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AbstratThe problem of priing Bermudan options using simulations and nonpara-metri regression is onsidered. We derive optimal non-asymptoti bounds forthe low biased estimate based on a suboptimal stopping rule onstruted fromsome estimates of the optimal ontinuation values.These estimates may be ofdi�erent nature, they may be loal or global, with the only requirement beingthat the deviations of these estimates from the true ontinuation values anbe uniformly bounded in probability. As an illustration, we disuss a lassof loal polynomial estimates whih, under some regularity onditions, yieldontinuation values estimates possessing the required property.Hier bitte denAbstrat hineinkopierenAn Amerian option grants the holder the right to selet the time at whih to exerisethe option, and in this di�ers from a European option whih may be exerised only ata �xed date. A general lass of Amerian option priing problems an be formulatedthrough an R
d Markov proess {X(t), 0 ≤ t ≤ T} de�ned on a �ltered probabilityspae (Ω,F , (Ft)0≤t≤T , P). It is assumed that X(t) is adapted to (Ft)0≤t≤T in thesense that eah X(t) is Ft measurable. Reall that eah Ft is a σ-algebra of subsetsof Ω suh that Fs ⊆ Ft ⊆ F for s ≤ t. We interpret Ft as all relevant �nanialinformation available up to time t. We restrit attention to options admitting a �niteset of exerise opportunities 0 = t0 < t1 < t2 < . . . < tL = T , sometimes alledBermudan options. If exerised at time tl, l = 0, . . . , L, the option pays fl(X(tl)),for some known funtions f0, f1, . . . , fL mapping R

d into [0,∞). Let Tn denote theset of stopping times taking values in {n, n + 1, . . . , L}. A standard result in thetheory of ontingent laims states that the equilibrium prie Vn(x) of the Amerianoption at time tn in state x given that the option was not exerised prior to tn is itsvalue under an optimal exerise poliy:
Vn(x) = sup

τ∈Tn

E[fτ (X(tτ ))|X(tn) = x], x ∈ R
d.Priing an Amerian option thus redues to solving an optimal stopping problem.Solving this optimal stopping problem and priing an Amerian option are straight-forward in low dimensions. However, many problems arising in pratie (see e.g.Glasserman (2004)) have high dimensions, and these appliations have motivatedthe development of Monte Carlo methods for priing Amerian option. PriingAmerian style derivatives with Monte Carlo is a hallenging task beause the de-termination of optimal exerise strategies requires a bakwards dynami program-ming algorithm that appears to be inompatible with the forward nature of MonteCarlo simulation. Muh researh was foused on the development of fast methods1



to ompute approximations to the optimal exerise poliy. Notable examples in-lude the funtional optimization approah in Andersen (2000), mesh method ofBroadie and Glasserman (1997), the regression-based approahes of Carriere (1996),Longsta� and Shwartz (2001), Tsitsiklis and Van Roy (1999) and Eglo� (2005). Aommon feature of all above mentioned algorithms is that they deliver estimates
Ĉ0(x), . . . , ĈL−1(x) for the so alled ontinuation values:

Ck(x) := E[Vk+1(X(tk+1))|X(tk) = x], k = 0, . . . , L − 1. (1)An estimate for V0, the prie of the option at time t0 an then be de�ned as
Ṽ0(x) := max{f0(x), Ĉ0(x)}, x ∈ R

d.This estimate basially inherits all properties of Ĉ0(x). In partiular, it is usuallyimpossible to determine the sign of the bias of Ṽ0 sine the bias of Ĉ0 may hangeits sign. One way to get a lower bound (low biased estimate) for V0 is to onstruta (generally suboptimal) stopping rule
τ̂ = min{0 ≤ k ≤ L : Ĉk(X(tk)) ≤ fk(X(tk))}with ĈL ≡ 0 by de�nition. Simulating a new independent set of trajetories andaveraging the pay-o�s stopped aording to τ̂ on these trajetories gives us a lowerbound V̂0 for V0. As was observed by pratitioners, the so onstruted estimate

V̂0 has rather stable behavior with respet to the estimates of ontinuation values
Ĉ0(x), . . . , ĈL−1(x), i.e. even rather poor estimates of ontinuation values may leadto a good estimate V̂0. The aim of this paper is to �nd a theoretial explanationof this observation and to investigate the properties of V̂0. In partiular, we de-rive optimal non-asymptoti bounds for the bias V0 − E V̂0 assuming some uniformprobabilisti bounds for Cr − Ĉr, r = 0, . . . , L − 1. It is shown that the bounds for
V0 −E V̂0 are usually muh tighter than ones for V0 −E Ṽ0 implying a better qualityof V̂0 as ompared to the quality of Ṽ0 onstruted using one and the same set ofestimates for ontinuation values. As an example, we onsider the lass of loalpolynomial estimators for ontinuation values and derive expliit onvergene ratesfor V̂0 in this ase.The issues of onvergene for regression algorithms have been already studied inseveral papers. Clément, Lamberton and Protter (2002) were the �rst to prove theonvergene of the Longsta�-Shwartz algorithm. Glasserman and Yu (2004) showedthat the number of Monte Carlo paths has to be in general exponential in the num-ber of basis funtions used for regression in order to ensure onvergene. Reently,Eglo�, Kohler and Todorovi (2007) have derived the rates of onvergene for on-tinuation values estimates obtained by the so alled dynami look-ahead algorithm(see Eglo� (2005)) that �interpolates� between Longsta�-Shwartz and Tsitsiklis-Roy algorithms. As was shown in these papers the onvergene rates for Ṽ0 oinidewith the rates of Ĉ0 and are determined by the smoothness properties of the true2



ontinuation values C0, . . . , CL−1. It turns out that the onvergene rates for V̂0 de-pend not only on the smoothness of ontinuation values (as opposite to Ṽ0), but alsoon the behavior of the underlying proess near the exerise boundary. Interestinglyenough, there are some ases where these rates beome almost independent eitherof the smoothness properties of {Ck} or of the dimension of X and the bias of V̂0dereases exponentially in the number of Monte Carlo paths used to onstrut {Ĉk}.The paper is organized as follows. In Setion 1.1 we introdue and disuss the soalled boundary assumption whih desribes the behavior of the underlying proess
X near the exerise boundary and heavily in�uenes the properties of V̂0. In Se-tion 1.2 we derive non-asymptoti bounds for the bias V0 − E V̂0 and prove thatthese bounds are optimal in the minimax sense. In Setion 1.3 we onsider thelass of loal polynomial estimates and propose a sequential algorithm based on thedynami programming priniple to estimate all ontinuation values. Finally, undersome regularity assumptions, we derive exponential bounds for the orrespondingontinuation values estimates and onsequently the bounds for the bias V0 − E V̂0.1 Main results1.1 Boundary assumptionFor the onsidered Bermudan option let us introdue a ontinuation region C andan exerise (stopping) region E :

C := {(i, x) : fi(x) < Ci(x)} , (2)
E := {(i, x) : fi(x) ≥ Ci(x)} .Furthermore, let us assume that there exist onstants B0,k > 0, k = 0, . . . , L−1 and

α > 0 suh that the inequality
Ptk |t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ) ≤ B0,kδ

α, δ > 0, (3)holds for all k = 0, . . . , L − 1, where Ptk |t0 is the onditional distribution of X(tk)given X(t0). Assumption (3) provides a useful haraterization of the behavior of theontinuation values {Ck} and payo�s {fk} near the exerise boundary ∂E . Althoughthis assumption seems quite natural to look at, we make in this paper, to the best ofour knowledge, a �rst attempt to investigate its in�uene on the onvergene rates oflower bounds based on suboptimal stopping rules. We note that a similar ondition,although muh simpler, appears in the ontext of statistial lassi�ation problem(see, e.g. Mammen and Tsybakov (1999) and Audibert and Tsybakov (2007)).In the situation when all funtions Ck − fk, k = 0, . . . , L − 1 are smooth and havenon-vanishing Jaobian in the viinity of the exerise boundary, we have α = 1.Other values of α are possible as well. We illustrate this by two simple examples.3



Example 1 Fix some α > 0 and onsider a two period (L = 1) Bermudan powerput option with the payo�s
f0(x) = f1(x) = (K1/α − x1/α)+, x ∈ R+, K > 0. (4)Denote by ∆ the length of the exerise period, i.e. ∆ = t1 − t0. If the proess Xfollows the Blak-Sholes model with volatility σ and zero interest rate, then onean show that

