(0,T ;L2(Ω)) . (4.6)

Theorem 4.1. For u, p solutions of the NSE with p∈ L2(0,T ;Hk(Ω)), u satisfying (4.1)-
(4.6), f ∈ L2(0,T ;X∗(Ω), and u0 ∈ Vh, (un

h,w
n
h) given by Scheme 3 of Algorithm 2.1 for

n = 1, ...,M and ∆t sufficiently small, we have that

∥∥u(T )−uM
h
∥∥+

∥∥∇ · (u(T )−uM
h )
∥∥+

(
ν∆t

M−1

∑
n=0

∥∥∥∥∇(un+ 1
2 −u

n+ 1
2

h )
∥∥∥∥2
)1/2

≤

C(γ,T,ν−3,u)
(

hk‖u(T )‖k+1 + hk‖|u|‖2,k+1 + hk‖|p|‖2,k + hk‖|ut |‖2,k+1

+ hk‖|ut |‖∞,k+1 + hk‖|ut |‖∞,1 ‖|u|‖2,k+1 + (∆t)1/2 hk‖utt‖2,k+1 + (∆t)2 ‖uttt‖2,0

+ (∆t)2 ‖utt‖2,1 + (∆t)2 ‖(u× (∇×u))tt‖2,0 + hk+1‖|u|‖∞,1 ‖|∇×u|‖2,k+1 .
)

(4.7)

Proof of Theorem. Since (u, p) solves the NSE, we have ∀vh ∈ Xh that

(ut(tn+ 1
2 ),vh)− (u(tn+ 1

2 )× (∇×u(tn+ 1
2 )),vh)− (p(tn+ 1

2 ),∇ · vh)

+ν(∇u(tn+ 1
2 ),∇vh) = ( f (tn+ 1

2 ),vh). (4.8)

9



Adding (un+1−un

∆t ,vh) and ν(∇un+ 1
2 ,∇vh) to both sides of (4.8) we obtain

1
∆t

(un+1−un,vh)+
(
(∇×u(tn+ 1

2 )×u(tn+ 1
2 )),vh

)
− (p(tn+ 1

2 ),∇ · vh)+ν(∇un+ 1
2 ,∇vh)

= ( f (tn+ 1
2 ),vh)+

(
un+1−un

∆t
−ut(tn+ 1

2 ),vh

)
+ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (4.9)

Next, subtracting (2.4) from (4.9), label en := un− un
h, and adding the identically zero

term γ(∇ · (un+1−un

∆t ),∇ · vh) to the LHS gives

1
∆t

(en+1− en,vh)+ν(∇en+ 1
2 ,∇vh)+

γ

∆t
(∇ · (en+1− en,∇ · vh))

=−
(

∇×u(tn+ 1
2 )×u(tn+ 1

2 ),vh

)
+
(

w
n+ 1

2
h ×u

n+ 1
2

h ,vh

)
+
(

p(tn+ 1
2 )− pn+1

h ,∇ · vh

)
+
(

un+1−un

∆t
−ut(tn+ 1

2 ),vh

)
+ν

(
∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh

)
. (4.10)

We split the error into two pieces Φh and η : en = un− un
h = (un−Un)+ (Un− un

h) :=
ηn +Φn

h, where Un denotes the interpolant of un in Vh, yielding

1
∆t

(Φn+1
h −Φ

n
h,vh)+ν(∇Φ

n+ 1
2

h ,∇vh)+
γ

∆t
(∇ ·(Φn+1

h −Φ
n
h),∇ ·vh) =− 1

∆t
(ηn+1−η

n,vh)

−ν(∇η
n+ 1

2 ,∇vh)−
γ

∆t
(∇ · (ηn+1−η

n),∇ · vh)−
(
(∇×u(tn+ 1

2 ))×u(tn+ 1
2 ),vh

)
+(wn+ 1

2
h ×u

n+ 1
2

h ,vh)+(p(tn+ 1
2 )− pn+1

h ,∇ · vh)+
(

un+1−un

∆t
−ut(tn+ 1

2 ),vh

)
+ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (4.11)

