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Abstract
Shape memory alloys (SMA) exhibit a number of features which are not easily explained by

equilibrium thermodynamics, including hysteresis in the phase transformation and ”reverse” shape

memory in the high symmetry phase. Processing can change these features: repeated cycling

can ”train” the reverse shape memory effect, while changing the amount of hysteresis and other

functional properties. These effects are likely to be due to creation of persistent localised defects,

which are impossible to study using non-atomistic methods. Here we present a molecular dynamics

simulation study of this behaviour. To ensure the largest possible system size, we use a two

dimensional binary Lennard-Jones model, which represents a reliable qualitative model system for

martensite/austenite transformations. The evolution of the defect structure and its excess energy is

investigated in simulations of cyclic transformation/ reverse transformation processes with 160,000

atoms. The simulations show that the transformation proceeds by non-diffusive nucleation and

growth processes and produces distinct microstructure. Upon transformation, lattice defects are

generated which affect subsequent transformations and vary the potential energy landscape of the

sample. Some of the defects persist through the transformation, providing nucleation centres for

subsequent cycles. Such defects may provide a memory of previous structures, and thereby may be

the basis of a reversible shape memory effect.
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1 Hysteresis and functional fatigue in shape memory alloys

Process diagrams of shape memory alloys (SMA) — such as the stress/strain- or the strain/temp-

erature-diagram — are characterised by hysteresis[1]. The width and shape of the hysteresis

depend on the specific alloy, its crystal structure, processing parameters or even specific tensile

loading directions. Also, hysteresis appears to depend on the history of the processes performed

with the material: the transformation stresses and the transformation temperatures change after

cyclic mechanical or thermal loading. This effect is most pronounced for virgin materials after

casting/heat treatment, but also affects their service properties. Material scientists subsume

such behaviour under the terminology functional fatigue [2, 3, 4, 5] because of its detrimental

effect on material reliability in technical applications.

Hysteresis and functional fatigue in SMA are related to microstructure and its evolution

upon thermo-mechanical processes [8, 9]. The characteristic twinned-plate structures of marten-

site consist of compatible variants formed by accommodation processes during the martensitic

transformation (MT) [10, 11]. Since lattice mismatch between the phases inevitably leads to

an increased energy at the interface, nucleations typically occur at loci where some pre-existing

inhomogeneity offers favourable conditions, for example at grain boundaries, lattice inclusions or

surfaces. Additionally, nucleation is influenced by stochastic fluctuations of the field variables.

The reverse transformation process from martensite into austenite evolves similarly. This reverse

transformation turns out to be accompanied by irreversible lattice variations which can be ob-

served experimentally: Figure 1 shows a TEM micrograph of the same region in a NiTi specimen

upon (a) temperature-induced martensitic transformation and (b) after the reverse transforma-

tion is completed. Inspection shows the characteristic wedge-shaped martensitic region seen in

the forward transformation (a) leaves behind a distinct dislocation mark within the austenite

matrix after reverse transformation in (b). Therefore, a transformation/re-transformation cycle

introduces microstructural changes and accordingly the energetic situation changes too.

Hysteresis loops in the process diagrams indicate energy dissipation, or entropy production

[12]. The thermodynamic phase equilibrium condition based on the free energy implies reversibil-

ity and therefore does not include hysteresis a priori. In addition to bulk free energy, continuum

models typically introduce interface energies in a phenomenological way. Two classical ideas are

used [13]: either the interfaces are considered as singular surfaces with a localised surface energy

[14], or the interface is considered as a steep but smooth transition zone and the interface energy

is modelled proportionally to the square of the strain gradient [15, 16].

We present studies of the impact of the microstructure on the phase transformation condi-

tion by molecular dynamics simulations. This method is in principle the most versatile way of

describing solid-solid phase transitions, since the crystal and interfacial structures arise automat-

ically from the inter-atomic potential, as do the long range strain effects; so there is no need for

implicit assumptions about microscopic details and symmetry entailed in continuum methods.

In particular, thermodynamics emerges from molecular dynamics rather than being an input, so

all the fluctuations are incorporated properly. The drawbacks are, firstly, that the model sizes
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(a) (b)

Figure 1: TEM micrograph of the same region in a NiTi specimen upon temperature-induced

martensitic transformation (a) and after the reverse transformation (b). The dark region in (a)

indicates a T-induced martensite wedge. The wedge leaves feint dislocation marks in (b) after

reverse transformation. After [6, 7] with courtesy of the authors.

and the time scales accessible are in the nano-scale due to limited computational resources and

secondly, that the models for inter-atomic forces in real materials are still unreliable [17]. In this

study, finite size effects are reduced by working in two dimensions, saving computer resource

for longer simulation run times and larger systems. The second problem is not solved in this

work. Instead we employ a binary Lennard-Jones model which is proven to represent a reliable

model system for martensite/austenite transformations. In MT, this model material produces

characteristic martensitic microstructures surprisingly similar to real materials [25, 26, 27].

We will describe a series of MD simulations of a cyclic transformation process (see Section

6). A domain structure is formed in our simulations of MT, with domain boundaries containing

defects which remain after reverse transformation. These defects change the potential energy

landscape of the austenite, and affect subsequent transformations. We will investigate the en-

ergetic implications of this defect structure and the consequences of microstructural evolution.

Because these processes can be hindered by significant nucleation barriers, the transformations

are induced partly by temperature and partly by slow changes of the inter-atomic potential.

2 Model material: Binary Lennard-Jones crystals

We use 2D Lennard-Jones (L-J) crystals in our molecular dynamics simulation experiments

[28, 29]. This model material forms binary compounds of two atomic species, A and B, with

crystal structures as shown in Figure 2. The model austenite, Figure 2 (a), is represented by

nested square sub-lattices of A and B type. In the binary L-J system, the square lattice can

be stabilised by temperature or appropriate adjustment of the cross-species (A,B) interactions.

