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Abstract

We develop sufficient optimality conditions for a Moreau-Yosida regular-
ized optimal control problem governed by a semilinear elliptic PDE with point-
wise constraints on the state and the control. We make use of the equivalence
of a setting of Moreau-Yosida regularization to a special setting of the virtual
control concept, for which standard second order sufficient conditions have
been shown. Moreover, we compare both regularization approaches within a
numerical example.

1 Introduction

In this paper we consider the following class of semilinear optimal control problems
with pointwise state and control constraints

min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

Ay + d(x, y) = u in Ω

∂nA
y = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω

y(x) ≥ yc(x) a.e. in Ω̄.


(P)

The precise conditions are given in Assumption 2.1. Due to the nonlinearity of
the state equation the above model problem is of nonconvex type, which makes it
necessary to consider sufficient optimality conditions ensuring local optimality of
stationary points. We point out the results in [7, 8, 9] where second order sufficient
conditions were established for semilinear elliptic control problems with pointwise
state constraints. However, it is well known that Lagrange multipliers with respect
to pointwise state constraints are in general only regular Borel measures, cf. [1,
4, 5]. The presence of these measures in the optimality system complicates the
numerical treatment of such problems significantly, since a pointwise evaluation of
the complementary slackness conditions is not possible. For that reason, several
regularization concepts to overcome this lack of regularity have been developed in
the recent past. We mention for example Lavrentiev regularization by Meyer, Rösch,
and Tröltzsch, [20], the penalization method by Ito and Kunisch, [16], as well as
interior point methods, cf. [27] and the references therein. Special methods have
been developed for boundary control problems, such as an extension of Lavrentiev
regularization by a source term representation of the control, see [30] and [23], and
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the virtual control approach [17]. This approach has been extended to distributed
controls in [10] and turned out to be suitable for problems were control and state
constraints are active simultaneously. Efficient optimization algorithms are available
for all these regularized problems, see section 5 for detailed information. Concerning
second order sufficient conditions for Lavrentiev regularized problems, we point out
the results in [25]. For the Moreau-Yosida regularization concept, one can easily
see that a classical second order analysis is not possible due to the fact that the
regularized objective function is not twice differentiable.

However, by the equivalence of a specific settings of the Moreau-Yosida regulariza-
tion and the virtual control concept we are able to derive a sufficient optimality
condition for the Moreau-Yosida regularization making use of classical second order
sufficient conditions for the virtual control concept. This condition ensures local op-
timality of controls satisfying the first order optimality conditions of Moreau-Yosida
regularized problems. These results are not strictly limited to problem (P). In
section 5, we therefore give examples of problem classes to which the theory can
be extended, including boundary control problems as well as problems governed by
parabolic PDEs.

2 Assumptions and properties of the state equa-
tion

We begin by briefly laying out the setting of the optimal control problem and stating
some properties of the problem and the underlying PDE. Throughout the paper, we
will use the following notation: By ‖ · ‖ we denote the usual norm in L2(Ω), and
(·, ·) is the associated inner product. The L∞(Ω)-norm is specified by ‖ · ‖∞.

Assumption 2.1 • The function yd ∈ L2(Ω) and yc ∈ L∞(Ω) are given func-
tions and ua < ub, ν > 0 are real numbers.

• Ω denotes a bounded domain in RN , N = {2, 3}, which is convex or has a
C1,1-boundary ∂Ω.

• A denotes a second order elliptic operator of the form

Ay(x) = −
d∑

i,j=1

∂xj
(aij(x)∂xi

y(x)),

where the coefficients aij belong to C0,1(Ω̄) with the ellipticity condition

d∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 ∀(x, ξ) ∈ Ω× Rd, θ > 0.

Moreover, ∂nA
denotes the conormal-derivative associated with A.
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• The function d = d(x, y) : Ω×R is measurable with respect to x ∈ Ω for all fixed
y ∈ R, and twice continuously differentiable with respect to y, for almost all
x ∈ Ω. Moreover, dyy is assumed to be a locally bounded and locally Lipschitz
continuous function with respect to y, i.e. the following Carathéodory type
conditions hold true: there exists K > 0 such that

‖d(·, 0)‖∞ + ‖dy(·, 0)‖∞ + ‖dyy(·, 0)‖∞ ≤ K

and for any M > 0 there exists LM > 0 such that

‖dyy(·, y1)− dyy(·, y2)‖∞ ≤ LM |y1 − y2|

for all yi ∈ R with |yi| ≤M , i = 1, 2.
Additionally, we assume that dy(x, y) is nonnegative for almost all x ∈ Ω and
y ∈ R and positive on a set EΩ × R, where EΩ ⊂ Ω is of positive measure.

Under the previous assumptions, we can deduce the following standard result for
the state equation in problem (P):

Theorem 2.2 Under Assumption 2.1 the semilinear elliptic boundary value problem

Ay + d(x, y) = u in Ω

∂nA
y = 0 on Γ

(2.1)

admits for every right hand side u ∈ L2(Ω) a unique solution y ∈ H1(Ω) ∩ C(Ω̄).

The proof can be found e.g. in [6]. Based on this theorem, we introduce the control-
to-state operator

G : L2(Ω) → H1(Ω) ∩ C(Ω̄), u 7→ y, (2.2)

that assigns to each u ∈ L2(Ω) the weak solution y ∈ H1(Ω) ∩ C(Ω̄) of (2.1). For
future reference, we will provide results concerning differentiability of the control-
to-state operator.

