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Abstra
tThe problem of pri
ing Bermudan options using simulations and nonpara-metri
 regression is 
onsidered. We derive optimal non-asymptoti
 bounds forthe low biased estimate based on a suboptimal stopping rule 
onstru
ted fromsome estimates of the optimal 
ontinuation values.These estimates may be ofdi�erent nature, they may be lo
al or global, with the only requirement beingthat the deviations of these estimates from the true 
ontinuation values 
anbe uniformly bounded in probability. As an illustration, we dis
uss a 
lassof lo
al polynomial estimates whi
h, under some regularity 
onditions, yield
ontinuation values estimates possessing the required property.Hier bitte denAbstra
t hineinkopierenAn Ameri
an option grants the holder the right to sele
t the time at whi
h to exer
isethe option, and in this di�ers from a European option whi
h may be exer
ised only ata �xed date. A general 
lass of Ameri
an option pri
ing problems 
an be formulatedthrough an R
d Markov pro
ess {X(t), 0 ≤ t ≤ T} de�ned on a �ltered probabilityspa
e (Ω,F , (Ft)0≤t≤T , P). It is assumed that X(t) is adapted to (Ft)0≤t≤T in thesense that ea
h X(t) is Ft measurable. Re
all that ea
h Ft is a σ-algebra of subsetsof Ω su
h that Fs ⊆ Ft ⊆ F for s ≤ t. We interpret Ft as all relevant �nan
ialinformation available up to time t. We restri
t attention to options admitting a �niteset of exer
ise opportunities 0 = t0 < t1 < t2 < . . . < tL = T , sometimes 
alledBermudan options. If exer
ised at time tl, l = 0, . . . , L, the option pays fl(X(tl)),for some known fun
tions f0, f1, . . . , fL mapping R

d into [0,∞). Let Tn denote theset of stopping times taking values in {n, n + 1, . . . , L}. A standard result in thetheory of 
ontingent 
laims states that the equilibrium pri
e Vn(x) of the Ameri
anoption at time tn in state x given that the option was not exer
ised prior to tn is itsvalue under an optimal exer
ise poli
y:
Vn(x) = sup

τ∈Tn

E[fτ (X(tτ ))|X(tn) = x], x ∈ R
d.Pri
ing an Ameri
an option thus redu
es to solving an optimal stopping problem.Solving this optimal stopping problem and pri
ing an Ameri
an option are straight-forward in low dimensions. However, many problems arising in pra
ti
e (see e.g.Glasserman (2004)) have high dimensions, and these appli
ations have motivatedthe development of Monte Carlo methods for pri
ing Ameri
an option. Pri
ingAmeri
an style derivatives with Monte Carlo is a 
hallenging task be
ause the de-termination of optimal exer
ise strategies requires a ba
kwards dynami
 program-ming algorithm that appears to be in
ompatible with the forward nature of MonteCarlo simulation. Mu
h resear
h was fo
used on the development of fast methods1



to 
ompute approximations to the optimal exer
ise poli
y. Notable examples in-
lude the fun
tional optimization approa
h in Andersen (2000), mesh method ofBroadie and Glasserman (1997), the regression-based approa
hes of Carriere (1996),Longsta� and S
hwartz (2001), Tsitsiklis and Van Roy (1999) and Eglo� (2005). A
ommon feature of all above mentioned algorithms is that they deliver estimates
Ĉ0(x), . . . , ĈL−1(x) for the so 
alled 
ontinuation values:

Ck(x) := E[Vk+1(X(tk+1))|X(tk) = x], k = 0, . . . , L − 1. (1)An estimate for V0, the pri
e of the option at time t0 
an then be de�ned as
Ṽ0(x) := max{f0(x), Ĉ0(x)}, x ∈ R

d.This estimate basi
ally inherits all properties of Ĉ0(x). In parti
ular, it is usuallyimpossible to determine the sign of the bias of Ṽ0 sin
e the bias of Ĉ0 may 
hangeits sign. One way to get a lower bound (low biased estimate) for V0 is to 
onstru
ta (generally suboptimal) stopping rule
τ̂ = min{0 ≤ k ≤ L : Ĉk(X(tk)) ≤ fk(X(tk))}with ĈL ≡ 0 by de�nition. Simulating a new independent set of traje
tories andaveraging the pay-o�s stopped a

ording to τ̂ on these traje
tories gives us a lowerbound V̂0 for V0. As was observed by pra
titioners, the so 
onstru
ted estimate

V̂0 has rather stable behavior with respe
t to the estimates of 
ontinuation values
Ĉ0(x), . . . , ĈL−1(x), i.e. even rather poor estimates of 
ontinuation values may leadto a good estimate V̂0. The aim of this paper is to �nd a theoreti
al explanationof this observation and to investigate the properties of V̂0. In parti
ular, we de-rive optimal non-asymptoti
 bounds for the bias V0 − E V̂0 assuming some uniformprobabilisti
 bounds for Cr − Ĉr, r = 0, . . . , L − 1. It is shown that the bounds for
V0 −E V̂0 are usually mu
h tighter than ones for V0 −E Ṽ0 implying a better qualityof V̂0 as 
ompared to the quality of Ṽ0 
onstru
ted using one and the same set ofestimates for 
ontinuation values. As an example, we 
onsider the 
lass of lo
alpolynomial estimators for 
ontinuation values and derive expli
it 
onvergen
e ratesfor V̂0 in this 
ase.The issues of 
onvergen
e for regression algorithms have been already studied inseveral papers. Clément, Lamberton and Protter (2002) were the �rst to prove the
onvergen
e of the Longsta�-S
hwartz algorithm. Glasserman and Yu (2004) showedthat the number of Monte Carlo paths has to be in general exponential in the num-ber of basis fun
tions used for regression in order to ensure 
onvergen
e. Re
ently,Eglo�, Kohler and Todorovi
 (2007) have derived the rates of 
onvergen
e for 
on-tinuation values estimates obtained by the so 
alled dynami
 look-ahead algorithm(see Eglo� (2005)) that �interpolates� between Longsta�-S
hwartz and Tsitsiklis-Roy algorithms. As was shown in these papers the 
onvergen
e rates for Ṽ0 
oin
idewith the rates of Ĉ0 and are determined by the smoothness properties of the true2




ontinuation values C0, . . . , CL−1. It turns out that the 
onvergen
e rates for V̂0 de-pend not only on the smoothness of 
ontinuation values (as opposite to Ṽ0), but alsoon the behavior of the underlying pro
ess near the exer
ise boundary. Interestinglyenough, there are some 
ases where these rates be
ome almost independent eitherof the smoothness properties of {Ck} or of the dimension of X and the bias of V̂0de
reases exponentially in the number of Monte Carlo paths used to 
onstru
t {Ĉk}.The paper is organized as follows. In Se
tion 1.1 we introdu
e and dis
uss the so
alled boundary assumption whi
h des
ribes the behavior of the underlying pro
ess
X near the exer
ise boundary and heavily in�uen
es the properties of V̂0. In Se
-tion 1.2 we derive non-asymptoti
 bounds for the bias V0 − E V̂0 and prove thatthese bounds are optimal in the minimax sense. In Se
tion 1.3 we 
onsider the
lass of lo
al polynomial estimates and propose a sequential algorithm based on thedynami
 programming prin
iple to estimate all 
ontinuation values. Finally, undersome regularity assumptions, we derive exponential bounds for the 
orresponding
ontinuation values estimates and 
onsequently the bounds for the bias V0 − E V̂0.1 Main results1.1 Boundary assumptionFor the 
onsidered Bermudan option let us introdu
e a 
ontinuation region C andan exer
ise (stopping) region E :

C := {(i, x) : fi(x) < Ci(x)} , (2)
E := {(i, x) : fi(x) ≥ Ci(x)} .Furthermore, let us assume that there exist 
onstants B0,k > 0, k = 0, . . . , L−1 and

α > 0 su
h that the inequality
Ptk |t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ) ≤ B0,kδ

α, δ > 0, (3)holds for all k = 0, . . . , L − 1, where Ptk |t0 is the 
onditional distribution of X(tk)given X(t0). Assumption (3) provides a useful 
hara
terization of the behavior of the
ontinuation values {Ck} and payo�s {fk} near the exer
ise boundary ∂E . Althoughthis assumption seems quite natural to look at, we make in this paper, to the best ofour knowledge, a �rst attempt to investigate its in�uen
e on the 
onvergen
e rates oflower bounds based on suboptimal stopping rules. We note that a similar 
ondition,although mu
h simpler, appears in the 
ontext of statisti
al 
lassi�
ation problem(see, e.g. Mammen and Tsybakov (1999) and Audibert and Tsybakov (2007)).In the situation when all fun
tions Ck − fk, k = 0, . . . , L − 1 are smooth and havenon-vanishing Ja
obian in the vi
inity of the exer
ise boundary, we have α = 1.Other values of α are possible as well. We illustrate this by two simple examples.3



