
Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 � 8633A variational formula for the free energyof an intera
ting many-parti
le systemStefan Adams1, Andrea Colleve

hio2, Wolfgang König3submitted: Mar
h 11, 2010
1 Mathemati
s InstituteUniversity of Warwi
kCoventry CV4 7AL, United KingdomE-Mail: S.Adams�warwi
k.a
.uk 2 Dipartimento di Matemati
a Appli
ataUniversità Ca' Fos
ariItalyE-Mail: 
olleve
�unive.it

3 Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikMohrenstraÿe 3910117 BerlinE-Mail: Wolfgang.Koenig�wias-berlin.deandTe
hnis
he Universität BerlinInstitut für MathematikStraÿe des 17. Juni 13610623 BerlinGermanyE-Mail: koenig�math.tu-berlin.deNo. 1490Berlin 2010
2010 Mathemati
s Subje
t Classi�
ation. 60F10, 60J65,82B10, 81S40.Key words and phrases. Free energy, intera
ting many-parti
le systems, Bose-Einstein 
ondensation,Brownian bridges, symmetrised distribution, large deviations, empiri
al stationary measure, variationalformula .Work supported by the DFG-Fors
hergruppe 718 `Analysis and Sto
hasti
s in Complex Physi
al Sys-tems'and by `Italian PRIN 2007 grant 2007TKLTSR'.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Sto
hastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstra
t: We 
onsider N bosons in a box in R
d with volume N/ρ under the in�uen
eof a mutually repellent pair potential. The parti
le density ρ ∈ (0,∞) is kept �xed.Our main result is the identi�
ation of the limiting free energy, f(β, ρ), at positivetemperature 1/β, in terms of an expli
it variational formula, for any �xed ρ if β issu�
iently small, and for any �xed β if ρ is su�
iently small.The thermodynami
 equilibrium is des
ribed by the symmetrised tra
e of e−βHN ,where HN denotes the 
orresponding Hamilton operator. The well-known Feynman-Ka
 formula reformulates this tra
e in terms of N intera
ting Brownian bridges. Due tothe symmetrisation, the bridges are organised in an ensemble of 
y
les of various lengths.The novelty of our approa
h is a des
ription in terms of a marked Poisson point pro
esswhose marks are the 
y
les. This allows for an asymptoti
 analysis of the system viaa large-deviations analysis of the stationary empiri
al �eld. The resulting variationalformula ranges over random shift-invariant marked point �elds and optimizes the sumof the intera
tion and the relative entropy with respe
t to the referen
e pro
ess.In our proof of the lower bound for the free energy, we drop all intera
tion involving`in�nitely long' 
y
les, and their possible presen
e is signalled by a loss of mass of the`�nitely long' 
y
les in the variational formula. In the proof of the upper bound, weonly keep the mass on the `�nitely long' 
y
les. We expe
t that the pre
ise relationshipbetween these two bounds lies at the heart of Bose-Einstein 
ondensation and intendto analyse it further in future.1. Introdu
tion and main resultsIn this paper, we study a probabilisti
 model for intera
ting bosons at positive temperature in thethermodynami
 limit with positive parti
le density. See Se
tion 1.4 for the physi
al ba
kground.1.1. The model. The main obje
t is the following symmetrised sum of Brownian bridge expe
tations,

Z(bc)

N (β,Λ) =
1

N !

∑

σ∈SN

∫

Λ
dx1 · · ·

∫

Λ
dxN

N⊗

i=1

µ(bc,β)
xi,xσ(i)

[
exp

{
−

∑

1≤i<j≤N

∫ β

0
v(|B(i)

s −B(j)
s |) ds

}]
. (1.1)Here µ(bc,β)

x,y is the 
anoni
al Brownian bridge measure with boundary 
ondition bc ∈ {∅,per,Dir},time horizon β > 0 and initial point x ∈ Λ and terminal point y ∈ Λ, and the sum is on permutations
σ ∈ SN of 1, . . . , N . (We write µ(f) for the integral of f with respe
t to the measure µ.) Theintera
tion potential v : R → [0,∞] is measurable, de
ays su�
iently fast at in�nity and is possiblyin�nite 
lose to the origin. Our pre
ise assumptions on v appear prior to Theorem 1.2 below. Weassume that Λ is a measurable subset of R

d with �nite volume.The boundary 
ondition bc = ∅ refers to the standard Brownian bridge, whereas for bc = Dir, theexpe
tation is on those Brownian bridge paths whi
h stay in Λ over the time horizon [0, β]. In the 
aseof periodi
 boundary 
ondition, bc = per, we 
onsider Brownian bridges on the torus Λ = (R/LZ)dwith side length L.Our main motivation to study the quantity Z(bc)

N (β,Λ) is the fa
t that, for both periodi
 and Diri
hletboundary 
onditions, it is related to the N -body Hamilton operator
H(bc)

N,Λ = −
N∑

i=1

∆(bc)

i +
∑

1≤i<j≤N

v(|xi − xj|), x1, . . . , xn ∈ Λ, bc ∈ {Dir,per} (1.2)where ∆(bc)

i stands for the Lapla
ian with b
 boundary 
ondition. More pre
isely, Z(bc)

N (β,Λ) is equalto the tra
e of the proje
tion of the operator exp {−βH(bc)

N,Λ} to the set of symmetri
 (i.e., permutation1



2invariant) fun
tions (Rd)N → R. This statement is proven via the Feynman-Ka
 formula, see [G70℄ or[BR97℄. Hen
e, we 
all Z(bc)

N (β,Λ) a partition fun
tion.It is the main purpose of this paper to derive a variational expression for the limiting free energy
f (bc)(β, ρ) = −

1

β
lim

N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
), (1.3)where |ΛLN

| = N/ρ, for any β, ρ ∈ (0,∞), any d ∈ N and any bc ∈ {∅,per,Dir}. The existen
e ofthe thermodynami
 limit in (1.3) with bc ∈ {per,Dir} under suitable assumptions on the intera
tionpotential v 
an be shown by standard methods, see, e.g., [Rue69, Th. 3.58℄ and [Rob71℄. However, upto the best of our knowledge, there is no useful identi�
ation or 
hara
terisation of f (bc)(β, ρ) availablein the literature. We also give new proofs for the independen
e of the value of the free energy on theboundary 
onditions, whi
h is another novelty.Our approa
h and the remainder of Se
tion 1 
an be summarized as follows. Sin
e any permutationde
omposes into 
y
les, and using the Markov property, the family of the N bridges in (1.1) de
omposesinto 
y
les of various lengths, i.e., into bridges that start and end at the same site, whi
h is uniformlydistributed over Λ. We 
on
eive these initial-terminal sites as the points of a standard Poisson pointpro
ess on R
d and the 
y
les as marks atta
hed to these points; see Se
tion 1.2 for the relevant notation.In Proposition 1.1 below we rewrite Z(bc)

N (β,Λ) in terms of an expe
tation over a referen
e pro
ess, themarked Poisson point pro
ess ωP.In Se
tion 1.3, we present our results on the large-N asymptoti
s of Z(bc)