Theorem 2.3 Let Assumption 2.1 be fulfilled. Then the mapping G : L2(Ω) →
H1(Ω) ∩ C(Ω̄), defined by G(u) = y is of class C2. Moreover, for all u, h ∈ L2(Ω),
yh = G′(u)h is defined as the solution of

Ayh + dy(x, y)yh = h in Ω

∂nA
yh = 0 on Γ.

(2.3)

Furthermore, for every h1, h2 ∈ L2(Ω), yh1,h2 = G′′(u)[h1, h2] is the solution of

Ayh1,h2 + dy(x, y)yh1,h2 = −dyy(x, y)yh1yh2 in Ω

∂nA
yh1,h2 = 0 on Γ,

(2.4)

where yhi
= G′(u)hi, i = 1, 2.
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Due to the convexity of the cost functional with respect to the control u and the
associated state y = G(u), the existence of at least one solution of problem (P) can
be obtained by standard arguments, assuming that the set of feasible controls is
nonempty. For future references, we define the set of admissible controls handling
the box constraints

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. in Ω}. (2.5)

Relying on the standard assumption of a Mangasarian-Fromovitz constraint quali-
fication for the pure state constraints, we obtain the following first order necessary
optimality conditions for a locally optimal control ū:

Theorem 2.4 Let ū be a solution of problem (P) and let ȳ = Gū be the associated
state. Then, a regular Borel measure µ̄ := µ̄Ω + µ̄Γ ∈M(Ω̄) and an adjoint state p̄ ∈
W 1,s(Ω), s < d/(d− 1) exist, such that the following optimality system is satisfied:

Aȳ + d(x, ȳ) = ū

∂nA
ȳ = 0

A∗p̄+ dy(x, ȳ)p̄ = ȳ − yd − µ̄Ω

∂nA∗ p̄ = −µ̄Γ

(2.6)

(p̄+ νū , u− ū) ≥ 0, ∀u ∈ Uad (2.7)∫
Ω̄

(yc − ȳ)dµ̄ = 0, ȳ(x) ≥ yc(x) for all x ∈ Ω̄

∫
Ω̄

ϕdµ̄ ≥ 0 ∀ϕ ∈ C(Ω̄)+,

(2.8)

where C(Ω̄)+ is defined by C(Ω̄)+ := {y ∈ C(Ω̄) | y(x) ≥ 0 ∀x ∈ Ω̄}.

Here and in the following, A∗ denotes the dual operator to the differential operator
A. This result can be obtained adapting the theory of Casas, cf. [6].

With the help of the classical reduced Lagrange functional

L(u, µ) = J(G(u), u) +

∫
Ω̄

(yc −G(u)) dµ,

the second order sufficient condition

∂2L
∂u2

(ū, µ̄)h2 ≥ α‖h‖2, α > 0, ∀h ∈ L2(Ω) (2.9)

guarantees ū to be a local minimum of (P) since the quadratic growth condition

J(G(u), u) ≥ J(G(ū), ū) + β‖u− ū‖2

is satisfied for a constant β > 0 for all u ∈ Uad in a sufficiently small L2-neighborhood
of ū.
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3 Regularization approaches

The main focus of this paper is on regularized versions of problem (P). In this section
we present the two regularization approaches we will examine in this paper, the
Moreau-Yosida approximation on the one hand and the virtual control concept on
the other. We will elaborate that the simple version of Moreau-Yosida regularization
is equivalent to a special setting of the virtual control concept.

3.1 Moreau-Yosida regularization

The penalization technique by Ito and Kunisch, [16], based on a Moreau-Yosida
approximation of the Lagrange multipliers with respect to the state constraints,
applied to problem (P), leads to the following family of regularized problems

min JMY (yγ, uγ) := J(yγ, uγ) +
γ

2

∫
Ω

((yc − yγ)+)2dx

Ayγ + d(x, yγ) = uγ in Ω

∂nA
yγ = 0 on Γ

ua ≤ uγ(x) ≤ ub a.e. in Ω,


(PMY )

where γ > 0 is a regularization parameter that is taken large. Note, that the map-
ping (·)+ denotes the positive part of a measurable function, i.e. (f)+ = max{0, f}.
Introducing a reduced formulation of problem (PMY ) by the control-to-state map-
ping G in (2.2) for the state equation, the following existence theorem can be proven
since the set of admissible controls is nonempty.

Theorem 3.1 Under Assumption 2.1, the regularized optimal control (PMY ) admits
at least one (globally) optimal control ūγ with associated optimal state ȳγ = G(ūγ).

Due to the nonlinearity of the state equation, the optimal control problem is non-
convex and one has to take into account the existence of multiple locally optimal
controls. Forthcoming, let ūγ be a locally optimal control of problem (PMY ) with
associated state ȳγ = G(ūγ). Using the classical Lagrange formulation, straight for-
ward computations yield the following first order necessary optimality conditions.

Proposition 3.2 Let (ȳγ, ūγ) be a locally optimal solution of problem (PMY ). Then,
there exists a unique adjoint state p̄γ ∈ H1(Ω) ∩ C(Ω̄) such that the following opti-
mality system is satisfied

Aȳγ + d(x, yγ) = ūγ

∂nA
ȳγ = 0

A∗p̄γ + dy(x, ȳγ)p̄γ = ȳγ − yd − λ̄γ

∂nA∗ p̄γ = 0
(3.10)

(p̄γ + νūγ , u− ūγ) ≥ 0 ∀u ∈ Uad (3.11)
λ̄γ = γ(yc − ȳγ)+ ∈ L2(Ω) (3.12)
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Convergence analysis as γ tends to infinity is discussed in [21]. Convergence results of
the Moreau-Yosida approximation applied to control and state constrained optimal
control problems governed by semilinear parabolic PDEs are derived in [22].

