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Abstract

In this article, we present new ideas concerning Non-Gaussian Component
Analysis (NGCA). We use the structural assumption that a high-dimensional
random vector ~X can be represented as a sum of two components - a low-
dimensional signal ~S and a noise component ~N . We show that this assump-
tion enables us for a special representation for the density function of ~X.
Similar facts are proven in original papers about NGCA ([1], [5], [13]), but
our representation differs from the previous versions. The new form helps us
to provide a strong theoretical support for the algorithm; moreover, it gives
some ideas about new approaches in multidimensional statistical analysis. In
this paper, we establish important results for the NGCA procedure using the
new representation, and show benefits of our method.

1



Contents

Introduction 2

1 Set-up and General Scheme 3

2 Main results 5

2.1 Density representation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Key result of NGCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 What is (Ker T)⊥ ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Discussion 8

A Proofs of the main results 9

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.3 Some facts about subspaces . . . . . . . . . . . . . . . . . . . . . . . 12

B Examples of possible applications 13

B.1 Classification problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B.2 Portfolio Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgements 17

References 17

2



Introduction

Each method for solving the dimension reduction problem has its own ”point of
departure”. In the approach based on Independent Component Analysis, high-
dimensional data are assumed to be a linear or nonlinear mixture of unknown la-
tent non-Gaussian variables [Hyvärianen et al., 2001]. Another popular method -
Principal Component Analysis - implies that the projection representing the data
optimally in the least-squared sense is the best projection [Jackson, 1991].

In this paper, we discuss the new ideas concerning Non-Gaussian Component Anal-
ysis (NGCA). The method assumes that the ”useful part” (which one can imagine
as ”a signal” or ”an information”) of the high - dimensional random variable belongs
to some low-dimensional space, and the ”rest part” has normal distribution. This
assumption follows the observation that in real-world applications the ”useful part”
is non-Gaussian while the ”rest part” has a nearly Gaussian distribution [Blanchard
et al, 2006].

The aim of Non-Gaussian Component Analysis is to estimate the subspace of the
”useful part”, also known as an effective dimension reduction subspace (EDR sub-
space). The original method can be briefly explained as follows: 1) finding vectors
that belong to the EDR subspace; 2) constructing a basis from vectors that were
obtained on the first step. [Blanchard et al., 2006; Kawanabe et al., 2007; Dalalyan
et al., 2007; Diederichs et al., 2010]

We focus on the first task - finding vectors from the EDR subspace. The proof of
the original method is based on the special representation of the density function.
A serious limitation is that the representation involves the covariance matrix of the
noise component, which cannot be consistently estimated from the data. This fact
is an obstacle in real-world applications of the method.

In this article, we describe the new representation of the density function. Our repre-
sentation doesn’t involve the noise covariance matrix; it only includes the covariance
matrix of the observations, which can be assessed.

This paper is organized as follows. Subsection 2.1 explains the new representation.
Then we formulate the main results of NGCA using this form and discuss practical
issues. Afterwards we discuss advantages of the new representation. All proofs can
be found in the appendices, as well as some examples of practical applications.

1 Set-up and General Scheme

This section gives a formal description of the method.

Assume that a high-dimensional random variable ~X ∈ Rd can be represented as a
sum of two independent components - a low-dimensional signal and a noise compo-
nent. More precisely,

~X = ~S + ~N, (1)
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where

• ~S belongs to some low-dimensional subspace S, dimS = m < d;

• ~N is a normal vector with zero mean and a covariance matrix Γ;

• ~S is independent of ~N .

The original aim of NGCA is to recover the subspace (KerT )⊥. Theoretical frame-
work is presented in [1], [5], [13]. It can be split into the following steps:

(T1) A proof of the formula for the density function of X:

p(~x) = g(T~x)φΓ(~x)

where

(i) T is a linear transformation from Rd to some subspace S◦ that has di-
mensionality m;

(ii) g is some function from S◦ to R;

(iii) φΓ(~x) is the density function for the normal distribution with zero mean
and covariance matrix equals Γ.

