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Abstract
In this paper, we investigate the inverse problem of recovering a two-dimensional

perfectly re�ecting di�raction grating from the scattered waves measured above the
structure. Inspired by a novel idea developed by Bao, Zhang and Zou [to appear
in Trans. Amer. Math. Soc.], we present a complete characterization of the global
uniqueness in determining polygonal periodic structures using a minimal number of
incident plane waves. The idea in this paper combines the re�ection principle for
the Helmholtz equation and the dihedral group theory. We characterize all periodic
polygonal structures that cannot be identi�ed by one incident plane wave, including
the resonance case where a Rayleigh frequency is allowed. Furthermore, we show that
those unidenti�able gratings provide non-uniqueness examples for appropriately chosen
wave number and incident angles. We also indicate and �x a gap in the proof of the
main theorem of Elschner and Yamamoto [Z. Anal. Anwend., 26 (2007), 165-177], and
generalize the uniqueness results of that paper.

1 Introduction
Di�raction gratings are widely used in many areas of science and technology and have a long
history (see the monographs [27] and [5] for the physical and mathematical backgrounds
as well as applications). Assume that a time-harmonic (with time variation of the form
exp(−iωt), ω > 0) electromagnetic wave is scattered by a perfectly re�ecting grating in
a homogeneous isotropic lossless medium. Suppose further that the grating is periodic in
x1-direction and constant in x3-direction. We restrict the di�raction problem to the TE
(transverse electric polarization) or TM mode (transverse magnetic polarization), which
means that the time-harmonic Maxwell equation can be reduced to a two dimensional scalar
Helmholtz equation (4+k2)u = 0 where u = u(x1, x2) is the third component of the electric
(magnetic) �eld in the TE (TM) case.
We reformulate the inverse problem according to Kirsch [23] and Bao [4]. Let the cross-
section of the di�raction grating in the (x1, x2)-plane be given by a Lipschitz curve Λ, which
is 2π-periodic with respect to x1-direction. Suppose that a plane wave given by

ui = exp(i(αx1 − βx2)), with (α, β) = k(sin θ, cos θ)

is incident in the (x1, x2)-plane upon the grating from the top with a positive constant wave
number k and the incident angle θ ∈ (−π

2
, π

2
). The domain above the grating is denoted by

ΩΛ. Then the total �eld u = u(x1, x2), which can be decomposed as the sum of the incident
�eld ui and the scattered �eld us, satis�es

∆u + k2u = 0 in ΩΛ, (1)

with the following two kinds of boundary conditions on Λ:

(TE mode) u = 0 or (TM mode) ∂u

∂n
= 0, (2)
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where ∂
∂n

denotes the normal derivative with the normal directed into ΩΛ.
We require the total �eld u to be α-quasiperiodic in x1-direction, i.e.

u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2) (3)

and the scattered �eld us to satisfy the well-known Rayleigh expansion:

us =
∑

n∈Z
An exp(iαnx1 + iβnx2) for x2 > max Λ := max

(x1,x2)∈Λ
x2, (4)

where
αn = n + α, βn := βn(θ, k) =

{
(k2 − α2

n)
1
2 if |αn| ≤ k,

i(α2
n − k2)

1
2 if |αn| > k,

with i =
√−1. Here An ∈ C(n ∈ Z) are called the Rayleigh coe�cients of us. Obviously

us in (4) can be split into a �nite sum
∑

|αn|≤k of outgoing plane waves and an in�nite sum∑
|αn|>k of exponentially decreasing functions which are called surface or evanescent waves.

Note that the series in (4) and each derivative of it are uniformly convergent on the half
space {x2 ≥ c} for all c > max Λ.
Given a �xed wave number k > 0, and one or several incident waves with distinct incident
angles θi (i = 1, 2 · · · , N), we say that a Rayleigh frequency occurs (the resonance case) if
there exist some incident angle θ = θi and n ∈ Z such that βn(θ, k) = 0.
In the following we �x some b > 0 and de�ne the admissible class of periodic grating pro�les
of this paper by

A :=



Λ :

Λ is a piecewise linear curve in {(x1, x2) : x2 < b}, which
is 2π periodic with respect to x1-direction and consists of
a �nite number of line segments in each periodic cell.



 .

The set A consists of general polygonal grating pro�les which are not necessarily de�ned
by the graph of a piecewise linear function. There always exists a solution u ∈ H1

loc(ΩΛ)
of problem (1) − (4) (see [8] and [14] for the more general transmission problems). The
uniqueness to the Dirichlet problem is always true if Λ is given by the graph of a function,
e.g., see [23] for C2 and [17] for Lipschitz functions, whereas this is not true for the Neumann
case (see [22]). In this paper we shall focus on the following inverse problem:

(IP): Determine the pro�le Λ from the knowledge of the near �eld data u(x1, b; k, θj) (j =
1, 2 · · · , N) corresponding to N distinct incident plane waves uin with one �xed wave
number k > 0 and distinct incident angles θj ∈ (−π

2
, π

2
) (j = 1, 2 · · · , N).

There are several numerical methods for reconstructing di�raction gratings, e.g., the opti-
mization method ([10], [11], [13] and [17]) and the factorization method ([3] and [25]). Since
the uniqueness issue plays an important role in such inverse problems, the purpose of this
paper is aimed at giving a complete answer to the uniqueness problem by a minimal number
of incident plane waves, within the class of polygonal periodic structures in R2, and thus
improving the existing results developed by Elschner and Yamamoto in [15], [16] and [19].
Note that a class of piecewise linear pro�les is always acceptable from a practical viewpoint
[28].
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If the wave number k is a real number, it is well-known that, for a general periodic grating
structure, global uniqueness is impossible by only one incident plane wave (see [4] and [20]).
This can also be seen from Section 2 of this paper for the inverse scattering by �at gratings.
For other uniqueness results within C2-smooth functions in R2, we refer to Bao [4] in the
case of a lossy medium (i.e., Imk > 0), Kirsch [24] by using all quasi-periodic incident waves,
and Hettlich & Kirsch [20] for a su�ciently small wave number or grating height. See also
Ammari [2], Bao & Zhou [7], and Bao, Zhang & Zou [6] for doubly periodic structures in
the 3D case. In the special case of piecewise linear periodic structures, making use of the
re�ection principle developed in [1], [26], [12] and [18] for the inverse scattering problem by
bounded obstacles, Elschner, Schmidt and Yamamoto obtained several results on the global
uniqueness of (IP) (see [15],[16] and [19]). A recent result, which is shown in [19], states that

• In the inverse Dirichlet problem, two incident waves are enough to uniquely determine
a non-�at grating Λ ∈ A, while one incident wave is su�cient if one excludes Rayleigh
frequencies.

• In the inverse Neumann problem, four incident waves are enough to uniquely determine
a non-�at grating Λ ∈ A, while three incident waves are su�cient if the Rayleigh
frequencies are excluded for each incident angle.

We point out that the proofs of the main theorems in [16] and [19] are incomplete, because the
identities (2.17) in Section 2.4 of [16] and (12) in Section 2.3 of [19] are not valid if the number
of the Dirichlet or Neumann lines is odd. Nevertheless, the main results of [19] indicated
above remain true. To �ll the gap, instead of using the initial ideas in [16] and [19], we
will employ a novel method by combining the re�ection principle for the Helmholtz equation
with the dihedral group theory, which was �rst exploited in [6] for proving uniqueness in
determining doubly periodic polyhedral structures by scattered electromagnetic waves. In
[6], global uniqueness is justi�ed by excluding the unidenti�able gratings in the absence of
Rayleigh frequencies. This method seems to be promising since, with the help of group
theory, all those unidenti�able periodic gratings by one incident plane wave can be readily
found out and characterized.
Motivated by [6], we will apply the same idea to the TE and TM modes of the inverse
electromagnetic di�raction problems without excluding the Rayleigh frequencies. We classify
all the periodic polygonal structures that cannot be identi�ed by one incident plane wave,
which turn out to be extremely exceptional cases since they not only depend on the incident
angle θ, but also on the wave number k. Except for these cases, one incident plane wave is
always enough to uniquely determine any non-�at grating Λ ∈ A. This paper covers all the
existing results in [15],[16] and [19], and contains additional non-uniqueness examples for the
inverse Neumann problem. The gaps in [16] and [19] are also �lled. The paper is organized
as follows.
In Section 2, we exclude the �at gratings from A by proving that a �at grating cannot be
uniquely determined by a �xed number of incident waves in general.
In Sections 3, we make some preliminaries before stating our main theorems, relying on
a re�nement of the argument in [19] in combination with the idea developed in [6]. The
arguments are essentially parallel to those of [6] but with necessary modi�cations related to
the Dirichlet and Neumann boundary conditions. The basic assumption (B) in Section 3,
supposing that there exists a Dirichlet or Neumann ray to the inverse problem, has already
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been justi�ed by Elschner & Yamamoto [19] provided there exist two di�erent gratings Λ1