C0(x) := E[f1(X(t1))|X(t0) = x] = K1/αΦ(−d2)

− x1/αe∆(α−1−1)(σ2/2α)Φ(−d1)with Φ being the umulative distribution funtion of the standard normal distribu-tion,
d1 =

log(x/K) +
(

1
α
− 1

2

)
σ2∆

σ
√

∆and d2 = d1 − σ
√

∆/α. As an be easily seen, the funtion C0(x) − f0(x) satis�es
|C0(x) − f0(x)| ≍ x1/α for x → +0 and C0(x) > f0(x) for all x > 0 if α ≥ 1. Hene

P(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ) . δα, δ → 0, α ≥ 1.Taking di�erent α in the de�nition of the payo�s (4), we get (3) satis�ed for αranging from 1 to ∞.
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Figure 1: Illustration to Example 2.In fat, even the extreme ase �α = ∞� may take plae as shown in the next example.4



Example 2 Let us onsider again a two period Bermudan option suh that theorresponding ontinuation value C0(x) = E[f1(X(t1))|X(t0) = x] is positive andmonotone inreasing funtion of x on any ompat set in R. Fix some x0 ∈ R andhoose δ0 satisfying δ0 < C0(x0). De�ne the payo� funtion f0(x) in the followingway
f0(x) =

{
C0(x0) + δ0, x < x0,

C0(x0) − δ0, x ≥ x0.So, f0(x) has a �digital� struture. Figure 1 shows the plots of C0 and f0 in the asewhere X follows the Blak-Sholes model and f1(x) = (x − K)+ with some K > 0.It is easy to see that
Pt0(0 < |C0(X(t0)) − f0(X(t0))| ≤ δ0) = 0.On the other hand

C = {x ∈ R : C0(x) ≥ f0(x)} = {x ∈ R : x ≥ x0},
E = {x ∈ R : C0(x) < f0(x)} = {x ∈ R : x < x0}.So, both ontinuation and exerise regions are not trivial in this ase.The last example is of partiular interest beause as will be shown in the next setionsthe bias of V̂0 dereases in this ase exponentially in the number of Monte Carlo pathsused to estimate the ontinuation values, the lower bound V̂0 was onstruted from.1.2 Non-asymptoti bounds for V0 − E V̂0Let Ĉk,M , k = 1, . . . , L−1, be some estimates of ontinuation values obtained using

M paths (X(1)(t), . . . , X(M)(t)) of the underlying proess X starting from x0 at time
t0. We may think of (X(1)(t), . . . , X(M)(t)) as being a vetor proess on the produtprobability spae with σ-algebra F⊗M and the produt measure P⊗M

x0
de�ned on

F⊗M via
P⊗M

x0
(A1 × . . . × AM) = Px0(A1) · . . . · Px0(AM),with Am ∈ F , m = 1, . . . , M . Thus, eah Ĉk,M , k = 0, . . . , L−1, is measurable withrespet to F⊗M . The following proposition provides non-asymptoti bounds for thebias V0 − EP⊗M

x0
[V0,M ] given uniform probabilisti bounds for {Ĉk,M}.Proposition 1.1. Suppose that there exist onstants B1, B2 and a positive sequene

γM suh that for any δ > δ0 > 0 it holds
P⊗M

x0

(
|Ĉk,M(x) − Ck(x)| ≥ δγ

−1/2
M

)
≤ B1 exp(−B2δ) (5)for almost all x with respet to Ptk|t0, the onditional distribution of X(tk) given

X(t0), k = 0, . . . , L − 1. De�ne
V0,M := E [fbτM

(X(tbτM
))|X(t0) = x0] (6)5



with
τ̂M := min

{
0 ≤ k ≤ L : Ĉk,M(X(tk)) ≤ fk(X(tk))

}
. (7)If the boundary ondition (3) is ful�lled, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
Mwith some onstant B depending only on α, B1 and B2.The above onvergene rates an not be in general improved as shown in the nexttheorem.Proposition 1.2. Let L = 2. Fix a pair of non-zero payo� funtions f1, f2 suhthat f2 : R

d → {0, 1} and 0 < f1(x) < 1 on [0, 1]d. Let Pα be a lass of priingmeasures suh that the boundary ondition (3) is ful�lled with some α > 0. For anypositive sequene γM satisfying
γ−1

M = o(1), γM = O(M), M → ∞,there exist a subset Pα,γ of Pα and a onstant B > 0 suh that for any M ≥ 1, anystopping rule τ̂M and any set of estimates {Ĉk,M} measurable w.r.t. F⊗M , we havewith some δ > 0 and k = 1, 2,

sup
P∈Pα,γ

P⊗M
(
|Ĉk,M(x) − Ck(x)| ≥ δγ

−1/2
M

)
> 0for almost all x w.r.t. any P ∈ Pα,γ and

sup
P∈Pα,γ

{
sup
τ∈T0

E
Ft0
P [fτ (X(tτ ))] − EP⊗M [E

Ft0
P fbτM

(X(tbτM
))]

}
≥ Bγ

−(1+α)/2
M .Finally, we disuss the ase when �α = ∞�, meaning that there exists δ0 > 0 suhthat

Ptk|t0(0 < |Ck(X(tk)) − fk(X(tk))| ≤ δ0) = 0 (8)for k = 0, . . . , L − 1. This is very favorable situation for the priing of the orre-sponding Bermudan option. It turns out that if the ontinuation values estimates
{Ĉk,M} satisfy a kind of exponential inequality and (8) holds, then the bias of V0,Monverges to zero exponentially fast in γM .Proposition 1.3. Suppose that for any δ > 0 there exist onstants B1, B2 possiblydepending on δ and a sequene of positive numbers γM not depending on δ suh that

P⊗M
x0

(
|Ĉk,M(x) − Ck(x)| ≥ δ

)
≤ B1 exp(−B2γM) (9)6



for almost all x with respet to Ptk|t0, k = 0, . . . , L−1. Assume also that there existsa onstant Bf > 0 suh that
E

[
max

k=0,...,L
f 2

k (X(tk))

]
≤ Bf . (10)If the ondition (8) is ful�lled with some δ0 > 0, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ B3L exp(−B4γM)with some onstant B3 and B4 depending only on B1, B2 and Bf .Disussion Let us make a few remarks on the results of this setion. First, Propo-sition 1.1 implies that the onvergene rates of V̂0,M , a Monte Carlo estimate for V0,M ,are always faster than the onvergene rates of {Ĉk,M} provided that α > 0. Indeed,while the onvergene rates of {Ĉk,M} are of order γ
−1/2
M , the bias of V̂0,M onvergesto zero as fast as γ

−(1+α)/2
M . As to the variane of V̂0,M , it an be made arbitrary smallby averaging V̂0,M over a large number of sets, eah onsisting of M trajetories, andby taking a large number of new independent Monte Carlo paths used to averagethe payo�s stopped aording to τ̂M .Seond, if the ondition (8) holds true, then the bias of V̂0,M dereases exponentiallyin γM , indiating that even very unpreise estimates of ontinuation values wouldlead to the estimate V̂0,M of aeptable quality.Finally, let us stress that the results obtained in this setion are quite general anddo not depend on the partiular form of the estimates {Ĉk,M}, only the inequality(5) being ruial for the results to hold. This inequality holds for various typesof estimators. These may be global least squares estimators, neural networks (seeKohler, Krzyzak and Todorovi (2009)) or loal polynomial estimators. The lattertype of estimators has not yet been well investigated (see, however, Belomestny etal. (2006) for some empirial results) in the ontext of priing Bermudan optionand we are going to �ll this gap. In the next setions we will show that if allontinuation values {Ck} belong to the Hölder lass Σ(β, H, Rd) and the onditionallaw of X satis�es some regularity assumptions, then loal polynomial estimates ofontinuation values satisfy inequality (5) with γM = M2β/(2β+d) log−1(M).Remark 1.1. In the ase of projetion estimates for ontinuation values, some niebounds were reently derived in Van Roy (2009). Let {Xk, k = 0, . . . , L} be anergodi Markov hain with the invariant distribution π and f0(x) ≡ . . . ≡ fL(x) ≡

f(x), then C0 ≡ . . . ≡ CL−1(x) = C(x), provided that X0 is distributed aordingto π. Furthermore, suppose that an estimate Ĉ(x) for the ontinuation value C(x)is available and satis�es a projeted Bellman equation
Ĉ(x) = e−ρΠ Eπ[max{f(X1), Ĉ(X1))}|X0 = x], ρ > 0, (11)where Π is the orresponding projetion operator. De�ne