The model martensite, Figure 2(b), is produced by a shear/shuffle transformation of the square

lattice: square unit cells are sheared into diamonds, accompanied by shuffle of the sub-lattices.
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Figure 2: Binary Lennard-Jones lattices in 2D. (a): Model austenite, (b): model martensite, (c):

Variants of martensite due to different shear directions of an austenitic unit cell and different

shuffle directions of (A,B)-type sub-lattices. Compatible twins have opposite shear but identical

shuffle.

Since there are two shear and two shuffle directions possible in 2D, four variants of martensite can

be identified, see Figure 2(c). Note there is no group-subgroup relationship between martensite

and austenite because the martensite develops a threefold symmetry. This leads to an unusual

situation where the atomistic structure is preserved across a compatible variant boundary. Such

twin boundaries have zero excess energy and can be located only by reference to the parent

austenite.

In molecular dynamics (MD) simulations, the trajectories xα(t) of the particles in an N -atom

super cell are numerically calculated on basis of the Newtonian equations of motions

mαẍα = fα = −
N∑

β 6=α

∇αΦαβ (1)

with fα — the overall interaction force acting on atom α in the presence of the remaining

(N − 1) atoms of the system.
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In this study, we consider (12,6) Lennard-Jones (L-J) potentials,

Φαβ(rαβ) = 4 εαβ

((
σαβ

rαβ

)12

−
(

σαβ

rαβ

)6
)

. (2)

εαβ and σαβ are the interaction parameters which depend on the atomic species of atoms α

and β. σ determines the potential range while ε determines its strength. The distance between

atoms α and β is rαβ ≡ |xβ − xα|.
In a binary model three potential functions are needed to model interactions between A-A,

B-B and A-B atoms, hence there are six interaction parameters (εAA, σAA), (εBB, σBB) and

(εAB, σAB). A-A and B-B potentials model bonds between the pure species while the A-B

potential defines the cross-species interaction. The balance between pure- and cross-species

potentials determines the stability and crystal structure of the binary lattice.

Here we follow [28] in setting interaction parameters of the pure species (εAA, σAA) and

(εBB, σBB) to

εAA = 1.2 ε0

εBB = 0.61 ε0

σAA = σBB = 2−1/6 σ0 .

(3)

εAA > εBB means that A-A bounds are stronger bound than B-B bounds.

For convenience we use non-dimensionalised quantities and choose σ0 = 10−10 m, ε0 =

2.5 × 10−19 J and µ0 = 58 × 10−27 kg respectively to eliminate length, energy, mass and time

units from Equations (1) and (2). The natural unit of time τ0 = 4×10−14s represents the period

of a harmonic oscillation of an atom of mass µ0 about the minimum of the pair potential with

parameters σ0 and ε0.

The choices taken in Equation (3) are arbitrary and no attempt is made to fit the pure species

potentials to any real metal. A similar model was presented in [28] and basic thermodynamic

properties were investigated in [29]. Other similar models have previously been applied, even in

3D [30, 31, 32, 33, 34, 35], but there are serious difficulties with finite size effects and, therefore,

boundary conditions. In order to effectively reduce finite size effects, we will concentrate on 2D.

This makes it impossible to directly relate our results to any specific material. For example, the

lattice defects obtained from the 2D simulations cannot be directly related to any 3D topological

defect. However, qualitative explanations of hysteresis and shape memory, as well as continuum

and crystallographic theory, can be equally well applied in 2D. It is these more fundamental

concepts that we intend to test.

6



3 Thermodynamics

We briefly review the thermodynamic phase equilibrium condition: the stable phase has mini-

mum free energy, a balance between energy and entropy. For a tensile specimen, as sketched in

Fig. 3, a change in internal energy can arise from heat flow and external loading.
dU

dt
= Q̇ + P

d l

dt
(4)

dS

dt
≤ Q̇

T
. (5)

U denotes the internal energy (potential and kinetic), S the entropy and Q̇ the heat exchanged

with the thermostat, the latter assumed to act at a homogeneous surface temperature T . Because

the processes are slow on the macroscopic time scale, the kinetic energy of the centre of mass

may be neglected.

Eliminating the heat flux between Equations (4) and (5) and applying a Legendre transfor-

mation the stability criterion reads
d

dt
(U − TS − Pl) ≤ −S

dT

dt
− l

dP

dt
. (6)

Thus in an ensemble with fixed external load P and fixed temperature T the Gibbs free enthalpy

G ≡ U − TS − Pl is minimal in equilibrium. This reduces to the Helmholtz free energy F ≡
U−TS for the special case of zero external loads. At the thermodynamic transition temperature

and zero load the specific free energies of austenite and martensite are equal,

uaust − Tsaust = umart − Tsmart . (7)

The internal energy of N interacting atoms in a 2D lattice is fully determined by the atomic

micro-state (xα, ẋα). Statistical thermodynamics relates the free energy to the partition function

Z by

F = −kBT lnZ , (8)

where the canonical partition function is represented by a sum over all possible micro-states

available,

Z =
∑

x1...N

∑

ẋ1...N

exp
(
−Ekin(ẋ1...N ) + Epot(x1...N )

kT

)
. (9)

Temperature

P(t)
Load

T

l(t)
Length

Control volume

AusteniteMartensite 

Figure 3: The phase stability criterion. A fixed uni-axially applied load P affects the actual

length l(t) doing work at a rate P dl/dt.
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Ekin and Epot are the kinetic and potential energy, given by

Ekin =
1
2

∑
α

mαẋα (10)

Epot =
1
2

∑
α

∑

β 6=α

Φαβ(|xβ − xα|) . (11)

The temperature is related to the mean kinetic energy by

ekin(T ) =
Ekin

N
= kBT , (12)

for N atoms in the 2D case.