So, the density function of ~X can be represented as a product of two functions.
The first one is a superposition of the linear transformation T from Rd to some
low-dimensional subspace S◦ and some function from S◦ to R. The second
function is the density function of the normal distribution.

(T2) A proof of the key result: if function ψ : Rd → R is such that

E
[
~Xψ( ~X)

]
= ~0, (2)

then
~β := E

[
∇ψ( ~X)

]
∈ (Ker T )⊥ .

This result gives a method for estimating vectors from (Ker T )⊥. It means
that if one can construct a function that satisfies (2) then one can estimate a
vector from the subspace (Ker T )⊥.

(T3) Finding a method for constructing a basis of (KerT )⊥ from vectors that were
obtained on the previous step.

One can develop a method for estimating the EDR subspace, based on (T1)-(T3):

(P1) Estimate vectors from (Ker T)⊥; the corresponding fact is proved in (T2).

(P2) Construct a basis of S using vectors from previous step; see item (T3).
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This paper has a slightly different focus: the aim is to recover the subspace S.
Relation between the subspace S and the subspace (KerT )⊥ uses an unknown matrix
Γ (covariance matrix of noise). This means that it is impossible to estimate vectors
from S using only estimates of vectors from (KerT )⊥; in other words, original
approach produces estimates vectors from S only in the case of white noise.

This article is organized as follows:

Subsection 2.1: a new ”convenient” form of the density function of ~X (alternative
version of the item (T1)), which doesn’t use the matrix Γ; the proof is given in A.1.

Subsection 2.2: the key result for the new representation of the density function
(a generalization of the original key result is given); the proof can be found in A.2.

Subsection 2.3: studying a relation between S and (KerT )⊥; this relation also
doesn’t include matrix Γ.

Section 3: discussion about the advantages of the new form.

Appendix A: proofs of the main results.

Appendix B: some ideas about application of NGCA in multidimensional statis-
tical analysis.

2 Main results

2.1 Density representation

The new representation for the density function is given in Theorem 1.

Theorem 1. Let the structural assumption (1) be fulfilled. Then the density function

of the random vector ~X can be represented in the following way:

p(~x) = g(T~x)φΣ(~x), (3)

where

• T : Rd → S ′, S ′ := Σ−1/2S, dimS ′ = m,

T~x = PrS′{Σ−
1
2~x}, (4)

by Σ we denote the matrix E
[
~X ~XT

]
.

• g : S ′ → R,

g(~t) = |Σ−1/2|
q
(
PrS′{~t}

)
φm
(
PrS′{~t}

) , (5)

where q(·) is the density function of the random variable Pr S′{Σ−1/2 ~X}.
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Figure 1: The action of the linear transformation T: 1. ~x is transformed by S; 2.
transformed ~x is projected on transformed S.

The proof is given in Appendix A.1.

Remark 1. One can find similar results in [1], [5], and [14]. Usually such facts
are stated in the following form: if assumption (1) is fulfilled, then ∃ T : Rd →
S̃, dim S̃ = m, ∃g : S̃ → R such that

p(~x) = g(T~x)φΓ(~x) (6)

with some linear transformation T and some function g. Main difference between
(3) and (6) is that (6) uses the covariance matrix Σ while (3) relies on the covariance
matrix of the Gaussian component.

Advantages of the new form will be discussed later, see subsection 3 for details.

Remark 2. The linear transformation T acts on ~x in the following way:

1. firstly, S and ~x are transformed by matrix Σ−1/2;

2. secondly, transformed ~x is projected on transformed S.

Figure 1 illustrates this action.

2.2 Key result of NGCA

The key result of NGCA can be found e.g. in [14]. We state this result in a slightly
different form.