V̂0(x) := E [fbτ (Xbτ )|X0 = x]7



with
τ̂ := min

{
0 ≤ k ≤ L : Ĉ(Xk) ≤ f(Xk)

}
,then as shown in Van Roy (2009)

[
Eπ |V0(X0) − V̂0(X0)|2

]1/2

≤ D
[
Eπ |C(X0) − ΠC(X0)|2

]1/2 (12)with some absolute onstant D depending on ρ only. The inequality (12) indiatesthat the quantity [
Eπ |V0(X0) − V̂0(X0)|2

]1/2might be muh smaller than supx |C(x) − Ĉ(x)| and hene qualitatively supportsthe same sentiment as in our paper.1.3 Loal polynomial estimationWe �rst introdue some notations related to loal polynomial estimation. Fix some
k suh that 0 ≤ k < L and suppose that we want to estimate a regression funtion

θk(x) := E[g(X(tk+1))|X(tk) = x], x ∈ R
dwith g : R

d → R. Consider M trajetories of the proess X

(X(m)(t0), . . . , X
(m)(tL)), m = 1, . . . , M,all starting from x0, i.e. X(1)(t0) = . . . = X(M)(t0) = x0. For some h > 0, x ∈ R

d,an integer l ≥ 0 and a funtion K : R
d → R+, denote by qx,M a polynomial on

R
d of degree l (maximal order of the multi-index is less than or equal to l) whihminimizes

M∑

m=1

[
Y (m)(tk+1) − qx,M(X(m)(tk) − x)

]2
K

(
X(m)(tk) − x

h

)
, (13)where Y (m)(t) = g(X(m)(t)). The loal polynomial estimator θ̂k,M(x) of order l forthe value θk(x) of the regression funtion θk at point x is de�ned as θ̂k,M(x) = qx,M(0)if qx,M is the unique minimizer of (13) and θ̂k,M(x) = 0 otherwise. The value h isalled the bandwidth and the funtion K is alled the kernel of the loal polynomialestimator.Let πu denote the oe�ients of qx,M indexed by the multi-index u ∈ N
d, qx,M(z) =∑

|u|≤l πuz
u. Introdue the vetors Π = (πu)|u|≤l and S = (Su)|u|≤l with

Su =
1

Mhd

M∑

m=1

Y (m)(tk+1)

(
X(m)(tk) − x

h

)u

K

(
X(m)(tk) − x

h

)
.8



Let Z(z) = (zu)|u|≤l be the vetor of all monomials of order less than or equal to land the matrix Γ = (Γu1,u2)|u1|,|u2|≤l be de�ned as
Γu1,u2 =

1

Mhd

M∑

m=1

(
X(m)(tk) − x

h

)u1+u2

K

(
X(m)(tk) − x

h

)
. (14)The following result is straightforward.Proposition 1.4. If the matrix Γ is positive de�nite, then there exists a uniquepolynomial on R

d of degree l minimizing (13). Its vetor of oe�ients is given by
Π = Γ−1S and the orresponding loal polynomial regression funtion estimator hasthe form

θ̂k,M(x) = Z⊤(0)Γ−1S

=
1

Mhd

M∑

m=1

Y (m)(tk+1)K

(
X(m)(tk) − x

h

)

× Z⊤(0)Γ−1Z

(
X(m)(tk) − x

h

)
. (15)Remark 1.2. From the inspetion of (15) it beomes lear that any loal poly-nomial estimator an be represented as a weighted average of the �observations�

Y (m), m = 1, . . . , M, with a speial weights struture. Hene, loal polynomial esti-mators belong to the lass of mesh estimators introdued by Broadie and Glasserman(1997) (see also Glasserman, 2004, Ch. 8). Our results will show that this partiu-lar type of mesh estimators has nie onvergene properties in the lass of smoothontinuation values.1.4 Estimation algorithm for the ontinuation valuesAording to the dynami programming priniple, the optimal ontinuation values(1) satisfy the following bakward reursion
CL(x) = 0,

Ck(x) = E[max(fk+1(X(tk+1)), Ck+1(X(tk+1)))|X(tk) = x], x ∈ R
dwith k = 1, . . . , L − 1. Consider M paths of the proess X, all starting from x0,and de�ne estimates Ĉ1,M , . . . , ĈL,M reursively in the following way. First, we put

ĈL,M(x) ≡ 0. Further, if an estimate of Ĉk+1,M(x) is already onstruted we de�ne
Ĉk,M(x) as the loal polynomial estimate of the funtion

C̃k,M(x) := E[max(fk+1(X(tk+1)), Ĉk+1,M(X(tk+1)))|X(tk) = x], (16)based on the sample
(X(m)(tk), max{fk+1(X(tk+1)), Ĉk+1,M(X(tk+1))}), m = 1, . . . , M.9



Note that all C̃k,M are F⊗M measurable random variables beause the expetationin (16) is taken with respet to a new σ-algebra F whih is independent of F⊗M (onean start with the enlarged produt σ-algebra F⊗(M+1) and take expetation in (16)w.r.t. the �rst oordinate). The main problem arising by the onvergene analysis ofthe estimate Ĉk+1,M is that all errors oming from the previous estimates Ĉj,M , j ≤ khave to be taken into aount. This problem has been already enountered byClément, Lamberton and Protter (2002) who investigated the onvergene of theLongsta�-Shwartz algorithm.1.5 Rates of onvergene for V0 − E V̂0Let β > 0. Denote by ⌊β⌋ the maximal integer that is stritly less than β. For any
x ∈ R

d and any ⌊β⌋ times ontinuously di�erentiable real-valued funtion g on R
d,we denote by gx its Taylor polynomial of degree ⌊β⌋ at point x

gx(x
′) =

∑

|s|≤⌊β⌋

(x′ − x)s

s!
Dsg(x), (17)where s = (s1, . . . , sd) is a multi-index, |s| = s1 + . . . + sd and Ds denotes thedi�erential operator Ds = ∂s1+...+sd

∂x
s1
1 ·...·∂x

sd
d

. Let H > 0. The lass of (β, H, Rd)-Höldersmooth funtions, denoted by Σ(β, H, Rd), is de�ned as the set of funtions g : R
d →

R that are ⌊β⌋ times ontinuously di�erentiable and satisfy, for any x, x′ ∈ R
d, theinequality

|g(x′) − gx(x
′)| ≤ H‖x − x′‖β, x′ ∈ R

d.Let us make two assumptions on the proess X(AX0) There exists a ompat set A ⊂ R
d suh that P(X(t0) ∈ A) = 1 and

Ps|t(X(s) ∈ A) = 1 for all t and s satisfying t0 ≤ t ≤ s ≤ T.(AX1) All transitional densities p(tk+1, y|tk, x), k = 0, . . . , L − 1, of the proess Xare uniformly bounded on A×A and belong to the Hölder lass Σ(β, H, Rd)as funtions of x ∈ A, i.e. there exists β > 1 with β − ⌊β⌋ > 0 and a onstant
H suh that the inequality

|p(tk+1, y|tk, x′) − px(tk+1, y|tk, x′)| ≤ H‖x − x′‖β (18)holds for all x, x′, y ∈ A and k = 0, . . . , L− 1. In (18), px(tk+1, y|tk, x′) standsfor the Taylor polynomial of p(tk+1, y|tk, x) w.r.t. x of degree ⌊β⌋ (see (17))entered at x and omputed at x′.Consider a matrix valued funtion Γ̄(s, x) = (Γu1,u2)|u1|,|u2|≤⌊β⌋ with elements
Γ̄u1,u2(s, x) :=

