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Abstract

The problem of pricing Bermudan options using simulations and nonpara-
metric regression is considered. We derive optimal non-asymptotic bounds for
the low biased estimate based on a suboptimal stopping rule constructed from
some estimates of the optimal continuation values.These estimates may be of
different nature, they may be local or global, with the only requirement being
that the deviations of these estimates from the true continuation values can
be uniformly bounded in probability. As an illustration, we discuss a class
of local polynomial estimates which, under some regularity conditions, yield
continuation values estimates possessing the required property.Hier bitte den
Abstract hineinkopieren

An American option grants the holder the right to select the time at which to exercise
the option, and in this differs from a European option which may be exercised only at
a fixed date. A general class of American option pricing problems can be formulated
through an R? Markov process {X(t), 0 < t < T’} defined on a filtered probability
space (2, F, (Fi)o<t<r, P). It is assumed that X (¢) is adapted to (Fi)o<i<r in the
sense that each X (¢) is F; measurable. Recall that each F; is a o-algebra of subsets
of € such that 7, C F; C F for s < t. We interpret F; as all relevant financial
information available up to time t. We restrict attention to options admitting a finite

set of exercise opportunities 0 = t5 < t; < ty < ... < t;, = T, sometimes called
Bermudan options. If exercised at time t;, [ = 0,..., L, the option pays f;(X (%)),
for some known functions fy, f1,..., fr mapping R? into [0, 00). Let 7, denote the

set of stopping times taking values in {n,n + 1,...,L}. A standard result in the
theory of contingent claims states that the equilibrium price V,,(z) of the American
option at time £, in state x given that the option was not exercised prior to ¢, is its
value under an optimal exercise policy:

Va(z) = Sup E[fr(X(t:)|X(t.) = 2], z€R™
Pricing an American option thus reduces to solving an optimal stopping problem.
Solving this optimal stopping problem and pricing an American option are straight-
forward in low dimensions. However, many problems arising in practice (see e.g.
Glasserman (2004)) have high dimensions, and these applications have motivated
the development of Monte Carlo methods for pricing American option. Pricing
American style derivatives with Monte Carlo is a challenging task because the de-
termination of optimal exercise strategies requires a backwards dynamic program-
ming algorithm that appears to be incompatible with the forward nature of Monte
Carlo simulation. Much research was focused on the development of fast methods



to compute approximations to the optimal exercise policy. Notable examples in-
clude the functional optimization approach in Andersen (2000), mesh method of
Broadie and Glasserman (1997), the regression-based approaches of Carriere (1996),
Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999) and Egloff (2005). A
common feature of all above mentioned algorithms is that they deliver estimates
Co(x),...,Cr_1(x) for the so called continuation values:

Ck(l’) = E[Vk+1(X(tk+1))|X(tk) = :L’], k= 0, ceey L—1. (1)

An estimate for V4, the price of the option at time ¢ty can then be defined as

Vo(z) := max{ fo(x), Co(z)}, zeR%

This estimate basically inherits all properties of Co( ). In parti('ular it is usually
impossible to determine the sign of the bias of Vo since the bias of CO may change
its sign. One way to get a lower bound (low biased estimate) for V4 is to construct
a (generally suboptimal) stopping rule

T=min{0<k<L: @(X(tk)) < fe(X ()}

with 6L = (0 by definition. Simulating a new independent set of trajectories and
averaging the pay-offs stopped according to 7 on these trajectories gives us a lower
bound Vp for Vy. As was observed by practitioners, the so constructed estimate
Vo has rather stable behavior with respect to the estimates of continuation values
Co(x),...,Cr_1(x), i.e. even rather poor estimates of continuation values may lead
to a good estimate ‘70. The aim of this paper is to find a theoretical explanation
of this observation and to investigate the properties of V5. In particular, we de-
rive optimal non-asymptotic bounds for the bias Vo — E V4 assuming some uniform
probabilistic bounds for €, — C,., r =0,..., L — 1. It is shown that the bounds for
Vo—E Vb are usually much tighter than ones for V) — E Vo implying a better quality
of Vb as compared to the quality of Vo constructed using one and the same set of
estimates for continuation values. As an example, we consider the class of local
polynomial estimators for continuation values and derive explicit convergence rates
for V4 in this case.

The issues of convergence for regression algorithms have been already studied in
several papers. Clément, Lamberton and Protter (2002) were the first to prove the
convergence of the Longstaff-Schwartz algorithm. Glasserman and Yu (2004) showed
that the number of Monte Carlo paths has to be in general exponential in the num-
ber of basis functions used for regression in order to ensure convergence. Recently,
Egloff, Kohler and Todorovic (2007) have derived the rates of convergence for con-
tinuation values estimates obtained by the so called dynamic look-ahead algorithm
(see Egloff (2005)) that “interpolates” between Longstaff-Schwartz and Tsitsiklis-
Roy algorithms. As was shown in these papers the convergence rates for ‘70 coincide
with the rates of Cy and are determined by the smoothness properties of the true



continuation values Cy, ..., Cr_;. It turns out that the convergence rates for ‘70 de-
pend not only on the smoothness of continuation values (as opposite to V), but also
on the behavior of the underlying process near the exercise boundary. Interestingly
enough, there are some cases where these rates become almost independent either
of the smoothness properties of {Cy} or of the dimension of X and the bias of 1}
decreases exponentially in the number of Monte Carlo paths used to construct {5k}
The paper is organized as follows. In Section 1.1 we introduce and discuss the so
called boundary assumption which describes the behavior of the underlying process
X near the exercise boundary and heavily influences the properties of V5. In Sec-
tion 1.2 we derive non-asymptotic bounds for the bias V5 — EVy and prove that
these bounds are optimal in the minimax sense. In Section 1.3 we consider the
class of local polynomial estimates and propose a sequential algorithm based on the
dynamic programming principle to estimate all continuation values. Finally, under
some regularity assumptions, we derive exponential bounds for the corresponding
continuation values estimates and consequently the bounds for the bias V) — E V4.

1 Main results

1.1 Boundary assumption

For the considered Bermudan option let us introduce a continuation region C and
an exercise (stopping) region & :

C = {(i,2): filr) < Cix)}, (2)
€ = {(i,2): filz) = Ci(2)}.
Furthermore, let us assume that there exist constants By, >0,k =0,...,L—1 and

a > 0 such that the inequality
Prygto (0 < [Cu(X (tr)) = fu(X ()] < 0) < Boxd®, 6 >0, (3)

holds for all kK = 0,...,L — 1, where Py, ;, is the conditional distribution of X(t)
given X (to). Assumption (3) provides a useful characterization of the behavior of the
continuation values {Cj} and payoffs { fi } near the exercise boundary 0. Although
this assumption seems quite natural to look at, we make in this paper, to the best of
our knowledge, a first attempt to investigate its influence on the convergence rates of
lower bounds based on suboptimal stopping rules. We note that a similar condition,

although much simpler, appears in the context of statistical classification problem
(see, e.g. Mammen and Tsybakov (1999) and Audibert and Tsybakov (2007)).