Theorem 2. Assume that the density function of a random vector ~X ∈ Rd can be
represented in the following way:

p(~x) = g(T~x)φA(~x), (7)

where T : Rd → E is any linear transformation (E - any subspace), g : E → R - any
function, and A - any d× d symmetric positive matrix.
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Let a function ψ : Rd → R be such that

E
[
~Xψ( ~X)

]
= 0.

Then
E
[
∇ψ( ~X)

]
∈ (Ker T )⊥ .

The proof is given in Appendix A.2.

This theorem applies to the representation from the previous subsection (see (3))
and to the former versions of theorem 1 (see (6)). In the next section, we explain
why this result is useful for finding vectors from S.

2.3 What is (Ker T)⊥ ?

The previous section gives us the method for finding vectors from the subspace
(Ker T)⊥. Now we explain, why it is useful for our purposes (that is, finding vectors
that belong to S).

The following lemma plays the key role in practical use of NGCA.

Lemma 3. Let T be the linear transformation defined by (4). Then

(Ker T)⊥ = Σ−1S.

Proof. By definition, for any x

T~x = PrΣ−1/2S{Σ−
1
2~x}.

It is easy to see that

Ker T =
{
~x : Σ−1/2~x ⊥ Σ−1/2S

}
=
{
~x : ∃~s ∈ S | ~x>

(
Σ−1/2

)>
Σ−1/2~s = 0

}
=
{
~x : ∃~s ∈ S | ~x> Σ−1~s = 0

}
=
{
~x : ~x ⊥ Σ−1S

}
.

Here we use the symmetry of the matrix Σ−1/2.

From a practical point of view, the last lemma means that one can obtain estimates
for vectors from the subspace S using the key result. In fact, one can estimate
vectors from the space Σ−1S using the key result. Denote these vectors by β̂i. Then
one can estimate vectors from the space S by Σ̂β̂i, where Σ̂ is an estimator of the
matrix Σ.
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3 Discussion

This section discusses the novelty of the proposed approach relative to the original
papers about NGCA ([1], [5]).

Theorem 1 stands that in our set-up the density function of ~X can be represented
in the following way:

p(~x) = g(T~x)φΣ(~x),

where the linear transformation T is given by (4) and the function g is given by (5).
In the previous papers about NGCA, another result is proved (it has been already
mentioned, see remark 1):

p(~x) = g(T~x)φΓ(~x).

The new representation has only one principal difference - the covariance matrix of
the normal component is equal to Σ while in the original version it is equal to Γ.

The new approach has some advantages.

1. One doesn’t need any knowledge of Γ. In fact, the representation from Theo-
rem 1 involves only the unknown subspace S; on the other hand, the former
form involves the subspace S and the matrix Γ.

2. It is clear what the linear transformation T and the subspace (Ker T)⊥ are,
see figure 1, remark 2, and section 2.3 for details.

In the contrary of the new version, action of the linear transformation T from
the former version is much more involved. The explanation of this action is
given below. Consider three cases.

(i) Γ = Id and S is a span of first m basis vectors. Then the linear transfor-
mation T is simply a projector onto the first m components; denote this
projector by Πm.

(ii) The noise covariance matrix Γ is still the identity matrix Id; S is a span
of some m orthogonal vectors. Denote a transaction matrix by U . Then

T = Πm U.

(iii) Γ is not necessary equal to the identical matrix; S is any subspace with
dimensionality m. In this case

T = Πm U Γ−1/2. (8)

In the first and in the second cases and even in the third (general) case with
a diagonal matrix Γ, one can show that

(KerT )⊥ = S.

If Γ is not diagonal, then the formula for the subspace (KerT )⊥ includes the
matrix Γ, which cannot be estimated from the data. This fact is an obstacle
in real-world applications of the method.
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3. The new presentation for the density function allows us to apply NGCA to
the classification problem. According to this method given in B.1, one has to
test the assumption

Σ1 = Σ2,

where Σ1 and Σ2 are the covariance matrices for the first and the second groups
correspondingly. This assumption is widely used and the testing problem can
be solved by different methods ([6], [9]).