Choosing vh = Φ
n+ 1

2
h yields

1
2∆t

(∥∥Φ
n+1
h

∥∥2−‖Φ
n
h‖

2
)

+ν

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+
γ

2∆t

(∥∥∇ ·Φn+1
h

∥∥2−‖∇ ·Φn
h‖

2
)

=− 1
∆t

(ηn+1−η
n,Φ

n+ 1
2

h ) −ν(∇η
n+ 1

2 ,∇Φ
n+ 1

2
h ) − γ

∆t

(
∇ · (ηn+1−η

n),∇ ·Φn+ 1
2

h

)
−
(

∇×u(tn+ 1
2 )×u(tn+ 1

2 ),Φn+ 1
2

h

)
+(wn+ 1

2
h ×u

n+ 1
2

h ,Φ
n+ 1

2
h ) +(p(tn+ 1

2 )− pn+1
h ,∇ ·Φn+ 1

2
h )

+
(

un+1−un

∆t
−ut(tn+ 1

2 ),Φn+ 1
2

h

)
+ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇Φ

n+ 1
2

h ). (4.12)

We have the following bounds for the terms on the RHS (see [6]).

−ν(∇η
n+ 1

2 ,∇Φ
n+ 1

2
h ) ≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+3ν

∥∥∥∇η
n+ 1

2

∥∥∥2
(4.13)
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1
∆t

(ηn+1−η
n,Φ

n+ 1
2

h )≤ 1
2

∥∥∥∥ηn+1−ηn

∆t

∥∥∥∥2

+
1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

=
1
2

∫
Ω

(
1
∆t

∫ tn+1

tn
ηt dt

)2

dΩ +
1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

≤ 1
2

∫
Ω

(
2|ηt(tn+1)|2 + 2

∫ tn+1

tn
|ηtt |2 dt

)
dΩ +

1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

=
∥∥ηt(tn+1)

∥∥2
+
∫ tn+1

tn
‖ηtt‖2 dt +

1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

. (4.14)

Similarly,

γ

∆t

(
∇ · (ηn+1−η

n),∇ ·Φn+ 1
2

h

)
≤ γ

∥∥∇ ·ηt(tn+1)
∥∥2

+ γ

∫ tn+1

tn
‖∇ ·ηtt‖2 dt +

γ

2

∥∥∥∥∇ ·Φn+ 1
2

h

∥∥∥∥2

.

(4.15)(
un+1−un

∆t
−ut(tn+ 1

2 ),Φn+ 1
2

h

)
≤ 1

2

∥∥∥∥un+1−un

∆t
−ut(tn+ 1

2 )
∥∥∥∥2

+
1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

=
(∆t)3

2560

∫ tn+1

tn
‖uttt‖2 dt +

1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

(4.16)

ν(∇un+ 1
2 −∇u(tn+ 1

2 ),∇Φ
n+ 1

2
h ) ≤ 3ν

∥∥∥∇un+ ν

12 −∇u(tn+ 1
2 )
∥∥∥2

+
ν2

2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

(4.17)

=
ν(∆t)3

16

∫ tn+1

tn
‖∇utt‖2 dt +

ν

12

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

(4.18)

For the pressure term, since Φ
n+ 1

2
h ∈Vh, for any qh ∈ Qh,

(p(tn+ 1
2 )− pn+1

h ,∇ ·Φn+ 1
2

h ) = (p(tn+ 1
2 )−qh,∇ ·Φ

n+ 1
2

h ), (4.19)

which implies

(p(tn+ 1
2 )− pn+1

h ,∇ ·Φn+ 1
2

h )≤ 1
2γ

inf
qh∈Qh

∥∥∥p(tn+ 1
2 )−qh

∥∥∥2
+

γ

2

∥∥∥∥∇ ·Φn+ 1
2

h

∥∥∥∥2

. (4.20)
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Utilizing (4.13)-(4.20) we now have

1
2∆t

(∥∥Φ
n+1
h

∥∥2−‖Φ
n
h‖

2
)