Example 1 Fix some α > 0 and 
onsider a two period (L = 1) Bermudan powerput option with the payo�s
f0(x) = f1(x) = (K1/α − x1/α)+, x ∈ R+, K > 0. (4)Denote by ∆ the length of the exer
ise period, i.e. ∆ = t1 − t0. If the pro
ess Xfollows the Bla
k-S
holes model with volatility σ and zero interest rate, then one
an show that

C0(x) := E[f1(X(t1))|X(t0) = x] = K1/αΦ(−d2)

− x1/αe∆(α−1−1)(σ2/2α)Φ(−d1)with Φ being the 
umulative distribution fun
tion of the standard normal distribu-tion,
d1 =

log(x/K) +
(

1
α
− 1

2

)
σ2∆

σ
√

∆and d2 = d1 − σ
√

∆/α. As 
an be easily seen, the fun
tion C0(x) − f0(x) satis�es
|C0(x) − f0(x)| ≍ x1/α for x → +0 and C0(x) > f0(x) for all x > 0 if α ≥ 1. Hen
e

P(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ) . δα, δ → 0, α ≥ 1.Taking di�erent α in the de�nition of the payo�s (4), we get (3) satis�ed for αranging from 1 to ∞.
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Figure 1: Illustration to Example 2.In fa
t, even the extreme 
ase �α = ∞� may take pla
e as shown in the next example.4



Example 2 Let us 
onsider again a two period Bermudan option su
h that the
orresponding 
ontinuation value C0(x) = E[f1(X(t1))|X(t0) = x] is positive andmonotone in
reasing fun
tion of x on any 
ompa
t set in R. Fix some x0 ∈ R and
hoose δ0 satisfying δ0 < C0(x0). De�ne the payo� fun
tion f0(x) in the followingway
f0(x) =

{
C0(x0) + δ0, x < x0,

C0(x0) − δ0, x ≥ x0.So, f0(x) has a �digital� stru
ture. Figure 1 shows the plots of C0 and f0 in the 
asewhere X follows the Bla
k-S
holes model and f1(x) = (x − K)+ with some K > 0.It is easy to see that
Pt0(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ0) = 0.On the other hand

C = {x ∈ R : C0(x) ≥ f0(x)} = {x ∈ R : x ≥ x0},
E = {x ∈ R : C0(x) < f0(x)} = {x ∈ R : x < x0}.So, both 
ontinuation and exer
ise regions are not trivial in this 
ase.The last example is of parti
ular interest be
ause as will be shown in the next se
tionsthe bias of V̂0 de
reases in this 
ase exponentially in the number of Monte Carlo pathsused to estimate the 
ontinuation values, the lower bound V̂0 was 
onstru
ted from.1.2 Non-asymptoti
 bounds for V0 − E V̂0Let Ĉk,M , k = 1, . . . , L−1, be some estimates of 
ontinuation values obtained using

M paths (X(1)(t), . . . , X(M)(t)) of the underlying pro
ess X starting from x0 at time
t0. We may think of (X(1)(t), . . . , X(M)(t)) as being a ve
tor pro
ess on the produ
tprobability spa
e with σ-algebra F⊗M and the produ
t measure P⊗M

x0
de�ned on

F⊗M via
P⊗M

x0
(A1 × . . . × AM) = Px0(A1) · . . . · Px0(AM),with Am ∈ F , m = 1, . . . , M . Thus, ea
h Ĉk,M , k = 0, . . . , L−1, is measurable withrespe
t to F⊗M . The following proposition provides non-asymptoti
 bounds for thebias V0 − EP⊗M

x0
[V0,M ] given uniform probabilisti
 bounds for {Ĉk,M}.Proposition 1.1. Suppose that there exist 
onstants B1, B2 and a positive sequen
e

γM su
h that for any δ > δ0 > 0 it holds
P⊗M

x0

(
|Ĉk,M(x) − Ck(x)| ≥ δγ

−1/2
M

)
≤ B1 exp(−B2δ) (5)for almost all x with respe
t to Ptk|t0, the 
onditional distribution of X(tk) given

X(t0), k = 0, . . . , L − 1. De�ne
V0,M := E [fbτM

(X(tbτM
))|X(t0) = x0] (6)5



with
τ̂M := min

{
0 ≤ k ≤ L : Ĉk,M(X(tk)) ≤ fk(X(tk))

}
. (7)If the boundary 
ondition (3) is ful�lled, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
Mwith some 
onstant B depending only on α, B1 and B2.The above 
onvergen
e rates 
an not be in general improved as shown in the nexttheorem.Proposition 1.2. Let L = 2. Fix a pair of non-zero payo� fun
tions f1, f2 su
hthat f2 : R

d → {0, 1} and 0 < f1(x) < 1 on [0, 1]d. Let Pα be a 
lass of pri
ingmeasures su
h that the boundary 
ondition (3) is ful�lled with some α > 0. For anypositive sequen
e γM satisfying
γ−1

M = o(1), γM = O(M), M → ∞,there exist a subset Pα,γ of Pα and a 
onstant B > 0 su
h that for any M ≥ 1, anystopping rule τ̂M and any set of estimates {Ĉk,M} measurable w.r.t. F⊗M , we havewith some δ > 0 and k = 1, 2,

sup
P∈Pα,γ

P⊗M
(
|Ĉk,M(x) − Ck(x)| ≥ δγ

−1/2
M

)
> 0for almost all x w.r.t. any P ∈ Pα,γ and

sup
P∈Pα,γ

{
sup
τ∈T0

E
Ft0
P [fτ (X(tτ ))] − EP⊗M [E

Ft0
P fbτM

(X(tbτM
))]

}
≥ Bγ

−(1+α)/2
M .Finally, we dis
uss the 
ase when �α = ∞�, meaning that there exists δ0 > 0 su
hthat

Ptk|t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ0) = 0 (8)for k = 0, . . . , L − 1. This is very favorable situation for the pri
ing of the 
orre-sponding Bermudan option. It turns out that if the 
ontinuation values estimates
{Ĉk,M} satisfy a kind of exponential inequality and (8) holds, then the bias of V0,M
onverges to zero exponentially fast in γM .Proposition 1.3. Suppose that for any δ > 0 there exist 
onstants B1, B2 possiblydepending on δ and a sequen
e of positive numbers γM not depending on δ su
h that

P⊗M
x0

(
|Ĉk,M(x) − Ck(x)| ≥ δ

)
≤ B1 exp(−B2γM) (9)6



for almost all x with respe
t to Ptk|t0, k = 0, . . . , L−1. Assume also that there existsa 
onstant Bf > 0 su
h that
E

[
max

k=0,...,L
f 2

k (X(tk))

]
≤ Bf . (10)If the 
ondition (8) is ful�lled with some δ0 > 0, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B3L exp(−B4γM)with some 
onstant B3 and B4 depending only on B1, B2 and Bf .Dis
ussion Let us make a few remarks on the results of this se
tion. First, Propo-sition 1.1 implies that the 
onvergen
e rates of V̂0,M , a Monte Carlo estimate for V0,M ,are always faster than the 
onvergen
e rates of {Ĉk,M} provided that α > 0. Indeed,while the 
onvergen
e rates of {Ĉk,M} are of order γ
−1/2
M , the bias of V̂0,M 
onvergesto zero as fast as γ