Possible applications of NGCA in the previous versions lead to the assumption
of equality of the noise covariance matrices. Such hypothesis are more difficult
to test.

A Proofs of the main results

A.1 Proof of Theorem 1

Step 1. Denote by ~X ′ = Σ−1/2 ~X the standardized vector,

Σ−1/2 ~X = Σ−1/2~S + Σ−1/2 ~N. (9)

Introduce the notation

~S ′ = Σ−1/2~S, ~N ′ = Σ−1/2 ~N. (10)

The first component in (9) belongs to the subspace S ′ := Σ−1/2S. Denote by N′ the
subspace that is orthogonal to S ′,

N′ = Σ1/2S⊥.

Studying a relation between the subspaces S ′ and N′ can be found in Appendix A.3.

Vector N′ can be decomposed into the sum of two vectors,

~N ′ = ~NS′ + ~NN′ ,

where ~NS′ ∈ S ′, ~NN′ ∈ N′.

So, up to now the following decomposition of ~X ′ is proved:

~X ′ = ~S ′ + ~NS′︸ ︷︷ ︸
∈ S ′

+ ~NN′︸︷︷︸
∈ N′

.

It is worth mentioning that the density function doesn’t depend on a basis. This
means that for a calculation of the density function the basis can be changed arbi-
trarily. Let us choose the basis such that the first m vectors ~v1, ..., ~vm compose a
basis of S ′ and the next d − m vectors ~vm+1, ..., ~vd compose a basis of N′. In the
following we assume that this change is already made.
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Step 2. By definition, ~X ′ is a standardized vector. This step shows that the vectors
~Z ′ = ~S ′ + ~NS′ and ~NN′ are also standardized.

Id = Cov ~X ′ = E
[
~X ′ ~X ′T

]
= E

[
~Z ′ ~Z ′T

]
+E

[
~NN′

~NT
N′

]
+E

[
~S ′ ~NT

N′

]
+E

[
~NS′ ~N

T
N′

]
+E

[
~NN′

~S ′T
]

+E
[
~NN′

~NT
S′

]
(11)

Note some facts:

(i) By the change of the basis, the last d−m components of the vectors ~S ′, ~Z ′, ~NS′

and the first m components of the vector ~NN′ are equal to zero.

(ii) The vectors ~S ′ = Σ−1/2~S and ~NN′ = Pr N′{Σ−1/2 ~N} are independent as func-

tions of the independent vectors ~S and ~N .

(iii) E ~NN′ = E
[
PrN′{Σ−1/2 ~N}

]
= 0, because of E ~N = 0 and (i).

Now it’s easy to see that the third and the fifth summands in (11) are equal to zero.
In fact,

E
[
~S ′ ~NT

N′

]
= E~S ′ ENT

N′ = 0.

So, one can rewrite (11) in the following way

Id = E
[
~Z ′ ~Z ′T

]
+ E

[
~NN′

~NT
N′

]
+ E

[
~NS′ ~N

T
N′

]
+ E

[
~NN′

~NT
S′

]
. (12)

Decompose the vectors ~Z ′, ~NS′ and ~NN′ into the basis ~v1, .., ~vd:

~Z ′ =
m∑
i=1

zi~vi; ~NS′ =
m∑
i=1

ni~vi; ~NN′ =
d∑

i=m+1

ni~vi, (13)

where all coefficients zi and ni are random values.

Equality (12) can be rewritten as follows:

Id =
m∑

i,i′=1

E [zizi′ ]~vi~v
>
i′ +

d∑
i,i′=m+1

E [nini′ ]~vi~v
>
i′

+
m∑
i=1

d∑
i′=m+1

E [nini′ ]~vi~v
>
i′ +

d∑
i=m+1

m∑
i′=1

E [nini′ ]~vi~v
>
i′

Then the second term in the right hand side is equal to Id−m, i.e.