N (β,Λ) when Λ is a 
entred
ube of volume N/ρ. Indeed, in Theorem 1.2, its exponential rate is bounded from above and below interms of two variational formulas that range over marked shift-invariant point pro
esses and optimisethe sum of an energy term and an entropy term. These bounds are shown to 
oin
ide for any �xed
ρ if β is su�
iently small, and for any �xed β if ρ is su�
iently small. The main value and noveltyof these representations is the expli
it des
ription of the interplay between entropy, intera
tion andsymmetrisation of the system. We think that these formulas, even in the 
ase where our two boundsdo not 
oin
ide, are expli
itly enough to serve as a basis for future deeper investigations of propertieslike phase transitions.The physi
al interpretation, motivation and relevan
e are dis
ussed in Se
tion 1.4.1.2. Representation of the partition fun
tion. In this se
tion, we introdu
e our representationof the partition fun
tion Z(bc)

N (β,Λ) for ea
h boundary 
ondition bc ∈ {∅,per,Dir} in terms of anexpe
tation over a marked Poisson point pro
ess. The main result of this se
tion is Proposition 1.1.We have to introdu
e some notation.We begin with the mark spa
e. The spa
e of marks is de�ned as
E(bc) =

⋃

k∈N

C(bc)

k,Λ , bc ∈ {∅,per,Dir}, (1.4)where, for k ∈ N, we denote by Ck = C(∅)

k,Λ the set of 
ontinuous fun
tions f : [0, kβ] → R
d satisfying

f(0) = f(kβ), equipped with the topology of uniform 
onvergen
e. Moreover, C(Dir)

k,Λ , resp. C(per)

k,Λ , is thespa
e of 
ontinuous fun
tions in Λ, resp. on the torus Λ = (R/LZ)d, with time horizon [0, kβ]. Wesometimes 
all the marks 
y
les. By ℓ : E(bc) → N we denote the 
anoni
al map de�ned by ℓ(f) = kif f ∈ C(bc)

k,Λ . We 
all ℓ(f) the length of f ∈ E. When dealing with the empty boundary 
ondition, wesometimes drop the supers
ript ∅.We 
onsider spatial 
on�gurations that 
onsist of a lo
ally �nite set ξ ⊂ R
d of parti
les, and to ea
hparti
le x ∈ ξ we atta
h a mark fx ∈ E(bc)satisfying fx(0) = x. Hen
e, a 
on�guration is des
ribed by



3the 
ounting measure
ω =

∑

x∈ξ

δ(x,fx)on R
d × E for the empty boundary 
ondition, resp. on Λ × E(bc) for bc ∈ {per,Dir}.We now introdu
e three marked Poisson point pro
esses for the three boundary 
onditions. The onefor the empty 
ondition will later serve as a referen
e pro
ess and is introdu
ed separately �rst.Referen
e pro
ess.Consider on C = C1 the 
anoni
al Brownian bridge measure

µ(∅,β)
x,y (A) = µ(β)

x,y(A) =
Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C measurable. (1.5)Here B = (Bt)t∈[0,β] is a Brownian motion in R

d with generator ∆, starting from x under Px. Then
µ(β)

x,y is a regular Borel measure on C with total mass equal to the Gaussian density,
µ(β)

x,y(C) = gβ(x, y) =
Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e−

1
4β

|x−y|2. (1.6)We write P
(β)
x,y = µ(β)

x,y/gβ(x, y) for the normalized Brownian bridge measure on C. Let
ωP =

∑

x∈ξP

δ(x,Bx),be a Poisson point pro
ess on R
d ×E with intensity measure equal to ν whose proje
tion onto R

d ×Ckis equal to
νk(dx,df) =

1

k
Leb(dx) ⊗ µ(kβ)

x,x (df), k ∈ N. (1.7)Alternatively, we 
an 
on
eive ωP as a marked Poisson point pro
ess on R
d, based on some Poissonpoint pro
ess ξP on R

d, and a family (Bx)x∈ξP of i.i.d. marks, given ξP. The intensity of ξP is
q =

∑

k∈N

qk, with qk =
1

(4πβ)d/2k1+d/2
, k ∈ N. (1.8)Conditionally given ξP, the length ℓ(Bx) is an N-valued random variable with distribution (qk/q)k∈N,and, given ℓ(Bx) = k, Bx is in distribution equal to a Brownian bridge with time horizon [0, kβ],starting and ending at x. Let Q denote the distribution of ωP and denote by E the 
orrespondingexpe
tation. Hen
e, Q is a probability measure on the set Ω of all lo
ally �nite 
ounting measures on

R
d × E.Pro
esses for Diri
hlet and periodi
 boundary 
onditions.For Diri
hlet boundary 
ondition, one restri
ts the Brownian bridges to not leaving the set Λ. Considerthe measure

µ(Dir,β)
x,y (A) =

Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C(Dir)

1,Λ measurable, (1.9)whi
h has total mass
g(Dir)

β (x, y) = µ(Dir,β)
x,y (C(Dir)

1,Λ ) =
Px(B[0,β] ⊂ Λ;Bβ ∈ dy)

dy
. (1.10)For periodi
 boundary 
ondition, the marks are Brownian bridges on the torus Λ = (R/LZ)d. The
orresponding path measure is denoted by µ(per,β)

x,y ; its total mass is equal to
g(per)

β (x, y) = µ(per,β)
x,y (C(per)

Λ ) =
∑

z∈Zd

gβ(x, y + zL) = (4πβ)−d/2
∑

z∈Zd

e
− |x−y−zL|2

4β . (1.11)



4For periodi
 and Diri
hlet boundary 
onditions (1.8) is repla
ed by
q(bc) =

N∑

k=1

q(bc)

k , with q(bc)

k =
1

k|Λ|

∫

Λ
dx g(bc)

kβ (x, x). (1.12)Note that this weight depends on Λ and on N . We introdu
e the Poisson point pro
ess ωP =∑
x∈ξP

δ(x,Bx) on Λ×E(bc) with intensity measure ν(bc) whose proje
tions on Λ×C(bc)

k,Λ with k ≤ N areequal to ν(bc)

k (dx,df) = 1
kLebΛ(dx) ⊗ µ(bc,kβ)

x,x (df) and are zero on this set for k > N . We do not label
ωP nor ξP with the boundary 
ondition nor with N ; ξP is a Poisson pro
ess on Λ with intensity measure
q(bc) times the restri
tion LebΛ of the Lebesgue measure to Λ. By Q(bc) and E(bc) we denote probabilityand expe
tation with respe
t to this pro
ess. Conditionally on ξP, the lengths of the 
y
les Bx with
x ∈ ξP are independent and have distribution (q(bc)

k /q(bc))k∈{1,...,N}; this pro
ess has only marks withlengths ≤ N . A 
y
le Bx of length k is distributed a

ording to
P

(bc,kβ)
x,x (df) =

µ(bc,kβ)
x,x (df)

g(bc)

kβ (x, x)
. (1.13)We now formulate our �rst main result, a presentation of the partition fun
tion de�ned in (1.1)in Λ ⊂ R

d with |Λ| < ∞ and boundary 
ondition bc ∈ {∅,per,Dir}. We write 〈P,F 〉 for theexpe
tation of a fun
tion F with respe
t to a probability measure P . We introdu
e a fun
tional on
Ω that expresses the intera
tion between parti
les in Λ ⊂ R

d, more pre
isely, between their marks.De�ne the Hamiltonian HΛ : Ω → [0,∞] by
HΛ(ω) =