∫

Rd

zu1+u2K(z)p(s, x + hz|t0, x0) dz, (19)for any s > t0. 10



(AX2) We assume that the minimal eigenvalue of Γ̄ is bounded away from zero,i.e.
min

k=1,...,L
inf
x∈A

min
‖W‖=1

[
W⊤Γ̄(tk, x)W

]
≥ γ0with some γ0 > 0.Moreover, we shall assume that the kernel K ful�ls the following onditions:(AK1) K integrates to 1 on R

d and
∫

Rd

(1 + ‖u‖4β)K(u) du < ∞, sup
u∈Rd

(1 + ‖u‖2β)K(u) < ∞.(AK2) K is in the linear span (the set of �nite linear ombinations) of funtions
k ≥ 0 satisfying the following property: the subgraph of k, {(s, u) : k(s) ≥ u},an be represented as a �nite number of Boolean operations among the setsof the form {(s, u) : p(s, u) ≥ f(u)}, where p is a polynomial on R

d × R and
f is an arbitrary real funtion.Disussion The assumption (AX0) may seem rather restritive. In fat, one analways loalize proess X to a ball BR in R

d around x0 of radius R by re�etingit on the boundary of BR (see Example below for further details). Using the fatthat a new re�eted proess XR(t) oinides a.s. with X(t) for t0 < t < τR, where
τR := inf{t > t0 : X(t) 6∈ BR}, we get

sup
τ∈T0

∣∣EFt0 [fτ (X(tτ ))] − EFt0 [fτ (X
R(tτ ))]

∣∣

≤ sup
τ∈T0

EFt0 [fτ (X(tτ ))1(mτ > R)]

+ sup
τ∈T0

EFt0
[
fτ (X

R(tτ ))1(mτ > R)
] (20)with mt = supt0≤s≤t ‖X(s) − x0‖. The r.h.s of (20) an be made arbitrary smallby taking large values of R (the exat onvergene rates depend, of ourse, on theproperties of the proess X).Example Let proess X(t) be a d-dimensional di�usion proess satisfying

X(t) = x0 +

∫ t

t0

µ(X(t)) dt +

∫ t

t0

σ(X(t)) dW (t), t ≥ t0.Assume that a drift oe�ient µ and a di�usion oe�ient σ are regular enoughand σ satis�es the so alled uniform elliptiity ondition on ompats, i. e. for eahompat set K ⊂ R
d 11



(AD1) µ(·) ∈ Ck
b (K) and σ(·) ∈ Ck

b (K) for some natural k > 1,(AD2) there is σK > 0 suh that for any ξ ∈ R
d it holds

d∑

j,k=1

(σ(x)σ⊤(x))jkξjξk ≥ σK‖ξ‖2, x ∈ K.Let us now re�et the di�usion proess X(t) by de�ning a re�eted proess XR(t)whih satis�es a re�eted stohasti di�erential equation in BR, with oblique re�e-tion at the boundary of BR in the onormal diretion, i.e.
XR(t) = x0 +

∫ t

t0

µ(XR(t)) dt

+

∫ t

t0

σ(XR(t)) dW (t) +

∫ t

t0

n(XR(t)) dL(t), t ≥ t0 (21)where n is the inward normal vetor on the boundary of BR and L(t) is a loal timeproess whih inreases only on {‖x‖ = R}, i.e. L(t) =
∫ t

t0
1{‖Xs‖=R} dL(s).In order to illustrate the re�etion proedure, let us onsider a one-dimensionalBrownian motion W (t) on [−R, R] and re�et it at −R and R. A re�eted Brownianmotion WR(t) an be de�ned via applying a saw funtion to the original Brownianmotion:

WR(t) :=






W (t), |W (t)| ≤ R,

2nR − W (t), |W (t) − 2nR| ≤ R,

2nR + W (t), |W (t) + 2nR| ≤ R,where n ∈ Z \ {0}. It is not di�ult to prove Revuz and Yor (see 1991, Ch. 3) that
WR(t) satis�es the equation

WR(t) = W (t) + L−R(t) − LR(t), (22)where L−R(t) and LR(t) are symmetri loal times of WR(t) at R and −R respe-tively. Obviously, (22) is the partiular ase of the general re�eted equation (21).The transition density of WR(t) has a spetral representation
pWR(t, y|x) =

1

2R

(
1

2
+

∞∑

n=1

exp

(
−n2π2

8R2
t

)

× cos
(nπ

2R
(x + R)

)
cos
(nπ

2R
(y + R)

))
, (t, x, y) ∈ R+ × [−R, R]2and an be seen to be stritly positive on (0, T ] × [−R, R]2 for any �xed T > 0.Return now to the general ase and denote by pR(s, y|x) the transition density ofthe re�eted di�usion XR(t). It satis�es a paraboli partial di�erential equationwith Neumann boundary onditions. Under (AD1) it belongs to Ck(BR × BR) (seeSato and Ueto (1965)) for any �xed s > 0. Moreover, using a strong version of the12



maximum priniple (see, e.g. Friedman, 1964, Theorem 1 in Chapter 2) one an showthat under assumption (AD2) the transition density pR(s, y|x) is stritly positive on
(0, T ] × BR × BR. Let us hek now assumption (AX2) in the ase when

K(z) :=
Γ(1 + d/2)

πd/2
1{‖z‖≤1}.We have for any �xed s > t0 and W ∈ R

D with D = d(d+1) · . . . · (d+ ⌊β⌋−1)/⌊β⌋!

W⊤Γ̄(s, x)W =

∫

Rd



∑

|α|≤⌊β⌋

W αzα




2

K(z)pR(s − t0, x + hz|x0) dz

≥ B

∫

S(x,R)



∑

|α|≤⌊β⌋

W αzα




2

dzwith some positive onstant B and S(x, R) := {z : ‖z‖ ≤ 1, ‖x + hz − x0‖ ≤ R}.Using now the fat that the Lebesgue measure of the set S(x, R) is larger than somepositive number λ for all x ∈ BR, where λ depends on R and d but does not dependon h, we get
min

k=1,...,L
inf

x∈BR

[
W⊤Γ̄(tk, x)W

]
≥ B inf

‖W‖=1
inf

S:|S|>λ

∫

S




∑

|α|≤⌊β⌋

W αzα




2

dz ≥ γ0with some positive γ0 by the ompatness argument. Hene, assumption (AX2)holds.Remark 1.3. It an be shown that (AK2) is ful�lled if K(x) = f(p(x)) for somepolynomial p and a bounded real funtion f of bounded variation. Obviously, thestandard Gaussian kernel falls into this ategory. Another example is the ase where
K is a pyramid or K = 1[−1,1]d.In the sequel we will onsider a trunated version of the loal polynomial estimator
Ĉk,M(x) whih is de�ned as follows. If the smallest eigenvalue of the matrix Γ de�nedin (14) is greater than (log M)−1 we set T [Ĉk,M ](x) to be equal to the projetion of
Ĉk,M(x) on the interval [0, Cmax] with Cmax = maxk=0,...,L−1 supx∈A Ck(x) (Cmax is�nite due to (AX0) and (AX1)). Otherwise, we put T [Ĉk,M ](x) = 0. The followingpropositions provide exponential bounds for the trunated estimator {T [Ĉk,M ]}.Proposition 1.5. Let ondition (AX0)-(AX2),(AK1) and (AK2) be satis�ed andlet {T [Ĉk,M ]} be the ontinuation values estimates onstruted as desribed in Se-tion 1.4 using trunated loal polynomial estimators of degree ⌊β⌋. Then thereexist positive onstants B1, B2 and B3 suh that for any h satisfying B1h

β <√
| log h|/Mhd and any ζ ≥ ζ0 with some ζ0 > 0 it holds

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ ζ

√
| log h|
Mhd

)
≤ B2 exp(−B3ζ)13



for k = 0, . . . , L − 1. As a onsequene, we get with h = M−1/(2β+d) and any
ζ ≥ ζ0 > 0

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ ζ log1/2 M

Mβ/(2β+d)

)
≤ B2 exp(−B3ζ).Proposition 1.6. Let ondition (AX0)-(AX2),(AK1) and (AK2) be satis�ed, thenfor any δ > 0 there exist positive onstants B4 and B5 suh that

P⊗M
x0

(
sup
x∈A

|T [Ĉk,M ](x) − Ck(x)| ≥ δ

)
≤ B4 exp(−B5M)for k = 1, . . . , L − 1.Remark 1.4. As an be seen from the proof of Proposition 1.5 and Remark 5.1 (notethat ω in (30) grows linearly in d) the onstant B3 dereases with the dimension

d as fast as 1/d. The onstant B5 is of order δ
d/β
0 /d. Constants B2 and B4 dependlinearly on L, the number of exerise dates, but an be taken independent of d dueto Remark 5.1.Combining Proposition 1.1 with Proposition 1.5 and Proposition 1.6 leads to thefollowingTheorem 1.7. Let onditions (AX0)-(AX2), (AK1) and (AK2) be satis�ed. De�ne

V0,M := E(fbτM
(X(tbτM

))|X(t0) = x0),with
τ̂M := min{0 ≤ k ≤ L : T [Ĉk,M ](X(tk)) ≤ fk(X(tk))},where {T [Ĉk,M ]} are ontinuation values estimates onstruted using trunated loalpolynomial estimators of degree ⌊β⌋. If the boundary ondition (3) is ful�lled forsome α > 0, then

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ D1M
−β(1+α)/(2β+d) log(1+α)/2(M),with some onstant D1. On the other hand, if the ondition (8) is satis�ed withsome δ0 > 0, then the bias of V̂0,M dereases exponentially in M , i.e. there existpositive onstants D2 and D3, suh that

0 ≤ V0 − EP⊗M
x0

[V0,M ] ≤ D2 exp(−D3M).