3.2 Virtual control concept

In this section, we will apply the so called virtual control concept, first introduced
in [17]. Instead of problem (P), we will investigate a family of regularized optimal
control problems with mixed control-state constraints:

min JV C(yε, uε, vε) := J(yε, uε) +
ψ(ε)

2
‖vε‖2

L2(Ω)

Ayε + d(x, y) = uε + φ(ε)vε in Ω

∂nA
yε = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω

yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(PV C)

with a regularization parameter ε > 0 and positive and real valued parameter func-
tions ψ(ε), φ(ε) and ξ(ε). The remaining given quantities are defined as for problem
(P), see Assumption 2.1.

Analogously to the Moreau-Yosida approximation, the existence of at least one pair
of optimal controls (ūε, v̄ε) can be proven by standard arguments using a continuous
control-to-state mapping due to the fact that (ū, 0) is feasible for all problems (PV C),
where ū denotes a locally optimal control of the original problem (P).
The existence of regular Lagrange multipliers with respect to mixed control-state
constraints is known from e.g. [24] and [26]. Based on this, the following first order
necessary optimality conditions for (PV C) are obtained in a straight forward manner.

Proposition 3.3 Let (ūε, v̄ε) be an optimal solution of (PV C) and let ȳε be the
associated state. Then, there exist a unique adjoint state p̄ε ∈ H1(Ω) ∩ C(Ω̄) and
a unique Lagrange multiplier µ̄ε ∈ L2(Ω) so that the following optimality system is
satisfied

Aȳε + d(x, ȳε) = ūε + φ(ε)v̄ε

∂nA
ȳε = 0

A∗p̄ε + dy(x, ȳε)p̄ε = ȳε − yd − µ̄ε

∂nA∗ p̄ε = 0
(3.13)

(p̄ε + νūε , u− ūε) ≥ 0, ∀u ∈ Uad (3.14)
φ(ε)p̄ε + ψ(ε)v̄ε − ξ(ε)µ̄ε = 0, a.e. in Ω (3.15)

(µ̄ε , yc − ȳε − ξ(ε)v̄ε) = 0, µ̄ε ≥ 0, ȳε ≥ yc − ξ(ε)v̄ε a.e. in Ω. (3.16)

The convergence of a sequence of regularized optimal controls ūε to an optimal solu-
tion of the original problem (P) and the uniqueness of dual variables was discussed
in [18].
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3.3 Equivalence of the concepts

In this section, we will point out the equivalence of the Moreau-Yosida approximation
to a special case of the virtual control concept. More precisely, we will demonstrate
that the two optimal control problems admit the same optimal controls ūε = ūγ
and we will then call the regularization concepts and the respective optimal control
problems equivalent.

We observe the problems (PV C) for the specific choice φ(ε) ≡ 0, i.e.:

min JV C(yε, uε, vε) := J(yε, uε) +
ψ(ε)

2
‖vε‖2

L2(Ω)

Ayε + d(x, y) = uε in Ω

∂nA
yε = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω

yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(QV C)

As one can easily see, there is no longer a coupling of both control variables by the
state equation of the problem.

First, we consider both types of problems (QV C) and (PMY ) without any notice on
the optimality conditions. We start investigating the mixed control-state constraints
in (QV C) pointwise, where we split the domain Ω into two disjoint subsets Ω =
Ω1 ∪ Ω2:

Ω1 := {x ∈ Ω : yc(x)− yε(x) < 0 a.e. in Ω}
Ω2 := {x ∈ Ω : yc(x)− yε(x) ≥ 0 a.e. in Ω}.

Initially, we consider Ω1. The mixed constraints are given by yc(x) − yε(x) ≤
ξ(ε)vε(x) a.e. in Ω. Due to the minimization of the L2-norm of the virtual con-
trol vε in the objective of (QV C), we derive

vε ≡ 0 a.e. in Ω1.

Considering Ω2, the inequality

ξ(ε)vε(x) ≥ yc(x)− yε(x) ≥ 0

has to be satisfied. Choosing the virtual control as small as possible, we deduce

vε =
1

ξ(ε)
(yc − yε) a.e. in Ω2.

Concluding, the mixed control-state constraints can be replaced by the equation

vε =
1

ξ(ε)
(yc − yε)+.
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Thus, the optimal control problem (QV C) can be rewritten equivalently in the form

min J(yε, uε) +
ψ(ε)

2ξ(ε)2
‖(yc − yε)+‖2

L2(Ω)

Ayε + d(x, yε) = uε in Ω

∂nA
yε = 0 on Γ

ua ≤ uε(x) ≤ ub a.e. on Ω.

Consequently, we formulate the following result.

Corollary 3.4 For the specific parameter function φ(ε) ≡ 0, the problem (PV C) is
equivalent to the problem (PMY ) arising by the Moreau-Yosida regularization, if the
regularization parameter γ > 0 is defined by γ := ψ(ε)

ξ(ε)2
.