For analysis, a useful quantity is the mean ground-state potential energy per atom, e0
pot i.e.

the energy of the system, including defects, at T=0. Assuming equipartition, the increase in

potential energy at finite T is equal to the increase in kinetic energy. Thus we can estimate:

e0
pot(T ) = Epot(T )/N − kBT . (13)

In the ideal case of infinite and perfect lattices, where surface and lattice defects are absent,

this is simply the T=0 cohesive energy of the phase in question. The cohesive energy per atom

in such a perfect lattice is denoted e0,id
pot .

4 Infinite and perfect Lennard-Jones lattices

4.1 Harmonic limit: Linearised equations of motion.

Ideal, static, square or hexagonal lattices are fully defined by the single lattice parameter R

or r, respectively, as illustrated in Fig. 2 (a) and (b). For T → 0 (ground state), these pa-

rameters may be determined by potential energy minimisation once the interaction parameters

{εAA, σAA, εBB, σBB, εAB, σAB} are set. The relaxed lattice sites are denoted by X0
α and the

displacements from the lattice sites by uα
i (t) = xα(t) − X0

α. Hence, the linearised equations of

motion (1) read

mαüα
i =

∑

β

Aαβ
ij uβ

j , (14)

where Aαβ
ij (X0

γ) is the stiffness matrix. It is determined by the interaction parameters and X0
α,

see Appendix A.1. Negative eigenvalues of the stiffness matrix imply mechanically stable lattices;

this is the phonon stability criterion. Martensitic transitions are often associated with phonon

instabilities: the eigenvectors coupled with lattice distortions define transformation pathways.

Here, we have fixed the pure-species interactions (Equation 3) and investigate the effect of

changing the cross-species interaction parameters εAB and σAB. Sets of (εAB, σAB) yielding

all negative eigenvalues imply a linearly stable lattice, while any positive eigenvalue indicates

an unstable lattice. We show these phonon stability limits in the parameter space (εAB, σAB)

in Figure 4. It turns out that the stability limits of the two lattices overlap, providing a dis-

tinct region in the parameter space where either phase may exist, perhaps metastably, at zero
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Figure 4: “Phonon stability limits” of square and hexagonal Lennard-Jones lattices in 2D as

function of the cross-species interaction parameters (εAB, σAB). Other interaction parameters:

εAA = 1.2ε0, εBB = 0.61ε0, σAA = σBB = 0.89σ0.

temperature. At high temperature, phases which do not satisfy the phonon stability criterion

may exist - these are known as dynamically stabilised, since this entropic phase stabilisation is a

purely dynamic effect which cannot be determined from ground state or harmonic perturbation

methods.

The phonon stability criterion can be generalised to finite temperature in the ”quasihar-

monic” approximation [36], or extended beyond linear theory to treat unstable modes [37],

however, it is not equivalent to the thermodynamic phase stability criterion derived in Section

3. Rather, it represents local mechanical stability against small deformations. The thermody-

namic phase stability is controlled not by the potential energy alone, but by the free energy, a

combination of energy and entropy [38, 39]. Martensite has lower potential energy, while the

austenite phase has higher entropy. To study this interplay, and thus produce a set of model pa-

rameters which exhibits a martensitic transition, it is necessary to determine energy and entropy

independently.

4.2 Thermodynamic phase stability

For infinite and perfect lattices, the free energy (U-TS) can be calculated using Equations (8)

and (9). There are a number of numerical techniques available [36], but here we adopt an

analytic solution obtained under two simplifying assumptions:

1. Einstein crystal: Atoms may be considered to move independently from one another within

mean potential energy functions provided by their average environment.

2. Harmonic approximation: Any anisotropies of these mean field potential energies may be

neglected in order to represent them as parabolic functions with isotropic curvatures λ.
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Figure 5: Potential energy of a B-type atom and parabolic approximation. (a), (b): austenite,

(c), (d): martensite. One-dimensional representations along the path 1-2 are provided in (b)

and (d), where solid lines refer to the anisotropic L-J potential energies and dashed lines to the

fitted, parabolic potentials used for the evaluation of the partition function. The situation is

similar for A-type atoms.

These two assumptions yield a specific free energy (see Appendix A.2)

f(aust/mart) = e0,id
(aust/mart) + kBT

︸ ︷︷ ︸
u(aust/mart)

−T kB

{
ln T + ln

2πkBT

λaust/mart

}

︸ ︷︷ ︸
saust/mart

+C(T ) . (15)

In this equation terms are sorted so as to emphasise the contributions of the internal energy

u and the entropy s to the specific free energy f . Here, e0,id
aust/mart denote the mean potential

energies of an atom located in the ideal lattice and λaust/mart denote the mean curvatures of

their Einstein crystal potentials. C(T ) is a constant which contains terms common for both

phases austenite and martensite.

The curvatures λA,B of single A- and B-type atoms are fitted to the energy of single-atom

displacements in a static lattice averaged over all directions. For illustration, Figure 5 shows

equi-potential curves of a single B-type atom inside austenitic and martensitic unit cells. The

anisotropic character of the L-J crystal is obvious, but for small amplitudes the approximation

of this potential energy by parabolic functions is justified.
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Both the ground state energies and the curvatures of the mean potential parabolae are

functions of the interaction parameters. In Subsection 4.1 we have pointed out the significance

of the cross-species interaction parameters (εAB, σAB) on the lattice stability. In the following

we set

σAB = 0.60 , (16)

hence leaving εAB as the only adjustable model parameter. Figure 6 shows the dependence of

e0,id
aust/mart and the mean curvatures λaust/mart =

√
λAλB |aust/mart on this single parameter.