+
γ

2∆t

(∥∥∇ ·Φn+1
h

∥∥2−‖∇ ·Φn
h‖

2
)

+
5ν

6

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

≤ 3ν

∥∥∥∇η
n+ 1

2

∥∥∥2
+

γ

∆t

∥∥∇ ·ηt(tn+1)
∥∥2

+
γ

∆t

∫ tn+1

tn
‖∇ ·ηtt‖2 dt +

1
2γ

inf
qh∈Qh

∥∥∥p(tn+ 1
2 )−qh

∥∥∥2

+C(1+ν)∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)
+

ν2 +1
2

∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥2

+γ

∥∥∥∥∇ ·Φn+ 1
2

h

∥∥∥∥2

+(wn+ 1
2

h ×u
n+ 1

2
h ,Φ

n+ 1
2

h )−
(

(∇×u(tn+ 1
2 ))×u(tn+ 1

2 ),Φn+ 1
2

h

)
∥∥ηt(tn+1)

∥∥2
+
∫ tn+1

tn
‖ηtt‖2 dt . (4.21)

For the nonlinear terms we have

(wn+ 1
2

h ×u
n+ 1

2
h ,Φ

n+ 1
2

h )−
(

(∇×u(tn+ 1
2 ))×u(tn+ 1

2 ),Φn+ 1
2

h

)
+
(

(∇×un+ 1
2 )×un+ 1

2 ,Φ
n+ 1

2
h

)
−
(

(∇×un+ 1
2 )×un+ 1

2 ,Φ
n+ 1

2
h

)
=
(

(wn+ 1
2

h −∇×un+ 1
2 )×un+ 1

2 ,Φ
n+ 1

2
h

)
+
(

w
n+ 1

2
h × (un+ 1

2
h −un+ 1

2 ),Φn+ 1
2

h

)
+
(

(∇×un+ 1
2 )×un+ 1

2 − (∇×u(tn+ 1
2 ))×u(tn+ 1

2 ),Φn+ 1
2

h

)
=
(

(wn+ 1
2

h −∇×un+ 1
2 )×un+ 1

2 ,Φ
n+ 1

2
h

)
−
(

w
n+ 1

2
h ×η

n+ 1
2 ,Φ

n+ 1
2

h

)
+
(

(∇×un+ 1
2 )×un+ 1

2 − (∇×u(tn+ 1
2 ))×u(tn+ 1

2 ),Φn+ 1
2

h

)
(4.22)

We bound the second to last and last terms in (4.22) by

(wn+ 1
2

h ×η
n+ 1

2 ,Φ
n+ 1

2
h ) ≤ C

∥∥∥∥w
n+ 1

2
h

∥∥∥∥∥∥∥∇η
n+ 1

2

∥∥∥∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥
≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+3ν
−1
∥∥∥∥w

n+ 1
2

h

∥∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2
(4.23)

(u(tn+ 1
2 )× (∇×u(tn+ 1

2 ))−un+ 1
2 × (∇×un+ 1

2 ),Φn+ 1
2

h )

≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+3ν
−1
∥∥∥u(tn+ 1

2 )× (∇×u(tn+ 1
2 ))−un+ 1

2 × (∇×un+ 1
2 )
∥∥∥2

≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+
3

48
ν
−1(∆t)3

∫ tn+1

tn
‖(u× (∇×u))tt‖2 dt. (4.24)
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For the first term in (4.22), we first need a bound on
∥∥∥∥∇×un+ 1

2 −w
n+ 1

2
h

∥∥∥∥. This is ob-

tained by restricting χh to Vh in (2.6) and then subtracting (∇× un+ 1
2 ,χh) from both

sides of (2.6), which gives us

(∇×un+ 1
2 −w

n+ 1
2

h ,χh) = (∇× (un+ 1
2 −u

n+ 1
2

h ),χh)

= (∇×η
n+ 1

2 ,χh)+(∇×Φ
n+ 1

2
h ,χh) .