∑

x,y∈ξ∩Λ

Tx,y(ω), where ω =
∑

x∈ξ

δ(x,fx) ∈ Ω, (1.14)where we abbreviate
Tx,y(ω) =

1

2

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
v(|fx(iβ + s) − fy(jβ + s)|) ds, ω ∈ Ω, x, y ∈ ξ. (1.15)The fun
tion HΛ(ω) summarises the intera
tion between di�erent marks of the point pro
ess andbetween di�erent legs of the same mark; here we 
all the restri
tion of a mark fx to the interval

[iβ, (i + 1)β)] with i ∈ {0, . . . , ℓ(fx) − 1} a leg of the mark. Denote by
N (ℓ)

Λ (ω) =
∑

x∈ξ∩Λ

ℓ(fx) (1.16)the total length of the marks of the parti
les in Λ ⊂ R
d.Proposition 1.1 (Rewrite in terms of the marked Poisson pro
ess). Fix β ∈ (0,∞). Let v : [0,∞) →

(−∞,∞] be measurable and bounded from below and let Λ ⊂ R
d be measurable with �nite volume(assumed to be a torus for periodi
 boundary 
ondition). Then, for any N ∈ N, and bc ∈ {∅,per,Dir},

Z(bc)

N (β,Λ) = e|Λ|q(bc)
E

(bc)
[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]
. (1.17)That is, up the non-random term |Λ|q(bc), the partition fun
tion is equal to the expe
tation over theBoltzmann fa
tor e−HΛ of a marked Poisson pro
ess with �xed total length of marks of the parti
les.1.3. The limiting free energy. In this se
tion, we present our major result, the identi�
ation of thelimiting free energy de�ned in (1.3) in terms of an expli
it variational formula, see Theorem 1.2. We�rst introdu
e some notation.



5De�ne the shift operator θy : R
d → R

d as θy(x) = x− y. We extend it to a shift operator on marked
on�gurations by
θy(ω) =

∑

x∈ξ

δ(x−y,fx) =
∑

x∈ξ−y

δ(x,fx+y), for ω =
∑

x∈ξ

δ(x,fx).By Pθ we denote the set of all shift-invariant probability measures on Ω. The distribution Q of theabove marked Poisson point referen
e pro
ess ωP belongs to Pθ.De�ne Φβ : Ω → [0,∞] by
Φβ(ω) =

∑

x∈ξ∩U

∑

y∈ξ

Tx,y(ω), (1.18)where Tx,y(ω) was de�ned in (1.15), and U = [−1
2 ,

1
2 ]d denotes the 
entred unit box. The quantity

Φβ(ω) des
ribes all the intera
tions between di�erent legs of marks of ω, when at least one of the marksis atta
hed to a point in U .Next, we introdu
e an entropy term. For probability measures µ, ν on some measurable spa
e, wewrite
H(µ | ν) =

{∫
f log f dν if f = dµ

dν exists,
∞ otherwise, (1.19)for the relative entropy of µ with respe
t ν. It will be 
lear from the 
ontext whi
h measurable spa
eis used. It is easy to see and well-known that H(µ | ν) is nonnegative and that it vanishes if and onlyif µ = ν. Now we set

Iβ(P ) = lim
N→∞

1

|ΛN |
H

(
PΛN

∣∣∣ QΛN

)
, P ∈ Pθ, (1.20)where we write PΛ for the proje
tion of P to Λ, i.e., the image measure of P under

ω 7→ ω|Λ =
∑

x∈ξ∩Λ

δ(x,fx), for ω =
∑

x∈ξ

δ(x,fx). (1.21)The limit in (1.20) is along 
entred boxes ΛN with diverging volume. A

ording to [GZ93, Prop. 2.6℄,the limit in (1.20) exists, and Iβ is a lower semi
ontinuous fun
tion with 
ompa
t level sets in thetopology of lo
al 
onvergen
e, see Lemma 3.3 below. It turns out there that Iβ is the rate fun
tion ofa 
ru
ial large-deviations prin
iple for the family of the stationary empiri
al �elds, whi
h is one of theimportant obje
ts of our analysis and will be introdu
ed at the beginning of Se
tion 3.Now we introdu
e two important variational formulas. For any β, ρ ∈ (0,∞), de�ne
χ(≤)(β, ρ) = inf

{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}
, (1.22)

χ(=)(β, ρ) = inf
{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 = ρ
}
. (1.23)These formulas range over shift-invariant marked pro
esses P . They have three 
omponents: theentropi
 distan
e Iβ(P ) between P and the referen
e pro
ess Q, the intera
tion term 〈P,Φβ〉 and the
ondition 〈P,N (ℓ)

U 〉 = ρ, respe
tively ≤ ρ. Obviously, χ(≤) ≤ χ(=). Sin
e all the maps P 7→ Iβ(P ),
P 7→ 〈P,Φβ〉 and P 7→ 〈P,N (ℓ)

U 〉 are easily seen to be lower semi
ontinuous and sin
e the level sets of
Iβ are 
ompa
t, it is 
lear that the in�mum on the right-hand side of (1.22) is attained and is thereforea minimum. However, this is not at all 
lear for (1.23); this question lies mu
h deeper and has somerelation to the question about Bose-Einstein 
ondensation, see the dis
ussion in Se
tion 1.4.Now we spe
ify our assumptions on the parti
le intera
tion potential v.Assumption (v): We assume that v : [0,∞) → [0,∞] is measurable and tempered, that is, there are
h > d,A ≥ 0 and R0 > 0 su
h that v(t) ≤ At−h for t ∈ [R0,∞). Additionally, we assume that the



6integral
α(v) =

∫

Rd

v(|x|) dxis �nite and that lim infr→0 v(r) > 0.We now present variational 
hara
terisations for upper and lower bounds for the exponential rate ofthe partition fun
tion. We denote by ΛL = [−L
2 ,

L
2 ]d the 
entred box in R

d with volume Ld.Theorem 1.2. Let LN = (N
ρ )1/d, su
h that ΛLN

has volume N/ρ. Let v satisfy Assumption (v).Denote
Dv =

{
(β, ρ) ∈ (0,∞)2 : (4πβ)−d/2 ≥ ρeβρα(v)

}
. (1.24)Then, for any β, ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},

lim sup
N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≤

ζ(1 + d
2)

(4πβ)d/2
− χ(≤)(β, ρ), (1.25)

lim inf
N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≥

ζ(1 + d
2)