E
[
~NN′

~NT
N′

]
=

d∑
i,i′=m+1

E [nini′ ]~vi~v
>
i′ = Id−m.
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Thus, the (d −m) - dimensional vector ~NN′ has the standard normal distribution.
Denote the density function by φd−m(x).

Step 3. Denote by F ′(~x′) and p′(~x′) the distribution function and the density

function of the vector ~X ′.

F ′(~x′) = P
{
~X ′ 6 ~x′

}
= P

{
~Z ′ + ~NN′ 6 ~x′

}
(14)

Note some facts:

(i) Vectors ~Z ′ = ~S ′ + ~NS′ and ~NN′ are independent. In fact, vectors ~S ′ = Σ−1/2~S

and ~N ′ = Σ−1/2 ~N are independent. Then vectors ~S ′, ~NN′ and ~NS′ are jointly
independent (this follows from the choice of the basis). Finally, ~Z ′ and ~NN′

are independent as functions of independent variables.

(ii) The basis choice (13) enables us to split the inequality

~Z ′ + ~NN′ 6 ~x′ =
d∑
i=1

xi~vi

into two:

~Z ′ 6
m∑
i=1

xi~vi, ~NN′ 6
d∑

i=m+1

xi~vi.

In the sequel, the following notation is used

~xS′ :=
m∑
i=1

xi~vi, ~xN′ :=
d∑

i=m+1

xi~vi

The function F ′ can be rewritten in the following way:

F ′(~x′) = P
{
~Z ′ + ~NN′ 6 ~x′

}
= P

{
~Z ′ 6 ~xS′ , ~NN′ 6 ~xN′

}
= P

{
~Z ′ 6 ~xS′

}
P
{
~NN′ 6 ~xN′

}
.

Taking derivatives of the both parts of the last formula gives the representation of
the density function of ~X ′.

p(~x′) = q(~xS′)φd−m(~xN′) =
q (~xS′)

φm (~xS′)
φd(~x

′) =
q(PrS′{~x′})
φm(PrS′{~x′})

φd(~x
′),

where by q(·) denote the density function of the random vector ~Z ′ = ~S ′ + ~NS′ =

PrS′{ ~X}.
Step 4. The last step derives representation of the density function of the vector
~X = Σ1/2 ~X from the density function of ~X ′. According to the well-known formula
for a density transformation,

p(~x) = |Σ−1/2| p′(Σ−1/2~x) = |Σ−1/2|
q
(
PrS′{Σ−1/2~x}

)
φm (PrS′{Σ−1/2~x})

φd(Σ
−1/2~x).

The remark φd(Σ
−1/2~x) = φΣ(~x) concludes the proof.
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A.2 Proof of Theorem 2

Integration by parts yields

E ∇ψ( ~X) =

∫
∇ [ψ(~x)] p(~x)dx = −

∫
ψ(~x)∇ [p(~x)] dx. (15)

The gradient of the density function can be represented as a sum of two components:

∇p(~x) = ∇ [log p(~x)] p(~x) = ∇ [log g(T~x)] p(~x) +∇ [log φA(~x)] p(~x).

The summands in the right hand side can be transformed in the following way:

∇ [log g(T~x)] p(~x) =
∇g(T~x)

g(T~x)
p(~x)

= ∇ [g(T~x)]φA(~x) = T>∇{T~x} [g(T~x)]φA(~x)

∇ [log φA(~x)] p(~x) = −Σ−1~xp(~x).

Substitution of these expressions into (15) yields:

E ∇ψ( ~X) = −T>
∫
ψ(~x)∇{T~x} [g(T~x)]φA(~x)p(~x)dx+ Σ−1

∫
ψ(~x)~xp(~x)dx

= T>~Λ + Σ−1E
[
~Xψ( ~X)

]
= T>~Λ

∈ Im(T>) = (KerT )⊥ ,

where ~Λ = −
∫
ψ(~x)∇{T~x} [g(T~x)]φA(~x)p(~x)dx. This completes the proof.