Figure 6 (b) shows that the curvature of the mean potential energy is bigger in martensite

than in austenite, λmart > λaust. Hence, the atoms move in a softer potential in the austenite as

compared to the martensite. In fact, the expression 2πkBT/λ in Equation (15) can be interpreted

as the area an atom may explore for a given kinetic energy kBT . Because λmart > λaust,

the austenite has higher entropy than the martensite and thus will be favoured at elevated

temperatures. The thermodynamic phase transformation temperature occurs when the free

energies of perfect austenite and martensite are equal. This temperature may be calculated

approximately from the free energies (15) in the stability condition (7),

e0,id
aust − kBTid ln

2πkBTid

λaust
= e0,id

mart − kBTid ln
2πkBTid

λmart
. (17)

The resulting phase transformation temperature Tid for transformations between the ideal lat-

tices is

Tid =
e0,id
aust − e0,id

mart

kB ln (λmart/λaust)
. (18)

The right-hand-side of this equation depends on the adjustable parameter εAB. Figure 6 (b)

shows that the ratio of the curvatures λ(aust, mart) in the denominator is approximately indepen-

dent of εAB:
λmart

λaust
≈ 2.45 , (19)

but the difference of the ground state energies, by contrast, depends significantly on εAB, see

Figure 6 (a). Figure 7 shows the dependence of Tid on εAB.

Tid decreases with εAB monotonically with a root at εAB = 0.237, where the ground state

energies of the two phases are identical. Above εAB = 0.237 the material always is austenitic,

but MT may be induced by application of external loads [41]. Below εAB = 0.237, martensite

has lower potential energy than austenite and here T-induced transformations are possible. Also

indicated in Figure 7 is the melting line of the infinite lattice, estimated on the basis of Reference

[42]. Its intersection with the transformation temperature line at εAB ≈ 0.18 gives a lower

bound for the interaction parameter. Note this limit approximately coincides with the phonon

stability limit of the austenite: compare to Figure 4 for σAB = 0.6. Between the two limits, the

transformation temperature depends almost linearly on εAB, while the crystallographies of the

model austenite and martensite remain unaffected. MT processes therefore may be induced by

change of the temperature at values of εAB within this range (temperature-induced process).

Alternatively, they can be induced by variation of εAB at fixed temperature (energy-induced
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process). Physically, changing the interactions may be in principle justified to represent changing

electronic entropy, which is believed to be significant in the hcp-bcc transition for zirconium [40],

or magnetic interactions such as those accompanying the bcc-fcc transition in iron. The main

reason we use this technique here is to lower the transformation barrier without changing the

character of the two phases. The nucleation rate in MD simulations varies exponentially with

the barrier energy, so this is a highly effective way of reducing the necessary computing time.

Because changes in εAB do not change the crystallography of the material, the qualitative results

and microstructure should be unaffected.

Figure 6: (a): Ground state energies e0,id
(aust,mart), (b): mean curvatures λaust/mart =√

λAλB |(aust,mart) of statically relaxed (austenite, martensite) lattices versus the interaction

parameter εAB.

Figure 7: Transformation temperature Tid at phase equilibrium of infinite and perfect austenite

and martensite lattices as function of the interaction parameter εAB.
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5 Approaches to hysteresis

There are two distinct pictures of the cause of hysteresis in a martensitic transformation:

The phonon stability criterion represents the convexity of the atomic potential energy. It is

tempting to associate the coexistence range in Figure 4 with the hysteresis [18]. In this picture

the transition occurs when the structure is mechanically unstable, and can transform without

macroscopic strain. Hysteresis consequently appears as an inherent property of the perfect

crystal, independent of any process history.

The other picture relies on the thermodynamic stability condition (6) and relates hysteresis to

additional energetic and entropic contributions from defects necessarily created in the transition,

and not considered in the theory of perfect and infinite lattices.

The classical nucleation theory for liquid droplets in vapour [19] represents a formulation

of the thermodynamic stability criterion, where the additional energy contribution is the in-

terfacial energy between vapour and liquid. The same concept yields hysteresis in condensa-

tion/evaporation processes of fluids [20, 21]. Of course, fluid phase theories are simplified by the

representation of stresses as isotropic pressure, a single interface energy and the consequence

that the nucleus shape is spherical. Solid-solid phase transformations are more complicated,

because the phase transformation is affected by local compatibility concerns and stress fields

to either side of the interface. Further, the interface energy is strongly orientation dependent

and affected by defects and dislocations. And finally, the nucleus shape is not known a priory.

Continuum models therefore generally simplify solid-solid interfaces as singular surfaces (atom-

ically sharp habit planes and twin boundaries) and assume phenomenological models for the

the interface energy. Although an extension of the continuum-level transformation conditions

to non-isotropic stresses is available [22, 23, 24], it has not, to our knowledge, yet been applied

to the full 3D nucleation problem.

In this second picture, hysteresis arises from local balance equations for some finite control

volume, as implied by Section 3. In this case a transformation will only occur once the free energy

of the transformed region including its associated defects is equal to the untransformed crystal.

In what follows, we focus on this concept. We use MD simulations to create microstructure

in finite crystals and try to identify its impact on the global thermodynamic phase stability

criterion.

6 MD simulation experiments of cyclic transformations

6.1 Scope

In temperature-induced MT, two-dimensional binary L-J crystals produce distinct microstruc-

tures which exhibit strong similarities to real materials [25]. The MT evolves by nucleation and

growth processes which form herringbone-shaped martensite plates comprising compatible twin

variants. Plates growing in perpendicular directions are incompatible, however, and distinct

domain boundaries are produced where such plates grow into contact. The incompatibility of
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the plates produces lattice defects which we identify by atoms with significantly higher potential

energy than those within the martensite plates.

Under reverse transformation, these defects are partly eliminated and partly remain in the

lattice where produced. Mobile defects may migrate to the surface where they produce kinks, or

they may pile up at obstacles. In any case, the potential energy landscape of the reconstructed

austenite is irreversibly changed, and this change influences the subsequent transformations.