(4πβ)d/2
−

{
χ(≤)(β, ρ) if (β, ρ) ∈ Dv,

χ(=)(β, ρ) if (β, ρ) /∈ Dv,
(1.26)where ζ(m) =

∑∞
k=1 k

−m denotes the Riemann zeta fun
tion.Note that the �rst term on the right, ζ(1 + d
2)/(4πβ)d/2 , is equal to the total mass q, the sum ofthe qk de�ned in (1.8). The proof of Theorem 1.2 is in Se
tions 3.2 (proof of (1.25)) and 3.3 (proof of(1.26)) for empty boundary 
onditions, and in Se
tion 3.4 for the other two.The assumptions ∫

Rd v(|x|) dx < ∞ and lim infr→0 v(r) > 0 are only ne
essary for our proof of thelower bound in (1.26). In the proof of the upper bound in (1.25), it is allowed that v takes the value
+∞ on a set of positive measure (
orresponding to hard 
ore repulsion) and also that v ≡ 0 (thenon-intera
ting 
ase); see dis
ussion in Se
tion 1.5.As an obvious 
orollary we now identify the free energy de�ned in (1.3) in the high temperaturephase and in the low-density phase.Corollary 1.3 (Free energy). Fix (β, ρ) ∈ Dv. Then, for any bc ∈ {∅,Dir,per}, the free energyintrodu
ed in (1.3) is given by

f(β, ρ) = f (bc)(β, ρ) = −
1

β

ζ(1 + d
2 )

(4πβ)d/2
+

1

β
min

{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}
. (1.27)A by-produ
t of the proof of the lower bound of (1.26), see Corollary 3.5, we have the followingupper bound on the free energy.Lemma 1.4. For any β, ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},

f (bc)(β, ρ) = lim sup
N→∞

−
1

β

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≤

ρ

β
log

(
ρ(4πβ)

d
2

)
+ ρ2α(v). (1.28)1.4. Relevan
e and dis
ussion. One of the most prominent open problem in mathemati
al physi
sis the understanding of Bose-Einstein 
ondensation (BEC), a phase transition in a mutually repellentmany-parti
le system at positive, �xed parti
le density, if a su�
iently low temperature is rea
hed.That is, a ma
ros
opi
 part of the system 
ondenses to a state whi
h is highly 
orrelated and 
oherent.The �rst experimental realization of BEC was only in 1995, and it has been awarded with a Nobelprize. In spite of an enormous resear
h a
tivity, this phase transition has withstood a mathemati
alproof yet. Only partial su

esses have been a
hieved, like the des
ription of the free energy of theideal, i.e., non-intera
ting, system (already 
ontained in Bose's and Einstein's seminal paper in 1925)



7or the analysis of mean-�eld models (e.g. [T90, DMP05℄) or the analysis of dilute systems at vanishingtemperature [LSSY05℄ or the proof of BEC in latti
e systems with half-�lling [LSSY05℄. However,the original problem for �xed positive parti
le density and temperature is still waiting for a promisingatta
k. Not even a tra
table formula for the limiting free energy was known yet that 
ould serve as abasis for a proof of BEC. The main purpose of the present paper is to provide su
h a formula.The mathemati
al des
ription of bosons is in terms of the symmetrised tra
e of the negative exponen-tial of the 
orresponding Hamiltonian times the inverse temperature. The symmetrisation 
reates longrange 
orrelations of the intera
ting parti
les making the analysis an extremely 
hallenging endeavour.The Feynman-Ka
 formula gives, in a natural way, a representation in terms of an expansion withrespe
t to the 
y
les of random paths. It is 
onje
tured by Feynman [Fe53℄ that BEC is signalled bythe de
isive appearan
e of a ma
ros
opi
 amount of `in�nite' 
y
les, i.e., 
y
les whose lengths divergewith the number of parti
les. This phenomenon is also signalled by a loss of probability mass in thedistribution of the `�nite' 
y
les. See [Sü93℄ and [Sü02℄ for proofs of this 
oin
iden
e in the ideal Bosegas and some mean-�eld models. A di�erent line of resear
h is studying the e�e
t of the symmetrisationin random permutation and random partition models, see [Ver96℄, [BCMP05℄, [AD08, AK08, A09℄, orin spatial random permutation models going ba
k to [F91℄ and extended in [BU09℄.In the present paper, we address the original problem of a mutually repellent many-parti
le systemat �xed positive parti
le density and temperature and derive an expli
it variational expression for thelimiting free energy. More pre
isely, we prove upper and lower bounds, whi
h 
oin
ide in the high-temperature phase respe
tively low density phase. The formula yields deep inside in the 
y
le stru
tureof the random paths appearing in the Feynman-Ka
 formula. In parti
ular, it opens up a new way toanalyse the stru
ture of the 
y
les at any temperature and density, also in the low-temperature phase,where our two bounds di�er. In future work, we intend to analyse the 
onje
tured phase transition inthat variational formula and to link it to BEC.The methods used in the present paper are mainly probabilisti
. Our starting point is the well-knownFeynman-Ka
 formula, whi
h translates the partition fun
tion in terms of an expe
tation over a largesymmetrised system of intera
ting Brownian bridge paths. In a se
ond step, whi
h is also well-known,we redu
e the 
ombinatorial 
omplexity by 
on
atenating the bridges, using the symmetrisation. Thenovelty of the present approa
h is a reformulation of this system in terms of an expe
tation with respe
tto a marked Poisson point pro
ess, whi
h serves as a referen
e pro
ess. This is a Poisson pro
ess in thespa
e R
d to whose parti
les we atta
h 
y
les 
alled marks, starting and ending at that parti
le. Thesymmetrisation is re�e
ted by an a priori distribution of 
y
le lengths. The intera
tion between theBrownian parti
les are en
oded as intera
tion between the marks in an exponential fun
tional. Theparti
le density is des
ribed by a 
ondition on the total length of the marks in the unit box.Approa
hes to Bose gases using point pro
esses have o

asionally been used in the past (see [F91℄and the referen
es therein) and also re
ently in [Raf09℄, but systems with intera
tions have not yetbeen 
onsidered using this te
hnique, to the best of our knowledge.The greatest adavantage of this approa
h is that it is amenable to a large-deviations analysis. The
entral obje
t here is the stationary empiri
al �eld of the marked point pro
ess, whi
h 
ontains allrelevant information and satis�es a large-deviations prin
iple in the thermodynami
 limit. For some
lass of intera
ting systems, this dire
tion of resear
h was explored in [GZ93, G94℄. In the presentpaper, we apply these ideas to the more di�
ult 
ase of the intera
ting Bose gas. The 
hallenge here isthat the intera
tion involves the spatial points and the details of the marks. Modulo some error terms,we express the intera
tion and the mark length 
ondition in terms of a fun
tional of the stationaryempiri
al �eld. Formally using Varadhan's lemma, we obtain a variational formula in the limit.However, due to a la
k of 
ontinuity in the fun
tionals that des
ribe the intera
tion and the marklengths, the upper and lower bounds derived in this way, may di�er in general. (At su�
iently high