and Λ2 generating the same near �eld data. Under the assumption (B), the total �eld can
be reduced to a �nite sum of propagating modes and is therefore an analytic function in R2.
Two important properties of the set Q of these �nitely many propagating directions are that
each element of Q has a positive x2-component except for the incident direction if there is
no Rayleigh frequency, and that at most two elements of Q have a vanishing x2-component
if a Rayleigh frequency occurs. Then we introduce a set G, consisting of all re�ections with
respect to the Dirichlet (or Neumann) rays passing through the origin, which will be proved
to be a dihedral group acting on Q. The properties of Q together with the group theory
enable us to determine the elements of Q and G, and thus to �nd out all unidenti�able
periodic polygonal structures.
The main uniqueness results (Theorem 2 and Theorem 3) will be shown in Section 4 for
the inverse Dirichlet problem and in Section 5 for the inverse Neumann problem. The
preliminaries of Section 3 can be viewed as the �rst step of the proofs of these theorems.
Further counterexamples and conclusions for the inverse Neumann problem are presented in
Section 5.

2 Uniqueness for �at gratings
The following notations are used throughout the whole paper. For a set A, we denote by A#

the number of elements in A, and for a line segment A1A2 with end points A1, A2 ∈ R2, we
denote by |A1A2| its length. For a number a ∈ C, |a| denotes its modulus, and ||x|| denotes
the Euclidean norm of a vector x ∈ R2.

Theorem 1 Let Λj = {x2 := bj} where bj are constants satisfying |bj| < b (j = 1, 2), and
let uj := uj(x; θ) satisfy the corresponding direct di�raction problem (1)-(4) with Dirichlet
(or Neumann ) boundary condition on Λj, j=1,2. If

u1(x; θm) = u2(x; θm) on x2 = b (5)

holds for 2B#
k,b + 1 incident waves with distinct incident angles θm ∈ (−π

2
, π

2
) (m = 1, 2 · · · ,

2B#
k,b + 1), then b1 = b2. Here

Bk,b := {n ∈ Z : |n| < 2bk

π
}. (6)

Proof. Suppose the total �eld satis�es the Dirichlet boundary condition on Λj (j = 1, 2).
We shall prove the theorem by contradiction. If b1 6= b2, we assume b > b2 > b1. It is
seen from (5) and the uniqueness for the Dirichlet problem that u1 = u2 in x2 > b. The
application of the unique continuation theorem yields that u1 = u2 in x2 ≥ b2. Setting
u := u1(x1, x2), we have u|Γb1

= u|Γb2
= 0, which can be written as

0 = u(x1, bj) = exp(iαx1)(exp(−iβbj) + A0 exp(iβbj))

+
∑

n∈Z\{0}
An exp(iαnx1) exp(iβnbj),

for j = 1, 2. Since {exp(iαnx1), n ∈ Z} is an orthogonal basis of L2(0, 2π), we have that

exp(−iβbj) + A0 exp(iβbj) = 0, and An = 0 for n ∈ Z\{0},
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from which we arrive at
u = exp(i(αx1 − βx2)) + A0 exp(i(αx1 + βx2)),

with A0 = − exp(−2iβbj) for j = 1, 2. It is seen from the representation of A0 that

b2 − b1 =
π

β
m =

π

k cos θ
m, for some m ∈ Z.

Since b2 − b1 < 2b, m must belong to Bk,b de�ned by (6). Obviously, given a �xed k > 0
and for each incident angle θm, there must exist some nm ∈ Bk,b, and nm1 = nm2 if and only
if θm1 = θm2 or θm1 = −θm2 . Thus, if (5) holds for 2B#

k,b + 1 incident waves with distinct
incident angles, then Bk,b contains at least B#

k,b + 1 elements, which is impossible.
If the total �eld u satis�es the homogeneous Neumann boundary condition on Γbj

, then u
takes the form

u = exp(i(αx1 − βx2)) + A0 exp(i(αx1 + βx2)) + An1 exp(ikx1) + An2 exp(−ikx1)

with A0 = exp(−2iβbj) (j = 1, 2) and An1 , An2 ∈ C, which leads to the same consequence
as in the Dirichlet case by an analogous argument. ¤

Remark 1 For any �xed wave number k > 0, if (5) is valid for B#
k,b + 1 incident waves

with distinct non-positive (or non-negative) incident angles θj (j = 1, 2 · · · ,B#
k,b + 1), then

b1 = b2.

Remark 2 Note that B#
k,b → ∞ as k → ∞ or b → ∞, so that a �xed number of incident

waves is not su�cient to uniquely determine an arbitrary �at grating. The corresponding
counterexample can be readily constructed from the proof of Theorem 1. In fact, if the number
of incident waves is N ∈ N, then we may choose the wave number k > N, the grating pro�les
Λ1 = {x2 = 0}, Λ2 = {x2 = π}, and take the incident angles θj (j = 1, 2 · · · , N) as follows:

θj > 0, cos θj =
j

k
, for j = 1, 2 · · · , N.

In the Dirichlet case, it follows from the proof of Theorem 1 that the total �elds u
(m)
j (x)

corresponding to θj (j = 1, 2 · · · , n), Λm (m = 1, 2) can be written as

u
(1)
j = exp[ik(x1 cos θj − x2 sin θj)]− exp[ik(x1 cos θj + x2 sin θj)]

u
(2)
j = exp[ik(x1 cos θj − x2 sin θj)]

− exp[ik(x1 cos θj + x2 sin θj)] exp(−2πik sin θj).

Moreover, it can be veri�ed from k cos θj ∈ N that

u
(1)
j (x1, b; k, θj) = u

(2)
j (x1, b; k, θj), ∀ b > π, j = 1, 2 · · · , N.

Thus N incident plane waves are not enough to uniquely determine a �at grating in the
Dirichlet case. The counterexample for the Neumann case can be constructed analogously.
This implies that the global uniqueness by �nitely many incoming plane waves is impossible
for general periodic gratings.

Before proving our global uniqueness results, we exclude �at gratings by making the following
basic assumption for the subsequent analysis:
Basic assumption (A): The admissible class A does not contain any �at grating.
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3 Preliminaries
In this section, we will make some preparations for the proof of the inverse Dirichlet and
Neumann problems, which are parallel to those of [6]. Firstly, we introduce the following
notations:

1. For two parallel lines l1 and l2, we denote by dist(l1, l2) the distance between l1 and
l2. For two non-parallel lines l1 and l2, we denote by ∠(l1, l2) the angle formed by l1
and l2 that belongs to (0, π

2
]. The distance and angle for rays or line segments can be

understood in the same way.

2. Let l be a line in R2. We denote by Rl the re�ection with respect to l in R2. Let l
′ be the

line that passes through the origin and is parallel to l. We denote by R
′
l the re�ection

with respect to l
′ in R2. For any x ∈ R2, it is easy to verify that

Rlx = R
′
lx + RlO,

where O = (0, 0) ∈ R2 is the origin. The re�ection R
′
l can be represented via an

orthogonal matrix such that R
′
lx · y = x · R′

ly. Clearly, ||RlO|| = 2dist(O, l).

3. Let G be a group which acts on a set A, and let d ∈ A. We denote by G{d} the orbit of
d under the action of group G, i.e.

G{d} = {a ∈ A : ∃ T ∈ G such that a = T (d)}.
By the group property, we know that for any two elements a, b ∈ A, either G{a} ∩
G{b} = ∅ or G{a} = G{b}.

4. Let d ∈ A. We denote by Gd the stabilizer subgroup of d in G, i.e.

Gd = {T ∈ G : T (d) = d}.
By the orbit-stabilizer theorem and Lagrange's theorem (see e.g. [21]) , we have

G{d}# =
G#

G#
d

.