For the sake of completeness, we will additionally elaborate on the equivalence by
the different first order necessary optimality conditions. Due to Proposition 3.3 and
φ(ε) ≡ 0, an optimal control (ūε, v̄ε) of (QV C) satisfies

Aȳε + d(x, ȳε) = ūε

∂nA
ȳε = 0

A∗p̄ε + dy(x, ȳε)p̄ε = ȳε − yd − µ̄ε

∂nA∗ p̄ε = 0
(3.17)

(p̄ε + νūε , u− ūε) ≥ 0, ∀u ∈ Uad (3.18)
ψ(ε)v̄ε − ξ(ε)µ̄ε = 0, a.e. in Ω (3.19)

(µ̄ε , yc − ȳε − ξ(ε)v̄ε) = 0, µ̄ε ≥ 0, ȳε ≥ yc − ξ(ε)v̄ε a.e. in Ω (3.20)

Since the multiplier µ̄ε is a regular function, it is well known that the complementary
slackness conditions in (3.20) are equivalent to

µ̄ε −max{0, µ̄ε + c(yc − ȳε − ξ(ε)v̄ε)} = 0

for every c > 0. Using the specific choice c = ψ(ε)
ξ(ε)2

, we obtain

µ̄ε = max{0, ψ(ε)

ξ(ε)2
(yc − ȳε)} =

ψ(ε)

ξ(ε)2
(yc − ȳε)+.

instead of (3.19) and (3.20). Due to (3.19), the virtual control satisfies

v̄ε =
ξ(ε)

ψ(ε)
µ̄ε =

1

ξ(ε)
(yc − ȳε)+. (3.21)

By means of Proposition 3.2, it is easily seen that the optimality systems of (PMY )
and (QV C) are equivalent and we conclude with the following result.

Corollary 3.5 Let (ȳε, ūε, v̄ε) be a stationary point of (PV C). If we set φ(ε) ≡ 0,
then the virtual control can be represented by v̄ε = 1/ξ(ε)(yc − ȳε)+. Moreover,
(ȳε, ūε) is also a stationary point of (PMY ) for the specific choice γ = ψ(ε)

ξ(ε)2
. Con-

versely, a stationary point of (PMY ) is also a stationary point of (PV C) if the
conditions above are satisfied.
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4 Sufficient optimality conditions for the Moreau-
Yosida approximation

Now we will formulate a sufficient optimality condition for the Moreau-Yosida ap-
proximation based on a second order sufficient optimality condition for the respective
equivalent virtual control concept (QV C). We first define the Lagrangian of problem
(QV C) by

LV C(u, v, µ) =
1

2
‖G(u)− yd‖2 +

ν

2
‖u‖2 +

ψ(ε)

2
‖v‖2

+

∫
Ω

(yc −G(u)− ξ(ε)v)µ dx
(4.22)

using the control-to-state operator G, given in (2.2). Straight forward computations
show that the second derivative of the Lagrangian is given by

∂2LV C(u, v, µ)

∂(u, v)2
[h1, h2] =(G′(u)hu,1, G

′(u)hu,2) + (G(u)− yd, G
′′(u)[hu,1, hu,2])

+ ν(hu,1, hu,2) + ψ(ε)(hv,1, hv,2)− (G′′(u)[hu,1, hu,2], µ)

(4.23)

for hi = (hu,i, hv,i) ∈ L2(Ω)2, i = 1, 2. In the sequel, let (ūε, v̄ε) be a local solution
of (QV C) with associated Lagrange multiplier µ̄ε, i.e. (3.17)-(3.20) are satisfied. We
proceed with establishing the second order sufficient optimality condition.

Assumption 4.1 There exists a constant α ≥ 0 such that

∂2LV C(ūε, v̄ε, µ̄ε)

∂(u, v)2
[hu, hv]

2 ≥ α‖hu‖2 + ψ(ε)‖hv‖2 (4.24)

is valid for all hu ∈ L2(Ω).

Note, that the coercivity condition of the second derivative of the Lagrangian with
respect to directions hv ∈ L2(Ω) is satisfied by construction, see (4.23). Based on
the previous coercivity condition, one can prove a quadratic growth condition for
problem (QV C) that ensures local optimality of (ūε, v̄ε).

Proposition 4.2 Let (ūε, v̄ε) be a control satisfying the first order necessary opti-
mality conditions (3.17)-(3.20). Additionally, (ūε, v̄ε) fulfills Assumption 4.1. Then,
there exist constants β > 0 and δ > 0 such that

JV C(G(u), u, v) ≥ JV C(G(ūε), ūε, v̄ε) + β(‖u− ūε‖2 + ‖v − v̄ε‖2) (4.25)

for all feasible controls (u, v) of problem (QV C) with ‖u− ūε‖ ≤ δ.
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Proof. First, let us mention that there is a specific difference to the standard proofs,
since no smallness condition for ‖v − v̄ε‖ is required. Let (u, v) ∈ Uad × L2(Ω) be
an admissible control of problem (QV C), i.e. mainly yc − ξ(ε)v−G(u) ≤ 0. In view
of the positivity of the optimal Lagrange multiplier µ̄ε, we can estimate the cost
functional JV C by the Lagrange functional:

JV C(G(u), u, v) ≥ JV C(G(u), u, v) +

∫
Ω

(yc −G(u)− ξ(ε)v)µ̄ε dx = L(u, v, µ̄ε).