14



Disussion As we an see, the rates of onvergene for {Ĉk,M} are of order
M−β/(2β+d) log1/2 Mwhih an be proved to be optimal, up to a logarithmi fator, for the lass of Höldersmooth ontinuation values {Ck(x)}. On the other hand, the rates of onvergenefor EP⊗M

x0
[V0,M ] are of order

M−β(1+α)/(2β+d) log(1+α)/2(M)and are always faster than ones of {Ĉk,M} provided that α > 0. The most interestingbehavior of the lower bound V̂0,M an be observed if the ondition (8) is ful�lled.In this ase the bias of V̂0,M beomes as small as exp(−D3M). This means thateven in the lass of ontinuation values with an arbitrary low (but positive) Höldersmoothness (e.g. in the lass of non-di�erentiable ontinuation values) and thereforewith an arbitrary slow onvergene rates of the estimates {Ĉk,M}, the bias of thelower bound V̂0,M onverges exponentially fast to zero.2 Numerial example: Bermudan max allThis is a benhmark example studied in Broadie and Glasserman (1997) and Glasser-man (2004) among others. Spei�ally, the model with d identially distributedassets is onsidered, where eah underlying has dividend yield δ. The risk-neutraldynami of assets is given by
dXk(t)

Xk(t)
= (r − δ)dt + σdWk(t), k = 1, ..., d,where Wk(t), k = 1, ..., d, are independent one-dimensional Brownian motions and

r, δ, σ are onstants. At any time t ∈ {t0, ..., tL} the holder of the option may exeriseit and reeive the payo�
f(X(t)) = (max(X1(t), ..., Xd(t)) − κ)+.We take d = 2, r = 5%, δ = 10%, σ = 0.2, κ = 100 and ti = iT/L, i = 0, ..., L,with T = 3, L = 9 as in Glasserman (2004, Chapter 8). First, we estimate allontinuation values using the dynami programming algorithm and the so alledNadaraya-Watson regression estimator

Ĉk,M(x) = e−rT/L

∑M
m=1 K((x − X(m)(tk))/h)Y

(m)
k+1∑M

m=1 K((x − X(m)(tk))/h)
(23)with Y

(m)
k+1 = max(f(X(m)(tk+1)), Ĉk+1,M(X(m)(tk+1))), k = 0, . . . , L−1. Here K is akernel, h > 0 is a bandwidth and (X(m)(t1), . . . , X

(m)(tL)), m = 1, . . . , M, is a set of15



paths of the proess X, all starting from the point x0 = (90, 90) at t0 = 0. As anbe easily seen the estimator (23) is a loal polynomial estimator of degree 0. Uponestimating Ĉ1,M , we de�ne a �rst estimate for the prie of the option at time t0 = 0as
Ṽ0 :=

e−rT/L

M

M∑

m=1

Y
(m)
1 .Next, using the previously onstruted estimates of ontinuation values, we pathwiseompute a stopping poliy τ̂ via

τ̂ (n) := min
{

1 ≤ k ≤ L : Ĉk,M(X̃(n)(tk)) ≤ f(X̃(n)(tk))
}

, n = 1, . . . , N,where (X̃(n)(t1), . . . , X̃
(n)(tL)), n = 1, . . . , N, is a new independent set of trajetoriesof the proess X, all starting from x0 = (90, 90) at t0 = 0. The stopping poliy τ̂yields a lower bound
V̂0 :=

1

N

N∑

n=1

e−rt
bτ(n)f(X̃(n)(tbτ (n))).In Figure 2 we show the boxplots of Ṽ0 and V̂0 based on 100 sets of trajetories eahof the size M = 4000 (N = 4000) for di�erent values of the bandwidth h, where thetriangle kernel K(x) = (1 − ‖x‖2)+ is used to onstrut (23). The true value V0 ofthe option (omputed using a two-dimensional binomial lattie) is 8.08 in this ase.Several observations an be made by an examination of Figure 2. First, while the biasof V̂0 is always smaller then the bias of Ṽ0, the largest di�erene takes plae for large

h. This an be explained by the fat that for large h more observations Y
(m)
r+1 with

X(m)(tr) lying far away from the given point x beome involved in the onstrutionof Ĉr,M(x). This has a onsequene of inreasing the bias of the estimate (23) and
Ṽ0 quikly deteriorates with inreasing h . The most interesting phenomenon is,however, the behavior of V̂0 whih turns out to be quite stable with respet to h.So, in the ase of rather poor estimates of ontinuation values (when h is inreases)
V̂0 looks very reasonable and even beomes loser to the true prie.We stress that the aim of this example is not to show the strength of the loalpolynomial estimation algorithms (although the performane of V̂0 for h = 120 isquite omparable to the performane of a linear regression algorithm reported inGlasserman (2004)) but rather to illustrate the main message of this paper, namelythe message about the e�ieny of V̂0 as ompared to the estimates based on thediret use of ontinuation values estimates.3 ConlusionIn this paper we derive optimal rates of onvergene for low biased estimates forthe prie of a Bermudan option based on suboptimal exerise poliies obtained from16
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Figure 2: Boxplots of the estimates V̂0 (0) and Ṽ0 (1) for di�erent values of thebandwidth h.some estimates of the optimal ontinuation values. We have shown that these ratesare usually muh faster than the onvergene rates of the orresponding ontinuationvalues estimates. This may explain the e�ieny of these lower bounds observedin pratie. Moreover, it turns out that there are some ases where the expetedvalues of the lower bounds based on suboptimal stopping rules ahieve very fastonvergene rates whih are exponential in the number of paths used to estimatethe orresponding ontinuation values.4 Proofs4.1 Proof of Proposition 1.1De�ne
τj := min{j ≤ k < L : Ck(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L,

τ̂j,M := min{j ≤ k < L : Ĉk(X(tk)) ≤ fk(X(tk))}, j = 0, . . . , L17



and
Vk,M(x) := E[fbτk,M

(X(tbτk,M
))|X(tk) = x], x ∈ R

d.The so alled Snell envelope proess Vk is related to τk via
Vk(x) = E[fτk

(X(tτk
))|X(tk) = x], x ∈ R

d.The following lemma provides a useful inequality whih will be repeatedly used inour analysis.Lemma 4.1. For any k = 0, . . . , L − 1, it holds with probability one
0 ≤ Vk(X(tk)) − Vk,M(X(tk))

≤ EFtk

[
L−1∑

l=k

|fl(X(tl)) − Cl(X(tl))|

×
(
1{bτl,M >l, τl=l} + 1{bτl,M =l, τl>l}

)]
. (24)Proof. We shall use indution to prove (24). For k = L − 1 we have

VL−1(X(tL−1)) − VL−1,M(X(tL−1)) =

= EFtL−1

[
(fL−1(X(tL−1)) − fL(X(tL)))1{τL−1=L−1, bτL−1,M =L}

]

+ EFtL−1

[
(fL(X(tL)) − fL−1(X(tL−1)))1{τL−1=L, bτL−1,M =L−1}

]

= |fL−1(X(tL−1)) − CL−1(X(tL−1))|1{bτL−1,M 6=τL−1}sine events {τL−1 = L} and {τ̂L−1,M = L} are measurable w.r.t. FtL−1
. Thus, (24)holds with k = L − 1. Suppose that (24) holds with k = L′ + 1. Let us prove it for

k = L′. Consider a deomposition
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
)) = S1 + S2 + S3with

S1 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′>L′, bτL′,M >L′}

S2 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′>L′, bτL′,M =L′}

S3 :=
(
fτL′ (X(tτL′ )) − fbτL′,M

(X(tbτL′,M
))
)