−(1+α)/2
M . As to the varian
e of V̂0,M , it 
an be made arbitrary smallby averaging V̂0,M over a large number of sets, ea
h 
onsisting of M traje
tories, andby taking a large number of new independent Monte Carlo paths used to averagethe payo�s stopped a

ording to τ̂M .Se
ond, if the 
ondition (8) holds true, then the bias of V̂0,M de
reases exponentiallyin γM , indi
ating that even very unpre
ise estimates of 
ontinuation values wouldlead to the estimate V̂0,M of a

eptable quality.Finally, let us stress that the results obtained in this se
tion are quite general anddo not depend on the parti
ular form of the estimates {Ĉk,M}, only the inequality(5) being 
ru
ial for the results to hold. This inequality holds for various typesof estimators. These may be global least squares estimators, neural networks (seeKohler, Krzyzak and Todorovi
 (2009)) or lo
al polynomial estimators. The lattertype of estimators has not yet been well investigated (see, however, Belomestny etal. (2006) for some empiri
al results) in the 
ontext of pri
ing Bermudan optionand we are going to �ll this gap. In the next se
tions we will show that if all
ontinuation values {Ck} belong to the Hölder 
lass Σ(β, H, Rd) and the 
onditionallaw of X satis�es some regularity assumptions, then lo
al polynomial estimates of
ontinuation values satisfy inequality (5) with γM = M2β/(2β+d) log−1(M).Remark 1.1. In the 
ase of proje
tion estimates for 
ontinuation values, some ni
ebounds were re
ently derived in Van Roy (2009). Let {Xk, k = 0, . . . , L} be anergodi
 Markov 
hain with the invariant distribution π and f0(x) ≡ . . . ≡ fL(x) ≡

f(x), then C0 ≡ . . . ≡ CL−1(x) = C(x), provided that X0 is distributed a

ordingto π. Furthermore, suppose that an estimate Ĉ(x) for the 
ontinuation value C(x)is available and satis�es a proje
ted Bellman equation
Ĉ(x) = e−ρΠ Eπ[max{f(X1), Ĉ(X1))}|X0 = x], ρ > 0, (11)where Π is the 
orresponding proje
tion operator. De�ne

V̂0(x) := E [fbτ (Xbτ )|X0 = x]7



with
τ̂ := min

{
0 ≤ k ≤ L : Ĉ(Xk) ≤ f(Xk)

}
,then as shown in Van Roy (2009)

[
Eπ |V0(X0) − V̂0(X0)|2

]1/2

≤ D
[
Eπ |C(X0) − ΠC(X0)|2

]1/2 (12)with some absolute 
onstant D depending on ρ only. The inequality (12) indi
atesthat the quantity [
Eπ |V0(X0) − V̂0(X0)|2

]1/2might be mu
h smaller than supx |C(x) − Ĉ(x)| and hen
e qualitatively supportsthe same sentiment as in our paper.1.3 Lo
al polynomial estimationWe �rst introdu
e some notations related to lo
al polynomial estimation. Fix some
k su
h that 0 ≤ k < L and suppose that we want to estimate a regression fun
tion

θk(x) := E[g(X(tk+1))|X(tk) = x], x ∈ R
dwith g : R

d → R. Consider M traje
tories of the pro
ess X

(X(m)(t0), . . . , X
(m)(tL)), m = 1, . . . , M,all starting from x0, i.e. X(1)(t0) = . . . = X(M)(t0) = x0. For some h > 0, x ∈ R

d,an integer l ≥ 0 and a fun
tion K : R
d → R+, denote by qx,M a polynomial on

R
d of degree l (maximal order of the multi-index is less than or equal to l) whi
hminimizes

M∑

m=1

[
Y (m)(tk+1) − qx,M(X(m)(tk) − x)

]2
K

(
X(m)(tk) − x

h

)
, (13)where Y (m)(t) = g(X(m)(t)). The lo
al polynomial estimator θ̂k,M(x) of order l forthe value θk(x) of the regression fun
tion θk at point x is de�ned as θ̂k,M(x) = qx,M(0)if qx,M is the unique minimizer of (13) and θ̂k,M(x) = 0 otherwise. The value h is
alled the bandwidth and the fun
tion K is 
alled the kernel of the lo
al polynomialestimator.Let πu denote the 
oe�
ients of qx,M indexed by the multi-index u ∈ N
d, qx,M(z) =∑

|u|≤l πuz
u. Introdu
e the ve
tors Π = (πu)|u|≤l and S = (Su)|u|≤l with

Su =
1

Mhd

M∑

m=1

Y (m)(tk+1)

(
X(m)(tk) − x

h

)u

K

(
X(m)(tk) − x

h

)
.8



Let Z(z) = (zu)|u|≤l be the ve
tor of all monomials of order less than or equal to land the matrix Γ = (Γu1,u2)|u1|,|u2|≤l be de�ned as
Γu1,u2 =

1

Mhd

M∑

m=1

(
X(m)(tk) − x

h

)u1+u2

K

(
X(m)(tk) − x

h

)
. (14)The following result is straightforward.Proposition 1.4. If the matrix Γ is positive de�nite, then there exists a uniquepolynomial on R

d of degree l minimizing (13). Its ve
tor of 
oe�
ients is given by
Π = Γ−1S and the 
orresponding lo
al polynomial regression fun
tion estimator hasthe form

θ̂k,M(x) = Z⊤(0)Γ−1S

=
1

Mhd

M∑

m=1

Y (m)(tk+1)K

(
X(m)(tk) − x

h

)

× Z⊤(0)Γ−1Z

(
X(m)(tk) − x

h

)
. (15)Remark 1.2. From the inspe
tion of (15) it be
omes 
lear that any lo
al poly-nomial estimator 
an be represented as a weighted average of the �observations�

Y (m), m = 1, . . . , M, with a spe
ial weights stru
ture. Hen
e, lo
al polynomial esti-mators belong to the 
lass of mesh estimators introdu
ed by Broadie and Glasserman(1997) (see also Glasserman, 2004, Ch. 8). Our results will show that this parti
u-lar type of mesh estimators has ni
e 
onvergen
e properties in the 
lass of smooth
ontinuation values.1.4 Estimation algorithm for the 
ontinuation valuesA

ording to the dynami
 programming prin
iple, the optimal 
ontinuation values(1) satisfy the following ba
kward re
ursion
CL(x) = 0,

Ck(x) = E[max(fk+1(X(tk+1)), Ck+1(X(tk+1)))|X(tk) = x], x ∈ R
dwith k = 1, . . . , L − 1. Consider M paths of the pro
ess X, all starting from x0,and de�ne estimates Ĉ1,M , . . . , ĈL,M re
ursively in the following way. First, we put

ĈL,M(x) ≡ 0. Further, if an estimate of Ĉk+1,M(x) is already 
onstru
ted we de�ne
Ĉk,M(x) as the lo
al polynomial estimate of the fun
tion

C̃k,M(x) := E[max(fk+1(X(tk+1)), Ĉk+1,M(X(tk+1)))|X(tk) = x], (16)based on the sample
(X(m)(tk), max{fk+1(X(tk+1)), Ĉk+1,M(X(tk+1))}), m = 1, . . . , M.9



Note that all C̃k,M are F⊗M measurable random variables be
ause the expe
tationin (16) is taken with respe
t to a new σ-algebra F whi
h is independent of F⊗M (one
an start with the enlarged produ
t σ-algebra F⊗(M+1) and take expe
tation in (16)w.r.t. the �rst 
oordinate). The main problem arising by the 
onvergen
e analysis ofthe estimate Ĉk+1,M is that all errors 
oming from the previous estimates Ĉj,M , j ≤ khave to be taken into a

ount. This problem has been already en
ountered byClément, Lamberton and Protter (2002) who investigated the 
onvergen
e of theLongsta�-S
hwartz algorithm.1.5 Rates of 
onvergen
e for V0 − E V̂0Let β > 0. Denote by ⌊β⌋ the maximal integer that is stri
tly less than β. For any
x ∈ R

d and any ⌊β⌋ times 
ontinuously di�erentiable real-valued fun
tion g on R
d,we denote by gx its Taylor polynomial of degree ⌊β⌋ at point x

gx(x
′) =

∑

|s|≤⌊β⌋

(x′ − x)s

s!
Dsg(x), (17)where s = (s1, . . . , sd) is a multi-index, |s| = s1 + . . . + sd and Ds denotes thedi�erential operator Ds = ∂s1+...+sd

∂x
s1
1 ·...·∂x

sd
d

. Let H > 0. The 
lass of (β, H, Rd)-Höldersmooth fun
tions, denoted by Σ(β, H, Rd), is de�ned as the set of fun
tions g : R
d →

R that are ⌊β⌋ times 
ontinuously di�erentiable and satisfy, for any x, x′ ∈ R
d, theinequality

|g(x′) − gx(x
′)| ≤ H‖x − x′‖β, x′ ∈ R

d.Let us make two assumptions on the pro
ess X(AX0) There exists a 
ompa
t set A ⊂ R
d su
h that P(X(t0) ∈ A) = 1 and

Ps|t(X(s) ∈ A) = 1 for all t and s satisfying t0 ≤ t ≤ s ≤ T.(AX1) All transitional densities p(tk+1, y|tk, x), k = 0, . . . , L − 1, of the pro
ess Xare uniformly bounded on A×A and belong to the Hölder 
lass Σ(β, H, Rd)as fun
tions of x ∈ A, i.e. there exists β > 1 with β − ⌊β⌋ > 0 and a 
onstant
H su
h that the inequality

|p(tk+1, y|tk, x′) − px(tk+1, y|tk, x′)| ≤ H‖x − x′‖β (18)holds for all x, x′, y ∈ A and k = 0, . . . , L− 1. In (18), px(tk+1, y|tk, x′) standsfor the Taylor polynomial of p(tk+1, y|tk, x) w.r.t. x of degree ⌊β⌋ (see (17))
entered at x and 
omputed at x′.Consider a matrix valued fun
tion Γ̄(s, x) = (Γu1,u2)|u1|,|u2|≤⌊β⌋ with elements
Γ̄u1,u2(s, x) :=