The following two lemmas play an important role in this paper; the �rst one is related to
properties of almost periodic functions and can be found in [9] (see also [6] for a new proof),
while the second one can be seen in [26], [12] and [18].

Lemma 1 Let aj ∈ C, and λj ∈ R be distinct numbers (j = 1, 2, · · · , n). If

lim
t→+∞

n∑
j=1

aj exp(iλjt) = 0,

then
n∑

j=1

aj exp(iλjt) = 0, ∀ t ∈ R,

and aj = 0, j = 1, 2, · · ·n.
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Lemma 2 (Re�ection Principle) Let Ω be a symmetric domain with respect to a line l,
and let l̃ ⊂ Ω be a subset of another line such that Rl(l̃) ⊂ Ω. Assume u ∈ H1(Ω) satis�es
the Helmholtz equation in Ω, i.e. 4u + k2u = 0.
1. If u = 0 on l ∩ Ω, then

u(x) + u(Rl(x)) = 0 in Ω.

In particular, if u|l̃ = 0, then u|Rl(l̃)
= 0.

2. If ∂u
∂n

= 0 on l ∩ Ω, then

u(x)− u(Rl(x)) = 0 in Ω.

In particular, if ∂u
∂n
|l̃ = 0, then ∂u

∂n
|Rl(l̃)

= 0.

De�nition 1 Let S ⊂ ΩΛ be a straight line starting from one point and leading to in�nity
in {x2 > b}, b > max Λ. S is called a Dirichlet ray of u if u|S = 0, while S is called a
Neumann ray of u if ∂u

∂n
|S = 0.

Next we suppose u(x1, x2) ∈ H1
loc(ΩΛ) is a solution of problem (1)-(4) associated with some

grating pro�le Λ ∈ A. Note that by the standard elliptic regularity theory, u is in�nitely
smooth up to Λ except for the corner points, and is real-analytic in ΩΛ. Relying on such
an analyticity, we can justify the following basic assumption in either the inverse Dirichlet
problem (Section 4) or the inverse Neumann problem (Section 5):
Assumption (B): There exists a Dirichlet ray S ⊂ ΩΛ in the Dirichlet case, and a Neumann
ray S ⊂ ΩΛ in the Neumann case.
In fact, the desired ray mentioned above can always be found if there exist two di�erent
polygonal periodic structures generating the same near �eld. We will review this point in
our proofs. Recalling the Rayleigh expansion of us de�ned in (4), we introduce the following
notations for convenience:

d = (α,−β) = k(sin θ,− cos θ) = dκ.

dn = (αn, βn) for n ∈ Z. In particular, d0 = (α, β).

P := {n ∈ Z : |αn| ≤ k, An 6= 0}, Q := {di : i = κ or i ∈ P}.

Obviously, only one element of Q, d, has a negative x2-component, −β. Moreover, if Rayleigh
frequencies are excluded, all elements of Q but d have a positive x2-component, and if a
Rayleigh frequency occurs, all elements of Q but d have a non-negative x2-component and
at most two elements of Q, say dn and dm, have vanishing x2-components, βn = βm = 0. In
addition, Q consists of a �nite number of upward propagating directions di with i ∈ P as
well as of the incident downward direction d, and can be considered as a set of points located
on the circle centered at the origin with radius k. By the quasi-periodicity of the solutions,
we arrive at

Lemma 3 If (−α, β) ∈ Q, then 2k sin θ ∈ Z. If (±k, 0) ∈ Q, then k(1∓ sin θ) ∈ Z. Finally,
if {(−α, β), (k, 0), (−k, 0)} ⊂ Q, then k(1 + sin θ) ∈ Z and k(1− sin θ) ∈ Z.
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The following lemma is a direct consequence of assumption (B) in combination with the
Rayleigh expansion. See also [15] and [19] for the existing proofs using the properties of
almost periodic functions.

Lemma 4 Under assumption (B), the total �eld u = ui + us can be reduced to a �nite sum
of propagating waves, i.e.

u = exp(ix · d) +
∑
n∈P

An exp(ix · dn), for x2 > max Λ. (7)

It follows from Lemma 4 that u can be extended to an analytic function in R2 by (7), which
means that each line segment of Λ can be extended to a Dirichlet (Neumann) ray of u, and
each Dirichlet (Neumann) ray can be extended to a Dirichlet (Neumann) line in R2. Since
we have excluded the �at gratings, there exist at least two Dirichlet (Neumann) rays L and
S extending the line segements of Λ. Without loss of generality, we assume that one of the
corner points on Λ coincides with the origin such that L∩S = O, and then u takes the form

u = Aκ exp(ix · d) +
∑
n∈P

An exp(ix · dn), for x2 > max Λ,

with Ai 6= 0 for all i ∈ P and Aκ = 1. De�ne

D =

{
l :

l is a line that passes through the origin O. Furthermore l is
a Dirichlet (Neumann) line in the Dirichlet (Neumann) case.

}
.

It is seen from L, S ∈ D that D# ≥ 2. Since u is analytic in R2, by the re�ection principle,
for each l ∈ D, we have that

u(x) + u(Rlx) = 0 in R2, in the Dirichlet case; or
u(x)− u(Rlx) = 0 in R2, in the Neumann case,

so that the relations

Aκ exp(ix · d) +
∑
n∈P

An exp(ix · dn)± Aκ exp(ix · Rld)±
∑
n∈P

An exp(ix · Rldn) = 0

hold in the whole R2. By Lemma 1, the above identities imply the following lemma:

Lemma 5 Under assumption (B), for each l ∈ D we have

1. RlQ = Q for both the Dirichlet and Neumann case.

2. Assume n,m ∈ P ∪ {κ}. If Rldn = dm, then

An + Am = 0 in the Dirichlet case, and An − Am = 0 in the Neumann case.

3. In the Dirichlet case, Rldn 6= dn for any n ∈ P , and Rld 6= d.

Next we derive some important properties of D by the re�ection principle.

Lemma 6 Under assumption (B), we have that
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1. D# ≤ Q#.

2. The angles formed by each two neighboring lines of D are all equal.

Proof. (1) Since Rl1d 6= Rl2d for l1 6= l2, we have D# = {Rld : l ∈ D}#. It follows from
Rld ∈ Q for l ∈ D that D# ≤ Q#.
(2) Let li (i = 1, 2 · · · , D#) be the elements of D such that there is no Dirichlet line l ∈
D between two neighboring Dirichlet lines li, li+1 ∈ D with lD#+1 = l1. Let ϕi ∈ (0, π

2
]

(i = 1, 2 · · · , D#) be the angle formed by li, li+1 ∈ D. We next consider the angles ϕ1 and
ϕ2 formed by l1, l2, and l2, l3 respectively. Since u = 0 on li (i = 1, 2, 3), by the re�ection
principle, if ϕ2 > ϕ1, then Rl2l1 ∈ D is another Dirichlet line of u between l2 and l3; if
ϕ2 < ϕ1, then Rl2l3 ∈ D is another Dirichlet line of u between l1 and l2. Both cases lead to a
contradiction, thus ϕ1 = ϕ2. By induction we can prove that ϕ1 = ϕ2 = ϕi (i = 3, · · · , D#).
The Neumann case can be proved similarly. ¤
From now on, we assume

G := the group generated by {Rl : l ∈ D}.
Let Rot(ϕ) be the rotation about the origin O by the angle ϕ, and Ref(ϕ) be the re�ection
about the line L through the origin which makes an angle ϕ with the x1-axis. The group G
has the identity Rot(0). Every rotation Rot(ϕ) has the inverse Rot(−ϕ), and every re�ection
Ref(ϕ) is its own inverse. Actually, G is the dihedral group of order G# = 2D#, since G
consists of D# re�ections and D# rotations. Since all the rotations of G form a subgroup of
G, we de�ne

G∗ := the subgroup of G generated by all rotations of G.

For each element q ∈ Q,G∗{q}# = D#. Since G∗{q} consists of the vertices of some regular
G∗{q}#-sided polygon centered at the origin, if G∗{q}# ≥ 3, then there exists at least one
element of G∗{q} having a negative x2-component.