Under Assumption 2.1, the Lagrange functional is twice continuously differentiable
with respect to the L2(Ω)-norms, since the solution operator G has this property,
see Theorem 2.3. Then, a Taylor expansion is given by

LV C(u, v, µ̄ε) = LV C(ūε, v̄ε, µ̄ε) +
∂LV C(ūε, v̄ε, µ̄ε)

∂(u, v)
(u− ūε, v − v̄ε)

+
1

2

∂2LV C(ũ, ṽ, µ̄ε)

∂(u, v)2
(u− ūε, v − v̄ε)

2

with ũ = ūε + θ(u − ūε), ṽ = v̄ε + θ(v − v̄ε) for a θ ∈ (0, 1). Since (ūε, v̄ε) satisfies
the first order necessary optimality conditions (3.17)-(3.20) and µ̄ε is the associated
Lagrange multiplier, we have

∂LV C(ūε, v̄ε, µ̄ε)

∂(u, v)
(u− ūε, v − v̄ε) ≥ 0 and LV C(ūε, v̄ε, µ̄ε) = JV C(G(ūε), ūε, v̄ε),

which implies

LV C(u, v, µ̄ε) ≥ JV C(G(ūε), ūε, v̄ε) +
1

2

∂2LV C(ūε, v̄ε, µ̄ε)

∂(u, v)2
(u− ūε, v − v̄ε)

2

+
1

2

(
∂2LV C(ũ, ṽ, µ̄ε)

∂(u, v)2
− ∂2LV C(ūε, v̄ε, µ̄ε)

∂(u, v)2

)
(u− ūε, v − v̄ε)

2.

Using the SSC of Assumption 4.1, we obtain

LV C(u, v, µ̄ε) ≥ JV C(G(ūε), ūε, v̄ε) + α‖u− ūε‖2 + ψ(ε)‖v − v̄ε‖2

+
1

2

(
∂2LV C(ũ, ṽ, µ̄ε)

∂(u, v)2
− ∂2LV C(ūε, v̄ε, µ̄ε)

∂(u, v)2

)
(u− ūε, v − v̄ε)

2.

One can easily see that the second derivative (4.23) is independent of the virtual
control v since the control-to-state operator is only applied to the control variable u
and linear mixed control-state constraints are considered. Moreover, one can prove
under Assumption 2.1 that the second derivative of the Lagrangian (4.23) is locally
Lipschitz continuous with respect to u, i.e. there exists a positive constant CL such
that the estimate∣∣∣∣(∂2LV C(u1, v, µ)

∂(u, v)2
− ∂2LV C(u2, v, µ)

∂(u, v)2

)
h2

∣∣∣∣ ≤ CL‖u1 − u2‖‖h‖2
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holds true for ‖u1−u2‖ ≤ δ and δ > 0 sufficiently small, see for instance [29, Lemma
4.24]. By means of the Lipschitz property concerning u and the independency of v,
see (4.23), we conclude

LV C(u, v, µ̄ε) ≥ JV C(G(ūε), ūε, v̄ε) + α‖u− ūε‖2 + ψ(ε)‖v − v̄ε‖2

− c‖u− ūε‖(‖u− ūε‖2 + ‖v − v̄ε‖2)

≥ JV C(G(ūε), ūε, v̄ε) + (α− cδ)‖u− ūε‖2 + (ψ(ε)− cδ)‖v − v̄ε‖2,

provided that ‖u− ūε‖ ≤ δ. For sufficiently small δ > 0, we find a positive constant
β > 0 such that the assertion is fulfilled.

Forthcoming, we will rewrite the second order sufficient optimality condition of
problem (QV C) in terms of the equivalent Moreau-Yosida regularization (PMY ) using
relations between the respective variables derived in the previous section.

Due to Corollary 3.5, the control ūε satisfies the first order optimality conditions
(3.10)-(3.12) of (PMY ) with γ = ψ(ε)

ξ(ε)2
. Thus, we set

ūλ = ūε, λ̄γ = µ̄ε =
ψ(ε)

ξ(ε)2
(yc − ȳε)+

and the SSC (4.24) of Assumption 4.1 yields the following

‖G′(ūγ)hu‖2 + ν‖hu‖2 + (G(ūγ)− yd, G
′′(ūγ)h

2
u)− (λ̄γ, G

′′(ūγ)h
2
u) ≥ α‖hu‖2 (4.26)

for all hu ∈ L2(Ω), written in terms of the Moreau-Yosida regularization. Summa-
rizing, one ends up with

J ′′(G(ūγ), ūγ)h
2
u − (λ̄γ, G

′′(ūγ)h
2
u) ≥ α‖hu‖2.

Concluding, we can state the following result.

Theorem 4.3 Let ūγ ∈ Uad, with associated state ȳγ = G(ūγ), be a control satis-
fying the first order necessary optimality (3.10)-(3.12). Additionally, there exists a
constant α > 0 such that

J ′′(G(ūγ), ūγ)h
2
u − γ((yc −G(ūγ))+, G

′′(ūγ)h
2
u) ≥ α‖hu‖2 (4.27)

is fulfilled for all hu ∈ L2(Ω). Then, there exist constants β > 0 and δ > 0 so that

JMY (G(uγ), uγ) ≥ JMY (G(ūγ), ūγ) + β‖uγ − ūγ‖2 (4.28)

holds for all uγ ∈ Uad with ‖uγ − ūγ‖ ≤ δ. In particular, (G(ūγ), ūγ) is a locally
optimal solution of (PMY ).

Proof. Due to Corollary 3.5 and (3.21), the pair (ūγ, v̄γ := 1
ξ(ε)

(yc − ȳγ)+) satis-
fies the first order optimality conditions (3.17)-(3.20) of problem (QV C), where the
parameter functions ψ(ε) and ξ(ε) are chosen in a way such that γ = ψ(ε)

ξ(ε)2
. The
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associated Lagrange multiplier in the optimality conditions is denoted by µ̄γ. Due
to the former argumentation, one can easily see, that (4.27) implies the coercivity
condition (4.24) in the point (ūγ, v̄γ, µ̄γ), i.e.