By the definition of PVh ,

(PVh(∇×un+ 1
2 )−w

n+ 1
2

h ,χh) = (∇×un+ 1
2 −w

n+ 1
2

h ,χh)

= (∇× (un+ 1
2 −u

n+ 1
2

h ),χh)

= (∇×η
n+ 1

2 ,χh)+(∇×Φ
n+ 1

2
h ,χh)

Choose χh = PVh(∇×un+ 1
2 )−w

n+ 1
2

h we obtain∥∥∥∥PVh(∇×un+ 1
2 )−w

n+ 1
2

h

∥∥∥∥2

≤ 2

(∥∥∥∇η
n+ 1

2

∥∥∥2
+
∥∥∥∥∇Φ

n+ 1
2

h

∥∥∥∥2
)

. (4.25)

Now using (4.25) and, from Poincare’s inequality,
∥∥∥∥Φ

n+ 1
2

h

∥∥∥∥ ≤ C
∥∥∥∥∇Φ

n+ 1
2

h

∥∥∥∥ we obtain

(
(PVh(∇×un+ 1

2 )−w
n+ 1

2
h )×un+ 1

2 ,Φ
n+ 1

2
h

)
≤C

∥∥∥∇un+ 1
2

∥∥∥∥∥∥∥PVh(∇×un+ 1
2 )−w

n+ 1
2

h

∥∥∥∥∥∥∥∥Φ
n+ 1

2
h

∥∥∥∥ 1
2
∥∥∥∥∇Φ

n+ 1
2

h

∥∥∥∥ 1
2

≤C
∥∥∥∇un+ 1

2

∥∥∥(∥∥∥∇η
n+ 1

2

∥∥∥∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥+
∥∥∥∥Φ

n+ 1
2

h

∥∥∥∥ 1
2
∥∥∥∥∇Φ

n+ 1
2

h

∥∥∥∥ 3
2
)

≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+Cν
−1
∥∥∥∇un+ 1

2

∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2
+

ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+Cν
−3
∥∥∥∇un+ 1

2

∥∥∥4
∥∥∥∥Φ

n+ 1
2

h

∥∥∥∥2

.

(4.26)

Also, we have that(
(∇×un+ 1

2 −PVh(∇×un+ 1
2 ))×un+ 1

2 ,Φ
n+ 1

2
h

)
≤C

∥∥∥∇×un+ 1
2 −PVh(∇×un+ 1

2 )
∥∥∥∥∥∥∇un+ 1

2

∥∥∥∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥
≤ ν

12

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

+ C
∥∥∥∇un+ 1

2

∥∥∥2∥∥∥∇×un+ 1
2 −PVh(∇×un+ 1

2 )
∥∥∥2

(4.27)
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We combine the estimates (4.27) and (4.26) and obtain the desired bound for the term(
(wn+ 1

2
h −∇×un+ 1

2 )×un+ 1
2 ,Φ

n+ 1
2

h

)
.

Noting that
∥∥∥∥∇ ·Φn+ 1

2
h

∥∥∥∥2

≤ 1/2(
∥∥∇ ·Φn+1

h

∥∥2
+
∥∥∇ ·Φn

h

∥∥2), substituting the bounds de-

rived in (4.23), (4.24), (4.26), and (4.27) into (4.21) yields

1
2∆t

(∥∥Φ
n+1
h

∥∥2−‖Φ
n
h‖

2
)

+
γ

2∆t

(∥∥∇ ·Φn+1
h

∥∥2−‖∇ ·Φn
h‖

2
)

+
ν

2

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

≤
(

ν2 +4
2

+Cν
−3
∥∥∥∇un+ 1

2

∥∥∥4
)∥∥∥∥Φ

n+ 1
2

h

∥∥∥∥2

+
γ

2

(∥∥∇ ·Φn+1
h

∥∥2
+ ‖∇ ·Φn

h‖
2
)

+
1
2γ

inf
qh∈Qh

∥∥p(tn+1)−qh
∥∥2

+Cν

∥∥∥∇η
n+ 1

2

∥∥∥2
+
∥∥ηt(tn+1)

∥∥2
+ γ
∥∥∇ ·ηt(tn+1)