∫

Rd

zu1+u2K(z)p(s, x + hz|t0, x0) dz, (19)for any s > t0. 10



(AX2) We assume that the minimal eigenvalue of Γ̄ is bounded away from zero,i.e.
min

k=1,...,L
inf
x∈A

min
‖W‖=1

[
W⊤Γ̄(tk, x)W

]
≥ γ0with some γ0 > 0.Moreover, we shall assume that the kernel K ful�ls the following 
onditions:(AK1) K integrates to 1 on R

d and
∫

Rd

(1 + ‖u‖4β)K(u) du < ∞, sup
u∈Rd

(1 + ‖u‖2β)K(u) < ∞.(AK2) K is in the linear span (the set of �nite linear 
ombinations) of fun
tions
k ≥ 0 satisfying the following property: the subgraph of k, {(s, u) : k(s) ≥ u},
an be represented as a �nite number of Boolean operations among the setsof the form {(s, u) : p(s, u) ≥ f(u)}, where p is a polynomial on R

d × R and
f is an arbitrary real fun
tion.Dis
ussion The assumption (AX0) may seem rather restri
tive. In fa
t, one 
analways lo
alize pro
ess X to a ball BR in R

d around x0 of radius R by re�e
tingit on the boundary of BR (see Example below for further details). Using the fa
tthat a new re�e
ted pro
ess XR(t) 
oin
ides a.s. with X(t) for t0 < t < τR, where
τR := inf{t > t0 : X(t) 6∈ BR}, we get

sup
τ∈T0

∣∣EFt0 [fτ (X(tτ ))] − EFt0 [fτ (X
R(tτ ))]

∣∣

≤ sup
τ∈T0

EFt0 [fτ (X(tτ ))1(mτ > R)]

+ sup
τ∈T0

EFt0
[
fτ (X

R(tτ ))1(mτ > R)
] (20)with mt = supt0≤s≤t ‖X(s) − x0‖. The r.h.s of (20) 
an be made arbitrary smallby taking large values of R (the exa
t 
onvergen
e rates depend, of 
ourse, on theproperties of the pro
ess X).Example Let pro
ess X(t) be a d-dimensional di�usion pro
ess satisfying

X(t) = x0 +

∫ t

t0

µ(X(t)) dt +

∫ t

t0

σ(X(t)) dW (t), t ≥ t0.Assume that a drift 
oe�
ient µ and a di�usion 
oe�
ient σ are regular enoughand σ satis�es the so 
alled uniform ellipti
ity 
ondition on 
ompa
ts, i. e. for ea
h
ompa
t set K ⊂ R
d 11



(AD1) µ(·) ∈ Ck
b (K) and σ(·) ∈ Ck

b (K) for some natural k > 1,(AD2) there is σK > 0 su
h that for any ξ ∈ R
d it holds

d∑

j,k=1

(σ(x)σ⊤(x))jkξjξk ≥ σK‖ξ‖2, x ∈ K.Let us now re�e
t the di�usion pro
ess X(t) by de�ning a re�e
ted pro
ess XR(t)whi
h satis�es a re�e
ted sto
hasti
 di�erential equation in BR, with oblique re�e
-tion at the boundary of BR in the 
onormal dire
tion, i.e.
XR(t) = x0 +

∫ t

t0

µ(XR(t)) dt

+

∫ t

t0

σ(XR(t)) dW (t) +

∫ t

t0

n(XR(t)) dL(t), t ≥ t0 (21)where n is the inward normal ve
tor on the boundary of BR and L(t) is a lo
al timepro
ess whi
h in
reases only on {‖x‖ = R}, i.e. L(t) =
∫ t

t0
1{‖Xs‖=R} dL(s).In order to illustrate the re�e
tion pro
edure, let us 
onsider a one-dimensionalBrownian motion W (t) on [−R, R] and re�e
t it at −R and R. A re�e
ted Brownianmotion WR(t) 
an be de�ned via applying a saw fun
tion to the original Brownianmotion:

WR(t) :=






W (t), |W (t)| ≤ R,

2nR − W (t), |W (t) − 2nR| ≤ R,

2nR + W (t), |W (t) + 2nR| ≤ R,where n ∈ Z \ {0}. It is not di�
ult to prove Revuz and Yor (see 1991, Ch. 3) that
WR(t) satis�es the equation

WR(t) = W (t) + L−R(t) − LR(t), (22)where L−R(t) and LR(t) are symmetri
 lo
al times of WR(t) at R and −R respe
-tively. Obviously, (22) is the parti
ular 
ase of the general re�e
ted equation (21).The transition density of WR(t) has a spe
tral representation
pWR(t, y|x) =

1

2R

(
1

2
+

∞∑

n=1

exp

(
−n2π2

8R2
t

)

× cos
(nπ

2R
(x + R)

)
cos
(nπ

2R
(y + R)

))
, (t, x, y) ∈ R+ × [−R, R]2and 
an be seen to be stri
tly positive on (0, T ] × [−R, R]2 for any �xed T > 0.Return now to the general 
ase and denote by pR(s, y|x) the transition density ofthe re�e
ted di�usion XR(t). It satis�es a paraboli
 partial di�erential equationwith Neumann boundary 
onditions. Under (AD1) it belongs to Ck(BR × BR) (seeSato and Ueto (1965)) for any �xed s > 0. Moreover, using a strong version of the12



maximum prin
iple (see, e.g. Friedman, 1964, Theorem 1 in Chapter 2) one 
an showthat under assumption (AD2) the transition density pR(s, y|x) is stri
tly positive on
(0, T ] × BR × BR. Let us 
he
k now assumption (AX2) in the 
ase when

K(z) :=
Γ(1 + d/2)

πd/2
1{‖z‖≤1}.We have for any �xed s > t0 and W ∈ R

D with D = d(d+1) · . . . · (d+ ⌊β⌋−1)/⌊β⌋!

W⊤Γ̄(s, x)W =

∫

Rd



∑

|α|≤⌊β⌋

W αzα




2

K(z)pR(s − t0, x + hz|x0) dz

≥ B

∫

S(x,R)



∑

|α|≤⌊β⌋

W αzα




2

dzwith some positive 
onstant B and S(x, R) := {z : ‖z‖ ≤ 1, ‖x + hz − x0‖ ≤ R}.Using now the fa
t that the Lebesgue measure of the set S(x, R) is larger than somepositive number λ for all x ∈ BR, where λ depends on R and d but does not dependon h, we get
min

k=1,...,L
inf

x∈BR

[
W⊤Γ̄(tk, x)W

]
≥ B inf

‖W‖=1
inf

S:|S|>λ

∫

S




∑

|α|≤⌊β⌋

W αzα




2

dz ≥ γ0with some positive γ0 by the 
ompa
tness argument. Hen
e, assumption (AX2)holds.Remark 1.3. It 
an be shown that (AK2) is ful�lled if K(x) = f(p(x)) for somepolynomial p and a bounded real fun
tion f of bounded variation. Obviously, thestandard Gaussian kernel falls into this 
ategory. Another example is the 
ase where
K is a pyramid or K = 1[−1,1]d.In the sequel we will 
onsider a trun
ated version of the lo
al polynomial estimator
Ĉk,M(x) whi
h is de�ned as follows. If the smallest eigenvalue of the matrix Γ de�nedin (14) is greater than (log M)−1 we set T [Ĉk,M ](x) to be equal to the proje
tion of
Ĉk,M(x) on the interval [0, Cmax] with Cmax = maxk=0,...,L−1 supx∈A Ck(x) (Cmax is�nite due to (AX0) and (AX1)). Otherwise, we put T [Ĉk,M ](x) = 0. The followingpropositions provide exponential bounds for the trun
ated estimator {T [Ĉk,M ]}.Proposition 1.5. Let 
ondition (AX0)-(AX2),(AK1) and (AK2) be satis�ed andlet {T [Ĉk,M ]} be the 
ontinuation values estimates 
onstru
ted as des
ribed in Se
-tion 1.4 using trun
ated lo
al polynomial estimators of degree ⌊β⌋. Then thereexist positive 
onstants B1, B2 and B3 su
h that for any h satisfying B1h