∂2LV C(ūγ, v̄γ, µ̄γ)

∂(u, v)2
[hu, hv] ≥ α‖hu‖2 + ψ(ε)‖hv‖2

for all hu ∈ L2(Ω). Thus, Assumption 4.1 is satisfied and we proceed by applying
Proposition 4.25. Hence, there exist constants β > 0 and δ > 0 such that

JV C(G(u), u, v) ≥ JV C(G(ūγ), ūγ, v̄γ) + β(‖u− ūγ‖2 + ‖v − v̄γ‖2)

for all feasible (u, v) of problem (QV C) with ‖u − ūγ‖ ≤ δ. Now, we consider an
arbitrary control u ∈ Uad with ‖u − ūγ‖ ≤ δ. Furthermore, the pair of controls
(u, v := 1

ξ(ε)
(yc −G(u))+) is feasible for problem (QV C) since

ξ(ε)v = (yc −G(u))+ ≥ yc −G(u).

By means of the equivalence of the problems (PMY ) and (QV C) and γ = ψ(ε)
ξ(ε)2

, we
deduce

JMY (G(ūγ), ūγ) = JV C(G(ūγ), ūγ v̄γ) and JMY (G(u), u) = JV C(G(u), u, v).

Concluding, we obtain the assertion

JMY (G(u), u) ≥ JMY (G(ūγ), ūγ) + β‖u− ūγ‖2

for all u ∈ Uad with ‖u− ūγ‖ ≤ δ.
Referring to [18], we point out that for sufficiently small ε the second order sufficient
condition (4.1) can be deduced from the second order sufficient condition (2.9) of the
original problem (P). This was proven under the assumption that the dual variables
µ̄ and p̄ introduced in Theorem 2.4 are unique. By the previously shown equivalence
of the two regularization concepts, it is clear that under similar assumptions the
sufficient condition (4.27) can also be derived from (2.9).

Corollary 4.4 Let ū fulfill the first order necessary optimality conditions of The-
orem 2.4 with unique dual variables µ̄ and p̄, as well as the second order sufficient
condition (2.9). Then there exists a constant α > 0 such that

J ′′(G(ūγ), ūγ)h
2
u − γ((yc −G(ūγ))+, G

′′(ūγ)h
2
u) ≥ α‖hu‖2

is fulfilled for all hu ∈ L2(Ω) provided that γ is sufficiently large.

5 Generalizations

In this section we want to point out that the theory presented in this paper can be
generalized to large classes of semilinear optimal control problems. Let us start with
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an elliptic boundary control problem. The virtual control formulation with φ(ε) = 0
is given by

min J(yε, uε, vε) :=
α1

2
‖yε − yd,Ω‖2

L2(Ω) +
α2

2
‖yε − yd,Γ‖2

L2(Γ)

+
ν

2
‖uε‖2

L2(Γ) +
ψ(ε)

2
‖vε‖2

L2(Ω)

Ayε + d(x, yε) = 0 in Ω

∂nA
yε + b(x, yε) = uε on Γ

ua ≤ uε(x) ≤ ub a.e. in Γ

yε(x) ≥ yc(x)− ξ(ε)vε a.e. in Ω,


(QV C

1 )

and the corresponding equivalent Moreau-Yosida regularization is presented by

min J(yγ, uγ, vγ) :=
α1

2
‖yγ − yd,Ω‖2

L2(Ω) +
α2

2
‖yγ − yd,Γ‖2

L2(Γ)

+
ν

2
‖uγ‖2

L2(Γ) +
γ

2
‖(yc − yγ)+‖2

L2(Ω)

Ayγ + d(x, yγ) = 0 in Ω

∂nA
yγ + b(x, yγ) = uγ on Γ

ua ≤ uγ(x) ≤ ub a.e. in Γ.


(PMY

1 )

The theory presented in section 3 can be adapted by only changing the correspond-
ing sets. The results of section 4 depend on the dimension of the domain. For
dimension N = 3 we get a two norm discrepancy in the second order sufficient opti-
mality condition of proposition 4.2 in the virtual control approach, but only for the
original control u. Of course, the corresponding sufficient optimality condition for
the Moreau-Yosida regularization in theorem 4.3 contains a two norm setting, too.
Let us mention that in this case sufficient optimality conditions for the unregular-
ized problems are challenging due to regularity problems. Therefore, corollary 4.4
is then not verified by our theory.

It is also possible to generalize the theory to the regularized version of parabolic
optimal control problems like

min J(y, u) :=
α1

2
‖y − yd‖2

L2(Q) +
α2

2
‖y(T )− yT‖2

L2(Ω)

+
α3

2
‖y − yΣ‖2

L2(Σ) +
ν

2
‖u‖2

L2(Q)

yt + Ay + d(t, x, y) = u in Q = (0, T )× Ω

∂nA
y + b(t, x, y) = 0 on Σ = (0, T )× Γ

ua ≤ u(t, x) ≤ ub a.e. in Q

y(t, x) ≥ yc(t, x) a.e. in Q,

y(0) = y0.


(P2)

Due to the weaker differentiability properties of parabolic control-to-state operators,
a two norm discrepancy will have to be taken into account in proposition 4.2 and
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theorem 4.3 for spatial dimensions greater than one if b ≡ 0, and regardless of the
spatial dimension if b 6≡ 0. Similarly to the elliptic problem, corollary 4.4 is then
not verified.

Moreover, it is possible to discuss more general objectives and nonlinearities in the
partial differential equations with respect to the control u. However, then the discus-
sion of the differentiability of the control-to-state mapping becomes more involved.
In addition, one needs several technical assumptions on the nonlinearities to get the
desired results. Such assumptions are essentially that ones that were needed for
the derivation of sufficient second order conditions, see [25]. These discussions go
beyond the scope of the paper.