1{τL′=L′, bτL′,M >L′}.Sine
EFt

L′ [S1] = EFt
L′ [(VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1)))]1{τL′>L′, bτL′,M>L′},

EFt
L′ [S2] =

(
EFt

L′
[
fτL′+1

(X(tτL′+1
))
]
− fL′(X(tL′))

)
1{τL′>L′, bτL′,M=L′}

= (CL′(X(tL′)) − fL′(X(tL′)))1{τL′>L′, bτL′,M=L′}18



and
EFt

L′ [S3] =
(
fL′(X(tL′)) − EFt

L′

[
fbτL′+1,M

(X(tbτL′+1,M
))
])

1{τL′=L′, bτL′,M>L′}

= (fL′(X(tL′)) − CL′(X(tL′)))1{τL′=L′, bτL′,M>L′}

+ EFt
L′

[
(VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1))) 1{τL′=L′, bτL′,M >L′}

]
,we get with probability one

VL′(X(tL′)) − VL′,M(X(tL′) ≤ |fL′(X(tL′)) − CL′(X(tL′))|
×
(
1{bτL′,M >L′, τL′=L′} + 1{bτL′,M =L′, τL′>L′}

)

+ EFt
L′ [VL′+1(X(tL′+1)) − VL′+1,M(X(tL′+1))] .Our indution assumption implies now that

VL′(X(tL′)) − VL′,M(X(tL′)) ≤

EFt
L′

[
L−1∑

l=L′

|fl(Xl) − Cl(Xl)|
(
1{bτl,M >l, τl=l} + 1{bτl,M =l, τl>l}

)
]and hene (24) holds for k = L′.Let us ontinue with the proof of Proposition 1.1. Consider the sets El, Al,j ⊂

R
d, l = 0, . . . , L − 1, j = 1, 2, . . . , de�ned as

El :=
{
x ∈ R

d : Ĉl,M(x) ≤ fl(x), Cl(x) > fl(x)
}

∪
{
x ∈ R

d : Ĉl,M(x) > fl(x), Cl(x) ≤ fl(x)
}

,

Al,0 :=
{
x ∈ R

d : 0 < |Cl(x) − fl(x)| ≤ γ
−1/2
M

}
,

Al,j :=
{
x ∈ R

d : 2j−1γ
−1/2
M < |Cl(x) − fl(x)| ≤ 2jγ

−1/2
M

}
, j > 0.We may write

V0(X(t0)) − V0,M(X(t0))

≤ EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈El}

]

=
∞∑

j=0

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ γ
−1/2
M

L−1∑

l=0

Ptl|t0

(
0 < |Cl(X(tl)) − fl(X(tl))| ≤ γ

−1/2
M

)

+
∞∑

j=1

EFt0

[
L−1∑

l=0

|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]
.19



Using the fat that
|fl(X(tl)) − Cl(X(tl))| ≤ |Ĉl,M(X(tl) − Cl(X(tl))|, l = 0, . . . , L − 1,on El, we get for any j ≥ 1 and l ≥ 0

EFt0 EP⊗M
x0

[
|fl(X(tl)) − Cl(X(tl))|1{X(tl)∈Al,j∩El}

]

≤ 2jγ
−1/2
M EFt0 EP⊗M

x0

[
1
{| bCl,M (X(tl)−Cl(X(tl))|≥2j−1γ

−1/2
M }

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ 2jγ
−1/2
M EFt0

[
P⊗M

x0
(|Ĉl,M(X(tl)) − Cl(X(tl))| ≥ 2j−1γ

−1/2
M )

×1
{0<|fl(X(tl))−Cl(X(tl))|≤2jγ

−1/2
M }

]

≤ B12
jγ

−1/2
M exp

(
−B22

j−1
)
Ptl|t0(0 < |fl(X(tl)) − Cl(X(tl))| ≤ 2jγ

−1/2
M )

≤ B1B0,l2
j(1+α)γ

−(1+α)/2
M exp

(
−B22

j−1
)
,where Assumption 3 is used to get the last inequality. Finally, we get

V0(X(t0)) − EP⊗M
x0

[V0,M(X(t0))]

≤
[

L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M + B′

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
M

∑

j≥1

2j(1+α) exp(−B22
j−1)

≤ B

[
L−1∑

l=0

B0,l

]
γ
−(1+α)/2
Mwith some onstant B depending on B1, B2 and α.4.2 Proof of Proposition 1.2We have

V0(X(t0)) − V̂0,M(X(t0)) =

= EFt0 [(f1(X(t1)) − f2(X(t2)))1(τ1 = 1, τ̂1,M = 2)]

+ EFt0 [(f2(X(t2)) − f1(X(t1)))1(τ1 = 2, τ̂1,M = 1)]

= EFt0
[
|f1(X(t1)) − C1(X(t1))|1{bτ1,M 6=τ1}

]
. (25)For an integer q ≥ 1 onsider a regular grid on [0, 1]d de�ned as

Gq =

{(
2k1 + 1

2q
, . . . ,

2kd + 1

2q

)
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

}
.20



Let nq(x) ∈ Gq be the losest point to x ∈ R
d among points in Gq. Consider thepartition X ′

1, . . . ,X ′
qd of [0, 1]d anonially de�ned using the grid Gq (x and y belongto the same subset if and only if nq(x) = nq(y)). Fix an integer m ≤ qd. For any

i ∈ {1, . . . , m}, de�ne Xi = X ′
i and X0 = R

d \ ⋃m
i=1 Xi, so that X0, . . . ,Xm form apartition of R

d. Denote by Bq,j the ball with the enter in nq(Xj) and radius 1/2q.De�ne a hyperube H = {Pσ̄ : σ̄ = (σ1, . . . , σm) ∈ {−1, 1}m} of probability dis-tributions Pσ̄ of the r.v. (X(t1), f2(X(t2))) valued in R
d × {0, 1} as follows. Forany Pσ̄ ∈ H the marginal distribution of X(t1) (given X(t0) = x0) does not dependon σ̄ and has a bounded density µ w.r.t. the Lebesgue measure on R

d suh that
Pµ(X0) = 0 and

Pµ(Xj) = Pµ(Bq,j) =

∫

Bq,j

µ(x) dx = ω, j = 1, . . . , mfor some ω > 0. In order to ensure that the density µ remains bounded we assumethat qdω = O(1).The distribution of f2(X(t2)) given X(t1) is determined by the probability
Pσ̄(f2(X(t2)) = 1|X(t1) = x) whih is equal to C1,σ̄(x). De�ne

C1,σ̄(x) = f1(x) + σjφ(x), x ∈ Xj, j = 1, . . . , m,and C1,σ̄(x) = f1(x) on X0, where φ(x) = γ
−1/2
M ϕ(q[x − nq(x)]), ϕ(x) = Aϕθ(‖x‖)with some onstant Aϕ > 0 and with θ : R+ → R+ being a non-inreasing in�nitelydi�erentiable funtion suh that θ(x) ≡ 1 on [0, 1/2] and θ(x) ≡ 0 on [1,∞). Fur-thermore, there exist two real numbers 0 < f− < f+ < 1 suh that f− ≤ f1(x) ≤ f+.Taking Aϕ small enough, we an then ensure that 0 ≤ C1,σ̄(x) ≤ 1 on R

d. Obviously,it holds φ(x) = Aϕγ
−1/2
M for x ∈ Bq,j. As to the boundary assumption (3), we have

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ) =
m∑

j=1

Pµ(0 < |f1(X(t1)) − C1,σ̄(X(t1))| ≤ δ, X(t1) ∈ Bq,j)

=

m∑

j=1

∫

Bq,j

1{0<φ(x)≤δ}µ(x) dx = mω1
{Aϕγ

−1/2
M ≤δ}and (3) holds provided that mω = O(γ

−α/2
M ). Let τ̂M be a stopping time measurablew.r.t. F⊗M , then the identity (25) leads to

E
Ft0
Pσ̄

[fτ (X(τ))] − EP⊗M
σ̄

[EFt0 fbτM
(X(τ̂M))] = EP⊗M

σ̄
E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{bτ1,M 6=τ1}

]
,
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with ∆σ̄(X(t1)) = f1(X(t1)) − C1,σ̄(X(t1)). By onditioning on X(t1), we get
EP⊗M

σ̄
E
Ft0
Pµ

[
|∆σ̄(X(t1))|1{bτ1,M 6=τ1}

]