β <√
| log h|/Mhd and any ζ ≥ ζ0 with some ζ0 > 0 it holds

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ ζ

√
| log h|
Mhd

)
≤ B2 exp(−B3ζ)13



for k = 0, . . . , L − 1. As a 
onsequen
e, we get with h = M−1/(2β+d) and any
ζ ≥ ζ0 > 0

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ ζ log1/2 M

Mβ/(2β+d)

)
≤ B2 exp(−B3ζ).Proposition 1.6. Let 
ondition (AX0)-(AX2),(AK1) and (AK2) be satis�ed, thenfor any δ > 0 there exist positive 
onstants B4 and B5 su
h that

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ δ

)
≤ B4 exp(−B5M)for k = 1, . . . , L − 1.Remark 1.4. As 
an be seen from the proof of Proposition 1.5 and Remark 5.1 (notethat ω in (30) grows linearly in d) the 
onstant B3 de
reases with the dimension

d as fast as 1/d. The 
onstant B5 is of order δ
d/β
0 /d. Constants B2 and B4 dependlinearly on L, the number of exer
ise dates, but 
an be taken independent of d dueto Remark 5.1.Combining Proposition 1.1 with Proposition 1.5 and Proposition 1.6 leads to thefollowingTheorem 1.7. Let 
onditions (AX0)-(AX2), (AK1) and (AK2) be satis�ed. De�ne

V0,M := E(fbτM
(X(tbτM

))|X(t0) = x0),with
τ̂M := min{0 ≤ k ≤ L : T [Ĉk,M ](X(tk)) ≤ fk(X(tk))},where {T [Ĉk,M ]} are 
ontinuation values estimates 
onstru
ted using trun
ated lo
alpolynomial estimators of degree ⌊β⌋. If the boundary 
ondition (3) is ful�lled forsome α > 0, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ D1M
−β(1+α)/(2β+d) log(1+α)/2(M),with some 
onstant D1. On the other hand, if the 
ondition (8) is satis�ed withsome δ0 > 0, then the bias of V̂0,M de
reases exponentially in M , i.e. there existpositive 
onstants D2 and D3, su
h that

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ D2 exp(−D3M).

14



Dis
ussion As we 
an see, the rates of 
onvergen
e for {Ĉk,M} are of order
M−β/(2β+d) log1/2 Mwhi
h 
an be proved to be optimal, up to a logarithmi
 fa
tor, for the 
lass of Höldersmooth 
ontinuation values {Ck(x)}. On the other hand, the rates of 
onvergen
efor EP⊗M

x0
[V0,M ] are of order

M−β(1+α)/(2β+d) log(1+α)/2(M)and are always faster than ones of {Ĉk,M} provided that α > 0. The most interestingbehavior of the lower bound V̂0,M 
an be observed if the 
ondition (8) is ful�lled.In this 
ase the bias of V̂0,M be
omes as small as exp(−D3M). This means thateven in the 
lass of 
ontinuation values with an arbitrary low (but positive) Höldersmoothness (e.g. in the 
lass of non-di�erentiable 
ontinuation values) and thereforewith an arbitrary slow 
onvergen
e rates of the estimates {Ĉk,M}, the bias of thelower bound V̂0,M 
onverges exponentially fast to zero.2 Numeri
al example: Bermudan max 
allThis is a ben
hmark example studied in Broadie and Glasserman (1997) and Glasser-man (2004) among others. Spe
i�
ally, the model with d identi
ally distributedassets is 
onsidered, where ea
h underlying has dividend yield δ. The risk-neutraldynami
 of assets is given by
dXk(t)

Xk(t)
= (r − δ)dt + σdWk(t), k = 1, ..., d,where Wk(t), k = 1, ..., d, are independent one-dimensional Brownian motions and

r, δ, σ are 
onstants. At any time t ∈ {t0, ..., tL} the holder of the option may exer
iseit and re
eive the payo�
f(X(t)) = (max(X1(t), ..., Xd(t)) − κ)+.We take d = 2, r = 5%, δ = 10%, σ = 0.2, κ = 100 and ti = iT/L, i = 0, ..., L,with T = 3, L = 9 as in Glasserman (2004, Chapter 8). First, we estimate all
ontinuation values using the dynami
 programming algorithm and the so 
alledNadaraya-Watson regression estimator

Ĉk,M(x) = e−rT/L

∑M
m=1 K((x − X(m)(tk))/h)Y

(m)
k+1∑M

m=1 K((x − X(m)(tk))/h)
(23)with Y

(m)
k+1 = max(f(X(m)(tk+1)), Ĉk+1,M(X(m)(tk+1))), k = 0, . . . , L−1. Here K is akernel, h > 0 is a bandwidth and (X(m)(t1), . . . , X

(m)(tL)), m = 1, . . . , M, is a set of15



paths of the pro
ess X, all starting from the point x0 = (90, 90) at t0 = 0. As 
anbe easily seen the estimator (23) is a lo
al polynomial estimator of degree 0. Uponestimating Ĉ1,M , we de�ne a �rst estimate for the pri
e of the option at time t0 = 0as
Ṽ0 :=

e−rT/L

M

M∑

m=1

Y
(m)
1 .Next, using the previously 
onstru
ted estimates of 
ontinuation values, we pathwise
ompute a stopping poli
y τ̂ via

τ̂ (n) := min
{

1 ≤ k ≤ L : Ĉk,M(X̃(n)(tk)) ≤ f(X̃(n)(tk))
}

, n = 1, . . . , N,where (X̃(n)(t1), . . . , X̃
(n)(tL)), n = 1, . . . , N, is a new independent set of traje
toriesof the pro
ess X, all starting from x0 = (90, 90) at t0 = 0. The stopping poli
y τ̂yields a lower bound
V̂0 :=

1

N

N∑

n=1

e−rt
bτ(n)f(X̃(n)(tbτ (n))).In Figure 2 we show the boxplots of Ṽ0 and V̂0 based on 100 sets of traje
tories ea
hof the size M = 4000 (N = 4000) for di�erent values of the bandwidth h, where thetriangle kernel K(x) = (1 − ‖x‖2)+ is used to 
onstru
t (23). The true value V0 ofthe option (
omputed using a two-dimensional binomial latti
e) is 8.08 in this 
ase.Several observations 
an be made by an examination of Figure 2. First, while the biasof V̂0 is always smaller then the bias of Ṽ0, the largest di�eren
e takes pla
e for large

h. This 
an be explained by the fa
t that for large h more observations Y
(m)
r+1 with

X(m)(tr) lying far away from the given point x be
ome involved in the 
onstru
tionof Ĉr,M(x). This has a 
onsequen
e of in
reasing the bias of the estimate (23) and
Ṽ0 qui
kly deteriorates with in
reasing h . The most interesting phenomenon is,however, the behavior of V̂0 whi
h turns out to be quite stable with respe
t to h.So, in the 
ase of rather poor estimates of 
ontinuation values (when h is in
reases)
V̂0 looks very reasonable and even be
omes 
loser to the true pri
e.We stress that the aim of this example is not to show the strength of the lo
alpolynomial estimation algorithms (although the performan
e of V̂0 for h = 120 isquite 
omparable to the performan
e of a linear regression algorithm reported inGlasserman (2004)) but rather to illustrate the main message of this paper, namelythe message about the e�
ien
y of V̂0 as 
ompared to the estimates based on thedire
t use of 
ontinuation values estimates.3 Con
lusionIn this paper we derive optimal rates of 
onvergen
e for low biased estimates forthe pri
e of a Bermudan option based on suboptimal exer
ise poli
ies obtained from16
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Figure 2: Boxplots of the estimates V̂0 (0) and Ṽ0 (1) for di�erent values of thebandwidth h.some estimates of the optimal 
ontinuation values. We have shown that these ratesare usually mu
h faster than the 
onvergen
e rates of the 
orresponding 
ontinuationvalues estimates. This may explain the e�
ien
y of these lower bounds observedin pra
ti
e. Moreover, it turns out that there are some 
ases where the expe
tedvalues of the lower bounds based on suboptimal stopping rules a
hieve very fast
onvergen
e rates whi
h are exponential in the number of paths used to estimatethe 
orresponding 
ontinuation values.4 Proofs4.1 Proof of Proposition 1.1De�ne
τj := min{j ≤ k < L : Ck(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L,

τ̂j,M := min{j ≤ k < L : Ĉk(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L17



and
Vk,M(x) := E[fbτk,M

(X(tbτk,M
))|X(tk) = x], x ∈ R

d.The so 
alled Snell envelope pro
ess Vk is related to τk via
Vk(x) = E[fτk

(X(tτk
))|X(tk) = x], x ∈ R

d.The following lemma provides a useful inequality whi
h will be repeatedly used inour analysis.Lemma 4.1. For any k = 0, . . . , L − 1, it holds with probability one
0 ≤ Vk(X(tk)) − Vk,M(X(tk))