Lemma 7 Under assumption (B), we have

1. In the Dirichlet case, G{d}# = 2D#; and in the Neumann case, G{d}# = 2D# or
G{d}# = D#. Furthermore, G{d}# = D# if there exists some l ∈ D such that l ‖ Od,
i.e. Rld = d.

2. If G{d}# = 2D#, then there exists some dn ∈ G{d} with n ∈ P such that G{d} =
G∗{d} ∪G∗{dn}.

Proof. In the Dirichlet case, it is seen from Lemma 5 (3) that for each l ∈ D, Rld 6= d.
Thus if T ∈ Gd, then T must be the rotation about the origin by 2π, i.e. T = Rot(2π),
implying that G#

d = 1. By the orbit-stabilizer theorem and Lagrange's theorem we have
G{d}# = 2D#. Since G∗{d}# = D# < G{d}#, by the group property, there must exist
some dn ∈ G{d} with n ∈ P such that G∗{dn} ∩G∗{d} = ∅ and G∗{dn}# = D#. On noting
that G∗{dn}# +G∗{d}# = G{d}#, we have G{d} = G∗{d}∪G∗{dn}. This proves the lemma
in the Dirichlet case.
In the Neumann case, it is possible that Rld = d for some l ∈ D, leading to the consequence
that both Rl and Rot(2π) belong to Gd, i.e., G#

d = 2. Thus it follows from the orbit-stabilizer

9



and Lagrange theorems that G{d}# = D#. If Rld 6= d for all l ∈ D, an argument similar to
that in the Dirichlet case �nishes the proof in the Neumann case. ¤
Denote a straight line which passes through the origin and makes the angle ϕ with the
positive x1-axis by

Lϕ := {(t cos ϕ, t sin ϕ) : t ∈ R, ϕ ∈ [0, 2π)}.

To generalize the results of [15], we de�ne a special class of rectangular-groove grating pro�les
by

F :=
{
Λ : each segment of Λ is parallel to the x1- or x2-axis.

}
(8)

Note that the inverse problems for this class of grating pro�les have already been studied in
[15].

4 Inverse problem for the Dirichlet boundary condition
De�ne the following class of polygonal gratings by

D2(θ, k) :=





Λ ∈ A :

Each line segment of Λ is parallel to one of the lines
L θ

2
+π

4
, L θ

2
−π

4
, and its distance to L θ

2
±π

4
is some integral

multiple of π
k cos( θ

2
∓π

4
)
. In addition, k(1± sin θ) ∈ Z.





.

Suppose A1A2 is a line segment of Λ ∈ D2(θ, k) connecting two corner points A1 and A2,
and ϕ ∈ [−π

2
, π

2
) is the angle formed by A1A2 and the positive x1-axis. It follows from the

de�nition of D2(θ, k) that either ϕ = θ
2

+ π
4
or ϕ = θ

2
− π

4
. If ϕ = θ

2
± π

4
, then |A1A2| =

π
k cos( θ

2
±π

4
)
n± for some n± ∈ N. Moreover, D2(θ, k) 6= ∅ for all k and θ satisfying k(1± sin θ) ∈

Z (see Lemma 11), and a Rayleigh frequency always occurs in this case.
Let us now give the main results for the inverse Dirichlet problem.

Theorem 2 Let Λ1, Λ2 ∈ A satisfy the basic assumption (A). Furthermore, suppose without
loss of generality that one of the pro�les Λ1, Λ2 has a corner point at the origin. Let uj :=
uj(x; θ) satisfy the corresponding direct di�raction problem (1)-(4) with Dirichlet boundary
condition on Λj, j = 1, 2. If

u1(x1, b; θ) = u2(x1, b; θ) for all x1 ∈ (0, 2π) (9)

holds for one incident wave with the incident angle θ ∈ (−π
2
, π

2
), then one of the following

cases must occur:
(1) Λ1 = Λ2. (2) Λ1, Λ2 ∈ D2(θ, k), and a Rayleigh frequency occurs.

Remark 3 Assume that Λ ∈ A has a corner point at the origin. Several results can be
obtained directly from Theorem 2.
1. Given the a priori information that Λ does not belong to D2(θ, k), the data of the total
�eld on Γb from one incident wave (with the incident angle θ) are always enough to uniquely
determine Λ. In particular, the elements of the class F de�ned in (8) do not belong to

10



D2(θ, k) for any θ ∈ (−π
2
, π

2
) and k > 0, and thus can be uniquely determined by one incident

plane wave. This generalizes the result of [15] in the case of the Dirichlet problem.
2. Given a �xed wave number k > 0 and an incident angle θ ∈ (−π

2
, π

2
), if D2(θ, k) = ∅,

then one incident wave with the incident angle θ uniquely determines Λ ∈ A. Note that
D2(θ, k) = ∅ if one of the numbers {k(1+sin θ), k(1− sin θ)} is not an integer. In particular,
if Rayleigh frequencies are excluded, then both k(1 + sin θ) and k(1− sin θ) are not integers.
3. If Rayleigh frequencies are allowed, two incident waves are su�cient to uniquely determine
Λ ∈ A since D2(θ1, k) ∩ D2(θ2, k) = ∅ for any θ1 6= θ2. This together with 2. generalizes the
results of [19] in the Dirichlet case.

Proof of Theorem 2: Assuming Λ1 6= Λ2, we are going to prove the second assertion. The
proof can be decomposed into several steps.
Step 1. It follows from (9) and the uniqueness for the Dirichlet problem (1)-(4) (see [23])
that u1(x) = u2(x) in x2 > b. The application of the unique continuation theorem yields that
u1(x) = u2(x) in the unbounded connected component Ω of ΩΛ1 ∩ ΩΛ2 . Since ui(i = 1, 2)
is analytic in Ω and Λi(i = 1, 2) is piecewise linear, if Λ1 6= Λ2, the re�ection principle in
combination with the path argument developed in [1], [26] and [18] can be utilized for �nding
the desired Dirichlet ray S involved in the assumption (B) of Section 3. We leave out the
proof and only refer to [19] and [18] for the existing proofs.
Next we will proceed using the preliminaries in Section 3. Without loss of generality, we
suppose Λ1 has a corner point at the origin and write u1 as u for convenience. By Lemma 4,
the existence of a Dirichlet ray implies that u can be reduced to a �nite sum of propagating
waves (7), which is analytic in R2 and satis�es u|L = 0 on each straight line L extending a
segment of ∂Ω. Furthermore, there exist two Dirichlet rays L and S extending two segments
of Λ1 such that L ∩ S = O. Then we introduce the set D, the dihedral group G and its
subgroup G∗, and take into account Lemmas 5-7 in the Dirichlet case.
It is seen from Lemma 7 (1) that G{d}# = 2D# ≥ 4, and that for any l ∈ D, Rld 6= d.
We claim that a Rayleigh frequency must occur in this case. In fact, by Lemma 7 (2),
there exists some dn ∈ Q with n ∈ P such that G{d} = G∗{d} ∪ G∗{dn}. On noting that
G∗{dn}# = D# ≥ 2 and that G∗{dn} consists of the vertices of a regular D#-sided polygon
centered at the origin, if there is no Rayleigh frequency, there must exist at least one element
q of G∗{dn} which has a negative x2-component. This is impossible since q 6= d and q ∈ Q.
Step 2. It is seen from step 1 that a Rayleigh frequency occurs, thus there are at most
three elements of Q having a non-positive x2-component, d = (α,−β), dn1 = (k, 0) and
dn2 = (−k, 0) for some n1, n2 ∈ P .

Lemma 8 D#=2.

Proof of Lemma 8. In fact, if D# ≥ 3, then G{d}# = 2D# ≥ 6, and there exists some dn

such that G{d} = G∗{d} ∪G∗{dn} with G∗{d}# = G∗{dn}# ≥ 3. Thus there exists at least
one element of G∗{dn} having a negative x2-component, which leads to the result that two
elements of G∗{d} have a negative x2-component. However this is impossible. Thus D#=2.
¤.
More precisely, we obtain that D = {L, S}, and by Lemma 6 (2) we know that S⊥L.
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Without loss of generality, we can assume that

L = Lϕ1 with ϕ1 ∈ [0,
π

2
), and S = Lϕ2 with ϕ2 = ϕ1 − π

2
∈ [−π

2
, 0).