In the situation when all functions Cy — fx, Kk = 0,..., L — 1 are smooth and have
non-vanishing Jacobian in the vicinity of the exercise boundary, we have o« = 1.
Other values of a are possible as well. We illustrate this by two simple examples.



Example 1 Fix some a > 0 and consider a two period (L = 1) Bermudan power
put option with the payoffs

fo(x) = fi(z) = (KY* =2Vt zeR,, K >0 (4)

Denote by A the length of the exercise period, i.e. A = t; — ty. If the process X
follows the Black-Scholes model with volatility ¢ and zero interest rate, then one
can show that

Co(z) == E[f{(X(01))| X (to) = 2] = K"/*®(—dy)
_ MM 0E 20 (g,

with ® being the cumulative distribution function of the standard normal distribu-
tion,
. log(z/K)+ (£ — 1) 02A
b oVA

and dy = d; — 0v/A/a. As can be easily seen, the function Cy(z) — fo(x) satisfies
|Co(z) — folx)| < 2/ for 2 — +0 and Cy(z) > fo(z) for all z > 0 if @ > 1. Hence

P(0 < [Co(X (to)) — fo(X(to))| <6) < 6%, 6—0, a>1.

Taking different « in the definition of the payoffs (4), we get (3) satisfied for «
ranging from 1 to oo.
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Figure 1: Illustration to Example 2.

In fact, even the extreme case “a = co0” may take place as shown in the next example.



Example 2 Let us consider again a two period Bermudan option such that the
corresponding continuation value Cy(z) = E[f1(X (t1))|X (to) = ] is positive and
monotone increasing function of x on any compact set in R. Fix some g € R and
choose 9y satisfying dy < Cy(xg). Define the payoff function fy(z) in the following
way

o C()(flfo) + 50, r < T,
fO(x) B {Co(.l’o) — (50, T > xo.-

So, fo(x) has a “digital” structure. Figure 1 shows the plots of Cy and fj in the case
where X follows the Black-Scholes model and fi(z) = (z — K) with some K > 0.
It is easy to see that

Py, (0 < |Co(X () — fo(X(to))] < do) = 0.
On the other hand

C = {zeR:Ch(x)> folx)} ={z eR:x >z},
E = {zeR:Chx) < folx)} ={r e R:x <z}

So, both continuation and exercise regions are not trivial in this case.

The last example is of particular interest because as will be shown in the next sections
the bias of [y decreases in this case exponentially in the number of Monte Carlo paths
used to estimate the continuation values, the lower bound Vj was constructed from.

1.2 Non-asymptotic bounds for V| — E‘A/o

Let @,M, k=1,...,L—1, be some estimates of continuation values obtained using
M paths (XM(t),..., XM)(t)) of the underlying process X starting from z, at time
to. We may think of (XM(#),..., XM)(¢)) as being a vector process on the product
probability space with o-algebra F® and the product measure PfOM defined on
FOM yia

PEM(Ay x ..o x App) = Py (A1) - ... Py (Anr),

with A4, € F, m =1,..., M. Thus, each @,M, k=0,...,L—1,is measurable with
respect to F®M . The following proposition provides non-asymptotic bounds for the
bias Vi — Epen [Vp ] given uniform probabilistic bounds for {Cy a}-

o

Proposition 1.1. Suppose that there exist constants By, By and a positive sequence
Y such that for any 6 > 69 > 0 it holds

PEM (1Ciar(e) — Cula)] > 673" < By exp(—Bao) )

for almost all x with respect to Py, the conditional distribution of X (t) given

X(ty), k=0,...,L—1. Define
Vo := B[ fz, (X(t2,,))| X (to) = o] (6)

5



with
s = min {o <k<L:Cou(X(t) < fk(X(tk))} . (7)

If the boundary condition (3) is fulfilled, then

L-1

> By

=0

—(14a)/2

0<Vo— EP§OM Vo] < B Tm

with some constant B depending only on o, By and Bs.

The above convergence rates can not be in general improved as shown in the next
theorem.

Proposition 1.2. Let L = 2. Fix a pair of non-zero payoff functions fi, fo such
that fo : RY — {0,1} and 0 < fi(x) < 1 on [0,1]% Let P, be a class of pricing
measures such that the boundary condition (3) is fulfilled with some o > 0. For any
positive sequence Yy satisfying

i =o(l), =0(M), M- oo,

there exist a subset P, of Py and a constant B > 0 such that for any M > 1, any

stopping rule Tar and any set of estimates {Cyar} measurable w.r.t. FEM we have
with some 6 >0 and k = 1,2,

sup P®M <|5kM(x) — C(x)| > 57;41/2) > 0

PePq,~

for almost all v w.r.t. any P € P, and

Fi Fi _ a
sup {sup Ep" [f+(X(t7))] = Epeon [Ep" f, (X(t?M))]} > Byt
PEPa,y \7€Tp

Finally, we discuss the case when “a = c0”, meaning that there exists dy > 0 such
that

Pieo (0 < |CR(X () = fu(X ()] < do) = 0 (8)

for k = 0,...,L — 1. This is very favorable situation for the pricing of the corre-
sponding Bermudan option. It turns out that if the continuation values estimates
{Cy.} satisty a kind of exponential inequality and (8) holds, then the bias of Vi »
converges to zero exponentially fast in ~,,.

Proposition 1.3. Suppose that for any 6 > 0 there exist constants By, By possibly
depending on 6 and a sequence of positive numbers yy; not depending on & such that

PEY (1Ch () — Celw)] = 8) < By exp(~Byy) (9)
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for almost all x with respect to Py, ., K =0,...,L—1. Assume also that there exists
a constant By > 0 such that

E LE%aXL f,f(X(tk))] < B;. (10)

=V,..,

If the condition (8) is fulfilled with some 0y > 0, then
0 < Vo — Epgm[Vou] < BsLexp(—Biyu)

with some constant Bs and By depending only on By, By and Bjy.

Discussion Let us make a few remarks on the results of this section. First, Propo-
sition 1.1 implies that the convergence rates of Vj 5s, a Monte Carlo estimate for Vj s,
are always faster than the convergence rates of {C } provided that o > 0. Indeed,

while the convergence rates of {Ck wm} are of order fyM/ the bias of Vo M converges

—(1+a)/2

to zero as fast as v, . As to the variance of Vb M, it can be made arbitrary small

by averaging VE),M over a large number of sets, each consisting of M trajectories, and
by taking a large number of new independent Monte Carlo paths used to average
the payoffs stopped according to 7y;.

Second, if the condition (8) holds true, then the bias of XA/OM decreases exponentially
in s, indicating that even very unprecise estimates of continuation values would
lead to the estimate Vj s of acceptable quality.