≤ EFtk

[
L−1∑

l=k

|fl(X(tl)) − Cl(X(tl))|

×
(
1{bτl,M >l, τl=l} + 1{bτl,M =l, τl>l}

)]
. (24)Proof. We shall use indu
tion to prove (24). For k = L − 1 we have

VL−1(X(tL−1)) − VL−1,M(X(tL−1)) =

= EFtL−1

[
(fL−1(X(tL−1)) − fL(X(tL)))1{τL−1=L−1, bτL−1,M =L}

]

+ EFtL−1

[
(fL(X(tL)) − fL−1(X(tL−1)))1{τL−1=L, bτL−1,M =L−1}

]

= |fL−1(X(tL−1)) − CL−1(X(tL−1))|1{bτL−1,M 6=τL−1}sin
e events {τL−1 = L} and {τ̂L−1,M = L} are measurable w.r.t. FtL−1
. Thus, (24)holds with k = L − 1. Suppose that (24) holds with k = L′ + 1. Let us prove it for

k = L′. Consider a de
omposition
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
)) = S1 + S2 + S3with

S1 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′>L′, bτL′,M >L′}

S2 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′>L′, bτL′,M =L′}

S3 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′=L′, bτL′,M >L′}.Sin
e
EFt

L′ [S1] = EFt
L′ [(VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1)))]1{τL′>L′, bτL′,M>L′},

EFt
L′ [S2] =

(
EFt

L′
[
fτL′+1

(X(tτL′+1
))
]
− fL′(X(tL′))

)
1{τL′>L′, bτL′,M=L′}

= (CL′(X(tL′)) − fL′(X(tL′)))1{τL′>L′, bτL′,M=L′}18



and
EFt

L′ [S3] =
(
fL′(X(tL′)) − EFt

L′

[
fbτL′+1,M

(X(tbτL′+1,M
))
])

1{τL′=L′, bτL′,M>L′}

= (fL′(X(tL′)) − CL′(X(tL′)))1{τL′=L′, bτL′,M>L′}

+ EFt
L′

[
(VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1))) 1{τL′=L′, bτL′,M >L′}

]
,we get with probability one

VL′(X(tL′)) − VL′,M(X(tL′) ≤ |fL′(X(tL′)) − CL′(X(tL′))|
×
(
1{bτL′,M >L′, τL′=L′} + 1{bτL′,M =L′, τL′>L′}

)

+ EFt
L′ [VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1))] .Our indu
tion assumption implies now that

VL′(X(tL′)) − VL′,M(X(tL′)) ≤

EFt
L′

[
L−1∑

l=L′

|fl(Xl) − Cl(Xl)|
(
1{bτl,M >l, τl=l} + 1{bτl,M =l, τl>l}

)
]and hen
e (24) holds for k = L′.Let us 
ontinue with the proof of Proposition 1.1. Consider the sets El, Al,j ⊂

R
d, l = 0, . . . , L − 1, j = 1, 2, . . . , de�ned as

El :=
{
x ∈ R

d : Ĉl,M(x) ≤ fl(x), Cl(x) > fl(x)
}

∪
{
x ∈ R

d : Ĉl,M(x) > fl(x), Cl(x) ≤ fl(x)
}

,

Al,0 :=
{
x ∈ R

d : 0 < |Cl(x) − fl(x)| ≤ γ
−1/2
M

}
,

Al,j :=
{
x ∈ R

d : 2j−1γ
−1/2
M < |Cl(x) − fl(x)| ≤ 2jγ

−1/2
M

}
, j > 0.We may write

V0(X(t0)) − V0,M(X(t0))

≤ EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈El}

]

=
∞∑

j=0

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ γ
−1/2
M

L−1∑

l=0

Ptl|t0

(
0 < |Cl(X(tl)) − fl(X(tl))| ≤ γ

−1/2
M

)

+
∞∑

j=1

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]
.19



Using the fa
t that
|fl(X(tl)) − Cl(X(tl))| ≤ |Ĉl,M(X(tl) − Cl(X(tl))|, l = 0, . . . , L − 1,on El, we get for any j ≥ 1 and l ≥ 0

EFt0 EP⊗M
x0

[
|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ 2jγ
−1/2
M EFt0 EP⊗M

x0

[
1
{| bCl,M (X(tl)−Cl(X(tl))|≥2j−1γ

−1/2
M }

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ 2jγ
−1/2
M EFt0

[
P⊗M

x0
(|Ĉl,M(X(tl)) − Cl(X(tl))| ≥ 2j−1γ

−1/2
M )

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ B12
jγ

−1/2
M exp

(
−B22

j−1
)
Ptl|t0(0 < |fl(X(tl)) − Cl(X(tl))| ≤ 2jγ

−1/2
M )

≤ B1B0,l2
j(1+α)γ

−(1+α)/2
M exp

(
−B22

j−1
)
,where Assumption 3 is used to get the last inequality. Finally, we get

V0(X(t0)) − EP⊗M
x0

[V0,M(X(t0))]

≤
[

L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M + B′

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M

∑

j≥1

2j(1+α) exp(−B22
j−1)

≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
Mwith some 
onstant B depending on B1, B2 and α.4.2 Proof of Proposition 1.2We have

V0(X(t0)) − V̂0,M(X(t0)) =

= EFt0 [(f1(X(t1)) − f2(X(t2)))1(τ1 = 1, τ̂1,M = 2)]

+ EFt0 [(f2(X(t2)) − f1(X(t1)))1(τ1 = 2, τ̂1,M = 1)]

= EFt0
[
|f1(X(t1)) − C1(X(t1))|1{bτ1,M 6=τ1}

]
. (25)For an integer q ≥ 1 
onsider a regular grid on [0, 1]d de�ned as

Gq =

{(
2k1 + 1

2q
, . . . ,

2kd + 1

2q

)
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

}
.20



Let nq(x) ∈ Gq be the 
losest point to x ∈ R
d among points in Gq. Consider thepartition X ′

1, . . . ,X ′
qd of [0, 1]d 
anoni
ally de�ned using the grid Gq (x and y belongto the same subset if and only if nq(x) = nq(y)). Fix an integer m ≤ qd. For any

i ∈ {1, . . . , m}, de�ne Xi = X ′
i and X0 = R

d \ ⋃m
i=1 Xi, so that X0, . . . ,Xm form apartition of R

d. Denote by Bq,j the ball with the 
enter in nq(Xj) and radius 1/2q.De�ne a hyper
ube H = {Pσ̄ : σ̄ = (σ1, . . . , σm) ∈ {−1, 1}m} of probability dis-tributions Pσ̄ of the r.v. (X(t1), f2(X(t2))) valued in R
d × {0, 1} as follows. Forany Pσ̄ ∈ H the marginal distribution of X(t1) (given X(t0) = x0) does not dependon σ̄ and has a bounded density µ w.r.t. the Lebesgue measure on R

d su
h that
Pµ(X0) = 0 and

Pµ(Xj) = Pµ(Bq,j) =

∫

Bq,j

µ(x) dx = ω, j = 1, . . . , mfor some ω > 0. In order to ensure that the density µ remains bounded we assumethat qdω = O(1).The distribution of f2(X(t2)) given X(t1) is determined by the probability
Pσ̄(f2(X(t2)) = 1|X(t1) = x) whi
h is equal to C1,σ̄(x). De�ne

C1,σ̄(x) = f1(x) + σjφ(x), x ∈ Xj, j = 1, . . . , m,and C1,σ̄(x) = f1(x) on X0, where φ(x) = γ
−1/2
M ϕ(q[x − nq(x)]), ϕ(x) = Aϕθ(‖x‖)with some 
onstant Aϕ > 0 and with θ : R+ → R+ being a non-in
reasing in�nitelydi�erentiable fun
tion su
h that θ(x) ≡ 1 on [0, 1/2] and θ(x) ≡ 0 on [1,∞). Fur-thermore, there exist two real numbers 0 < f− < f+ < 1 su
h that f− ≤ f1(x) ≤ f+.Taking Aϕ small enough, we 
an then ensure that 0 ≤ C1,σ̄(x) ≤ 1 on R

d. Obviously,it holds φ(x) = Aϕγ
−1/2
M for x ∈ Bq,j. As to the boundary assumption (3), we have

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ) =
m∑

j=1

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ, X(t1) ∈ Bq,j)