∥∥2

+Cν
−1
∥∥∥∥w

n+ 1
2

h

∥∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2
+ ν

−1
∥∥∥∇un+ 1

2

∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2
+
∫ tn+1

tn
‖ηtt‖2 dt

+ γ

∫ tn+1

tn
‖∇ ·ηtt‖2 dt +C∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)

+Cν
−1(∆t)3

∫ tn+1

tn
‖(u× (∇×u))tt‖2 dt +C

∥∥∥∇un+ 1
2

∥∥∥2∥∥∥∇×un+ 1
2 −PVh(∇×un+ 1

2 )
∥∥∥2

(4.28)

Next multiply by 2∆t, sum over time steps, and using the Gronwall inequality (from [11])
yields

∥∥Φ
M
h
∥∥2

+ γ
∥∥∇ ·ΦM

h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

≤Cexp

(
2∆t

M−1

∑
n=0

γ +
ν2 +4

2
+Cν

−3
∥∥∥∇un+ 1

2

∥∥∥4
)(

∆t
M

∑
n=1

1
2γ

inf
qh∈Qh

‖p(tn)−qh‖2

+ ∆t
M

∑
n=0

ν ‖∇η
n‖2 + ∆t

M

∑
n=1

‖ηt(tn)‖2 + ∆t
M

∑
n=1

γ ‖∇ηt(tn)‖2 + ∆t
M−1

∑
n=0

ν
−1
∥∥∥∥w

n+ 1
2

h

∥∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2

+ ∆t
M−1

∑
n=0

ν
−1
∥∥∥∇un+ 1

2

∥∥∥2∥∥∥∇η
n+ 1

2

∥∥∥2
+ ∆t

M−1

∑
n=0

∫ tn+1

tn
‖ηtt‖2 dt

+ ∆t
M−1

∑
n=0

γ

∫ tn+1

tn
‖∇ ·ηtt‖2 dt + (∆t)4 ‖uttt‖2

2,0 + (∆t)4 ‖∇utt‖2
2,0 + (∆t)4 ‖(u× (∇×u))tt‖2

2,0

+ ∆t
M−1

∑
n=0

∥∥∥∇un+ 1
2

∥∥∥2∥∥∥∇×un+ 1
2 −PVh(∇×un+ 1

2 )
∥∥∥2
)

(4.29)
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Recall the approximation properties of Un ∈Vh, qh ∈ Qh, and PVh [13]

‖η(tn)‖s ≤ Chk+1−s ‖u(tn)‖k+1 , s = 0,1, and

inf
qh∈Qh

‖p(tn)−qh‖ ≤ Chk ‖p(tn)‖k

‖wn − PVh(w
n)‖ ≤ Chk+1 ‖wn‖k+1 .

Estimate (4.29) then becomes

∥∥Φ
M
h
∥∥2

+ γ
∥∥∇ ·ΦM

h
∥∥2

+ν∆t
M−1

∑
n=0

∥∥∥∥∇Φ
n+ 1

2
h

∥∥∥∥2

≤Cexp

(
2∆t

M−1

∑
n=0

γ +
ν2 +4

2
+Cν

−3
∥∥∥∇un+ 1

2

∥∥∥4
)(

1
2γ

h2k‖|p|‖2
2,k

+ ν h2k‖|u|‖2
2,k+1 + h2k+2‖|ut |‖2

2,k+1 + γ h2k‖|ut |‖2
2,k+1

+ ν
−1h2k‖|ut |‖2

∞,1 ‖|u|‖2
2,k+1 + ∆t γ h2k‖utt‖2

2,k+1 + ∆t h2k+2‖utt‖2
2,k+1

+ (∆t)4 ‖uttt‖2
2,0 + (∆t)4 ‖∇utt‖2

2,0 + (∆t)4 ‖(u× (∇×u))tt‖2
2,0

+

(
ν∆t

M−1

∑
n=0

∥∥∥∥w
n+ 1

2
h

∥∥∥∥2
)

ν
−2h2k‖|ut |‖2

∞,k+1 + h2k+2‖|u|‖2
∞,1 ‖|∇×u|‖2

2,k+1 .
)

(4.30)

Finally, from the boundness estimate for ν∆t ∑
M−1
n=0

∥∥∥∥w
n+ 1

2
h

∥∥∥∥2

from (3.4), and an applica-

tion of the triangle inequality we obtain (4.7).