Finally, let us stress that the results obtained in this section are quite general and
do not depend on the particular form of the estimates {Cj s}, only the inequality
(5) being crucial for the results to hold. This inequality holds for various types
of estimators. These may be global least squares estimators, neural networks (see
Kohler, Krzyzak and Todorovic (2009)) or local polynomial estimators. The latter
type of estimators has not yet been well investigated (see, however, Belomestny et
al. (2006) for some empirical results) in the context of pricing Bermudan option
and we are going to fill this gap. In the next sections we will show that if all
continuation values {C}} belong to the Holder class X(3, H, R?) and the conditional
law of X satisfies some regularity assumptions, then local polynomial estimates of
continuation values satisfy inequality (5) with vy, = M?%/Z5+d) Jog= (M).

Remark 1.1. In the case of projection estimates for continuation values, some nice
bounds were recently derived in Van Roy (2009). Let {Xy, k£ = 0,...,L} be an
ergodic Markov chain with the invariant distribution 7 and fo(z) = ... = fr(z) =
f(z), then Cy = ... = Cp_1(x) = C(x), provided that X, is distributed according
to 7. Furthermore, suppose that an estimate C/(z) for the continuation value C'(z)
is available and satisfies a projected Bellman equation

C(x) = e PILE [max{f(X,), C(X,))}|Xo = 2], p>0, (11)
where II is the corresponding projection operator. Define

Vo) := B[ fz(X7)|Xo = 2]

7



with
7= min{o <k<L:0(X) < f(Xk)},
then as shown in Van Roy (2009)

/2 1/2

. Vo(Xo) — Th(Xo)P?] " < D [Bx |0(X0) ~ C(Xo)]? (12

with some absolute constant D depending on p only. The inequality (12) indicates
that the quantity

(B Vo(X0) — To(Xo)P]

might be much smaller than sup, |C(z) — C(z)| and hence qualitatively supports
the same sentiment as in our paper.

1.3 Local polynomial estimation

We first introduce some notations related to local polynomial estimation. Fix some
k such that 0 < k < L and suppose that we want to estimate a regression function

Oi(z) == E[g(X (tx41))| X (tx) = 2], 2z € R
with ¢ : R — R. Consider M trajectories of the process X
(XM (tg), ..., X™(t)), m=1,..., M,

all starting from zg, i.e. XM (tg) = ... = XM (ty) = x4. For some h > 0, v € R?,
an integer [ > 0 and a function K : R? — R,, denote by ¢, a polynomial on
R? of degree | (maximal order of the multi-index is less than or equal to ) which
minimizes

M 2 (m) k) — X

m=1

where Y™ (t) = g(X™)(t)). The local polynomial estimator ng(at) of order [ for
the value 0y (z) of the regression function 6, at point z is defined as 0y s (x) = ¢z 1/(0)

if g, ps is the unique minimizer of (13) and akM(x) = 0 otherwise. The value h is
called the bandwidth and the function K is called the kernel of the local polynomial
estimator.

Let m, denote the coefficients of g, »s indexed by the multi-index u € N¢, Qer(2) =
Z|u\<z 2% Introduce the vectors Il = (7Tu)|u\gz and S = (Su)\u|§l with

M u
S i S (X (X




Let Z(z) = (2")jy<: be the vector of all monomials of order less than or equal to [
and the matrix I' = (I'y, u, ) juy|,jus|<t be defined as

u1+u2
tk — X X(m) (tk) — X
Loy us = Mhd Z ( ) K (—h . (14)

The following result is straightforward.

Proposition 1.4. If the matriz I' is positive definite, then there exists a unique
polynomial on R? of degree | minimizing (13). Its vector of coefficients is given by
IT =T71S and the corresponding local polynomial regression function estimator has
the form

Oes(z) = ZT ()01

1 & X -
= Mhd ;Y(m)(tkﬂ)K <$)
x ZT (07 (%) . (15)

h

Remark 1.2. From the inspection of (15) it becomes clear that any local poly-
nomial estimator can be represented as a weighted average of the “observations”
Y m =1,..., M, with a special weights structure. Hence, local polynomial esti-
mators belong to the class of mesh estimators introduced by Broadie and Glasserman
(1997) (see also Glasserman, 2004, Ch. 8). Our results will show that this particu-
lar type of mesh estimators has nice convergence properties in the class of smooth
continuation values.

1.4 Estimation algorithm for the continuation values

According to the dynamic programming principle, the optimal continuation values
(1) satisfy the following backward recursion

C'L(x) = 0,
Cr() = Emax(fir1(X(te1)), Con (X ()| X (t) = 2], o € R

with & = 1,...,L — 1. Consider M paths of the process X, all starting from z,
and define estlmates C’l M- - C’L7M recursively in the following way. First, we put

C’L,M( ) = 0. Further, if an estimate of @H,M(x) is already constructed we define
Ci. () as the local polynomial estimate of the function

o (2) = Emax(fiar (X (t41)): Crosrar (X (b)) IX (1) = ], (16)

based on the sample
(X(m) (tk)v maX{fk—l—l(X(tk-i-l))v ak—l-l,M(X(tk-l-l))})v m = 17 T M.

9



Note that all 5k,M are F®M measurable random variables because the expectation
in (16) is taken with respect to a new o-algebra F which is independent of F®M (one
can start with the enlarged product o-algebra F®M+1 and take expectation in (16)
w.r.t. the first coordinate). The main problem arising by the convergence analysis of
the estimate @HM is that all errors coming from the previous estimates éj,M, 1<k
have to be taken into account. This problem has been already encountered by
Clément, Lamberton and Protter (2002) who investigated the convergence of the
Longstaff-Schwartz algorithm.

1.5 Rates of convergence for [, — E‘70

Let 8 > 0. Denote by || the maximal integer that is strictly less than 8. For any
x € R? and any |3 times continuously differentiable real-valued function g on R?,
we denote by g, its Taylor polynomial of degree | 3] at point x

(.Z’/ — x)s s
Is|<13]
where s = (s1,...,8q4) is a multi-index, |s| = s; + ... + s4 and D?® denotes the
differential operator D = 22"L TLet H > 0. The class of (3, H, R%)-Holder

dx)! ~...~8x2d ’
smooth functions, denoted by (3, H, R?), is defined as the set of functions g : R —
R that are |3] times continuously differentiable and satisfy, for any z, 2’ € R?, the
inequality
l9(a") = go(2)| < H|jz —2'||%, 2" € R".

Let us make two assumptions on the process X

(AX0) There exists a compact set A C R? such that P(X(¢) € A) = 1 and
P, (X (s) € A) =1 for all t and s satisfying to <t < s <T.