=

m∑

j=1

∫

Bq,j

1{0<φ(x)≤δ}µ(x) dx = mω1
{Aϕγ

−1/2
M ≤δ}and (3) holds provided that mω = O(γ

−α/2
M ). Let τ̂M be a stopping time measurablew.r.t. F⊗M , then the identity (25) leads to

E
Ft0
Pσ̄

[fτ (X(τ))] − EP⊗M
σ̄

[EFt0 fbτM
(X(τ̂M))] = EP⊗M

σ̄
E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{bτ1,M 6=τ1}

]
,
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with ∆σ̄(X(t1)) = f1(X(t1)) − C1,σ̄(X(t1)). By 
onditioning on X(t1), we get
EP⊗M

σ̄
E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{bτ1,M 6=τ1}

]

= ω

m∑

j=1

EP⊗M
σ̄

E
Ft0
Pµ

[
φ(X(t1))1{bτ1,M 6=τ1}|X(t1) ∈ Bq,j

]

= Aϕmωγ
−1/2
M E

Ft0
Pµ

P⊗M
σ̄ (τ̂1,M 6= τ1).Using now a well known Birgé's or Huber's lemma (see, e.g. Devroye, Györ� andLugosi, 1996, p. 243), we get

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (τ̂1,M 6= τ1) ≥

[
0.36 ∧

(
1 − MKH

log(|H|)

)]
,where KH := supP,Q∈H K(P, Q) and K(P, Q) is a Kullba
k-Leibler distan
e betweentwo measures P and Q. Sin
e for any two measures P and Q from H with Q 6= Pit holds

K(P, Q) ≤ sup
σ̄1,σ̄2∈{−1;+1}m

σ̄1 6=σ̄2

E
Ft0
Pµ

[
C1,σ̄2(X(t1)) log

{
C1,σ̄1(X(t1))

C1,σ̄2(X(t1))

}

+(1 − C1,σ̄2(X(t1))) log

{
1 − C1,σ̄1(X(t1))

1 − C1,σ̄2(X(t1))

}]

≤ (1 − f+ − Aϕ)−1(f− − Aϕ)−1 E
Ft0
Pµ

[
φ2(X(t1))1{X(t1)6∈X0}

]for small enough Aϕ, and log(|H|) = m log(2), we get
sup

σ̄∈{−1;+1}m

{
E

Ft0
Pσ̄

[fτ,σ̄(X(τ))] − EP⊗M
σ̄

[EFt0 fbτM ,σ̄(X(τ̂M))]
}
≥

Aϕmωγ
−1/2
M (1 − AMγ−1

M ω) & γ
−(1+α)/2
M ,provided that mω > Bγ

−α/2
M for some B > 0 and AMω < γM , where A is a positive
onstant depending on f−, f+ and Aϕ. Using similar arguments, we derive

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (|C1,σ̄(x) − Ĉ1,M(x)| > δγ

−1/2
M ) > 0for almost x w.r.t. Pµ, some δ > 0 and any estimator Ĉ1,M measurable w.r.t. F⊗M .
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4.3 Proof of Proposition 1.3Using the arguments similar to ones in the proof of Proposition 1.1, we get
V0(X(t0)) − EP⊗M

x0
[V0,M(X(t0))] ≤

δ0

L−1∑

l=0

Ptl|t0(0 < |Cl(X(tl)) − fl(X(tl))| ≤ δ0)

+
L−1∑

l=0

EFt0 EP⊗M
x0

[|Cl(X(tl)) − fl(X(tl))|

×1{X(tl)∈El}1{|Cl(X(tl))−fl(X(tl))|>δ0}

] (26)with El de�ned as in the proof of Proposition 1.1. The �rst summand on the right-hand side of (26) is equal to zero due to (8). Hen
e, Cau
hy-S
hwarz and Minkowskiinequalities imply
V0(X(t0)) − EP⊗M

x0
[V0,M(X(t0))]

≤
L−1∑

l=0

[
EFt0 |EFtl

[
fτl+1

(X(tτl+1
))
]
− fl(X(tl))|2

]1/2

×
[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2

≤ 2B
1/2
f

L−1∑

l=0

[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2

.Now the appli
ation of (9) �nishes the proof.4.4 Proof of Proposition 1.5Denote
εk,M(x) = T [Ĉk,M ](x) − Ck(x)and

ζk,M(x) = C̃k,M(x) − T [Ĉk,M ](x)for k = 1, . . . , L − 1. Using the elementary inequality |max(a, x) − max(a, y)| ≤
|x − y|, whi
h holds for any real numbers a, x and y, we get

|εk,M(x)| ≤ |ζk,M(x)| + E [ |εk+1,M(X(tk+1))||X(tk) = x]and hen
e
|εk,M(x)| ≤

L−1∑

l=k+1

E [|ζl,M(X(tl))||X(tk) = x] (27)
:=

L−1∑

l=k+1

ξl,k,M(x).23



Note that we take expe
tation in (27) with respe
t to a new σ-algebra F whi
h isindependent of F⊗M and {ζl,M} are measurable w.r.t F⊗M . Hen
e, random variables
{ξl,k,M} are F⊗M measurable as well. A

ording to Lemma 4.2 (see below)

P⊗M
x0

(
ξl,k,M(x) ≥ δ

√
| logh|/Mhd

)
≤

P⊗M
x0

(
sup
y∈A

|ζl,M(y)| ≥ δ
√

| logh|/Mhd

)
≤ D2 exp(−D3δ)for almost all x w.r.t. Ptk |t0 . Thus,

P⊗M
x0

(
|εk,M(x)| ≥ δ

√
| log h|/Mhd

)
≤ LD2 exp(−D3δ/L).Analogously, using Lemma 4.3 one 
an prove that

P⊗M
x0

(|εk,M(x)| ≥ δ) ≤ B4 exp(−B5Mhd)with some positive 
onstants B4 and B5.Lemma 4.2. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be ful�lled. Thenthere exist positive 
onstants D1, D2 and D3, su
h that for any h satisfying D1h
β <√

| log h|/Mhd the estimates {T [Ĉk,M ]} based on the trun
ated lo
al polynomials es-timators of degree ⌊β⌋ ful�ll
P⊗M

x0

(
sup
x∈A

|T [Ĉk,M ](x) − C̃k(x)| ≥ δ
√

| log h|/Mhd

)
≤ D2 exp(−D3δ),for all δ > δ0 and k = 1, . . . , L − 1.Lemma 4.3. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be ful�lled and√

| log h|/Mhd = o(1) for M → ∞. Then there exist positive 
onstants D4, D5 and
D6 su
h that for any δ ≥ D4h

β the inequality
P⊗M

x0

(
sup
x∈A

|T [Ĉk,M ](x) − C̃k(x)| ≥ δ

)
≤ D5 exp(−D6Mhd)holds for all k = 1, . . . , L − 1.Proof. We give the proof only for Lemma 4.2. Lemma 4.3 
an be proved in asimilar way. Fix some natural r > 0 su
h that 0 < r ≤ L and 
onsider the matrix

Γ = (Γu1,u2)|u1|,|u2|≤⌊β⌋ with elements
Γu1,u2 =

1

Mhd

M∑

m=1

(
X(m)(tr) − x

h

)u1+u2

K

(
X(m)(tr) − x

h

)
.The smallest eigenvalue λΓ of the matrix Γ satis�es

λΓ = min
‖W‖=1

W⊤ΓW

≥ min
‖W‖=1

W⊤ E[Γ]W + min
‖W‖=1

W⊤(Γ − E[Γ])W

≥ min
‖W‖=1

W⊤ E[Γ]W −
∑

|u1|,|u2|≤⌊β⌋

|Γu1,u2 − E[Γu1,u2]|. (28)24



By Assumption (AX2)
inf
x∈A

min
‖W‖=1

[
W⊤ E[Γ(x)]W

]
≥ γ0with some γ0 > 0. For m = 1, . . . , M, and any multi-indi
es u1, u2 su
h that

|u1|, |u2| ≤ ⌊β⌋, de�ne
∆m(x) =

1

hd

(
X(m)(tr) − x

h

)u1+u2

K

(
X(m)(tr) − x

h

)

−
∫

Rd

zu1+u2K(z)p(tr, x + hz|t0, x0) dz.We have EPtr|t0
[∆m(x)] = 0,

|∆m(x)| ≤ h−d sup
z∈Rd

[
(1 + ‖z‖2β)K(z)

]
=: K1h

−dand
EPtr|t0

[∆m(x)]2 ≤
∫

Rd

z2u1+2u2K2(z)p(tr, x + hz|t0, x0) dz

≤ pmax

hd

∫

Rd

(1 + ‖z‖4β)K2(z) dz =: K2h
−d,where pmax = supz∈Rd p(tr, z|t0, x0) and K1, K2 are two positive 
onstants. Due toassumption (AK2), the 
lass of fun
tions