8temperature, we over
ome this problem by additional e�orts and establish a formula for the limit.)This e�e
t is not a te
hni
al drawba
k of the method, but lies at the heart of BEC.In Theorem 1.2, we formulate the limiting free energy in terms of a minimising problem for randomshift-invariant marked point pro
esses with intera
tion under a 
onstraint on the total length of themarks per unit volume. Both formulas in our upper and lower bounds in Theorem 1.2 are formulated interms of random point �elds having �nitely long 
y
les as marks. The 
on
ept used in the present paperis not able to in
orporate in�nitely long 
y
les nor to quantify their 
ontribution to the intera
tion. Inthe proof of our lower bound of the free energy, we drop the intera
tions involving any 
y
le longer thana parameter R that is eventually sent to in�nity, and in our proof of the upper bound we even dropthese 
y
les in the probability spa
e. As a result, our two formulas register only `�nitely long' 
y
les.Their total ma
ros
opi
 
ontribution is represented by the term 〈P,N (ℓ)

U 〉, and the one of the `in�nitelylong' 
y
les by the term ρ − 〈P,N (ℓ)

U 〉. In this way, the long 
y
les are only indire
tly present in ouranalysis: in terms of a `loss of mass', the di�eren
e between the parti
le density ρ and the total massof short 
y
les. Physi
ally speaking, this di�eren
e is the total mass of a 
ondensate of the parti
les.The values of the two formulas χ(≤)(β, ρ) and χ(=)(β, ρ) di�er if `in�nitely long' 
y
les do havesome de
isive 
ontribution in the sense that the optimal point pro
ess(es) P in χ(≤)(β, ρ) satis�es
〈P,N (ℓ)

U 〉 < ρ. We 
onje
ture that the question whether or not the optimal P in χ(≤)(β, ρ) has a lossof probability mass of in�nitely long 
y
les is intimately related with the question whether or not
χ(≤)(β, ρ) = χ(=)(β, ρ) and that this question is in turn de
isively 
onne
ted with the question whetheror not BEC appears. This is in a

ordan
e with Süt®'s work [Sü93, Sü02℄. The 
onje
ture is that, forgiven β and in d ≥ 3, if ρ is su�
iently small, then it is satis�ed, and for su�
iently large ρ it is notsatis�ed. The latter phase is 
onje
tured to be the BEC phase. Future work will be devoted to ananalysis of this question.Here is an abstra
t su�
ient 
riterion for χ(≤)(β, ρ) = χ(=)(β, ρ).Lemma 1.5. Fix β ∈ (0,∞). If there exists a minimiser P̂ of the variational problem infP∈Pθ

(Iβ(P )+

〈P,Φβ〉) satisfying ρ̂ := 〈P̂ ,N (ℓ)

U 〉 <∞, then, for any ρ ∈ (0, ρ̂),
χ(≤)(β, ρ) = χ(=)(β, ρ). (1.29)Proof. Pi
k ρ < ρ̂. Let P be a minimiser in the formula for χ(≤)(β, ρ), i.e., of inf{Iβ(P )+Φβ(P ) : P ∈

Pθ, 〈P,N
(ℓ)

U 〉 ≤ ρ}. If 〈P,N (ℓ)

U 〉 would be smaller than ρ, then an appropriate 
onvex 
ombination, P̃ ,of P and P̂ would satisfy 〈P̃ ,N (ℓ)

U 〉 ∈ (〈P,N (ℓ)

U 〉, ρ] and Iβ(P̃ ) + Φβ(P̃ ) < Iβ(P ) + Φβ(P ). This would
ontradi
t the minimising propery of P . Hen
e, 〈P,N (ℓ)

U 〉 = ρ, and therefore P minimises also theformula for χ(=)(β, ρ). �1.5. The non-intera
ting 
ase. Let us 
ompare our results to the non-intera
ting 
ase. Indeed,[A09, Thm. 2.1℄ says that, in the 
ase v ≡ 0, the identi�
ation of the limiting free energy in (1.27)holds for any β, ρ ∈ (0,∞). To see this, we have to argue a bit, and we will only sket
h the argument.Expli
itly, after some elementary manipulations, one sees that [A09, Thm. 2.1℄ amounts to
f(β, ρ) = −

1

β

ζ(1 + d
2)

(4πβ)d/2
+

1

β
inf

λ∈ℓ1(N) :
P

k kλk≤1
J(λ), (1.30)where we re
all that q was de�ned in (1.8), and we put

J(λ) =
∑

k∈N

qk + ρH(λ | q) + ρ
∑

k∈N

λk log ρ− ρ
∑

k∈N

λk.Now we rewrite the minimum on the right-hand side of (1.27) is a similar form by splitting N (ℓ)

U into∑
k∈N

kNk, where
Nk,Λ(ω) = #{x ∈ ξ ∩ Λ: ℓ(fx) = k} (1.31)



9and Nk = Nk,U is the number of parti
les in the unit box U whose 
y
les have length k. Then we maywrite
inf

{
Iβ(P ) : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}

= inf
λ∈ℓ1(N) :

P
k kλk≤1

inf
P∈Pθ : λ(P )=λ

Iβ(P ),where λ(P ) = 1
ρ(〈P,Nk〉)k∈N. In order to see that (1.30) 
oin
ides with (1.27) for v = 0, one only hasto 
he
k that J(λ) = infP∈Pθ : λ(P )=λ Iβ(P ) for any λ ∈ ℓ1(N) satisfying ∑

k kλk ≤ 1.We do not o�er an analyti
al proof of this fa
t, but instead a probabilisti
 one, whi
h makes use ofthe large-deviations prin
iple in Lemma 3.3 below for the stationary empiri
al �eld RΛL,ωP
introdu
edin (3.2) with rate fun
tion Iβ. Observe that the mapping P 7→ λ(P ) is 
ontinuous as a fun
tion fromthe set of all P ∈ Pθ satisfying 〈P,N (ℓ)

U 〉 ≤ ρ into the sequen
e spa
e ℓ1(N). Hen
e, by the 
ontra
tionprin
iple (see [DZ98, Thm. 4.2.1℄), the sequen
e (λ(RΛL,ωP
))L>0 satis�es a large-deviations prin
iplewith rate fun
tion λ 7→ infP∈Pθ : λ(P )=λ Iβ(P ). By uniqueness of rate fun
tions, it su�
es to showthat this sequen
e satis�es the prin
iple with rate fun
tion J . We now indi
ate how to derive this byexpli
it 
al
ulation.Introdu
e

MΛ =
{
λ ∈ [0, 1]N :

∑

k

kλk ≤ 1,∀k ∈ N : λk|Λ|ρ ∈ N0

}
,and for λ ∈MΛ, we 
al
ulate

Q

(
λ
(
RΛ,ωP

)
= λ

)
= Q

(
∀k ∈ N : 〈RΛ,ωP

,Nk〉 = ρλk

)
= Q

(
∀k ∈ N : #(ξ(k)

P ∩ Λ) = ρ|Λ|λk

)
,where ξ(k)

P = {x ∈ ξP : fx ∈ Ck} is the set of those Poisson points with 
y
le of length k. Sin
e thePoisson pro
esses ξ(k)

P , k ∈ N, are independent with intensity qk, we 
an pro
eed with
Q

(
λ
(
RΛ,ωP

)
= λ

)
=

∏

k∈N

Q
(
#(ξ(k)

P ∩ Λ) = ρ|Λ|λk

)
=

∏

k∈N

(
e−|Λ|qk

(|Λ|qk)ρ|Λ|λk

(ρ|Λ|λk)!