(AX1) All transitional densities p(tx41, y|tr, ), k =0,..., L — 1, of the process X
are uniformly bounded on A x A and belong to the Hélder class (3, H, RY)
as functions of z € A, i.e. there exists § > 1 with 5 — |3] > 0 and a constant
H such that the inequality

‘p(tk+17y|tkvx/> _pw(tk—i-lu y‘tkn .Z’/)| S HH']: - IJHIB (18)

holds for all z,2",y € Aand k=0,...,L — 1. In (18), ps(txs1,y|tr, 2') stands
for the Taylor polynomial of p(txi1, y|tk, ) w.r.t. z of degree |3] (see (17))
centered at x and computed at z’.

Consider a matrix valued function T'(s, 2) = (Tuyus )jus|,us|<|8) With elements

Loy (8, ) i= / 2T K (2)p(s, x + hz|ty, xo) dz, (19)
Rd
for any s > t.

10



(AX2) We assume that the minimal eigenvalue of T' is bounded away from zero,
ie.

in_inf min [W T (ty, 2)W]| >
M v ||$ﬁ1:11 [ (te, 2)W] 2 70

with some 7y > 0.
Moreover, we shall assume that the kernel K fulfils the following conditions:

(AK1) K integrates to 1 on R and

/Rd(l + [Jul|*) K (u) du < oo,  sup (1 + ||u|**) K (u) < oco.

ucRd

(AK2) K is in the linear span (the set of finite linear combinations) of functions
k > 0 satistying the following property: the subgraph of k, {(s,u) : k(s) > u},
can be represented as a finite number of Boolean operations among the sets
of the form {(s,u) : p(s,u) > f(u)}, where p is a polynomial on R% x R and
f is an arbitrary real function.

Discussion The assumption (AX0) may seem rather restrictive. In fact, one can
always localize process X to a ball B in R? around z, of radius R by reflecting
it on the boundary of Br (see Example below for further details). Using the fact
that a new reflected process X (t) coincides a.s. with X(t) for ty < t < 7, where
TR = 1inf{t >ty : X(t) &€ Br}, we get

sup [E7*0 [f(X (t,))] — B [f-(X™(t,))]]

T€Tp

< sup E%0 £, (X(t,))1(m, > R)]

T€Ty

T sup B0 [£(XR(t)1(m, > B)] (20)

T€Ty

with m; = sup; <, || X(s) — x0||. The r.h.s of (20) can be made arbitrary small
by taking large values of R (the exact convergence rates depend, of course, on the
properties of the process X).

Example Let process X (t) be a d-dimensional diffusion process satisfying

X(t):xo+/tu(X(t))dt+/ta(X(t))dW(t), t > to.

to to

Assume that a drift coefficient © and a diffusion coefficient o are regular enough
and o satisfies the so called uniform ellipticity condition on compacts, i. e. for each
compact set K C R?

11



(AD1) u(-) € CF(K) and o(-) € CF(K) for some natural k > 1,

(AD2) there is ox > 0 such that for any ¢ € R? it holds

d

Z (o(x)o " (2)jkéiér > ok |€])?, = € K.

J,k=1

Let us now reflect the diffusion process X (t) by defining a reflected process X7 (t)
which satisfies a reflected stochastic differential equation in Bg, with oblique reflec-
tion at the boundary of Bg in the conormal direction, i.e.

XR(t) = x0+/tu(XR(t))dt

to

+/ta(XR(t))dW(t)+/tn(XR(t))dL(t), t >t (21)

to to

where n is the inward normal vector on the boundary of BR and L(t) is a local time
process which increases only on {||z|| = R}, i.e. L(t fto Lgx, =Ry dL(s).

In order to illustrate the reflection procedure, let us consider a one-dimensional
Brownian motion W (t) on [—R, R| and reflect it at —R and R. A reflected Brownian
motion W (t) can be defined via applying a saw function to the original Brownian
motion:

W (@), W) <R,
WR(t) =< 2nR—W(t), |W(t)—2nR| <R,
2nR+W(t), |W(t)+2nR| <R,

where n € Z \ {0}. It is not difficult to prove Revuz and Yor (see 1991, Ch. 3) that
WR(t) satisfies the equation

WRt) =W(t)+ L7E(t) — LE(t), (22)

where L=2(t) and Lf(t) are symmetric local times of W(¢) at R and —R respec-
tively. Obviously, (22) is the particular case of the general reflected equation (21).
The transition density of W7 (t) has a spectral representation

pwr(t,ylz) = ( +Zexp< 8R22 )

X COS (ZR(I—I—R)> cos <2R(y+R)>> . (t,z,9) € Ry x [-R, R)?

and can be seen to be strictly positive on (0, 7] x [~R, R]? for any fixed T > 0.

Return now to the general case and denote by p®(s,y|r) the transition density of
the reflected diffusion X™(t). It satisfies a parabolic partial differential equation
with Neumann boundary conditions. Under (AD1) it belongs to C*(Bg x Bgr) (see
Sato and Ueto (1965)) for any fixed s > 0. Moreover, using a strong version of the

12



maximum principle (see, e.g. Friedman, 1964, Theorem 1 in Chapter 2) one can show
that under assumption (AD2) the transition density p™(s,y|r) is strictly positive on
(0, T) x Br x Bg. Let us check now assumption (AX2) in the case when

I'(1+d/2)
K(2) = ——a5— L=<
We have for any fixed s > tg and W € RP with D =d(d+1)-...-(d+ 3] —1)/|8]!
2
W'T(s,2)W = / Z Wz, | K(2)p®(s —to,x + hz|zo) dz
R

laf<[8]
2

B / W, | dz
S(z,R) Z

laf<|8]

v

with some positive constant B and S(z, R) := {z : ||z]| < 1, ||z + hz — x| < R}.
Using now the fact that the Lebesgue measure of the set S(z, R) is larger than some
positive number A for all x € By, where A depends on R and d but does not depend
on h, we get

2

. T+ > . . a >
2, g R W) > B o [ 35w | d g

with some positive 79 by the compactness argument. Hence, assumption (AX2)
holds.

Remark 1.3. It can be shown that (AK2) is fulfilled if K(x) = f(p(x)) for some
polynomial p and a bounded real function f of bounded variation. Obviously, the
standard Gaussian kernel falls into this category. Another example is the case where
K is a pyramid or K = 1;_ jja.