Now the group G takes the form

G = {Rot(π), Rot(2π), Ref(ϕ1), Ref(ϕ2)}, (10)

so that the orbit of d, G{d}, is given by G{d} = {d,−d, dn1 , dn2}. Next we are aimed at
proving that L = L θ

2
+π

4
, S = L θ

2
−π

4
.

Lemma 9 Q = G{d} = {d,−d, dn1 , dn2} = {(α,−β), (−α, β), (k, 0), (−k, 0)} and k sin(1 ±
θ) ∈ Z.

Proof of Lemma 9. If there exists an element dn ∈ Q\{d,−d, dn1 , dn2}, then G{d} ∩
G{dn} = ∅, and dn = (αn, βn) has a positive x2-component, βn > 0. This yields that
Rot(π)dn = (−αn,−βn) ∈ Q has a negative x2-component, contradicting the fact that
Rot(π)dn ∈ Q has a positive x2-component. Thus Q = G{d} = {(α,−β), (−α, β), (k, 0),
(−k, 0)}, which together with Lemma 3 yields that k(1± sin θ) ∈ Z. ¤

Figure 1: D# = 2, Q = G{d} = {d,−d, dn1 , dn2} = {(α,−β), (−α, β), (k, 0), (−k, 0)}. Left:
θ > 0. Right: θ < 0.

Now we can characterize the actions of G on Q by the relations (see Figure 1)

Rot(π)d = −d, Rot(π)dn1 = dn2 , RSd = Ref(ϕ2)d = dn1 , RLd = Ref(ϕ1)d = dn2 , (11)

from which we obtain that

ϕ2 =
θ

2
− π

4
and ϕ1 =

θ

2
+

π

4
, (12)

i.e., L = L θ
2
+π

4
and S = L θ

2
−π

4
.

Step 3. We �nally complete the proof of the relation Λ1, Λ2 ∈ D2(θ, k). We introduce the
set of all Dirichlet lines by

D̃ = {l : l is a Dirichlet line of u in R2}.
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Lemma 10 1. For each l ∈ D̃, either l ‖ L or l ‖ S.

2. If l ‖ L, then dist(l, L) =
π

k cos ϕ2

n for some n ∈ N, and if l ‖ S, then dist(l, S) =

π

k cos ϕ1

m for some m ∈ N.

Proof of Lemma 10. By the re�ection principle and Lemma 1, we know that for each
l ∈ D̃, R

′
ld ∈ Q. If R

′
ld = dn1 , then l ‖ S; if R

′
ld = dn2 , then l ‖ L.

We next assume that l ‖ L. It is seen from (11) that R
′
ld = (−k, 0) and R

′
l(−d) = (k, 0). By

Lemma 5 (2) we can write the total �eld u as
u = exp(ix · d) + exp(−ix · d)− exp(ikx1)− exp(−ikx1), (13)

and making use of Rlx = R
′
lx + RlO, we can write u(Rl(x)) as

u(Rl(x)) = exp(iRlO · d) exp(−ikx1) + exp(−iRlO · d) exp(ikx1)

− exp(ix · d)− exp(−ix · d).

The application of the re�ection principle to the line l yields that
1 = exp(iRlO · d) = exp(−iRlO · d). (14)

On noting that
|RlO · d| = ||RlO|| · ||d|| cos ∠(RlO, d) = 2dist(l, L)k cos ϕ2,

we obtain from (14) and (12) that

dist(l, L) =
π

k cos ϕ2

n =
π

k cos( θ
2
− π

4
)
n, for some n ∈ N.

The case when l ‖ S can be proved analogously. ¤
Since u can be extended to an analytic function de�ned on the whole plane R2, each line
segment of Λ1 can be extended to an element of D̃. This gives rise to the relation Λ1 ∈
D2(θ, k). On noting that the Dirichlet ray S of u1 in the assumption (B) is also a Dirichlet
ray of u2, we can prove Λ2 ∈ D2(θ, k) in an analogous manner. The proof is thus complete.
¤
It follows from the proof of Theorem 2 that each grating from D2(θ, k) generates the same
total �eld of the form (13), thus providing non-uniqueness examples for the inverse Dirichlet
problem. In the following, we will show that, for each angle θ satisfying k(1± sin θ) ∈ Z, the
corresponding counterexample to uniqueness with one incident wave can be constructed. To
do this, we only need to show the following lemma.

Lemma 11 For all k and θ satisfying k(1± sin θ) ∈ Z, D2(θ, k) 6= ∅.

Proof. Let ϕ1 = θ
2

+ π
4
and ϕ2 = θ

2
− π

4
, and let Λi be the 2π periodic extensions of

Λi|(0,2π)(i = 1, 2) de�ned by

Λ1 : x2 =

{
x1 tan ϕ1 x1 ∈ (0, T1),
(x1 − 2π) tan ϕ2 x1 ∈ [T1, 2π)

with T1 =
2π tan ϕ2

tan ϕ2 − tan ϕ1

,

Λ2 : x2 =

{
x1 tan ϕ2 x1 ∈ (0, T2),
(x1 − 2π) tan ϕ1 x1 ∈ [T2, 2π)

with T2 =
2π tan ϕ1

tan ϕ1 − tan ϕ2

.
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Then the distance between two neighboring line segments that are parallel to Lϕ2 (or Lϕ1)
is 2π cos ϕ1 (or 2π sin ϕ1). To ful�l the conditions imposed on the elements of D2(θ, k), we
have to check that

2π cos ϕ1 =
π

k cos ϕ1

n for some n ∈ Z, and 2π sin ϕ1 =
π

k cos ϕ2

m for some m ∈ Z,

or equivalently,

2k cos2(
θ

2
+

π

4
) ∈ Z and 2k sin2(

θ

2
+

π

4
) ∈ Z

by using ϕ1 − ϕ2 = π
2
. Noting that

2k cos2(
θ

2
+

π

4
) = k(1− sin θ) 2k sin2(

θ

2
+

π

4
) = k(1 + sin θ),

and k(1± sin θ) ∈ Z, we have justi�ed that both Λ1 and Λ2 belong to D2(θ, k). ¤
Taking θ = 0 and k = 1, or θ = π/6 and k = 2, we can obtain two examples which are
the same as those of [16, Remark 1]. The argument indicated above gives a general method
for constructing such counterexamples as well as the elements of D2(θ, k). Essentially, if Λ
is 2π-periodic with respect to x1-direction and lies on the quadratic grid generated by the
2π-periodic extensions of {x2 = x1 tan( θ

2
± π

4
)}, then Λ ∈ D2(θ, k).

Remark 4 From the proof of Theorem 3, we observe that the number of Dirichlet rays is
always two, an even number, so that the proofs in [16] and [19] appear to be correct in the
Dirichlet case. However in the Neumann case, as we will show in the next section, the
number of Neumann rays may be two, three or four, implying that a more detailed analysis
must be involved.

5 Inverse problem for the Neumann boundary condition
Before we state our main theorem, we de�ne the following three classes of polygonal periodic
structures by

N2(θ, k) :=



Λ ∈ A :

Each line segment of Λ is parallel to one of the lines Lθ,
Lθ+π

2
, and its distance to Lθ is some integral multiple

of π
k
. In addition, 2k sin θ ∈ Z.



 ,

N3(θ, k) :=





Λ ∈ A :

Each line segment of Λ is parallel to one of the lines Lθ−π
6
,

Lθ+π
6
, Lθ+π

2
, and its distance to Lθ−π

6
(or Lθ+π

6
, Lθ+π

2
)

is some integral multiple of 2π
k
√

3
. Moreover, θ ∈ [−π

6
, π

6
]

and k
√

3 sin(π
6
± θ) ∈ Z.





,

N4(0, k) :=





Λ ∈ A :

Each line segment of Λ is parallel to one of the lines L−π
4
,

L−π
2
, Lπ

4
, L0, and its distance to L0 (or L−π

2
) is some

integral multiple of π
k
, and the distance to L±π

4
is some

integral multiple of
√

2π
k

. In addition k ∈ Z.





.
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Theorem 3 Let Λ1, Λ2 ∈ A satisfy the basic assumption (A). Furthermore, suppose with-
out loss of generality that one of the pro�les Λ1, Λ2 has a corner point at the origin. Let
uj := uj(x; θ) satisfy the corresponding direct di�raction problem (1)-(4) with the Neumann
boundary condition on Λj, j=1,2. If

u1(x1, b; θ) = u2(x1, b; θ) for all x1 ∈ (0, 2π) (15)

holds for one incident plane wave with the incident angle θ ∈ (−π
2
, π

2
), then one of the

following four cases must occur:

(1) Λ1 = Λ2.