)
.Using Stirling's formula, we get from here that

1

|ΛL|
log Q

(
λ
(
RΛL,ωP

)
= λ

)
∼ −J(λ), λ ∈MΛL

, as L→ ∞.From here, it is easy to �nish the proof of the large-deviations prin
iple for (λ
(
RΛL,ωP

))L>0 with ratefun
tion J . This �nishes the proof of (1.27) for any β, ρ ∈ (0,∞) in the nonintera
ting 
ase v ≡ 0.The well-known Bose-Einstein phase transition in the free energy was made expli
it in the analysisof the right-hand side of (1.30) in [A09℄. It was shown there that
f(β, ρ) = −

1

β

1

(4πβ)d/2
×

{∑
k∈N

e−αk

kd/2+1 + (4πβ)d/2ρα for ρ(4πβ)d/2 < ζ(d
2),

ζ(1 + d
2) for ρ(4πβ)d/2 ≥ ζ(d

2),
(1.32)where α is the unique root of ρ = (4πβ)−d/2

∑
k∈N

e−αk

kd/2 . Note that ζ(d
2) = ∞ in d ∈ {1, 2}, hen
e thereis no phase transition in these dimensions. The �rst line in (1.32) 
orresponds to the 
ase where theminimiser λ in (1.30) sati�es ∑

k kλk = 1, i.e., no `in�nitely long' 
y
les 
ontribute to the free energy,and the se
ond line to the 
ase ∑
k kλk < 1. Hen
e, the Bose-Einstein phase transition is pre
isely atthe point where the variational formula in (1.30) with `≤' starts di�ering from the formula with `='.2. Rewrite of the partition fun
tionIn this se
tion, we give the proof of Proposition 1.1.As a �rst step, we give a representation of Z(bc)

N (β,Λ) in terms of an expansion with respe
t to the
y
les of the permutations in (1.1). This is well-known and goes ba
k to Feynman 1955.



10 We denote the set of all integer partitions of N by
PN =

{
λ = (λk)k ∈ N

N

0 :
∑

k

kλk = N
}
. (2.1)The numbers λk are 
alled the o

upation numbers of the integer partition λ. Any integer partition λof N de�nes a 
onjuga
y 
lass of permutations of 1, . . . ,N having exa
tly λk 
y
les of length k for any

k ∈ N. The term in (1.1) after the sum on σ depends only on this 
lass. Hen
e, we repla
e this sumby a sum on integer partitions λ ∈ PN and 
ount the permutations in that 
lass. For any of these
y
les of length k, we integrate out over all but one of the starting and terminating points of all the
k Brownian bridges belonging to that 
y
le and use the Markov property to 
on
atenate them. Thisgives the i-th (with i = 1, . . . , λk) bridge B(k,i) with time horizon [0, kβ], starting and terminating ata site, whi
h is uniformly distributed over Λ. The family of these bridges B(k,i) is independent, and
B(k,i) has distribution P

(bc,kβ)

Λ , where we de�ne
P

(bc,β)

Λ (df) =

∫
Λ dxµ(bc,β)

x,x (df)∫
Λ dx g(bc)

β (x, x)
. (2.2)The expe
tation will be denoted by E

(bc,β)

Λ .For λ ∈ PN , de�ne
G(λ)

N,β =
1

2

N∑

k1,k2=1

λk1∑

i1=1

λk2∑

i2=1

k1−1∑

j1=0

k2−1∑

j2=0

1l(k1,i1,j1)6=(k2,i2,j2)

∫ β

0
ds v

(
|B(k1,i1)(j1β + s) −B(k2,i2)(j2β + s)|

)
.(2.3)In words, Gλ

N,β is the total intera
tion between di�erent bridges B(k1,i1) and B(k2,i2) and betweendi�erent legs of the same bridge B(k,i).Lemma 2.1 (Cy
le expansion). For any N ∈ N,
Z(bc)

N (β,Λ) =
∑

λ∈PN

( ∏

k∈N

[ ∫
Λ dx g(bc)

kβ (x, x)
]λk

λk! kλk

)⊗

k∈N

(
E

(bc,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
. (2.4)Proof. We are going to split every permutation on the right-hand side of (1.1) into a produ
t of its
y
les. Assume that a permutation σ ∈ SN has pre
isely λk 
y
les of length k, for any k ∈ {1, . . . ,N}.Then ∑N

k=1 kλk = N . The 
orresponding Brownian bridges may be renumbered B(k,i)

j with k ∈ N,
i = 1, . . . , λk and j = 1, . . . , k. Then the measure ∫

Λ dx1 . . .
∫
Λ dxN

⊗N
i=1 µ

(bc,β)
xi,xσ(i)

splits into ana

ording produ
t, whi
h 
an be written, after a proper renumbering of the indi
es, as
N∏

k=1

λk∏

i=1

k−1∏

j=0

∫

Λ
dx(i)

k,j+1

⊗

k∈N

λk⊗

i=1

k−1⊗

j=0

µ(bc,β)

x
(i)
k,j ,x

(i)
k,j+1

, where x(i)

k,0 = x(i)

k,k. (2.5)Denote by f1 ⋄· · ·⋄fk the 
on
atenation of f1, . . . , fk, i.e., f1 ⋄· · ·⋄fk((i−1)β+s) = fi(s) for s ∈ [0, β].Note that the Markov property of the 
anoni
al Brownian bridge measures implies the 
on
atenationformula
µ(bc,kβ)

x,x (d(f1 ⋄ · · · ⋄ fk)) =

∫

(Λ)k−1

dx1 · · · dxk−1

k⊗

i=1

µ(bc,β)
xi−1,xi

(dfi), x0 = xk = x. (2.6)Now we integrate out over x(i)

k,2, . . . , x
(i)

k,k for any k ∈ N and i = 1, . . . , λk. In this way, we obtain thatwe may repla
e the bridges B(k,i)

j under the measure
N⊗

k=1

λk⊗

i=1

( ∫

Λ
dx(i)

k µ
(bc,kβ)

x
(i)
k ,x

(i)
k

)



11by the bridges B(k,i) = B(k,i)

1 ⋄ · · · ⋄B(k,i)

k under the measure
N⊗

k=1

[ ∫

Λ
dx g(bc)

kβ (x, x)
]λk(

E
(bc,kβ)

Λ

)⊗λk .Summarising, we get
Z(bc)

N (β,Λ) =
∑

λ∈PN

A(λ)

N !