In the sequel we will consider a truncated version of the local polynomial estimator
Ch.a(z) which is defined as follows. If the smallest eigenvalue of the matrix I" defined

in (14) is greater than (log M)~ we set T[ék,M] (x) to be equal to the projection of
@M(z) on the interval [0, Ciyax] With Chax = maxy—o -1 5UPye Ck(2) (Ciax 18
finite due to (AXO0) and (AX1)). Otherwise, we put T[@hM] (x) = 0. The following
propositions provide exponential bounds for the truncated estimator {T[akM]}

Proposition 1.5. Let condition (AX0)-(AX2),(AK1) and (AK2) be satisfied and
let {T[akM]} be the continuation values estimates constructed as described in Sec-
tion 1.4 using truncated local polynomial estimators of degree |[3]|. Then there
exist positive constants By, B, and Bs such that for any h satisfying B h"® <

V|logh|/Mhe and any ¢ > (o with some (o > 0 it holds
\log h|

€A

P <SUP [ T[Chma] () = Ci(w)] > ¢ ) < B exp(—Bs()

13



for k = 0,...,L — 1. As a consequence, we get with h = MY+ gnd any
¢>G¢>0

-~ Clog'? M
P?()M (ilelﬁ ‘T[Ck‘,M] (I) - Ck(x)‘ > W < Bg GXp(—33C).

Proposition 1.6. Let condition (AX0)-(AX2),(AK1) and (AK2) be satisfied, then
for any & > 0 there exist positive constants By and Bs such that

P (sup I T(Crm](x) — Ci(w)] > 6) < Byexp(—BsM)
zeA
fork=1,...,L—1.

Remark 1.4. As can be seen from the proof of Proposition 1.5 and Remark 5.1 (note
that w in (30) grows linearly in d) the constant Bz decreases with the dimension

d as fast as 1/d. The constant Bs is of order 5g/ﬁ/d. Constants By, and B, depend
linearly on L, the number of exercise dates, but can be taken independent of d due
to Remark 5.1.

Combining Proposition 1.1 with Proposition 1.5 and Proposition 1.6 leads to the
following

Theorem 1.7. Let conditions (AX0)-(AX2), (AK1) and (AK2) be satisfied. Define
Vo = E(fz, (X (t2,))| X (o) = 20),
with
P o= min{0 < &k < L: T[Crm](X (t)) < fu( X (1))},

where {T[@kM]} are continuation values estimates constructed using truncated local
polynomial estimators of degree |3]. If the boundary condition (3) is fulfilled for
some o > 0, then

Y

0 < ‘/0 o EP®M[VE),M] < DlM—B(l-i-a)/(Qﬁ-I—d) log(1+a)/2 (M)
zQ

with some constant Dy. On the other hand, if the condition (8) is satisfied with
some 09 > 0, then the bias of Vo decreases exponentially in M, i.e. there exist
positive constants Dy and Ds, such that

0 S ‘/0 - EP%’OM [%7]\4] S D2 eXp(—DgM).
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Discussion As we can see, the rates of convergence for {6’kM} are of order
NP/ (25+d) 10g1/2 M

which can be proved to be optimal, up to a logarithmic factor, for the class of Holder
smooth continuation values {Cy(x)}. On the other hand, the rates of convergence
for Epen[Vp a] are of order

0

M—ﬁ(1+a)/(26+d) log(1+a)/2 (M)

and are always faster than ones of {6’kM} provided that & > 0. The most interesting
behavior of the lower bound ‘A/O,M can be observed if the condition (8) is fulfilled.
In this case the bias of ‘707M becomes as small as exp(—D3M). This means that
even in the class of continuation values with an arbitrary low (but positive) Holder
smoothness (e.g. in the class of non-differentiable continuation values) and therefore
with an arbitrary slow convergence rates of the estimates {ékvM}, the bias of the

lower bound XA/OM converges exponentially fast to zero.

2 Numerical example: Bermudan max call

This is a benchmark example studied in Broadie and Glasserman (1997) and Glasser-
man (2004) among others. Specifically, the model with d identically distributed
assets is considered, where each underlying has dividend yield §. The risk-neutral
dynamic of assets is given by

dX (%)
X(1)

= (r—0)dt+odWi(t), k=1,..,d,

where Wy (t), k = 1,...,d, are independent one-dimensional Brownian motions and
r,d, 0 are constants. At any timet € {to, ..., 11} the holder of the option may exercise
it and receive the payoff

FX()) = (max (X, (£), ..., Xa(t)) — &)*.

We take d = 2, r = 5%, § = 10%, 0 = 0.2, k = 100 and ¢; = ¢T/L,i = 0,..., L,
with 7" = 3, L = 9 as in Glasserman (2004, Chapter 8). First, we estimate all
continuation values using the dynamic programming algorithm and the so called
Nadaraya-Watson regression estimator

Cryn ot K (@ = X (80)) /1) VT
Sy K (= X (1)) /h)

with V.7 = max(f(X (t5:1)), Corrnr(X™ (t41))), k =0,..., L— 1. Here K is a
kernel, b > 0 is a bandwidth and (X™)(¢,),..., X™(t;)), m =1,..., M, is a set of

Cot(z) = ¢ (23)
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paths of the process X, all starting from the point xy = (90,90) at ¢ty = 0. As can
be easily seen the estimator (23) is a local polynomial estimator of degree 0. Upon
estimating C 57, we define a first estimate for the price of the option at time ¢, =0
as

_ e—rT/L M )
Vo= —- > v
m=1

Next, using the previously constructed estimates of continuation values, we pathwise
compute a stopping policy T via

7 .= min {1 <k <L:Cou(XM(t) < f()?<">(tk))} . n=1,....N,

where (X™(t;),..., X™(t;)),n=1,..., N, is a new independent set of trajectories
of the process X, all starting from zy = (90,90) at t, = 0. The stopping policy 7
yields a lower bound

N
N 1 _
Vo = N E e f(X M (tzw)).

n=1

In Figure 2 we show the boxplots of ‘70 and ‘A/O based on 100 sets of trajectories each
of the size M = 4000 (N = 4000) for different values of the bandwidth h, where the
triangle kernel K(x) = (1 — ||z/|*)™ is used to construct (23). The true value Vj of
the option (computed using a two-dimensional binomial lattice) is 8.08 in this case.
Several observations can be made by an examination of Figure 2. First, while the bias
of Vj is always smaller then the bias of V{, the largest difference takes place for large
h. This can be explained by the fact that for large A more observations K,(f’l) with
X ) (t,) lying far away from the given point # become involved in the construction
of C,3;(x). This has a consequence of increasing the bias of the estimate (23) and
‘7{) quickly deteriorates with increasing i . The most interesting phenomenon is,
however, the behavior of V; which turns out to be quite stable with respect to h.
So, in the case of rather poor estimates of continuation values (when A is increases)
‘A/O looks very reasonable and even becomes closer to the true price.

We stress that the aim of this example is not to show the strength of the local
polynomial estimation algorithms (although the performance of V4 for h = 120 is
quite comparable to the performance of a linear regression algorithm reported in
Glasserman (2004)) but rather to illustrate the main message of this paper, namely
the message about the efficiency of ‘70 as compared to the estimates based on the
direct use of continuation values estimates.