(2) Λ1, Λ2 ∈ D2(θ, k) or Λ1, Λ2 ∈ N2(θ, k).

(3) Λ1, Λ2 ∈ N3(θ, k) with θ ∈ [−π
6
, π

6
]. In this case, a Rayleigh frequency occurs if θ = π

6

or θ = −π
6
.

(4) Λ1, Λ2 ∈ N4(0, k), θ = 0, and a Rayleigh frequency occurs.

Proof. Assuming Λ1 6= Λ2, we shall prove that one of the cases (2), (3) and (4) must happen.
Step 1. We can repeat step 1 of the proof of Theorem 2 to justify assumption (B) in the
Neumann case (see [19] for the details). We suppose the origin is one of the corner points of
Λ1 and write u1 as u. By Lemma 4, the existence of the Neumann ray implies that u can be
reduced to a �nite sum of propagating waves (7) which is an analytic function in R2, thus
each line segment of Λ1 can be extended to a Neumann line of u in R2. In addition, there
exist two Neumann rays L and S such that L ∩ S = O. As in Section 4, one can introduce
the set D with D# ≥ 2, the dihedral group G and its subgroup G∗, and then justify Lemmas
5-7 in the Neumann case.
By Lemma 7 (1) and (2), G{d}# is either 2D# or D#. If G{d}# = 2D#, there exists
some dn ∈ G{d} with n ∈ P such that G{d} = G∗{d} ∪ G∗{dn}. If G{d}# = D#, then
G{d} = G∗{d} and there exists an Neumann ray l ∈ D such that l ‖ Od, i.e. Rld = d. The
next lemma connects the elements of G{d} with the elements of D.

Lemma 12 In the Neumann case, we have

(1) G{d}# 6= 2D# if either Rayleigh frequencies are excluded, or D# ≥ 3.

(2) G{d} = G∗{d} = Q if either D# ≥ 3, or D# = 2 and Rayleigh frequencies are
excluded.

Proof of Lemma 12. The proof of (1) is similar to that of Lemma 8 in the Dirichlet
case. To prove the second assertion, by assertion (1) and Lemma 7 (1) and (2), we know
that G{d} = G∗{d} if either D# ≥ 3, or D# = 2 and Rayleigh frequencies are excluded.
It remains to prove that Q = G{d}. If there exists an element dn ∈ Q\G{d} with a non-
negative x2-component, then G∗{dn} ∩ G∗{d} = ∅. If G∗{dn}# = D# ≥ 3, then there
exists at least one element of G∗{dn} having a negative x2-component. The other case when
D# = 2 and Rayleigh frequencies are excluded would lead to the same consequence. Both
cases are impossible since G∗{dn} ⊂ Q and each element of G∗{dn} has a non-negative
x2-component. Thus Q = G{d}. ¤

15



We proceed with the proof by considering the possible numbers of elements of D separately.
Step 2. D# = 2.
It is seen from the �rst step and Lemma 6 (2) that D = {L, S} with L⊥S. Without loss of
generality, we can assume

L = Lϕ1 with ϕ1 ∈ [0,
π

2
), S = Lϕ2 with ϕ2 = ϕ1 − π

2
∈ [−π

2
, 0). (16)

Then, we need to discuss the following two cases.
Case (a): Rayleigh frequencies are excluded.
By the above Lemma 12 (2), we have G{d}# = G∗{d}# = D# = 2. More speci�cally,
Q = G{d} = {d,−d}, D = {L, S}, G = {Rot(2π), Rot(π), RL, RS} and L⊥S (see Figure 2).

Figure 2: D# = 2, Q = G{d} = {d,−d} = {(α,−β), (−α, β)}. Left: θ > 0. Right: θ < 0.

By Lemma 5, we know that u takes the form

u = exp(ix · d) + exp(−ix · d).

If θ ∈ [0, π
2
), then S ‖ Od and RSd = d, which implies that ϕ1 = θ, ϕ2 = θ − π

2
, or

equivalently, L = Lθ, S = Lθ−π
2
. If θ ∈ [−π

2
, 0), then L ‖ Od and RLd = d, which implies

that ϕ2 = θ, ϕ1 = θ+ π
2
, or equivalently, S = Lθ, L = Lθ+π

2
. On noting that Lθ+π

2
= Lθ−π

2
and

(d,−d) ∈ Q, by repeating the argument in step 3 of Theorem 2, we have Λ1, Λ2 ∈ N2(θ, k).
Case (b): A Rayleigh frequency occurs.
If G{d}# = 2D# = 4, then we can carry over steps 2 and 3 of the proof of Theorem 2 to
prove that Λ1, Λ2 ∈ D2(θ, k), so that by Lemma 5 (2) the total �eld u takes the form

u = exp(ix · d) + exp(−ix · d) + exp(ikx1) + exp(−ikx1).

If G{d}# = D# = 2, then one of the lines {S, L} must pass through d. Considering the case
of a Rayleigh frequency, we have that L = L0, S = L−π

2
and θ = 0, and u takes the form

u = exp(−ikx2) + exp(ikx2) + exp(ikx1) + exp(−ikx1).

Similar to the Dirichlet case, we can derive that Λ1, Λ2 ∈ Ñ2(0, k), where

Ñ2(0, k) :=



Λ ∈ A :

Each line segment of Λ is parallel to one of the lines
L0,Lπ

2
, and its distance to L0 (or Lπ

2
) is an integral

multiple of π
k
. In addition, k ∈ Z.



 .
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Note that Ñ2(0, k) is a subset of N2(0, k) ∩N4(0, k) .
Step 3. D# = 3.
By Lemma 12, we only need to consider the case of G{d}# = D# by assuming that Q =
G{d} = G∗{d} = {d, dn, dm}, D = {L, S, H} with L = Lϕ1 , S = Lϕ2 , H = Lϕ3 . Since L, S
and H form an equiangular system of lines, without loss of generality we can suppose that
ϕ1 ∈ [0, π

2
), ϕ2 ∈ [−π

2
, 0), ϕ3 ∈ [−π

2
, π

2
) with

ϕ2 < ϕ3 < ϕ1 and ϕ1 − ϕ3 = ϕ3 − ϕ2 =
π

3
. (17)

Since ϕ2 ≥ −π
2
and ϕ1 < π

2
, we have that −π

6
≤ ϕ3 < π

6
. We complete this step by discussing

the following two cases: (1) −π
6
≤ ϕ3 ≤ 0; (2) 0 < ϕ3 < π

6
.

Figure 3: D# = 3, Q = G{d} = {d, dn, dm}. Right: −π
6

< ϕ3 < 0, 0 < θ < π
6
. Left:

π
6

> ϕ3 > 0,−π
6

< θ < 0.

Case (1): −π
6
≤ ϕ3 ≤ 0.

It follows from (17) that π
6
≤ ϕ1 ≤ π

3
,−π

2
≤ ϕ2 ≤ −π

3
. Recalling that one of the lines

{L, S, H} must be parallel to Od, and that the x2-components of dm and dn are all non-
negative, we have that S ‖ Od, and

θ = ϕ2 +
π

2
= ϕ3 +

π

6
= ϕ1 − π

6
(18)

which results in 0 ≤ θ ≤ π
6
. Without loss of generality we can assume (see Figure 3 Right)

H ‖ Odm with dm := (αm, βm) = (k sin θ + m,βm) for some m ∈ Z, (19)
L ‖ Odn with dn := (αn, βn) = (k sin θ + n, βn) for some n ∈ Z. (20)

It follows from (18) that ϕ1 = θ + π
6
, ϕ3 = θ − π

6
, leading to

−dm = k(cos ϕ3, sin ϕ3) = k(cos(θ − π

6
), sin(θ − π

6
)), (21)

dn = k(cos ϕ1, sin ϕ1) = k(cos(θ +
π

6
), sin(θ +

π

6
)). (22)

In view of (19)-(22), we arrive at

k cos(θ − π

6
) + k sin θ ∈ Z, k cos(θ +

π

6
)− k sin θ ∈ Z,

from which k
√

3 sin(π
6
± θ) ∈ Z can be obtained.