A.3 Some facts about subspaces

Denote the subspace ΓS⊥ by N. Motivation of introducing this subspace is given
in [14]: it turns out, that oblique projection onto S along N is in some sense the
optimal mapping onto S.

Lemma 4.
N := ΣS⊥.

Proof.

ΣS⊥ = E
[
~x~x⊥

]
S⊥

= E
[
~s~s⊥
]
S⊥ + E

[
~s~n⊥ + ~n~s⊥

]
S⊥ + E

[
~n~n⊥

]
S⊥ = E

[
~n~n⊥

]
S⊥,

because mathematical expectations in the first and in the second summands are
equal to zero.

This result means that the space N can be described without any knowledge of Γ.
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Figure 2: Non-Gaussian component analysis for the classification problem. We as-
sume that the useful signal for both populations belongs to the same low-dimensional
subspace S; rest parts have normal distribution, but with different covariance ma-
trices.

Lemma 5. Let S1 be any subspace, A - any symmetric matrix. Then the subspace
A−1/2S1 is orthogonal to the subspace A1/2S⊥1 .

Proof. It suffices to mention that two arbitrary elements of these subspaces are
orthogonal.

Corollary 6. The subspace Σ−1/2S is perpendicular to the subspace Σ−1/2N.

Proof.
Σ−1/2N = Σ−1/2Σ S⊥ = Σ1/2S⊥.

According to lemma 5, this subspace is perpendicular to the subspace Σ−1/2S.

The last fact plays the key role in the proof of Theorem 1.

B Examples of possible applications

B.1 Classification problem

In this section we discuss how one can use NGCA algorithm for solving the classifi-
cation problem.

Lemma 7. Consider two populations presented by vectors ~X1 and ~X2 from Rd.
Assume that

~X1 = ~S1 + ~N1, ~X2 = ~S2 + ~N2,

where

• the useful signals ~S1 and ~S2 belong to the same low-dimensional subspace
S, dim(S) = m;

13



• the noise components ~N1, ~N2 are normal vectors with covariance matrices Γ1

and Γ2;

• ~S1 is independent of ~N1, ~S2 is independent of ~N2;

• covariance matrix of ~X1 is equal to covariance matrix of ~X2; denote this matrix
by Σ.

Then the density functions of ~X1 and ~X2 can be represented in the following form:

p1(~x) = g1(T~x)φΣ(~x)

p2(~x) = g2(T~x)φΣ(~x)

where

• T : Rd → S ′, S ′ := Σ−1/2S, dimS ′ = m,

T~x = PrS′{Σ−
1
2~x}

• g1,g2 : S ′ → R,

g1(~t ) = |Σ−1/2|
q1

(
PrS′{~t}

)
φm
(
PrS′{~t}

)
g2(~t ) = |Σ−1/2|

q2

(
PrS′{~t}

)
φm
(
PrS′{~t}

)
where qi(·) are the density functions of the random variables Pr S′{Σ−1/2 ~Xi},
i = 1, 2.

Remark 3. The fourth assumption is widely used in classical methods for solving
the classification task, for example in Fisher discriminant analysis.

Proof. This lemma is a straightforward corollary of Theorem 1. One has to sepa-
rately apply Theorem 1 for each population.

So, the density functions of the random vectors ~X1 and ~X2 can be represented in
the following form:

p1(~x) = |Σ−1/2|
q1

(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x) (16)

p2(~x) = |Σ−1/2|
q2

(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x) (17)

It is worth mentioning that these representations differ only in one place: the func-
tion q1 for the first group and the function q2 for the second.

Lemma 7 yields that one can estimate the space S using the following algorithm:
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1. estimating vectors from S using the first population (by the key result)

2. estimating vectors from S using the second population (by the key result)

3. constructing a basis of S; here one can use all vectors that were obtained on
the first and on the second steps

Consider a new object ~x◦ and classify it into one category. Standard way for solving
this problem - comparison of the density functions p1(·) and p2(·) at the point ~x◦.
So, one has to compare

g1 (T~x◦)φΣ(~x◦) vs g2 (T~x◦)φΣ(~x◦).