3 Conclusion

In this paper we derive optimal rates of convergence for low biased estimates for
the price of a Bermudan option based on suboptimal exercise policies obtained from
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Figure 2: Boxplots of the estimates Vy (0) and Vj (1) for different values of the
bandwidth A.

some estimates of the optimal continuation values. We have shown that these rates
are usually much faster than the convergence rates of the corresponding continuation
values estimates. This may explain the efficiency of these lower bounds observed
in practice. Moreover, it turns out that there are some cases where the expected
values of the lower bounds based on suboptimal stopping rules achieve very fast
convergence rates which are exponential in the number of paths used to estimate
the corresponding continuation values.

4 Proofs

4.1 Proof of Proposition 1.1

Define

T = min{j <k < L:Cp(X(t)) < il X))}, 5=0,...,

Sl
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and
Vi () = E[fz ,,(X(ts, )| X(te) = 2], z€ R4
The so called Snell envelope process Vj, is related to 7 via
V(@) = E[fr (X ()| X (t) = 2], 2 €R™

The following lemma provides a useful inequality which will be repeatedly used in
our analysis.

Lemma 4.1. For any k=0,...,L — 1, it holds with probability one
0 < Vi(X () — Ve (X (tr))
L—1
< B D [A(X () = Cu(X (W)
I=k
X (1{?1,M>l77l=l} + 1{?1,M=17ﬂ>l})} : (24)

Proof. We shall use induction to prove (24). For k = L — 1 we have

Vi i(X(tr-1)) = Vi-im(X(tp-1)) =
=E7 o [(froa(X (tm1)) = X E)) Ly =117y ai=L})
+ B [(fu(X (L) — froa(X(t2-1)))Liry i =L.70 s yr=L—1}]
= [fr-1(X(tr-1)) — CL—l(X(tL—l))|1{7/:L71,M757'L71}
since events {7,y = L} and {7,_; » = L} are measurable w.r.t. F,, . Thus, (24)

holds with k£ = L — 1. Suppose that (24) holds with £ = L’ 4+ 1. Let us prove it for
k = L'. Consider a decomposition

fTL’ (X(tTL/)) - f?L/’jy] (X(t?[/’]u)) = Sl _'_ 52 + 53

with
S = (o (X0t ) — oy (Xlt2 ) Lot o
Sp i= (fo (X)) = Fr (Xt 1)) Ty 7y i)
Sy = (Fr (X(try)) = Foy (Xt ) Voot 2, o1
Since

EPw [Sy] = B (Vi (X (tr1) = Vi (X (trg1)))] Yoysn 7 >
E7tw [52] = (E}—ty [fTL/H (X(t'ryﬂ))} - fL’(X(tL'))> 1{TL’>L,77A—L’,M:L,}
= (CL/ (X(tL’>> - fL’ (X(tL’))) 1{TL’>LI7?L’,M:L/}

18



and
B (8] = (fo(X () = 7 [ o, (KU, 0] ) Limpmrrmy o
= (fo(X(ty)) — C(X(tr))) Lo, =17 0>y
+Ew [(VL’+1(X(15L’+1)) = Vs (X (tr41))) 1{TL/:LI,?L/,M>L'}} ;
we get with probability one
V(X () = Vem(X(ty) < [fo(X(tr)) — Co(X(tr))]
X (1{?L/7M>L’,TL/=L’} + 1{?L/’M:L’7TL/>L’})
+E 2 (Vi (X (tp1)) = Vi (X (Eg))] -

Our induction assumption implies now that

V(X (te)) = Veom(X(tr)) <
L—-1
E7tw [ |fi(X1) — Ci(Xy)] (1{ﬁ,A4>z,rl=l} + 1{?1,M:z7n>z})]
=L
and hence (24) holds for k = L'. O

Let us continue with the proof of Proposition 1.1. Consider the sets &, A;; C
R, 1=0,...,L—1,5=1,2,..., defined as

& = {zeR": Cula) < i), G) > fila)}
Ufe € RY: Cuu(e) > fils), Cila) < file) |
Ao = {xeRd:0<|C’l(:c) fil@)] <An 1/2},
Ay = {:):e]Rd 21-1y V2 10y(z) — file)] < 27 1/2}, j>0.

We may write

Vo(X(to)) — Vom(X(to))

< E7 [ZI]"} Ci(X (8)) 1 gx(w) ea}]
= ZEFtO [Z|fl ( (tl))‘l{th)EAzgﬁgl}]
< Y by, (0 < ICi(X(t) — HX W) < 73"

1=0
+ZEEO [Z\fz (X (tl))|1{X(tz)6Au”&}]
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Using the fact that

|A(X (1) = CUX ()] < |Coa(X(8) — CUX ()|, 1=0,...,L—1,

on &, we get for any j > 1 and [ > 0

EFto EP;?O]W [|fl(X(tl)) - CI(X(tl))‘1{X(tl)eAl,jm€l}]

Jj 1/2 Fi _
< 2y BT Epga {1{\01,M< X(8)—Co(X (1))|>2 177,72}

XL oo pxn—cix ) )|<2iy 3 ]

< 2y V2 P [P®M(|ClM( (t) = CUX (1)) = 215 ?)
X1{0<\fz(X(tl))—Cz(X(tl))\<23 *1/2}]
< 3123‘7];[1/2 exp (_B22j_1) Puito (0 < | fi( X (%)) — Ci(X(0))] < 9J —1/2)

< BiBy, 2y exp (< B2 ),

where Assumption 3 is used to get the last inequality. Finally, we get

L—-1 L—1
< ZB (1+a + B/ ZBOI —(1+a)/2 22] (14a) eXp( B22] 1)
= =0 j>1
ZBOI —(1+a
with some constant B depending on By, By and a.
4.2 Proof of Proposition 1.2
We have
Vo(X (to)) — Vo (X (to)) =
=E" [(fi(X(1) = fo(X ()11 = 1, Tim = 2)]
+ET0 [(fo(X(t2)) — A(X(0)1 (1 = 2,70 = 1)]

=E" [|f1(X(t)) — ( ( DN pzny] - (25)

For an integer ¢ > 1 consider a regular grid on [0, 1]¢ defined as

2k + 1 kg + 1
Gq:{( P+ Fa + ):kiE{O,...,q—l},z’zl,...,d}.

2q 2q
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Let n,(z) € G, be the closest point to € R? among points in G,. Consider the
partition X7, ..., Xq’d of [0,1]¢ canonically defined using the grid G, (x and y belong
to the same subset if and only if n,(z) = n,(y)). Fix an integer m < ¢?. For any
i € {1,...,m}, define X; = X/ and X, = R*\ U, X}, so that X,..., X, form a
partition of R?. Denote by B, ; the ball with the center in n,(X;) and radius 1/2q.
Define a hypercube H = {P; : ¢ = (01,...,0,) € {—1,1}"} of probability dis-
tributions P, of the r.v. (X(t), f2(X(t3))) valued in R? x {0,1} as follows. For
any P; € H the marginal distribution of X (1) (given X (t9) = x) does not depend

on & and has a bounded density p w.r.t. the Lebesgue measure on R? such that
P,(Xy) =0 and

P.(X;) =P.(B,,) = /B plr)de =w, j=1,...,m

q,j

for some w > 0. In order to ensure that the density u remains bounded we assume
that ¢lw = O(1).