To investigate this, a series of transformation cycles were conducted by MD simulation exper-

iments. Because of the significant nucleation barriers, the transformation processes were induced

partly by temperature and partly by changing the interaction parameter εAB at constant tem-

perature. Three transformation cycles were conducted, each consisting of five transformation/re-

transformation processes. Although starting from slightly different initial conditions, all three

cycles show the same morphological and energetic trends and these can be regarded as repro-

ducible.

6.2 MD simulations

Standard NVT MD techniques [43] were employed to integrate the equations of motions of a

two-dimensional quad-shaped assembly of 160,000 atoms. The quad has a free surface and no

external loads are applied. We use the Verlet algorithm (coordinate formulation) to recursively

compute the atomic trajectories with a ∆t = 0.4 fs time-step. The initial atomic velocities

were randomly selected and their magnitudes were adjusted to set the required initial tem-

perature. Subsequently, temperature was controlled by use of a Berendsen-type thermostat

[44]. In simulations where the phase transformations were induced by temperature changes at

fixed εAB (temperature-controlled processes), temperature was changed within a T-interval of

T = 200 . . . 1500 K at rates of 2 K/fs (0.05 K/time-step). In simulations where the phase trans-

formations were induced by variation of εAB (energy-controlled processes), the temperature was

kept constant at either 200 K (for austenite/martensite transitions) or at 1200 K (for marten-

site/austenite transitions). The interaction parameter εAB then was varied at a rate of 6.25e-7
ε0/fs within an interval of εAB = 0.19 . . . 0.27 ε0.

In sum the investigation of the transformation behaviour of the test quad over a T-range of

1300 K and a εAB-range of 0.08 ε0 in the three cycles involved a total of ca. 30 million time-steps.

Domain decomposition at cutoff-radii of rc = 3.5σ0 is used to distribute the computational

load over an 8×8 dimensional parallel computing grid, which in the present study was provided

by Germany’s National Research Centre in Jülich [45] and by a local Beowulf-type Linux cluster.

6.3 MT in a virgin 160,000 atom quad

In the initial state the 160,000 atom quad is a square single-crystal austenite. At a constant

temperature of 200 K, martensitic nucleation occurs at εAB = 0.19 ε0 in this virgin lattice.

Primary nuclei typically form at the surface. From here the transformation proceeds into the

bulk, forming needle-like martensitic plates of compatible twin variants. A detailed discussion of
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Figure 8: Product of MT in a initially single-crystal 160,000 atom quad. (a): Product morphol-

ogy. Twins are colour-coded according to the magnification of location I. (b): Potential energy

field. Domain boundaries carry higher excess potential energies affecting significant colour con-

trast. Note that within a single domain, the twin structure visible in (a) is not represented in

(b): Twin variants are perfectly compatible and do not exhibit twin/twin interface energy in 2D

L-J lattices.

the dynamics of such martensitic nucleation and growth process in 2D L-J crystals is provided in

[25]. Here we focus on the product morphology: Figure 8 (a) shows a typical product morphology,

and (b) the associated potential energy field. The, martensitic domains consist of finely-twinned

microstructures formed by compatible variants (see Figure 2(c)). In the 2D case, L-J twins

are perfectly compatible and do not exhibit twin/twin interface energies 1 and the twinning is

identified with reference to the original neighbours of each atom.

Location I in Figure 8 shows the interface between variants with identical shear direction

but opposite shuffle directions of the sub-lattices (anti-phase boundary). Such interfaces exhibit

significant excess energy along the line where the shuffle changes direction (Figure 8b). Interfaces

of this type are typically straight, as indicated by the dotted line in magnification of location I.

Location II in Figure 8 shows the interface between plates which nucleated on the two

perpendicular axes [01] and [10] of the austenitic lattice. Variants within each individual plate

are compatible, but different plates give rise to misfit at the plate boundaries. The misfit causes
1This is not the case in 3D!
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strain energy, indicated in Figure 8 (b) along boundaries which were produced dynamically

where the growing plates come into contact, and thus may have any shape.

At some places along a domain boundary, the incompatibility gives rise to coordination

defects. Location III in Figure 8 shows such a situation: the two arrows indicate deformed unit

cells at (i) and a vacancy at (ii).

6.4 Reverse transformation

During the reverse transformation, the model material exhibits the two transformation mech-

anisms sketched in Figure 9, reversible and reconstructive [46]. In reversible transformations

nearest neighbour atoms are maintained such that reference austenite unit cells (black lines)

keep their shape upon the reverse transformation. In reconstructive transformations the refer-

ence unit cells are distorted, as indicated by black lines in the bottom of Figure 9, however, the

perfect square lattice is reconstructed locally with the atoms having different neighbours (red

lines). The reconstruction produces point defects which either glide to the surface, forming a

kink, or pile up at obstacles in the bulk.

Figure 10 illustrates that both mechanisms indeed occur upon reverse transformation of the

160,000 atom block. The top row of this figure shows an austenitic nucleus at low T situated

at a martensitic domain boundary marked by reconstructed unit cells and defects at (ii). These

defects have excess potential energies shown by the colour contrast in (c). The nucleus mainly

consists of reversibly transformed unit cells, but a localised point defect is also visible at (i).

The bottom row in Figure 10 shows the same region after reverse martensite/austenite

transformation at high T. The majority of unit cells transformed reversibly into the austenite.

Reconstructive transformations have occurred, e.g. in regions (iii) in Figure 10. Colours in 10(b)

are assigned with respect to the deformation of reference unit cells defined in the austenite, and

hence include historical information. Fig.10(c) shows that the ’reconstructed’ region is still

perfect austenite with no energy signature. Isolated energetic signatures are observed where the

reconstructed region ends (i) and at plate boundary junctions (ii). These defects have both core

energy and an associated strain field. Plate boundaries also have increased potential energy,

dispersed in a strain field.

Figure 9: Schematic drawing of two reverse transformation mechanisms.
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Figure 10: Reverse transformations in the 160,000 atom quad. Top row 100 K, bottom row

1500 K. Columns: (a) lattice, (b) unit cell morphologies, with colours determined from the

arrangement of the atoms which were nearest-neighbours in the original austenite (c) potential

energy field.