= ω

m∑

j=1

EP⊗M
σ̄

E
Ft0
Pµ

[
φ(X(t1))1{bτ1,M 6=τ1}|X(t1) ∈ Bq,j

]

= Aϕmωγ
−1/2
M E

Ft0
Pµ

P⊗M
σ̄ (τ̂1,M 6= τ1).Using now a well known Birgé's or Huber's lemma (see, e.g. Devroye, Györ� andLugosi, 1996, p. 243), we get

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (τ̂1,M 6= τ1) ≥

[
0.36 ∧

(
1 − MKH

log(|H|)

)]
,where KH := supP,Q∈H K(P, Q) and K(P, Q) is a Kullbak-Leibler distane betweentwo measures P and Q. Sine for any two measures P and Q from H with Q 6= Pit holds

K(P, Q) ≤ sup
σ̄1,σ̄2∈{−1;+1}m

σ̄1 6=σ̄2

E
Ft0
Pµ

[
C1,σ̄2(X(t1)) log

{
C1,σ̄1(X(t1))

C1,σ̄2(X(t1))

}

+(1 − C1,σ̄2(X(t1))) log

{
1 − C1,σ̄1(X(t1))

1 − C1,σ̄2(X(t1))

}]

≤ (1 − f+ − Aϕ)−1(f− − Aϕ)−1 E
Ft0
Pµ

[
φ2(X(t1))1{X(t1)6∈X0}

]for small enough Aϕ, and log(|H|) = m log(2), we get
sup

σ̄∈{−1;+1}m

{
E

Ft0
Pσ̄

[fτ,σ̄(X(τ))] − EP⊗M
σ̄

[EFt0 fbτM ,σ̄(X(τ̂M))]
}
≥

Aϕmωγ
−1/2
M (1 − AMγ−1

M ω) & γ
−(1+α)/2
M ,provided that mω > Bγ

−α/2
M for some B > 0 and AMω < γM , where A is a positiveonstant depending on f−, f+ and Aϕ. Using similar arguments, we derive

sup
σ̄∈{−1;+1}m

P⊗M
σ̄ (|C1,σ̄(x) − Ĉ1,M(x)| > δγ

−1/2
M ) > 0for almost x w.r.t. Pµ, some δ > 0 and any estimator Ĉ1,M measurable w.r.t. F⊗M .
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4.3 Proof of Proposition 1.3Using the arguments similar to ones in the proof of Proposition 1.1, we get
V0(X(t0)) − EP⊗M

x0
[V0,M(X(t0))] ≤

δ0

L−1∑

l=0

Ptl|t0(0 < |Cl(X(tl)) − fl(X(tl))| ≤ δ0)

+
L−1∑

l=0

EFt0 EP⊗M
x0

[|Cl(X(tl)) − fl(X(tl))|

×1{X(tl)∈El}1{|Cl(X(tl))−fl(X(tl))|>δ0}

] (26)with El de�ned as in the proof of Proposition 1.1. The �rst summand on the right-hand side of (26) is equal to zero due to (8). Hene, Cauhy-Shwarz and Minkowskiinequalities imply
V0(X(t0)) − EP⊗M

x0
[V0,M(X(t0))]

≤
L−1∑

l=0

[
EFt0 |EFtl

[
fτl+1

(X(tτl+1
))
]
− fl(X(tl))|2

]1/2

×
[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2

≤ 2B
1/2
f

L−1∑

l=0

[
EFt0 P⊗M

x0
(|Cl(X(tl)) − Ĉl,M(X(tl))| > δ0)

]1/2

.Now the appliation of (9) �nishes the proof.4.4 Proof of Proposition 1.5Denote
εk,M(x) = T [Ĉk,M ](x) − Ck(x)and

ζk,M(x) = C̃k,M(x) − T [Ĉk,M ](x)for k = 1, . . . , L − 1. Using the elementary inequality |max(a, x) − max(a, y)| ≤
|x − y|, whih holds for any real numbers a, x and y, we get

|εk,M(x)| ≤ |ζk,M(x)| + E [ |εk+1,M(X(tk+1))||X(tk) = x]and hene
|εk,M(x)| ≤

L−1∑

l=k+1

E [|ζl,M(X(tl))||X(tk) = x] (27)
:=

L−1∑

l=k+1

ξl,k,M(x).23



Note that we take expetation in (27) with respet to a new σ-algebra F whih isindependent of F⊗M and {ζl,M} are measurable w.r.t F⊗M . Hene, random variables
{ξl,k,M} are F⊗M measurable as well. Aording to Lemma 4.2 (see below)

P⊗M
x0

(
ξl,k,M(x) ≥ δ

√
| logh|/Mhd

)
≤

P⊗M
x0

(
sup
y∈A

|ζl,M(y)| ≥ δ
√

| logh|/Mhd

)
≤ D2 exp(−D3δ)for almost all x w.r.t. Ptk |t0 . Thus,

P⊗M
x0

(
|εk,M(x)| ≥ δ

√
| log h|/Mhd

)
≤ LD2 exp(−D3δ/L).Analogously, using Lemma 4.3 one an prove that

P⊗M
x0

(|εk,M(x)| ≥ δ) ≤ B4 exp(−B5Mhd)with some positive onstants B4 and B5.Lemma 4.2. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be ful�lled. Thenthere exist positive onstants D1, D2 and D3, suh that for any h satisfying D1h
β <√

| log h|/Mhd the estimates {T [Ĉk,M ]} based on the trunated loal polynomials es-timators of degree ⌊β⌋ ful�ll
P⊗M

x0

(
sup
x∈A

|T [Ĉk,M ](x) − C̃k(x)| ≥ δ
√

| log h|/Mhd

)
≤ D2 exp(−D3δ),for all δ > δ0 and k = 1, . . . , L − 1.Lemma 4.3. Let assumptions (AX0)-(AX2), (AK1) and (AK2) be ful�lled and√

| log h|/Mhd = o(1) for M → ∞. Then there exist positive onstants D4, D5 and
D6 suh that for any δ ≥ D4h

β the inequality
P⊗M

x0

(
sup
x∈A

|T [Ĉk,M ](x) − C̃k(x)| ≥ δ

)
≤ D5 exp(−D6Mhd)holds for all k = 1, . . . , L − 1.Proof. We give the proof only for Lemma 4.2. Lemma 4.3 an be proved in asimilar way. Fix some natural r > 0 suh that 0 < r ≤ L and onsider the matrix

Γ = (Γu1,u2)|u1|,|u2|≤⌊β⌋ with elements
Γu1,u2 =

1

Mhd

M∑

m=1

(
X(m)(tr) − x

h

)u1+u2

K

(
X(m)(tr) − x

h

)
.The smallest eigenvalue λΓ of the matrix Γ satis�es

λΓ = min
‖W‖=1

W⊤ΓW

≥ min
‖W‖=1

W⊤ E[Γ]W + min
‖W‖=1

W⊤(Γ − E[Γ])W

≥ min
‖W‖=1

W⊤ E[Γ]W −
∑

|u1|,|u2|≤⌊β⌋

|Γu1,u2 − E[Γu1,u2]|. (28)24



By Assumption (AX2)
inf
x∈A

min
‖W‖=1

[
W⊤ E[Γ(x)]W

]
≥ γ0with some γ0 > 0. For m = 1, . . . , M, and any multi-indies u1, u2 suh that

|u1|, |u2| ≤ ⌊β⌋, de�ne
∆m(x) =

1

hd

(
X(m)(tr) − x

h

)u1+u2

K

(
X(m)(tr) − x

h

)

−
∫

Rd

zu1+u2K(z)p(tr, x + hz|t0, x0) dz.We have EPtr|t0
[∆m(x)] = 0,

|∆m(x)| ≤ h−d sup
z∈Rd

[
(1 + ‖z‖2β)K(z)

]
=: K1h

−dand
EPtr|t0

[∆m(x)]2 ≤
∫

Rd

z2u1+2u2K2(z)p(tr, x + hz|t0, x0) dz

≤ pmax

hd

∫

Rd

(1 + ‖z‖4β)K2(z) dz =: K2h
−d,where pmax = supz∈Rd p(tr, z|t0, x0) and K1, K2 are two positive onstants. Due toassumption (AK2), the lass of funtions

{(
x − ·

h

)u1+u2

K

(
x − ·

h

)
: x ∈ R

d, h ∈ R \ {0}, |u1|, |u2| ≤ ⌊β⌋
}is a bounded Vapnik-�ervonenkis lass of measurable funtions (see Dudley (1999)).Aording to Proposition 5.1 (see Appendix), we have for any ζ > 0