N∏

k=1

[ ∫

Λ
dx g(bc)

kβ (x, x)
]λk ⊗

k∈N

(
E

(bc,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
,where A(λ) = #

{
σ ∈ SN : σ has λk 
y
les of length k,∀k ∈ N

} is size of the 
onjuga
y 
lass for theinteger partition λ ∈ PN . Standard 
ounting arguments (see [C02, Th. 12.1℄) give
A(λ) =

N !
∏N

k=1(λk!kλk)
,and 
on
lude the proof. �Now we explain our rewrite of the partition sum in terms of the marked Poisson point pro
essintrodu
ed in Se
tion 1.2, i.e., we prove Proposition 1.1. The main idea is to repla
e the sum overinteger partitions in Lemma 2.1 by an expe
tation with respe
t to the marked Poisson point pro
essunder 
onditions on the mark events. We restri
t to the 
ase of empty boundary 
onditions; the othertwo require only notational 
hanges.It will be 
onvenient to write the pro
ess ωP as the superposition

ωP =
∑

k∈N

ω(k)

P , where ω(k)

P =
∑

x∈ξ
(k)
P

δ(x,Bx), (2.7)and ω(k)

P is the Poisson pro
ess on R
d × Ck with intensity measure νk de�ned in (1.7). The pro
esses

ω(k)

P are independent.Proof of Proposition 1.1. We start from Lemma 2.1. Pi
k an integer partition λ ∈ PN witho

upation number λk satisfying ∑N
k=1 kλk = N , and abbreviate the number of 
y
les of λ by m =∑N

k=1 λk. For any k ∈ N, the family (B(k,i))i=1,...,λk
under the measure (P(kβ)

Λ )⊗λk has the samedistribution as the family of marks (Bx)
x∈ξ

(k)
P

of the 
onditional Poisson pro
ess ω(k)

P given {#(ξ(k)

P ∩Λ) =

λk}. Considering the produ
t measure ⊗
k∈N

(P(kβ)

Λ )⊗λk is equivalent to 
onsidering the superpositionof the 
onditional pro
esses ω(k)

P with k ∈ N.Hen
e, we have pre
isely m Poisson points in Λ. For any k ∈ N, 
onditional on {#(ξ(k)

P ∩ Λ) = λk},the set ξ(k)

P ∩ Λ has the same distribution as the set of starting points, {B(k,1)(0), . . . , B(k,λk)(0)}. A
omparison of (1.14)-(1.15) with (2.3) shows that the intera
tion term G(λ)

N,β must be repla
ed by theHamiltonian HΛ(ωP). Hen
e,
⊗

k∈N

(
E

(kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
= E

[
e−HΛ(ωP)

∣∣∣∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk

]
.We see in an elementary way that

E

[
e−HΛ(ωP)

∣∣∣∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk

]

= E

[
e−HΛ(ωP)1l{∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk}
∣∣∣#(ξP ∩ Λ) = m

]∏
k∈N

λk!

m!
qm

∏

k∈N

(qk)
−λk ,

(2.8)



12where q and the qk are de�ned in (1.8). Let us summarise all the terms involving λk from (2.4) and(2.8) (noting that gβ(x, x) = (4πβk)−
d
2 ):

( ∏

k∈N

(4πβk)−
d
2
λk |Λ|λk

λk! kλk

)
×

∏
k∈N

λk!

m!
qm

∏

k∈N

(qk)
−λk = |Λ|m

qm

m!
.Re
alling that Nk,Λ(ω) = #{x ∈ Λ: ℓ(fx) = k} = #(ξ(k)

P ∩ Λ) and putting NΛ = #(ξP ∩ Λ), we get
ZN (β,Λ) =

N∑

m=1

|Λ|m
qm

m!

∑

λ∈PN,P
k λk=m

E

[
e−HΛ(ωP)1l{∀k ∈ N, Nk,Λ(ωP) = λk}

∣∣∣NΛ(ωP) = m
]
. (2.9)Note that the event {NΛ(ωP) = m} has probability |Λ|m qm

m! exp{−|Λ|q}. Hen
e
ZN (β,Λ) = e|Λ|q

N∑

m=1

∑

λ∈PN,P
k λk=m

E

[
e−HΛ(ωP)1l{∀k ∈ N, Nk,Λ(ωP) = λk}1l{NΛ(ωP) = m}

]
. (2.10)Note that the events {∀k ∈ N, Nk,Λ(ωP) = λk} ∩ {NΛ(ωP) = m} are a de
omposition of the event

{N (ℓ)

Λ (ωP) = N}. Hen
e, the assertion in (1.17) follows.
�3. Large-deviations arguments: proof of Theorem 1.2In this se
tion we prove Theorem 1.2 by applying large-deviations arguments to the representationof the partition fun
tion in Proposition 1.1. In Se
tions 3.1�3.3 we 
arry out the proof for emptyboundary 
ondition, and in Se
tion 3.4 we show how to tra
e the other two boundary 
onditions ba
kto this 
ase. In Se
tion 3.1 we introdu
e the main obje
t of our analysis, the stationary empiri
al�eld with respe
t to the marked Poisson pro
ess ωP, and we rewrite the partition fun
tion in termsof this �eld. We also formulate and explain the main steps of the proof, among whi
h the 
ru
iallarge-deviations prin
iple for that �eld. In Se
tions 3.2 and 3.3 we prove the upper and lower bounds,respe
tively, for empty boundary 
ondition.3.1. The stationary empiri
al �eld. Our analysis is based on a large-deviations prin
iple for thestationary empiri
al �eld, de�ned as follows. For any ξ ⊂ R

d and for any 
entred box Λ ⊂ R
d, let

ξ(Λ) be the Λ-periodi
 
ontinuation of ξ ∩Λ. Analogously, we de�ne the Λ-periodi
 
ontinuation of therestri
tion of the 
on�guration ω to Λ as
ω(Λ) =

∑

z∈Zd

∑

x∈ξ∩Λ

δ(x+Lz,fx) if ω =
∑

x∈ξ

δ(x,fx) ∈ Ω, (3.1)where L is the side length of the 
entered 
ube Λ. Then the stationary empiri
al �eld is given by
RΛ,ω =

1

|Λ|

∫

Λ
dy δθy(ω(Λ)), ω ∈ Ω, (3.2)where the shift operator θy : R

d → R
d is de�ned by θy(x) = x−y. It is 
lear that RΛ,ω is a shift-invariantprobability measure on Ω, i.e., it is an element of Pθ.Now we express N (ℓ)

Λ (ω) in terms of RΛ,ω. Re
all that U denotes the 
entred unit box.; we write ΛLfor Λ.Lemma 3.1. For any 
entred box Λ ⊂ R
d with |Λ| > 1, and any ω ∈ Ω,

|Λ|
〈
RΛ,ω,N

(ℓ)

U

〉
= N (ℓ)

Λ (ω).