Figure 11: Product of the reverse transformation. (a): Morphology (b): potential energy, (c):

magnification of defect region, (d): potential energy across defect along path 1-2.
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Figure 11 shows the 160,000 atom quad after completion of the reverse transformation. Frame

(a) shows the morphology after re-definition of reconstructed square unit cells as austenite. After

this re-definition, some atoms no longer have four nearest neighbours: these are shown as white

spots in Figure 11 (a). Inspection of the lattice (c) and the potential energy field (b) shows that

these spots represent mostly vacancies, with increased potential energy shown in (d). Away from

the spots, the potential energy fluctuates about the energy e0,id
(aust,mart) of the infinite lattice, as

indicated by dotted lines in Figure 11 (d).

Martensite has lower potential energy than austenite and the difference is absorbed by the

thermostat as latent heat during the transformation.

6.5 Cyclic transformation processes

So far, a single transformation/reverse transformation process was considered. We now consider

cyclic transformations, the final configuration of the preceding transformation process being used

as the initial configuration of the next cycle. The first transformation cycle with the 160,000

atom quad is initiated from a virgin austenite single crystal. The second cycle is initiated from

the product of the first cycle shown in Figure 11.

Figure 12 (a)-(c) show the MT in progress during the second cycle. Martensites nucleate at

defects which were produced during the previous transformation cycle. These defects are located

along the dotted line indicated in Figure 12 and were preserved during the reverse transforma-

tion. Nuclei grow on either side of the defect line, forming differently-oriented martensite plates.

And where these new plates interact, new domain boundaries are formed, indicated by (i) in

Figure 12 (c).

Thus the defect structure present in the austenite influences the nucleation and growth

process of subsequent martensites. This observation is confirmed by further transformation

cycles, see Figure 13 for a tableau of morphologies obtained by five subsequent forward/reverse

transformation processes with the 160,000 atom quad. The domain character of the martensite is

clearly visible in the morphological representation and also by the excess energy of the domain

boundaries. Domains are produced during the first MT. Upon reverse transformation, some

defects are eliminated, some migrate to the surface. Still others remain immobile during the

reverse transformation, and serve as nucleation sites for subsequent MT, hence influencing the

new domain structure. This mechanism accounts for an accumulation of defects along lines

and eventually imprints a domain structure into the austenite which is reinforced by successive

cycles.

The total potential energy of the specimen changes as defects accumulate. Table 1 gives the

results of three independent cycle series. Each cycle was started from a perfect, single-crystalline

quad. In two series the transformations are induced by slow changes of the interaction parameter

εAB at constant temperature, 200 K for MT and 1200 K for its reverse transformation, respec-

tively. The third series was conducted in temperature control mode. To guarantee completion

of the transformation processes, the mean potential energy was measured for εAB = 0.25 . . . 0.27

18



Figure 12: Second transformation cycle: Nucleation of martensite at T = 200 K, εAB = 0.22.

The dashed line indicates the martensitic domain boundary previously formed.

for reverse transformations and for εAB = 0.19 for MT, respectively. Next, the energies were

rescaled to a single, intermediate value of εAB = 0.225 using the constant factors for ideal lat-

tices from Figure 6(a). Finally equation 13 is used to calculate the ground state energies given

in Table 1.

Each of the three cycle series produces a different defect morphology, but they exhibit a

similar energy trend (Table 1 and Figure 14). The respective ground state energies e0,id
(aust, mart)

of the infinite and perfect lattices of Section 4 are also included in Figure 14 by dashed lines.

These lines are lower because the pre-transformed samples include the defects and surfaces. The

mean excess energies due to defects and surfaces may be defined by

∆e0
(aust, mart) = e0

(aust, mart) − e0,id
(aust, mart) . (20)
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Figure 13: Five cyclic martensitic/austenitic transformations.
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AB interaction- e0
(aust, mart) #cycle

Series parameter I II II IV V

Austenite, × ε0

1 εAB = 0.27 −2.033 −2.031 −2.028 −2.020 −2.015

2 εAB = 0.27 −2.031 −2.025 −2.019 −2.024 −2.023

3 εAB = 0.25 −2.009 −1.999 −1.996 −1.997 −1.994

Trend εAB = 0.225 −1.969 −1.963 −1.959 −1.958 −1.955

Martensite, × ε0

1 εAB = 0.19 −1.970 −1.960 −1.964 −1.966 −1.962

2 εAB = 0.19 −1.959 −1.960 −1.964 −1.974 —

3 εAB = 0.19 −1.975 −1.976 −1.975 −1.977 −1.98

Trend εAB = 0.225 −1.972 −1.969 −1.971 −1.976 −1.973

Table 1: Estimated ground state energies (U-kBT) measured in three cyclic transformation series

with the 160,000 atom quad.

Figure 14: Mean atomic potential energies of the 160,000 quad as a function of the cycle number

calculated with εAB = 0.225 using Equation 13. The difference between AI and e0,id
aust, shows

the contribution from the surface. Solid red and blue curve: Trend lines of austenite and

martensite, respectively, according to Table 1. Dashed red and blue lines: Ground state energies

of the respective perfect lattices.
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7 Hysteresis and functional fatigue in a Lennard-Jones crystal

The results of Table 1 may be interpreted as the cause of hysteresis in the thermodynamic model.

The guiding idea is that the excess energies ∆e0
(aust, mart) shift phase equilibrium condition (17)

2. For transformation between imperfect structures, the ground state energies in Equation (17)

are replaced by the estimated ground state energies of the microstructured lattices, giving

T =
e0
aust − e0

mart

kB ln (λmart/λaust)︸ ︷︷ ︸
Tid

+
∆e0

aust −∆e0
mart

kB ln (λmart/λaust)︸ ︷︷ ︸
∆T

. (21)

Here, ∆T denotes the shift of the transformation temperature due to the defect energies within

the microstructure.