We next proceed in the same way as in step 3 of Theorem 2 to prove that Λ1, Λ2 ∈ N3(θ, k).
De�ne
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Ñ = {l : l is a Neumann line of u in R2}.

By the re�ection principle and Lemma 1, for each l ∈ Ñ , R
′
ld ∈ Q = {d, dn, dm}. If R

′
ld = d,

then l ‖ S; if R
′
ld = dm, then l ‖ L; and if R

′
ld = dn, then l ‖ H.

It follows from Lemma 5 (2) that

u = exp(ix · d) + exp(ix · dn) + exp(ix · dm). (23)

Without loss of generality, we may assume that l ‖ S. Making use of Rlx = R
′
lx+RlO, R

′
ld =

d, R
′
ldm = dn, we derive that

u(Rlx) = exp(ix · d) + exp(ix · dm) exp(iRlO · dn) + exp(ix · dn) exp(iRlO · dm).

The application of the re�ection principle to the line l leads to exp(iRlO · dn) = exp(iRlO ·
dm) = 1, from which we get

dist(l, S) =
2π

k
√

3
n1, for some n1 ∈ Z,

because |RlO · dn| = |RlO · dm| = 2 · dist(l, S)k cos π
6
. Analogously, we can prove that

dist(l, L) =
2π

k
√

3
n2, for some n2 ∈ Z if l ‖ L,

dist(l, H) =
2π

k
√

3
n3, for some n3 ∈ Z if l ‖ H.

Since each line segment of Λ1 can be extended to an element of Ñ , we have proved that
Λ1 ∈ N3(θ, k). The relation Λ2 ∈ N3(θ, k) can be proved likewise.
Case (2): π

6
> ϕ3 > 0 (see Figure 3 Left).

Analogously to case (1), we obtain from L ‖ Od,−π
6

< θ < 0 and θ = ϕ1−π
2

= ϕ3−π
6

= ϕ2+
π
6

that Λ1, Λ2 ∈ N3(θ, k) with k
√

3 sin(π
6
± θ) ∈ Z.

It is obvious that a Rayleigh frequency only occurs when ϕ3 = 0, leading to ϕ1 = π
3
and

ϕ2 = −π
3
. In this case, L ‖ Od implies that θ = −π

6
, while S ‖ Od implies that θ = π

6
.

Step 4. D# ≥ 4.
In this case, by Lemma 12 we have Q# = G∗{d}# = G{d}# = D# ≥ 4, implying that a
Rayleigh frequency occurs. Since there are at most one element of Q having a negative x2-
component, and at most two elements of Q having a vanishing x2-component, we have that
D# = 4. Taking account of the Rayleigh frequency, we know that one element of D must be
parallel to the x1-axis, thus by Lemma 6 (2) Q = G∗{d} = {(0,−k), (0, k), (k, 0), (−k, 0)},
which means θ = 0, and u takes the form

u(x) = exp(−ikx2) + exp(ikx2) + exp(ikx1) + exp(−ikx1). (24)

By the α-quasi-periodicity of u(x), k must be a positive integer. Repeating step 3 in the
proof of Theorem 2 leads to the relation Λ1, Λ2 ∈ N4(0, k).
The proof of Theorem 3 is thus complete. ¤
From the above proof, it follows that each element of N3(θ, k) (or (N4(0, k))) can generate
the same total �eld of the form (23) (or (24)). Thus non-uniqueness examples could be
constructed for the inverse Neumann problem by the elements of N3(θ, k) and N4(0, k).
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Counterexample 1 Let θ = 0 (orthogonal incidence) and k = 2
√

3. We can check that
the Rayleigh frequency is excluded in this case. Let Λ1|(−π,π) and Λ2|(−π,π) be de�ned by the
following piecewise linear functions:

Λ1 : x2 =

{
x1

√
3/3 x1 ∈ (0, π),

−x1

√
3/3 x1 ∈ (−π, 0];

Λ2 : x2 =

{ −x1

√
3/3 x1 ∈ (0, π),

x1

√
3/3 x1 ∈ (−π, 0].

Let Λi be the 2π-periodic extensions of Λi|(0,2π)(i = 1, 2). We can see that both Λ1 and Λ2

belong to N3(0, 2
√

3). Then the �nite Rayleigh expansion

u(x) = exp(−i2
√

3x2) + exp(i(3x1 +
√

3x2)) + exp(i(−3x1 +
√

3x2))

satis�es the Helmholtz equation and the homogeneous Neumann boundary condition on both
Λ1 and Λ2. Thus one incident wave is not su�cient to uniquely determine Λ.
One can also construct another example with a non-zero incident angle θ and an appropri-
ately chosen k such that |θ| ≤ π

6
and k

√
3 sin(θ ± π

6
) ∈ Z. For instance, taking k =

√
28
3

and θ ∈ (0, π
6
) with sin θ =

√
1
28
, cos θ =

√
27
28
, we have k

√
3 sin(θ ± π

6
) ∈ Z. Then the

corresponding example can be constructed in the same way as in Counterexample 1. Next
we give an example of a grating from N3(k, θ) in the presence of a Rayleigh frequency.
Counterexample 2: Two incident waves are not su�cient to uniquely determine a grating
pro�le Λ ∈ A.
Let Λ1|(0,2π) and Λ2|(0,2π) be de�ned by the following piecewise linear functions:

Λ1|(0,2π) : x2 =





√
3x1 x1 ∈ (0, π

3
),√

3π/3 x1 ∈ [π
3
, 5π

3
],

−√3x1 + 2
√

3π x1 ∈ (5π
3

, 2π),

Λ2|(0,2π) : x2 =




−√3x1 x1 ∈ (0, π

3
),

−√3π/3 x1 ∈ [π
3
, 5π

3
],√

3x1 − 2
√

3π x1 ∈ (5π
3

, 2π),

and let Λi be the 2π-periodic extensions of Λi|(0,2π)(i = 1, 2). Set k = 2 and θ = π
6
or −π

6
.

One can check that Λ1, Λ2 ∈ N3(
π
6
, 2) ∩N3(−π

6
, 2) and the �nite Rayleigh expansions

u(x) = exp(i(x1 −
√

3x2)) + exp(i(x1 +
√

3x2)) + exp(−2ix1),

u(x) = exp(−i(x1 +
√

3x2)) + exp(−i(x1 −
√

3x2)) + exp(2ix1)

all satisfy the Helmholtz equation and the homogeneous Neumann boundary condition on
both Λ1 and Λ2.
Counterexample 3We construct another non-uniqueness example for the inverse Neumann
problem by describing the elements in N4(0, k).
Set k = 4, θ = 0, then α = k sin θ = 0, β = k = 4. One can see that each grating shown in
Figure 4 is an element of N4(0, 4). It follows from the proof of Theorem 3 that the gratings
indicated in Figure 4 generate the same total �eld u(x) of the form (24) with k = 4, i.e.,

u(x) = exp(−4ix2) + exp(4ix2) + exp(−4ix1) + exp(−4ix1). (25)

19



Figure 4: Λ ∈ N4(0, k) with k = 4.

.

In fact, we can verify that the function u de�ned in (25) satis�es the Helmholtz equation,
the quasi-periodicity condition and the Rayleigh expansion. Furthermore u satis�es the
homogeneous Neumann boundary condition on the following lines:
(1) x2 = π

4
n1 for all n1 ∈ Z, (2) x1 = π

4
n2 for all n2 ∈ Z,

(3) x2 = x1 + π
2
n3 for all n3 ∈ Z, (4) x2 = −x1 + π

2
n4 for all n4 ∈ Z.

Essentially, if each line segment of Λ lies on the grid generated by the above straight lines,
then Λ ∈ N4(0, k), and thus generates the same total �eld of the form (25).
We �nish this section by studying the minimal number of incident waves that are needed to
uniquely determine Λ ∈ A. We introduce the following classes of unidenti�able gratings by
de�ning

T2(θ, k) := N2(θ, k) ∪ D2(θ, k), T (θ, k) := T2(θ, k) ∪N3(θ, k) ∪N4(θ, k),

with the convention that N4(θ, k) = ∅ for θ 6= 0. In view of Theorem 3, we have the following
result:

Corollary 4 Under the conditions of Theorem 3, if (15) holds for M incident waves with
distinct incident angles θi (i = 1, 2 · · · ,M) such that T (θ1, k)∩T (θ2, k)∩· · ·∩T (θM , k) = ∅,
then Λ1 = Λ2.