6 Numerical example

In this section we will compare both of the previously presented the regulariza-
tion approaches numerically. Therefore, we construct an optimal solution for the
following optimal control problem

min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

∆y + y + y3 = u+ f in Ω

∂ny = 0 on Γ

ua ≤ u(x) ≤ ub a.e. in Ω

y(x) ≥ yc(x) a.e. in Ω̄,


(PT)

with Ω = [0, 1]2 denotes the unit square. The Tikhonov regularization parameter
was set to ν = 1 · 10−3. It is well known that Lagrange multipliers associated to
pointwise state constraints are in general only regular Borel measures, see e.g. [3]
or [4]. In order to construct an analytical solution (ū, ȳ), we have to satisfy the
optimality system

∆ȳ + ȳ + ȳ3 = ū+ f

∂nȳ = 0

∆p+ p+ 3ȳ2p = ȳ − yd − µ

∂np = 0

(p+ νū , u− ū) ≥ 0, ∀u ∈ Uad∫
Ω̄

(yc − ȳ)dµ = 0, ȳ(x) ≥ yc(x) for all x ∈ Ω̄

∫
Ω̄

ϕdµ ≥ 0 ∀ϕ ∈ C(Ω̄)+,

with an adjoint state p and a Lagrange Multiplier µ, see [6]. For the optimal state,
control and adjoint state we choose

ȳ(x) = −16x4
1 + 32x3

1 − 16x2
1 + 1, p(x) = 2x3

1 − 3x2
1, ū(x) = Π[ua,ub]{−

p(x)

ν
},
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Figure 1: Control uγ Figure 2: State yγ

with ua = 150 and ub = 850, such that the gradient equation in the previous
optimality system is fulfilled. Moreover, one can easily check that the homogeneous
Neumann boundary conditions in the state and the adjoint equation are satisfied.
The lower bound yc is defined by

yc(x) = min{ȳ(x1 = 0.2), ȳ(x)}.

This implies that the state constraints are active in Ωa = {x ∈ Ω: 0.2 ≤ x1 ≤ 0.8}.
Continuatively, with

µ(x) = max{0, ȳ(x1 = 0.2)− ȳ(x)}

the complementary slackness condition in the optimality system is satisfied. Finally,
the partial differential equations of the optimality system yield

f = −∆ȳ + ȳ + ȳ3 − ū

yd = ∆p− p− 3ȳ2p+ ȳ − µ.

Notice, that the active sets associated to the pure state constraints and active set
corresponding to the control constraints are not disjoint. Thus, a regularization of
the problem by the virtual control approach is reasonable.

Forthcoming, the test problem (PT) is regularized by the Moreau-Yosida regulariza-
tion and by the virtual control approach, see Section 3. The particular problems are
denoted by (PTMY ) and (PTV C), respectively. These optimization problems were
solved numerically by a SQP method that is described in detail for instance in [15]
and [28]. Furthermore, a primal-dual active set strategy is used solving the arised
linear quadratic subproblems, see e.g. [2, 11, 12, 19] and the references therein. All
functions were discretized by piecewise linear ansatz functions, defined on a uniform
finite element mesh. The number of intervals in one dimension, denoted by N , is
related to the mesh size by h =

√
2N . In the following all computations were per-

formed with N = 192.
The Figures 1-4 show the numerical solution of the Moreau-Yosida approximation

15



Figure 3: Adjoint state pγ
Figure 4: Approximation of La-
grange multiplier λγ

of problem (PT) for the fixed penalization parameter λ = 1 · 105. In Figure 4 one
can see irregularities on the boundary and in the parts of the domain, where the
active sets of the original problem (PT) associated to the different constraints are
not disjoint. Due to the knowledge of an analytical solution of problem (PT), we
obtain the following error of the numerical solution of problem (PTMY ):

‖uγ−ū‖ ≈ 3.1426e−02, ‖yγ−ȳ‖ ≈ 2.7497e−05, ‖pγ−p‖ ≈ 1.5147e−04. (6.29)

The convergence behavior of the SQP method is presented in Table 1. We displayed
the value of the cost functional JMY for each step of SQP algorithm as well as the
relative difference between two iterates, that is defined by

δγ =
1

3

(
‖u(n)

γ − u
(n+1)
γ ‖

‖u(n+1)
γ ‖

+
‖y(n)

γ − y
(n+1)
γ ‖

‖y(n+1)
γ ‖

+
‖p(n)

γ − p
(n+1)
γ ‖

‖p(n+1)
γ ‖

)
.

Moreover, this quantity is used for a termination condition of the SQP method. In
all numerical test the algorithm stops if δ < 1 · 10−6. In addition the number of
iterations of the primal-dual active set strategy is shown.

itSQP JMY δγ #itAS

1 1.497214e+ 02 1.414707e+ 00 13
2 1.766473e+ 02 3.585474e− 01 32
3 1.767212e+ 02 4.605969e− 02 12
4 1.767218e+ 02 7.115167e− 04 6
5 1.767218e+ 02 2.087841e− 07 1

Table 1: Convergence of SQP-method for (PTMY )

We proceed with the virtual control approach (PTV C) applied to the problem (PT).
The numerical solution is denoted by the subscript ε. The parameter functions are
chosen by