Thermodynamic Hysteresis. In the following we consider a sequence of simulations where

all transformations were entirely induced by temperature at fixed interaction parameter εAB =

0.225 ε0. For this case, the potential energies of the defective states are given in Fig 14, indicated

by AI. . . V and MI. . . V for austenite and martensite, respectively. In the virgin quad the atoms

have mean potential energy of AI. Transformation causes a reduction in potential energy to that

of the defective martensite. The thermodynamic transformation temperature AI-MI, TAI→MI ,

can be calculated from Equation (21) as

TAI→MI = 59.8 K . (22)

The reverse transformation goes to defective austenite state AII, which has a higher potential

energy than the AI state. The reverse transformation temperature is then higher TMI→AII

TMI→AII = 166.8 K . (23)

Hence, according to thermodynamics, the AI→MI→AII transformation cycle of the model has

a temperature hysteresis of 107 K. Note the transformation temperature Tid of the infinite and

perfect lattice is above both TAI→MI and TMI→AII in the first cycle,

Tid = 177, 0 K . (24)

Functional fatigue. We need not stop here: going to the next MT of cycle II, the trans-

formation temperature TAII→MII depends on the potential energies of states AII and MII and

the subsequent reverse transformation by the states MII and AIII. Continuing to the last cycle,

the respective transformation temperatures of MT and the reverse transformation are plotted

in Figure 15. Inspection shows during the first four cycles both transformation temperatures

are increasing beyond the transformation temperature of the infinite lattice Tid. The width of

the hysteresis decreases during the first four cycles, with some evidence of defect saturation by

the fifth cycle. Both transformation temperatures shift upward as a result of the evolution of

the defect structure in austenite and martensite.
2we ignore the entropic effect of defects
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Figure 15: Transformation temperatures of the 160,000 atom quad as function of the cycle

number. The hysteresis-free transformation temperature of infinite and perfect lattices (Section

4.2) is indicated by a dashed line.

The cycling was continued beyond the fifth cycle, however, the quad hardens and begins to

fracture: necking of the sample is already visible for the last cycles in Figure 13. We regard

this as a finite-size effect of the 160,000 atom quad, but larger calculations would have to be

compromised by shorter simulation time, i.e. unrealistically fast cooling rates. The chosen

assembly size is a compromise in this regard.

Predicted and observed hysteresis. The hysteresis predicted in Figure 15 was based on

an integral energy balance of the 160,000 atom crystal. This implies the idea of a homogeneous

”mean field” defect energy. Figure 12 in Section 6.5, on the other hand, has illustrated the

impact of defects on nucleation, which shows that local conditions are important. The question

is whether the local picture of the transformation evolution meets the global prediction?

The answer is “almost”. Figure 16 shows the evolution of the austenite fraction of the 160,000

atom quad as function of temperature upon heating and cooling within the range 100..1500 K.

Cooling and heating processes were started from identical austenitic and martensitic initial

configurations, respectively. These were chosen from previous second-cycle simulations so as to

provide defective lattices.

Two different cooling/heating rates were imposed, but the simulations show little difference

between the respective curves. Figure 16 shows that the AM transformation occurs quickly

upon cooling below 500 K. The MA transformation is sluggish in comparison and remains

incomplete for the two chosen temperature rates. The reason for these distinct transformation

behaviours is that AM transformations are driven by the potential energy (phonon instability)

while MA transformations are driven by the entropy. Entropically controlled transformations

involve stochastic processes on the atomic scale and therefore exhibit comparably long relaxation

times.
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Figure 16: Temperature controlled transformation process of a defect-infected crystal,

austenite→martensite upon cooling and martensite→austenite at two distinct temperature rates.

For these simulations the cross-species interaction parameter εAB = 0.225 was set constant. Each

atom is assigned as austenite, martensite or defective according to how well its local coordination

matches the reference structures (Figure 2). As a consequence the defects reduce the maximum

austenite fraction below 100%. We associate the MA transition with the first appearance of

austenite (”Austenite start”).

The temperature hysteresis for this particular transformation cycle is ca. 100 K, if taken

from the first appearance of the product phase (The so-called martensite start and austenite

start temperatures). This hysteresis appears to be consistent with the prediction of Figure

15 for a second-cycle transformation with this crystal, however the predicted transformation

temperatures do not match.

8 Conclusions and Remarks

The method of MD simulations is capable of modelling microstructure evolutions under MT and

the reverse process. In 2D, the size of the test assembly (160,000 atoms) appears to be sufficient

to model a domain-structure and its energetic implications. Although the model material is

artificial, general ideas about MT should apply equally well to our simulations.

Our simulations exhibit heterogeneous nucleations of martensitic plates comprising compat-

ible twin variants. These plates grow as needles, with the tip moving perpendicular to the habit

plane. When martensitic plates encounter one another, the variants are incompatible and the

interfaces have high energy. All of this is observed in real MT.

The needle tip, and the joins of boundaries between plates, form point defects which may be

identified as 2D analogues of vacancies or dislocations. These defects are not usually eliminated

by the reverse transformation, although they may migrate to the surface or pile up in a more

extended defective region. There is evidence from TEM that such defects are produced in NiTi.
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The simulations show how these defects are introduced during martensitic transformation

processes and affect subsequent transformations. If the sample is cycled through a series of

forward/reverse transformations, the amount of defects in each phase increases. The defects

act as nucleation sources for the transition. Moreover, the location of the defects is preserved

through the cycling, providing a memory of previous structures. Eventually, sufficient damage

accumulates that the material fracture.