Remark 4.1. As expected, if (Xh,Qh) is chosen to be the inf-sup stable pair (Pk,Pk−1),
k ≥ 2, then with the smoothness assumptions (4.1)-(4.6) and p ∈ L2(0,T ;Hk(Ω)) the
H1 convergence for the velocity is

‖|u−uh|‖2,1 ≤C(∆t2 +hk) (4.31)

Remark 4.2. The significant computational improvement of Schemes 2 and 3 over
Scheme 1 is somewhat masked in the statement of the a priori error bound for the
velocity (for Scheme 3) given in (4.7). For Scheme 1 the pressure contribution to the
bound is C/ν ‖p−qh‖, whereas for Schemes 2 and 3 the pressure contribution is given
by C‖p−qh‖, see (4.20). The presence of ν in the denominator for Scheme 1 suggests
a superior numerical performance of Schemes 2 and 3 if a large pressure error is
present.

5 Numerical Experiments

This section presents two numerical experiments, the first to confirm convergence rates
and the second to compare the schemes’ accuracies over a longer time interval, against
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Figure 1: The velocity solution to the Ethier-Steinman problem with a = 1.25, d = 1 at
t = 0 on the (−1,1)3 domain. The complex flow structure is seen in the streamribbons
in the box and the velocity streamlines and speed contours on the sides.

each other and a commonly used scheme. For both experiments, we will compute ap-
proximations to the Ethier-Steinman exact Navier-Stokes solution on [−1,1]3 [7], al-
though we choose different parameters and viscosities for the two tests. We find in the
first numerical experiment, computed convergence rates from successive mesh and
time-step refinements indeed match the predicted rates from section 4. For the second
experiment, the advantage of using the stabilized enhanced physics based scheme is
demonstrated.

For chosen parameters a,d and viscosity ν , the exact Ethier-Steinman NSE solution is
given by

u1 = −a(eax sin(ay+dz)+ eaz cos(ax+dy))e−νd2t (5.1)

u2 = −a(eay sin(az+dx)+ eax cos(ay+dz))e−νd2t (5.2)

u3 = −a(eaz sin(ax+dy)+ eay cos(az+dx))e−νd2t (5.3)

p = −a2

2
(e2ax + e2ay + e2az +2sin(ax+dy)cos(az+dx)ea(y+z)

+2sin(ay+dz)cos(ax+dy)ea(z+x)

+2sin(az+dx)cos(ay+dz)ea(x+y))e−2νd2t (5.4)

We give the pressure in its usual form, although our scheme approximates instead the
Bernoulli pressure P = p+ 1

2 |u|
2. This problem was developed as a 3d analogue to the

Taylor vortex problem, for the purpose of benchmarking. Although unlikely to be phys-
ically realized, it is a good test problem because it is not only an exact NSE solution,
but also it has non-trivial helicity which implies the existence of complex structure [18]
in the velocity field. The t = 0 solution for a = 1.25 and d = 1 is illustrated in Figure 1.
For both experiments below, we use u0 = (u1(0),u2(0),u3(0))T as the initial condition
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and enforce Dirichlet boundary conditions for velocity to be the interpolant of u(t) on
the boundary, while a do-nothing boundary condition is used for the vorticity projection.
All computations with schemes 2 and 3 use stabilization parameter γ = 1.

5.1 Numerical Test 1: Convergence rate verification

h ∆t
∥∥∣∣u−uS1

∣∣∥∥
2,1 rate

∥∥∣∣u−uS2
∣∣∥∥

2,1 rate
∥∥∣∣u−uS3

∣∣∥∥
2,1 rate

1 0.001 0.01560 - 0.01556 - 0.01579 -
0.5 0.0005 0.00390 2.00 0.00391 1.99 0.00395 2.00

0.25 0.00025 0.000979 1.99 0.000979 2.00 0.000984 2.01
0.125 0.000125 0.000245 2.00 0.000245 2.00 0.000246 2.00

Table 1: The ‖|uNSE −uh|‖2,1 errors and convergence rates for each of the three scheme
of algorithm 2.1.