Ptr |t0

(
sup
x∈A

|Γu1,u2(x) − E Γu1,u2(x)| ≥ ζ

)

= Ptr |t0

(
sup
x∈A

1

M

∣∣∣∣∣

M∑

m=1

∆m(x)

∣∣∣∣∣ ≥ ζ

)

≤ D0 exp(−ζB0Mhd) (29)with some positive onstants D0 and B0. Combining (28) and (20) with (29), weget
Ptr |t0

(
inf
x∈A

λΓ(x) ≤ γ0/2

)
≤ D0N

2
β exp(−γ0B0Mhd/2N2

β),where N2
β is the number of elements in the matrix Γ. Assume that M is large enoughso that γ0/2 > (log M)−1. Then on the set {infx∈A λΓ(x) > γ0/2} we have

|T [Ĉr,M ](x) − C̃r(x)| ≤ |Ĉr,M(x) − C̃r(x)|, x ∈ A25



sine supx∈A C̃r(x) ≤ Cmax. Therefore, it holds for any ζ > 0

Ptr |t0

(
sup
x∈A

|T [Ĉr,M ](x) − C̃r(x)| ≥ ζ

)
≤ Ptr |t0

(
inf
x∈A

λΓ(x) ≤ γ0/2

)

+ Ptr |t0

(
sup
x∈A

|Ĉr,M(x) − C̃r(x)| ≥ ζ, inf
x∈A

λΓ(x) > γ0/2

)
.Introdue the matrix Q = (Qm,u)1≤m≤M, |u|≤⌊β⌋ with elements

Qm,u =

(
X(m)(tr) − x

h

)u
√

1

Mhd
K

(
X(m)(tr) − x

h

)
.Denote by Qu the uth olumn of Q and de�ne

QC(x) :=
∑

|u|≤⌊β⌋

C̃
(u)
r (x)hu

u!
Qu.Sine Γ = Q⊤Q, we get Z⊤(0)Γ−1Q⊤Qu = 1{u=(0,...,0)} for any s with |s| ≤ ⌊β⌋.Hene Z⊤(0)Γ−1Q⊤QC = C̃r(x). Thus, we an write

Ĉr,M(x) − C̃r(x) = Z⊤(0)Γ−1(S − Q⊤QC) =: Z⊤(0)Γ−1εM(x),where εM(x) is a vetor valued funtion with omponents
εM,u(x) =

1

Mhd

M∑

m=1

[
Y

(m)
r+1 − C̃r,x(X

(m)(tr))
](X

(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)

and Y
(m)
r+1 = max(fr+1(X

(m)(tr+1)), T [Ĉr+1,M ](X(m)(tr+1))). So, on the set {infx∈A λΓ(x) >
γ0/2} we get
|Ĉr,M(x) − C̃r(x)| ≤ ‖ΓεM‖ ≤ λ−1

Γ ‖εM‖ ≤ 2γ−1
0 ‖εM‖ ≤ 2γ−1

0 N
1/2
β max

u
|εM,u(x)|.Denote

∆(1)
u,m(x) :=

1

hd

[
Y

(m)
r+1 − C̃r(X

(m)(tr))
](X

(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)
,

∆(2)
u,m(x) :=

1

hd

[
C̃r(X

(m)(tr)) − C̃r,x(X
(m)(tr))

](X
(m)
r − x

h

)u

K

(
X

(m)
r − x

h

)
.It holds

|εM,u| ≤
∣∣∣∣∣

1

M

M∑

m=1

∆(1)
u,m

∣∣∣∣∣ +
∣∣∣∣∣

1

M

M∑

m=1

[
∆(2)

u,m − E ∆(2)
u,m

]
∣∣∣∣∣+ |E ∆(2)

u,m|.26



Note that EPtr|t0

[
∆

(1)
u,m

]
= 0 and
|∆(1)

u,m(x)| ≤ A11h
−d, Var

[
∆(1)

u,m(x)
]
≤ A12h

−d,
∣∣∆(2)

u,m(x) − E
[
∆(2)

u,m(x)
]∣∣ ≤ A21h

β−d, Var
[
∆(2)

u,m(x)
]
≤ A22h

2β−dwith some positive onstants A11, A12, A21 and A22 not depending on x. Proposi-tion 5.1 implies that for any δ ≥ δ0 > 0

Ptr |t0

(∥∥∥∥∥
1

M

M∑

m=1

∆(1)
u,m

∥∥∥∥∥
∞

≥ δ
√

| log h|/Mhd

)
≤ D1 exp (−δB1| logh|)with some positive onstants D1 and B1. Furthermore, due to the representation

C̃r(z) − C̃r,x(z) = ⌊β⌋
∑

|u|=⌊β⌋

(z − x)u

u!

×
∫ 1

0

[
C̃(u)

r (x + w(z − x)) − C̃(u)
r (x)

]
(1 − w)⌊β⌋−1 dwwe get for any two points x1 and x2 in R

d

‖C̃r(·) − C̃r,x1(·) − (C̃r(·) − C̃r,x2(·))‖A ≤ ‖x1 − x2‖β−⌊β⌋.Now it an be shown (see Dudley (1999)) that the lass
{[

C̃r(·) − C̃r,x(·)
]( · − x

h

)u

K

( · − x

h

)
: x ∈ R

d, h ∈ R \ {0}, |u| ≤ ⌊β⌋
}is a bounded Vapnik-�ervonenkis lass of measurable funtions. Hene

Ptr |t0

(∥∥∥∥∥
1

M

M∑

m=1

[
∆(2)

u,m − EPtr |t0
∆(2)

u,m

]∥∥∥∥∥
∞

≥ δ
√

| log h|/Mhd

)

≤ D2 exp (−δB2| log h|)for δ ≥ δ0 > 0 and some positive onstants D2 and B2. Furthermore, using theinequality |EPtr|t0
[∆

(2)
u,m]| ≤ A3h

β , we arrive at
Ptr |t0

(
sup
x∈A

|εM,u(x)| ≥ γ0δ
√
| log h|/(MhdNβ)

)
≤ D3 exp (−δB3| log h|)with some positive onstants D3 andB3, provided that 6γ−1

0 N
1/2
β A3h

β ≤ δ
√
| log h|/Mhd.
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5 Appendix5.1 Some results from the theory of empirial proessesDe�nition A lassF of funtions on a measurable spae (X,X ) is alled a boundedVapnik-�ervonenkis lass of funtions if there exist positive numbers A and ω suhthat, for any probability measure P on (X,X ) and any 0 < ρ < 1

N (F , L2(P), ρ‖F‖L2(P)) ≤
(

A

ρ

)ω

, (30)where N (S, d, ε) denotes the ε-overing number of a lass S in a metri d, and
F := supf∈F |f | is the envelope of F . The following proposition is a key tool forobtaining onvergene rates for loal type estimators.Proposition 5.1 (Talagrand (1994), Giné and Guillou (2001)). Let F be a measur-able uniformly bounded VC lass of funtions, and let σ and U be any two positivenumbers suh that supf∈F Var(f) ≤ σ2, supf∈F ‖f‖∞ ≤ U and 0 < σ < U/2. Then,there exist a universal onstant B, suh that

E

[
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣

]
≤ B

[
ωU log

AU

σ
+
√

ω

√
Mσ2 log

AU

σ

]
.If additionally √

Mσ ≥ U
√

log(U/σ), then there exist onstants D and C whihdepend only on the VC harateristis of F , suh that, for all λ ≥ C and t satisfying
C
√

Mσ

√
log

U

σ
≤ t ≤ λ

Mσ2

U
,

P

(
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣ > t

)
≤ D exp

(
− log(1 + λ/(4D))

λD

t2

Mσ2

)
.Remark 5.1. It an be dedued from the proof of Proposition 5.1 in Giné andGuillou (2001) that onstant D an be taken independent of ω. The onstant C(and hene λ) in the ase of large ω an be hosen in the form C = ωC0 for someonstant C0 not depending on ω.Aknowledgements. The author is grateful to two anonymous referees and theeditor for a areful reading of the paper and a number of valuable omments andsuggestions that enabled to improve the quality of the paper.ReferenesL. Andersen: A simple approah to the priing of Bermudan swaptions in the multi-fator Libor Market Model. J. Computat. Finan., 3, 5�32 (2000)28
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