The transformations show pronounced hystereses, and different ”start and finish” temper-

atures. We have developed a thermodynamic theory for the hysteresis, based on the expected

defect state of the transformed material. This gives an a postiori “prediction” for the thermody-

namic transition temperature. The MD also gives a transition temperature. This is not sharply

defined due to the finite temperature gradient applied, and time lags as latent heat is absorbed

by the thermostat. However it is broadly compatible with the thermodynamics prediction.

The thermodynamically-predicted transition temperature increases with cycling, implying

that the defect energy in the austenite increases faster than in the martensite. Experiments

with SMA show that upon thermal cycling the transformation temperature may indeed increase,

but the opposite effect is also observed, depending on the transformation history. However,

the nature of the defects observed in 2D may bear little resemblance to those seen in 3D.

Furthermore, our thermodynamic condition involves global energies, whereas the transformation

is nucleated locally, typically at defects. Further study is required to define and measure the

local thermodynamic transformation conditions, similar to classical nucleation theory.

In sum, we have use MD to investigate some fundamental principles of cycling marten-

site/austenite transitions. We show that permanent damage accumulates from plate boundaries

in the martensite, which persists through cycling and causes functional fatigue. This damage

suggests a natural source for the “memory” and role of “training” in the reverse shape memory

effect, and a thermodynamic contribution to hysteresis.

Acknowledgement O. Kastner appreciates funding from the Deutsche Forschungsgemein-

schaft (DFG) under contract KA 2304/1,2. The simulations were calculated in parallel on the

high-performance facility JUMP located at the NIC [45].

A Appendix

A.1 Quasi-harmonic analysis

The stiffness matrix Aαβ
ij is given by

Aαβ
ij =

∂fα
i (X0

γ)

xβ
j

=
∑

ν 6=α

(δνβ − δαβ)
{(

Φ′′να −
Φ′να

rνα

)
rνα
i rνα

j

r2
να

+
Φ′να

rνα
δij

}

X0
γ

(25)

(δαγ and δij — Kronecker matrices). The linearised system is solved employing the usual ansatz

uα(t) = ūα e−iωt , (26)
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(ūα
i — complex amplitude, ω — frequency). Hence Equation (14) gives an N -dimensional

eigenvalue problem for the eigenvalues λ = −ω2. Since the atomic interactions are short ranged

the dimension of this eigenvalue problem may be restricted to the number Nc of atoms located

within the cutoff radius about an atom α. We introduce the amplitude vector ξ̄I and the

coefficient matrix Aαβ
ij ,

ξ̄I = {ū1
x . . . ūNc

x , ū1
y . . . uNc

y }T , AIJ =




A1 1
xx . . . A1 Nc

xx A1 1
xy . . . A1 Nc

xy
...

. . .
...

...
. . .

...

ANc 1
xx . . . ANc Nc

xx ANc 1
xy . . . ANc Nc

xy

A1 1
yx . . . A1 Nc

yx A1 1
yy . . . A1 Nc

yy
...

. . .
...

...
. . .

...

ANc 1
yx . . . ANc Nc

yx ANc 1
yy . . . ANc Nc

yy




(27)

and the diagonal mass matrix MIJ to reduce the eigenvalue problem to the canonical form
2 Nc∑

J=1

(ÃIJ − λ δIJ) ξ̄J = 0 . (28)

Where ÃIJ ≡
∑

K(M−1)IKAKJ is the dynamical matrix. Equation (28) determines the phonon

eigenvalues λ(J) and the associated eigenvectors ξ̄
(J)
I . With ω(J) = ±

√
−λ(J) the general solution

for the displacements ξI(t) = {u1
x . . . uNc

x , u1
y . . . uNc

y } reads

ξI(t) =
2Nc∑

J=1

ξ̄
(J)
I

(
C

(J)
1 e−i

√
−λ(J)t + C

(J)
2 e+i

√
−λ(J)t

)
. (29)

C
(J)
1 and C

(J)
2 are two complex vectors of integration for each mode, which depend upon initial

conditions. The phonon stability of the system is readily determined by the eigenvalues: for

oscillatory stable solutions the eigenvalues λ(J) must be negative.

A.2 Approximation of the partition function

The partition function of Equation (9) can be calculated analytically under the two assumptions

of Section 4.2. The first assumption (Einstein crystal) allows us to decouple the energetic states

of atoms and the second assumption (paraboloid potentials) allows for analytical integration of

the partition function using Gaussian integrals. We use

Eα
pot ≈

λα

2
(
xα −X0

α

)2 + ε0
α , (30)

(X0
α – relaxed lattice positions, λα – potential curvature, ε0

α – zero-point energy at relaxed lattice

position) to simplify the partition function. We obtain

Z ≈
N∏

α=1

∑
xα

∑

ẋα

exp

(
−mαẋα + λα

(
xα −X0

α

)2 + 2ε0
α

2kBT

)
=

=
N∏

α=1

1
Y

∫∫ ∞

−∞
exp

(
−mαẋα + λα

(
xα −X0

α

)2 + 2ε0
α

2kBT

)
dxα dẋα =

=
N∏

α=1

exp
(
− ε0

α

kBT

)
4π2k2

BT 2

Y λαmα

(31)
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Y is a constant factor taking care of the correct discretisation of the phase space when switching

from the quantised to the continuous representation of phase space. With this result the free

energy according to Equation (8) reads

F =
∑
α

ε0
α − kBT ln

∏
α

2πkBT 2

λα
+ C ′(T ) . (32)

For infinite and perfect lattices the specific free energy f = F/N is fully determined by two

calculations, one for each atom type. For the kinetic energy contribution to the internal energy

we add and subtract kBT and obtain

f(aust/mart) =
[
ε0
A + ε0

B

2
+ kBT − kBT

{
lnT + ln

2πkBT√
λAλB

}]

(aust/mart)

+ C(T ) . (33)

Note that in Equation (15) we have used e0
(aust, mart) = (ε0

A+ε0
B)/2|(aust, mart) and λ(aust, mart) =√

λAλB|(aust, mart)
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