To verify convergence rates predicted in section 4, we compute approximations to (5.1)-
(5.4) with parameters a = d = π/4, viscosity ν = 1, and end-time T = 0.001. Since
(P2,P1) elements are being used, we expect O(h2+∆t2) convergence of ‖|uNSE −uh|‖2,1
for each of the three schemes of Algorithm 2.1. Errors and rates in this norm are shown
in table 1, and we find they match those predicted by the theory.

5.2 Numerical Test 2: Comparison of the schemes

For our second test, we compute approximations to (5.1)-(5.4) with a = 1.25, d = 1,
kinematic viscosity ν = 0.002, end time T = 0.5, using all 3 schemes from Algorithm
2.1. We use 3,072 tetrahedral elements, which provides 41,472 velocity degrees of
freedom, and 46,875 degrees of freedom for the projected vorticity since here there
are degrees of freedom on the boundary. It is important to note that due to the splitting
of the projection equations from the NSE system in the solver and since the projection
equation is well-conditioned, the time spent for assembling and solving the projection
equations is negligible.

In addition to the 3 schemes of Algorithm 2.1, for comparison, we also compute ap-
proximations using the well-known convective form Crank-Nicolson (CCN) FEM for the
Navier-Stokes equations [13, 10, 12]. We run the simulations with time-step ∆t = 0.005.
Results of the simulations are shown in figures 2 and 3, where L2(Ω) error and helic-
ity error are plotted against time. Is clear from the pictures that the enhanced physics
based scheme is superior to the usual Crank-Nicolson scheme, and its advantage be-
comes more pronounced with larger time. Also it is seen how the stabilizations of the
enhanced-physics scheme improve accuracy.
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Figure 2: The plot above shows L2 error of the velocity vs time for the four schemes of
test 2. We see in the plot that the stabilizations add accuracy to the enhanced-physics
scheme, and that the altered grad-div stabilization gives slightly better results than the
usual grad-div stabilization. It can also be seen that the enhanced-physics scheme is
far more accurate in this metric than the usual Crank-Nicolson scheme.

6 Conclusions and future directions

We have extended the methodology of the enhanced-physics based scheme of [23]
to a more general set of problems. This extension required the use of grad-div type
stabilizations since the scheme uses a Bernoulli pressure which can be a dominant
source of error in finite element computations, and we proposed an altered grad-div
stabilization that appears to stabilize in a similar way as the usual grad-div stabilziation,
but provides a more physical solution by not altering the energy balance. We also pro-
vided a numerical example that showed the advantage of the enhanced physics based
scheme as well as for the altered grad-div stabilization that we use.

As discussed in the Introduction, with the rotational form of the NSE and introduction
of the Bernoulli pressure, the pressure term in the a priori error estimate for the ve-
locity approximation can have a significant impact. An alternative to a grad-div sta-
bilization method may be to choose the approximation spaces (Xh,Qh) so that the
pressure term does not appear in the a priori error estimate for the velocity approxi-
mation. Recently stable approximation spaces (Xh,Qh), Scott-Vogelius elements [28]
(see [27, 26, 24, 25] for Ω ⊂ R2), have been introduced for which [∇ ·Xh] ⊂ Qh, which
guarantees that discretly divergence free approximations for the velocity are also L2 di-
vergence free. These elements require a special mesh, and are higher order (at least)
P3(e)− (discontinuous)P2(e) compared to the commonly used Taylor-Hood elements
P2(e)−P1(e). Future work will include a comparison of the stabilized methods investi-
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Figure 3: The plot above shows helicity error vs time for the four schemes of test 2. We
see in the plot that helicity is far more accurate in the enhanced-physics scheme, and
even better with stabilizations, than the usual Crank-Nicolson scheme.

gated above with approximations using Scott-Vogelius elements.
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