To determine the intersection of those unidenti�able sets for di�erent incident angles, we
need the following lemma:

Lemma 13 Let θi ∈ (−π
2
, π

2
)(i = 1, 2, 3, 4) be distinct incident angles and k be a �xed wave

number.
(1) N2(θ1, k) ∩N2(θ2, k) 6= ∅ if and only if θ1 ∈ (0, π

2
), θ2 ∈ (−π

2
, 0) satisfy

θ1 − θ2 =
π

2
, 2k sin θ1 ∈ Z and 2k sin θ2 ∈ Z.

(2) N2(θ1, k) ∩N2(θ2, k) ∩ D2(θ3, k) 6= ∅ if and only if θ1 ∈ (0, π
2
), θ2 ∈ (−π

2
, 0) satisfy

θ2 = θ1 − π

2
, θ3 = 2θ1 − π

2
= 2θ2 +

π

2
, (26)

2k sin θ1 ∈ Z, 2k sin θ2 ∈ Z, k(1± sin θ3) ∈ Z. (27)

(3) D2(θ1, k) ∩ D2(θ2, k) = ∅, T2(θ1, k) ∩N3(θ2, k) = ∅.
(4) T (θ1, k) ∩ T (θ2, k) ∩ T (θ3, k) ∩ T (θ4, k) = ∅.
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The above lemma can be derived from the de�nitions of D2(θ, k),N2(θ, k), N3(θ, k) and
N4(θ, k). Next we are mainly concerned with the elements of N2(θ1, k)∩N2(θ2, k)∩D2(θ3, k).
For this purpose, we set λ = 2k. Then, by (27), λ belongs to the set K de�ned by

K :=

{
λ > 0 :

There exists θ1 ∈ (0, π
2
) such that λ sin θ1 ∈ Z,

λ cos θ1 ∈ Z, λ(2 cos2 θ1 − 1) ∈ Z and λ ∈ Z.

}
. (28)

Lemma 14 We have min K = 25.

Proof. Suppose n1, n2 ∈ Z, N ∈ N are coprime numbers such that

sin θ1 =
n1

N
, cos θ1 =

n2

N
with n2

1 + n2
2 = N2,

i.e. (n1, n2, N) is a primitive Pythagorean triple. It is well-known that the smallest value of
N is 5. Since λ sin θ1 ∈ Z, we may assume that λ = Nη for some η ∈ N. Then it is seen
from the relation

λ(2 cos2 θ1 − 1) = 2η
n2

2

N
− λ ∈ Z, λ ∈ Z,

that 2η
n2

2

N
∈ Z. If N is an odd number, we arrive at η = Nm for some m ∈ Z since n2 and

N are coprime. Hence λ = mN2 with some m,N ∈ Z, implying that the smallest λ is 25
by taking m = 1. If N is an even number, then N must be greater than 10, implying that
λ ≥ N2

2
which is greater than 25. Thus min K = 25. ¤

If Λ1 6= Λ2 but Λ1, Λ2 ∈ N2(θ1, k) ∩ N2(θ2, k) ∩ D2(θ3, k), then for each incident wave
uin(x) = exp (ik(x1 sin θi − x2 cos θi)) (i = 1, 2, 3), the total �elds u

(i)
j (x) corresponding to

Λj (j = 1, 2) with the homogeneous Neumann boundary conditions coincide in the whole
R2. More precisely, according to the second step in the proof of Theorem 3, these total �elds
take the following forms:

u
(1)
1 = u

(1)
2 = exp(ik(x1 sin θ1 − x2 cos θ1)) + exp(ik(−x1 sin θ1 + x2 cos θ1)),

for the incident wave with incident angle θ1 ∈ (0, π
2
),

u
(2)
1 = u

(2)
2 = exp(ik(x1 sin θ2 − x2 cos θ2)) + exp(ik(−x1 sin θ2 + x2 cos θ2)),

for θ2 = θ1 − π
2
∈ (−π

2
, 0), and

u
(3)
1 = u

(3)
2 = exp(ik(x1 sin θ3 − x2 cos θ3)) + exp(ikx1)

+ exp(ik(−x1 sin θ3 + x2 cos θ3)) + exp(−ikx1)

for θ3 = 2θ1 − π
2

= 2θ2 + π
2
. Note that a Rayleigh frequency occurs for θ3. In this way, non-

uniqueness examples for illustrating that three incident waves are not su�cient to determine
Λ can be constructed (see the following counterexample).
Counterexample 4 Let Λi|(0,2π) (i = 1, 2) be de�ned by the following functions:

Λ1 : x2 =

{
(x1 − 2π) tan θ2 x1 ∈ [T1, 2π),
x1 tan θ1 x1 ∈ [0, T1)

with T1 =
2π tan θ2

tan θ2 − tan θ1

, (29)

Λ2 : x2 =

{
(x1 − 2π) tan θ1 x1 ∈ [T2, 2π),
x1 tan θ2 x1 ∈ [0, T2)

with T2 =
2π tan θ1

tan θ1 − tan θ2

, (30)
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and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2). Let k = 25
2
, choose θj satisfying

sin θ1 =
4

5
, sin θ2 = −3

5
and sin θ3 =

7

25
,

and set

u(1)(x) = 2 cos(10x1 − 15

2
x2), u(2)(x) = 2 cos(

15

2
x1 + 10x2),

u(3)(x) = 2 cos(
7

2
x1 − 12x2) + 2 cos(

25

2
x1).

So we obtain the counterexample already presented in [19]. Next we give another example
by taking k = 169

2
, sin θ1 = 12

13
(or equivalently θ1 = arcsin 12

13
). Set

θ1 = arcsin
12

13
, u(1)(x) = 2 cos(78x1 − 65

2
x2),

θ2 = arcsin
12

13
− π

2
, u(2)(x) = 2 cos(

65

2
x1 + 78x2),

θ3 = 2 arcsin
12

13
− π

2
, u(3)(x) = 2 cos(

119

2
x1 − 60x2) + 2 cos(

169

2
x1).

It can be veri�ed that each u(j)(x) (j = 1, 2, 3) satis�es the Helmholtz equation in the whole
plane, the quasi-periodicity condition and the homogeneous Neumann boundary condition on
both grating pro�les Λ1 and Λ2 de�ned by (29) and (30) with tan θ1 = 12

5
and tan θ2 = − 5

12
.

Combining Theorem 3 with Corollary 4 and Lemmas 13 and 14, we determine the minimal
number of incident plane waves that can identify Λ uniquely.

Corollary 5 Suppose that the assumptions of Theorem 3 are satis�ed.
1. If (15) holds for three incident waves with distinct incident angles, then either Λ1 = Λ2,
or

Λ1, Λ2 ∈ N2(θ, k) ∩N2(θ − π

2
, k) ∩ D2(2θ − π

2
, k)

with some incident angle θ ∈ (0, π
2
). Moreover, 2k sin θ ∈ Z, 2k cos θ ∈ Z, 4k(cos2 θ− 1) ∈ Z,

2k ≥ 25 and 2k ∈ Z. In addition, a Rayleigh frequency occurs for the incident angle 2θ− π
2
.

In particular, we have Λ1 = Λ2 if one of the following cases occurs:

(a) Rayleigh frequencies are excluded for each incident angle.

(b) The incident angles are all positive or negative; or one of the incident angles is π
4
, −π

4

or 0.

(c) The wave number k is less than 25
2
.

2. If (15) holds for four incident waves with distinct incident angles, then Λ1 and Λ2 must
be identical.
3. Given the a priori information that Λ ∈ A has a corner point at the origin and is not an
element of T (θ, k), the near �eld data u(x1, b; θ) from one incident wave with the incident
angle θ are enough to identify Λ uniquely.
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4. Given the a priori information that Λ1 and Λ2 belong to the class F de�ned in (8), if
(15) holds for one incident wave with the incident angle θ, then either Λ1 = Λ2 or Λ1, Λ2 ∈
N2(θ, k)∪N4(θ, k) with θ = 0. This implies that one incident wave with a non-zero incident
angle uniquely determines each element of F .

The above corollary can be regarded as a generalization of the results in [19] and [15] in the
case of Neumann boundary conditions.
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