According to (16) and (17), it is equivalent as to compare

q1

(
Pr

Σ−
1
2 S
{Σ−

1
2~x◦}

)
vs q2

(
Pr

Σ−
1
2 S
{Σ−

1
2~x◦}

)
. (18)

If the EDR subspace S is already estimated, then the data can be projected on the
low-dimensional subspace Σ−

1
2S. Afterwards task (18) is a well-known problem of

comparison of the two densities of some low-dimensional variables.

B.2 Portfolio Value at Risk

This subsection discusses possible applications of NGCA in the estimating of Value
at Risk.

At time t an investor has some endowment Wt and an additional reserve amount
Rt. An endowment can be calculated in the following way:

Wt = ~b T ~pt,

where ~b is a fixed allocation (a portfolio) and ~pt - market prices at time t (or loga-
rithms of market prices). The reserve amount is supposed to compensate potential
changes in the market price. Investor selects this reserve amount from the following
condition:

P {Wt+h +Rt < 0} = α, (19)

where α is some some fixed constant; h is some fixed amount of time points (usually
h = 10 days).

Value at Risk is defined as the required capital at time t; actually it is the sum of
the endowment and the reserve amount at time t:

VaRt = Wt +Rt.

The economical meaning of Value at Risk can be briefly explained as the maximal
loss for h days. This meaning becomes clear if one rewrites (19) as follows:

P {Wt+h < Wt − VaRt} = α.
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On the other hand, one can rewrite the last formula as

P {Wt+h −Wt < −VaRt} = α,

and statistical meaning of Value at Risk becomes also clear: (−VaRt) is in fact the
α - quantile of the distribution of Wt+h −Wt.

Let us denote the deference ~pt+h − ~pt by ~Xt, the correspondent α - quantile of the

random variable ~b T ~Xt by qα

(
~b T ~Xt

)
.

The aim is to estimate qα, see [7], [8]. In this article, we follow the proposal from
[2] based on Independent Component Analysis (ICA). ICA is used to represent the
portfolio loss as a result of several independent non - Gaussian factors. Independence
allows to estimate and study each factor independently from the others. To be more
specific, let us decompose this method into two steps:

• find statistically independent components Yt such that

Xt = AYt;

• simulate independent components N times (we denote this simulations by

ŷ
(k)
t , k = 1..N) and estimate VaRt

VaRt = − 1

N

N∑
k=1

q̂α

({
~b T Aŷ

(k)
t

})
.

The main idea of this approach is to reduce a sampling from a high-dimensional to a
low-dimensional variate. In the sequel, two methods for finding such variates using
NGCA are discussed.

The first method based on NGCA

Assume that the random variable ~Xt can be represented as a sum of two components
- a low-dimensional useful component and a Gaussian noise:

~Xt = ~St + ~Nt. (20)

Then
Rt = ~b T ~Xt = ~b T ~St + ~b T ~Nt︸ ︷︷ ︸

N(0,~b T Γ~b)

.

Note that the second variable has a normal distribution; the first component is the
scalar product of the fixed vector and the low-dimensional random vector. This
means that one can

• generate N samples {s(k)
i }di=1, k = 1..N from the distribution of ~St;

• generate N samples {n(k)
i }di=1, k = 1..N from N

(
0,~b T Γ~b

)
;
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• estimate Value at Risk

VaRt = − 1

N

N∑
k=1

q̂α

(
{~b T s(k)

i + n
(k)
i }
)
.

The second method based on NGCA

Assume that a random variable ~X satisfies (20). Then the density function of ~X
can be represented in the following way:

p(~x) = g(T~x)φΣ(~x) = |Σ−1/2|
q
(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x).

If the subspace S is already estimated, than all elements in this representation are
already known. This means that one can sample from this distribution and estimate
Value at Risk via

VaRt =
1

N

N∑
k=1

q̂α

({
~b T x(k)

a

})
.
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