The distribution of fo(X(t2)) given X(¢;) is determined by the probability
P (f2(X(t2)) = 1|X(¢1) = ) which is equal to C 5(z). Define

0175(1') = fl(ZL') + O'jQS(ZL’), xr € Xj, ] = 1, e, m,

and Cyp(2) = fu(z) on Xy, where ¢(z) = 13 (gl — n(@)]), 9lx) = A,H(z])
with some constant A, > 0 and with § : R, — R, being a non-increasing infinitely
differentiable function such that #(x) = 1 on [0,1/2] and 6(z) = 0 on [1,00). Fur-
thermore, there exist two real numbers 0 < f_ < f, < 1such that f_ < fi(x) < f.
Taking A, small enough, we can then ensure that 0 < Cy 5(x) < 1 on R% Obviously,

it holds ¢(x) = ¢7M/ for x € B, ;. As to the boundary assumption (3), we have

PL(0 < |A1(X (1)) = Crp(X (1)) < 8) =
ZPM0<|fl X (1)) = Crp(X (1)) <6, X (1) € Byy)

- Z/B Lio<p@)<sy () de = mW1{AW;j/2g5}

and (3) holds provided that mw = O(fyMa/2) Let T)s be a stopping time measurable
w.r.t. FM then the identity (25) leads to

Bp [£(X (7)) = Bpon [E7 fr, (X (Far))] = Epons B2 [|A6(X (01)) 17, yrmy]
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with As;(X(t1)) = f1(X(t1)) — C15(X(¢1)). By conditioning on X (t;), we get

Ft
EP??M EPMO [|A5(X(tl))|1{?1,1w7é‘r1}}
m ft
=w Y Epen Bp® [0(X (1)) 147, )| X (11) € By
=1

= Asprncuv]\/[l/2 EjrtO PEM(Tm # 7).

Using now a well known Birgé’s or Huber’s lemma (see, e.g. Devroye, Gyorfi and
Lugosi, 1996, p. 243), we get

MK
su P®M7‘ T [036/\<1—7H)],
sy 7 (M F ) 2 log (M)

where Ky := supp gey K (P, Q) and K(P, Q) is a Kullback-Leibler distance between
two measures P and (). Since for any two measures P and @) from H with ) # P
it holds

-7:7:
K(P, < su 0 1C 5 lo
(£.Q) 5’17526{_Ii+1}m i [ (X)) g{Cl,Uz(X(tl))

01702
010 X tl
1= Cip(X (1)1 .
+(1 = Cro,(X(t1))) Og{ — C1o0y(X (1)) }

< (1= fy —A)Nf — Ay fto [0 (X (1)) L (x ()220}

for small enough A, and log(|H|) = mlog(2), we get

Cha (X(t1)) }

sup {Eﬁ?[ff,&(X(T))]—Eng[Efto ?M,a(X(?M))]} >

ge{-1;+1}m
A¢mw7;4l/2(l - AM%T/[lw) pe WXJ(HO‘)/Q,

provided that mw > B%le/z for some B > 0 and AMw < vy, where A is a positive
constant depending on f_, fi and A,. Using similar arguments, we derive

sup  PEM(|Cy 5 (x) — Coa(@)] > 6757%) > 0
ge{-1;+1}m

for almost  w.r.t. P,, some 6 > 0 and any estimator 617M measurable w.r.t. F&M,
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4.3 Proof of Proposition 1.3

Using the arguments similar to ones in the proof of Proposition 1.1, we get

Vo(X (to)) = Epgar [Vou (X (t0))] <

80 ) Pujio(0 < [Ci(X (1) = (X (1))] < b0)

+ Z E”t EpgoM [1C(X (1)) — fi X (1))

1=0
< Lix(eay Liaiexwn-nxa>s]  (26)
with & defined as in the proof of Proposition 1.1. The first summand on the right-
hand side of (26) is equal to zero due to (8). Hence, Cauchy-Schwarz and Minkowski
inequalities imply
Vo(X(to)) — Epgw [Vou(X(to))]

L-1

< ST B B [f, (X (1, )] — ACX (0P
< [0 PEY(CL (X () — B (X)) > )]
< 2823 [EP PEM(CUX (1) - Coar(X(0)] > 00)]
=0

Now the application of (9) finishes the proof.

4.4 Proof of Proposition 1.5

Denote
e (r) = T[Crnl(x) — Crl(w)
and
Gt () = Chnr () = T[Ch aa] ()
for k = 1,...,L — 1. Using the elementary inequality | max(a,x) — max(a,y)| <
|z — y|, which holds for any real numbers a,  and y, we get
ek (2)] < [Groar ()] + B [|enaar (X ()| X (1) = 2]

and hence
L—1

eea(@] < D EllGa(X (@)X () = a] (27)

I=k+1

L—-1
= Z gl,k,M(x)-

I=k+1
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Note that we take expectation in (27) with respect to a new c-algebra F which is
independent of F®M and {(; 5/} are measurable w.r.t ™. Hence, random variables
{&rar} are FPM measurable as well. According to Lemma 4.2 (see below)

P <fl,k,M(I) > 04/ log h\/Mhd) <
yeA

for almost all z w.r.t. Py, ,,. Thus,

peM <\6k7M(x)\ > 5+/[log | /Mhd) < LDyexp(—Dsd/L).
Analogously, using Lemma 4.3 one can prove that
P?OM (lekm(x)] > 0) < By eXp(—B5Mhd)
with some positive constants B, and Bs.

Lemma 4.2. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be fulfilled. Then
there exist positive constants D1, Dy and Ds, such that for any h satisfying DihP <
V/[log h|/Mhe the estimates {T|Cy ]} based on the truncated local polynomials es-
timators of degree | 3] fulfill

peM (sup IT[Chord](z) — Cr(x)| > 64/ log h\/Mhd) < Dy exp(—Dj30),
zeA

foralld > 69 and k=1,..., L — 1.

Lemma 4.3. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be fulfilled and

V/|logh|/Mh¢ = o(1) for M — oco. Then there exist positive constants Dy, Dy and
Dg such that for any § > D,hP the inequality

peM (su}?l IT[Chond] (z) — Ch(z)| > 5) < D5 exp(—DgMh?)
S
holds for all k =1,..., L — 1.

Proof. We give the proof only for Lemma 4.2. Lemma 4.3 can be proved in a
similar way. Fix some natural » > 0 such that 0 < r < L and consider the matrix
I'= (Ful,w)lm\,\mlSLﬁJ with elements

M ultu
1 X)) -\ XM (t,) —x
Ful,u2 - Mhd TnZZI < h ) K < h ) .