ψ(ε) ≡ 1, φ(ε) = 4
√
ε, ξ(ε) =

√
ε.
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Hence, a regularization effect, which is similar to the Moreau-Yosida approximation
above, is expected for ε = 1 · 105. However, due to the choice φ(ε) 6= 0, (PTV C)
is not equivalent to the Moreau-Yosida approximation of problem. Figures 5 and 6
shows the optimal virtual control vε of problem (PTV C) and the Lagrange multiplier
associated to the mixed control-state constraints. As one can see, the virtual control
is compared to the Lagrange multiplier less irregular in the parts of the domain,
where both kind of constraints are active. Except minor differences, the Lagrange
multiplier µε in Figure 6 and λγ in Figure 4 from the Moreau-Yosida approximation
have an identical shape. Note, that we skipped displaying the optimal control uε,

Figure 5: Control vε Figure 6: Lagrange multiplier µε

the state yε and the adjoint state pε, since there is no visible difference to the Figures
1-3 recognizable. The convergence of the SQP method is illustrated in Table 2. The
quantity δε for the termination condition is now defined by

δε =
1

4

(
‖u(n)

ε − u
(n+1)
ε ‖

‖u(n+1)
ε ‖

+
‖v(n)

ε − v
(n+1)
ε ‖

‖v(n+1)
ε ‖

+
‖y(n)

ε − y
(n+1)
ε ‖

‖y(n+1)
ε ‖

+
‖p(n)

ε − p
(n+1)
ε ‖

‖p(n+1)
ε ‖

)
.

itSQP JV C δε #itAS

1 1.497193e+ 02 1.311076e+ 00 14
2 1.766467e+ 02 1.298795e+ 00 32
3 1.767206e+ 02 6.030644e− 02 11
4 1.767212e+ 02 3.294671e− 03 6
5 1.767212e+ 02 5.027833e− 06 2
6 1.767212e+ 02 4.540506e− 13 1

Table 2: Convergence of SQP-method for (PTV C)

We observe that the convergence behavior of the SQP-method applied to (PTV C)
and (PTMY ) is very similar. In the case of the virtual control approach the algorithm
needs one SQP-step more than for Moreau-Yosida regularization. The stopping
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criterion contains an additional term (measuring the error in the virtual control)
in the virtual control approach. Therefore, the corresponding criterion is stronger
than that one for the Moreau-Yosida regularization. This leads to an additional
SQP step.

Concluding, we will compare both of the concepts as the related regularization
parameter tends to infinity and zero, respectively. We mention Hintermüller and
Kunisch in [14, 13], where path-following methods associated to the Moreau-Yosida
regularization parameter are developed. In this numerical test, we will use only
a simple nested approach for both of the regularization concepts: the numerical
solution of the problem (PTV C) or (PTMY ), respectively, is taken as the starting
point for the SQP-method with respect to the next regularization parameter. The
convergence behavior of the Moreau-Yosida approximation (PTMY ) for increasing
regularization parameters γ is displayed in Table 3. As expected, the errors ‖ūγ− ū‖
and ‖ȳγ − ȳ‖ are decreasing for increasing parameters γ. Moreover, an influence of
the discretization error is visible in the difference of the controls.

γ ‖ūγ − ū‖ ‖ȳγ − ȳ‖ #itSQP #itAS

20 5.114051e− 01 1.495545e− 02 8 34
40 3.161757e− 01 7.893723e− 03 3 5
80 1.853852e− 01 4.056569e− 03 2 3
160 1.059317e− 01 2.053420e− 03 2 3
320 6.072430e− 02 1.030834e− 03 2 3
640 3.559594e− 02 5.152590e− 04 2 2
1280 2.176439e− 02 2.568771e− 04 2 3
2560 1.442802e− 02 1.277243e− 04 2 2
5120 1.093492e− 02 6.323253e− 05 2 2
10240 9.458933e− 03 3.104869e− 05 2 2
20480 8.883362e− 03 1.500880e− 05 2 2
40960 8.656709e− 03 7.063147e− 06 2 3

Table 3: Convergence of (PTMY )

We proceed with an analogous observation for the virtual control concept (PTV C)
by setting ε = 1/γ and the parameter functions

ψ(ε) ≡ 1, φ(ε) =
√
ε, ξ(ε) =

√
ε.

The results are shown in Table 4. The regularization error in the state and the
control is decreasing as the regularization parameter ε tends to zero. Comparing
both regularization concepts, there is no significant difference in the development of
the errors and the iteration numbers. The slightly higher numbers of iterations for
the Primal dual active set strategy were explained by the different quantities δγ and
δε for the stopping criteria of the SQP-algorithm.
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ε ‖ūε − ū‖ ‖ȳε − ȳ‖ #itSQP #itAS

5.e− 02 7.529252e− 01 3.348741e− 02 8 36
2.5e− 02 4.016954e− 01 1.860292e− 02 3 5
1.25e− 02 2.130163e− 01 9.828646e− 03 3 5
6.25e− 03 1.157951e− 01 5.045643e− 03 3 4
3.125e− 03 6.472462e− 02 2.555012e− 03 3 4
1.5625e− 03 3.714016e− 02 1.284863e− 03 3 4
7.8125e− 04 2.233563e− 02 6.435689e− 04 2 2
3.90625e− 04 1.470637e− 02 3.215488e− 04 2 2
1.953125e− 04 1.109796e− 02 1.603108e− 04 2 2
9.765625e− 05 9.563392e− 03 7.970102e− 05 2 3
4.882813e− 05 8.951080e− 03 3.944239e− 05 2 3
2.441406e− 05 8.700583e− 03 1.936622e− 05 2 4

Table 4: Convergence of (PTV C)
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