{(
x − ·

h

)u1+u2

K

(
x − ·

h

)
: x ∈ R

d, h ∈ R \ {0}, |u1|, |u2| ≤ ⌊β⌋
}is a bounded Vapnik-�ervonenkis 
lass of measurable fun
tions (see Dudley (1999)).A

ording to Proposition 5.1 (see Appendix), we have for any ζ > 0

Ptr |t0

(
sup
x∈A

|Γu1,u2(x) − E Γu1,u2(x)| ≥ ζ

)

= Ptr |t0

(
sup
x∈A

1

M

∣∣∣∣∣

M∑

m=1

∆m(x)

∣∣∣∣∣ ≥ ζ

)

≤ D0 exp(−ζB0Mhd) (29)with some positive 
onstants D0 and B0. Combining (28) and (20) with (29), weget
Ptr |t0

(
inf
x∈A

λΓ(x) ≤ γ0/2

)
≤ D0N

2
β exp(−γ0B0Mhd/2N2

β),where N2
β is the number of elements in the matrix Γ. Assume that M is large enoughso that γ0/2 > (log M)−1. Then on the set {infx∈A λΓ(x) > γ0/2} we have

|T [Ĉr,M ](x) − C̃r(x)| ≤ |Ĉr,M(x) − C̃r(x)|, x ∈ A25



sin
e supx∈A C̃r(x) ≤ Cmax. Therefore, it holds for any ζ > 0

Ptr |t0

(
sup
x∈A

|T [Ĉr,M ](x) − C̃r(x)| ≥ ζ

)
≤ Ptr |t0

(
inf
x∈A

λΓ(x) ≤ γ0/2

)

+ Ptr |t0

(
sup
x∈A

|Ĉr,M(x) − C̃r(x)| ≥ ζ, inf
x∈A

λΓ(x) > γ0/2

)
.Introdu
e the matrix Q = (Qm,u)1≤m≤M, |u|≤⌊β⌋ with elements

Qm,u =

(
X(m)(tr) − x

h

)u
√

1

Mhd
K

(
X(m)(tr) − x

h

)
.Denote by Qu the uth 
olumn of Q and de�ne

QC(x) :=
∑

|u|≤⌊β⌋

C̃
(u)
r (x)hu

u!
Qu.Sin
e Γ = Q⊤Q, we get Z⊤(0)Γ−1Q⊤Qu = 1{u=(0,...,0)} for any s with |s| ≤ ⌊β⌋.Hen
e Z⊤(0)Γ−1Q⊤QC = C̃r(x). Thus, we 
an write

Ĉr,M(x) − C̃r(x) = Z⊤(0)Γ−1(S − Q⊤QC) =: Z⊤(0)Γ−1εM(x),where εM(x) is a ve
tor valued fun
tion with 
omponents
εM,u(x) =

1

Mhd

M∑

m=1

[
Y

(m)
r+1 − C̃r,x(X

(m)(tr))
](X

(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)

and Y
(m)
r+1 = max(fr+1(X

(m)(tr+1)), T [Ĉr+1,M ](X(m)(tr+1))). So, on the set {infx∈A λΓ(x) >
γ0/2} we get
|Ĉr,M(x) − C̃r(x)| ≤ ‖ΓεM‖ ≤ λ−1

Γ ‖εM‖ ≤ 2γ−1
0 ‖εM‖ ≤ 2γ−1

0 N
1/2
β max

u
|εM,u(x)|.Denote

∆(1)
u,m(x) :=

1

hd

[
Y

(m)
r+1 − C̃r(X

(m)(tr))
](X

(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)
,

∆(2)
u,m(x) :=

1

hd

[
C̃r(X

(m)(tr)) − C̃r,x(X
(m)(tr))

](X
(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)
.It holds

|εM,u| ≤
∣∣∣∣∣

1

M

M∑

m=1

∆(1)
u,m

∣∣∣∣∣ +
∣∣∣∣∣

1

M

M∑

m=1

[
∆(2)

u,m − E ∆(2)
u,m

]
∣∣∣∣∣+ |E ∆(2)

u,m|.26



Note that EPtr|t0

[
∆

(1)
u,m

]
= 0 and
|∆(1)

u,m(x)| ≤ A11h
−d, Var

[
∆(1)

u,m(x)
]
≤ A12h

−d,
∣∣∆(2)

u,m(x) − E
[
∆(2)

u,m(x)
]∣∣ ≤ A21h

β−d, Var
[
∆(2)

u,m(x)
]
≤ A22h

2β−dwith some positive 
onstants A11, A12, A21 and A22 not depending on x. Proposi-tion 5.1 implies that for any δ ≥ δ0 > 0

Ptr |t0

(∥∥∥∥∥
1

M

M∑

m=1

∆(1)
u,m

∥∥∥∥∥
∞

≥ δ
√

| log h|/Mhd

)
≤ D1 exp (−δB1| logh|)with some positive 
onstants D1 and B1. Furthermore, due to the representation

C̃r(z) − C̃r,x(z) = ⌊β⌋
∑

|u|=⌊β⌋

(z − x)u

u!

×
∫ 1

0

[
C̃(u)

r (x + w(z − x)) − C̃(u)
r (x)

]
(1 − w)⌊β⌋−1 dwwe get for any two points x1 and x2 in R

d

‖C̃r(·) − C̃r,x1(·) − (C̃r(·) − C̃r,x2(·))‖A ≤ ‖x1 − x2‖β−⌊β⌋.Now it 
an be shown (see Dudley (1999)) that the 
lass
{[

C̃r(·) − C̃r,x(·)
]( · − x

h

)u

K

( · − x

h

)
: x ∈ R

d, h ∈ R \ {0}, |u| ≤ ⌊β⌋
}is a bounded Vapnik-�ervonenkis 
lass of measurable fun
tions. Hen
e

Ptr |t0

(∥∥∥∥∥
1

M

M∑

m=1

[
∆(2)

u,m − EPtr |t0
∆(2)

u,m

]∥∥∥∥∥
∞

≥ δ
√

| log h|/Mhd

)

≤ D2 exp (−δB2| log h|)for δ ≥ δ0 > 0 and some positive 
onstants D2 and B2. Furthermore, using theinequality |EPtr|t0
[∆

(2)
u,m]| ≤ A3h

β , we arrive at
Ptr |t0

(
sup
x∈A

|εM,u(x)| ≥ γ0δ
√
| log h|/(MhdNβ)

)
≤ D3 exp (−δB3| log h|)with some positive 
onstants D3 andB3, provided that 6γ−1

0 N
1/2
β A3h

β ≤ δ
√
| log h|/Mhd.
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5 Appendix5.1 Some results from the theory of empiri
al pro
essesDe�nition A 
lassF of fun
tions on a measurable spa
e (X,X ) is 
alled a boundedVapnik-�ervonenkis 
lass of fun
tions if there exist positive numbers A and ω su
hthat, for any probability measure P on (X,X ) and any 0 < ρ < 1

N (F , L2(P), ρ‖F‖L2(P)) ≤
(

A

ρ

)ω

, (30)where N (S, d, ε) denotes the ε-
overing number of a 
lass S in a metri
 d, and
F := supf∈F |f | is the envelope of F . The following proposition is a key tool forobtaining 
onvergen
e rates for lo
al type estimators.Proposition 5.1 (Talagrand (1994), Giné and Guillou (2001)). Let F be a measur-able uniformly bounded VC 
lass of fun
tions, and let σ and U be any two positivenumbers su
h that supf∈F Var(f) ≤ σ2, supf∈F ‖f‖∞ ≤ U and 0 < σ < U/2. Then,there exist a universal 
onstant B, su
h that

E

[
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣

]
≤ B

[
ωU log

AU

σ
+
√

ω

√
Mσ2 log

AU

σ

]
.If additionally √

Mσ ≥ U
√

log(U/σ), then there exist 
onstants D and C whi
hdepend only on the VC 
hara
teristi
s of F , su
h that, for all λ ≥ C and t satisfying
C
√

Mσ

√
log

U

σ
≤ t ≤ λ

Mσ2

U
,

P

(
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣ > t

)
≤ D exp

(
− log(1 + λ/(4D))

λD

t2

Mσ2

)
.Remark 5.1. It 
an be dedu
ed from the proof of Proposition 5.1 in Giné andGuillou (2001) that 
onstant D 
an be taken independent of ω. The 
onstant C(and hen
e λ) in the 
ase of large ω 
an be 
hosen in the form C = ωC0 for some
onstant C0 not depending on ω.A
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