The smallest eigenvalue Ar of the matrix I' satisfies

Ar = min WITW
[W=1

> min W' E[LJW + min W' — E[I)W
Iwi=1 Iwi=1

> min W' EIW — o wo — ECu - 98
T W=t Iy |u1%:<w| 1,u2 [Cus ]| (28)
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By Assumption (AX2)

. . T
inf min [W'E[L@)]W] =7

with some 79 > 0. For m = 1,..., M, and any multi-indices u;, uy such that
|ul, [uz| < 3], define

_ / 0 K () plt, 2 + halt, o) dz.
]Rd

We have Ep, |, [An(z)] =0,

Au(@)] < B sup [(L+ [|2]*)K(2)] =: Kah™

z€R4

and
Ep, .. [An(2)]* < / 22T ]2 (2)p(t,, @ + hz|to, 3o) dz
Rd

< Do [ (1 o)) K2(2) dz = Ko™,
.

where prax = Sup,cra p(tr, 2|to, 2o) and K, Ky are two positive constants. Due to
assumption (AK2), the class of functions

{(:):;>u+uK(:):;) sz eRY B eR\ {0}, |u, Jug| < LHJ}

is a bounded Vapnik-Cervonenkis class of measurable functions (see Dudley (1999)).
According to Proposition 5.1 (see Appendix), we have for any ¢ > 0

S

< Dyexp(—CByMh®) (29)

Ptr\to <SU-E |Fu17u2 (l’) - EFUL“Q (l’)| > C)
xe

M

1
=P, sup — A (z
tr‘tO (erM ‘ ( )

m=

with some positive constants Dy and By. Combining (28) and (20) with (29), we
get

Ptr|to (11’13)\1"(25') < 70/2) < D()Né exp(—%Bthd/QNé),
S

where Ng is the number of elements in the matrix I'. Assume that M is large enough
so that v9/2 > (log M)~!. Then on the set {inf,c4 Ar(z) > v9/2} we have

IT(Crl(x) = Co()] < |Cri() = Colw)], z €A
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since sup, 4 Cr (%) < Chax. Therefore, it holds for any ¢ > 0
P (509 TG (o) = Co(o)] 2 ¢) < Pu (108 Ae(o) < 20/2)
e z
+ Py 14 (sup |5TM(x) — Cy(x)| > ¢, inf Ap(z) > 70/2) .
zEA z€A
Introduce the matrix @ = (Qm,u)1<m<m, ju|<|3] With elements

O = (X<m><zr>—x)“ \/ Mlth (X<m>(2r>—x)'

Denote by @), the uth column of () and define

Q%)= ) %Qu.

[ul<[B]

.....

Hence ZT(0)I1QTQ° = é’r(:c) Thus, we can write
Crnlz) = C(w) = ZT (O (S = QTQ%) = ZT (O e (a),
where €)/(x) is a vector valued function with components

M (m) v (m)
1 m -~ m Xr _:I; Xr _.:C
caunl®) = g 2 |~ Cral X ()] (—h ) K(—h )

m=1

~

and Y, 7 = max (1 (X (t,11)), T[Cri1.0) (X ™ (£,11))). So, on the set {infpeq Ar(z) >
Y0/2} we get

[Crnr(@) = Co(@)| < Tenrl] < Arllenll < 295 llems |l < 295" N5 max |earu(@)]-

Denote

1 m = xm™ _z\" XM g
AD(@) = g [V = Cx (1)) <T) K <T ,

It holds

|5M,u‘ S

M
>al,

=




Note that Ep, | [ASH =0 and

|A(1Zn(z)| S Allh_da Var [AQ(}’Zn(l’)} < Algh_d,

u,

AL (2) — B [AD), (@)]| < Ak, Var [AD) (1)] < Aph®'™

with some positive constants Ay, Az, Ag; and Ags not depending on x. Proposi-
tion 5.1 implies that for any d > dy > 0

M
1
Pi it ( i S AD N > 6y/Tlog h|/Mhd> < Dy exp (—=0B;|log hl)
m=1 o)

with some positive constants D; and By. Furthermore, due to the representation

) -Gl =19 3 B

1
X / [C,(“) (x4 w(z—x)) — CY )| (1 —w)P 1 dw
0
we get for any two points z; and z, in RY
HCT’(') - Cr,m(') - (Cr(') - Cr,:cz('))HA < ||$1 - I2||B_WJ'
Now it can be shown (see Dudley (1999)) that the class

{[60-6.0] (7)) & (55) wertner\ o) ul < o)

is a bounded Vapnik—éervonenkis class of measurable functions. Hence

Ptr‘to (

for 0 > 99 > 0 and some positive constants Dy and Bs. Furthermore, using the
inequality |Ep, [ADL]] < Ash?, we arrive at

1 M
_E (2 _ 2)
M [Au,m Eptr\to Au,m:|

m=1

> 5\/\logh|/Mhd>

< Dyexp (—0Bs|logh|)

Pu (509 o) 2 /| og A/MIING) ) < Daexp (~65] g )
S

with some positive constants D3 and Bs, provided that 670_1N51/2A3h5 < d0+/|logh|/MhA.
U
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5 Appendix

5.1 Some results from the theory of empirical processes

Definition A class F of functions on a measurable space (X, X) is called a bounded
Vapnik-Cervonenkis class of functions if there exist positive numbers A and w such
that, for any probability measure P on (X, X) and any 0 < p < 1

N(F, Lo(P), pll Fll ) < (f) (30)

where N(S,d, ) denotes the e-covering number of a class S in a metric d, and
F = sup;c# |f| is the envelope of F. The following proposition is a key tool for
obtaining convergence rates for local type estimators.

Proposition 5.1 (Talagrand (1994), Giné and Guillou (2001)). Let F be a measur-
able uniformly bounded VC class of functions, and let o and U be any two positive
numbers such that sup ez Var(f) < o®, supsez || flloo < U and 0 < o < U/2. Then,
there exist a universal constant B, such that

> (f(Xn) —Ef(X)|| < B

m=1

A A
wUlogTU +Vw MaﬂogTU

E |sup
feF

] ‘

If additionally v Mo > Uy/log(U/o), then there exist constants D and C which
depend only on the VC characteristics of F, such that, for all A > C' and t satisfying

M 2
C\/Ma\/logg <t< ATU,
g

al log(1+ A/(4D)) 2
P (?‘53 > 0%) = BF0X) >t) < Dexp (-ELEH RN P,

Remark 5.1. It can be deduced from the proof of Proposition 5.1 in Giné and
Guillou (2001) that constant D can be taken independent of w. The constant C'
(and hence \) in the case of large w can be chosen in the form C' = wCy for some
constant Cy not depending on w.
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