13Proof. Let L > 1 be su
h that Λ = ΛL = [−L
2 ,

L
2 ]d. We 
al
ulate

|Λ|
〈
RΛ,ω, N

(ℓ)

U

〉
=

∫

Λ
dz N (ℓ)

U

(
θz(ω(Λ))

)
=

∑

x∈ξ(Λ)

∫

Λ
dz 1lU−x(z)ℓ(fx)

=
∑

x∈ξ(Λ)
x∈Λ+U

ℓ(fx)|Λ ∩ (U − x)|

= N (ℓ)

Λ (ω) +
∑

x∈ξ(Λ)∩((Λ+U)\Λ)

ℓ(fx)|Λ ∩ (U − x)|

+
∑

x∈ξ∩Λ

ℓ(fx)
(
|Λ ∩ (U − x)| − 1

)
.It remains to show that the sum of the two last sums is equal to zero. Note that the last sum 
an berestri
ted to x ∈ ξ ∩ (Λ \ ΛL−1). We use the fa
t that for ea
h point x ∈ ξ ∩ (Λ \ ΛL−1) there existsa 
olle
tion of points in ξ(Λ) ∩ (ΛL+1 \ Λ), with the same mark of x. Indeed, there exists a positiveinteger m(x) ≤ d and a set {x′1, . . . , x′m(x)}, su
h that x′i ∈ ξ(Λ) ∩ (Λ + U) \ Λ, x′i = x + Lzi for some

zi ∈ Zd and ∑m(x)
i=1 |Λ ∩ (U − x′i)| = 1 − |Λ ∩ (U − x)|. Noti
e that

⋃

x∈ξ∩(Λ\ΛL−1)

m(x)⋃

i=1

x′i = ξ(Λ) ∩ ((Λ + U) \ Λ),and fx = fx′
i
, for any i ≤ m(x). Hen
e

∑

x∈ξ(Λ)∩((Λ+U)\Λ)

ℓ(fx)|Λ ∩ (U − x)| =
∑

x∈ξ∩Λ

ℓ(fx)
(
1 − |Λ ∩ (U − x)|

)
.

�Now we express the intera
tion Hamiltonian in terms of integrals of the stationary empiri
al �eldagainst suitable fun
tions; more pre
isely, we give lower and upper bounds. In the following lowerbound, it is important that this fun
tional is lo
al and bounded; this will be a
hieved up to a smallerror only.Fix large trun
ation parameters M,R and K and introdu
e ξ(≤K) = {x ∈ ξ : ℓ(fx) ≤ K} for ω ∈ Ωand
Φ(R,M,K)

β (ω) =
∑

x∈ξ(≤K)∩U

∑

y∈ξ(≤K)∩ΛR

T (M)
x,y (ω), (3.3)where ΛR = [−R

2 ,
R
2 ]d and

T (M)
x,y (ω) =

1

2

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
vM (|fx(iβ + s) − fy(jβ + s)|) ds,and where vM (r) = (v ∧M)(r) = min{v(r),M}. Re
all that NΛ(ω) = |ξ ∩ Λ| denotes the parti
lenumber in a measurable set Λ ⊂ R

d.Lemma 3.2 (Hamiltonian bounds). Fix any 
entred box Λ = ΛL.(i) For any M,R,K,S ∈ (1,∞), and for L ≥ R+ 2,
HΛ(ω) ≥ |Λ|

〈
RΛ,ω,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉
− CNΛL\ΛL−R−2

(ω), ω ∈ Ω, (3.4)where C = 2dβMK2rS, and r depends only on R and d.(ii)
HΛ(ω) ≤ |Λ|

〈
RΛ,ω,Φβ

〉
, ω ∈ Ω, (3.5)



14Proof of (i). Estimate
|Λ|

〈
RΛ,ω,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉
=

∫

Λ
dzΦ(R,M,K)

β (θz(ω(Λ)))1l{NΛR
(θz(ω(Λ))) ≤ S}

≤

∫

Λ
dz

∑

x∈ξ
(≤K)
(Λ)

∩(U−z)

∑

y∈ξ
(≤K)
(Λ)

∩(ΛR−z)

T (M)
x,y (ω(Λ))1l{♯(ξ

(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}

=
∑

x,y∈ξ
(≤K)
(Λ)

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y

T (M)
x,y (ω(Λ))

∫

Λ∩(U−x)∩(ΛR−y)
dz 1l{♯(ξ(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}.

(3.6)
Observe that the integral over z is not larger than one. Now we split the last sum into the sums on
(x, y) ∈ Λ2 and the remainder. For (x, y) ∈ Λ2, we may repla
e T (M)

x,y (ω(Λ)) by T (M)
x,y (ω) and estimate itagainst Tx,y(ω). Hen
e, l.h.s. of (3.6) ≤ HΛ(ω) + Ψ(R,M,K,S)

Λ (ω),where the remainder term is
Ψ(R,M,K,S)

Λ (ω) =
∑

x,y∈ξ
(≤K)
Λ

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

T (M)
x,y (ω(Λ))

∫

Λ∩(U−x)∩(ΛR−y)
dz 1l{♯(ξ(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}

≤
1

2
βMK2

∑

x,y∈ξ
(≤K)
Λ

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

1l{∃ z ∈ Λ ∩ (U − x) ∩ (ΛR − y) : ♯(ξ(≤K)

Λ ∩ (ΛR − z)) ≤ S}

≤
1

2
βMK2

∑

x,y∈ξ
(≤K)
(Λ)

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

1l{♯(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S}.The sum over (x, y) /∈ Λ2 is split into the sum over x ∈ (Λ +U)LN \Λ, y ∈ Λ + ΛR and x ∈ Λ +U, y ∈
(Λ + ΛR) \ Λ. Re
all that Λ = ΛL and that L ≥ R + 1. The 
ondition x ∈ ΛR+1 + y implies that inboth 
ases y is summed over a subset of ΛL+R+2 \ ΛL−R−1. Hen
e,

Ψ(R,M,K,S)

Λ (ω)

≤
1

2
βMK2

∑

y∈ξ
(≤K)
(Λ)

∩(ΛL+R+2\ΛL−R−1)

♯{x ∈ ξ(≤K)

(Λ) ∩ ΛR+1 + y : ♯(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S}.Now we show that the 
ounting fa
tor is not larger than rS, where r depends only on R and thedimension d. Indeed, 
over ΛR+1 + y with r boxes ∆1, . . . ,∆r of diameter (R− 1)/2, then
♯
{
x ∈ξ(≤K)

Λ ∩ (ΛR+1 + y) : ♯(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S
}

≤
r∑

i=1

♯{x ∈ ξ(≤K)

(Λ) ∩ ∆i : ♯(ξ
(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S)

≤
r∑

i=1

♯{x ∈ ξ(≤K)

(Λ) ∩ ∆i : ♯(ξ
(≤K)

(Λ) ∩ ∆i) ≤ S)}

≤ rS,sin
e ∆i ⊂ ΛR−1 + x if x ∈ ∆i. This gives
Ψ(R,M,K,S)

Λ (ω) ≤
1

2
βMK2rSNΛL+R+2\ΛL−R−1

(ω(Λ)) ≤ 2dβMK2rSNΛL\ΛL−R−2
(ω),and �nishes the proof of (i).



15Proof of (ii). In a similar way as in (3.6), one sees that, for any ω ∈ Ω,
|Λ|

〈
RΛ,ω,Φβ

〉
=

∑

x,y∈ξ(Λ)

Tx,y(ω(Λ)) |Λ ∩ (U − x)|

= HΛ(ω) +
∑

x,y∈ξ∩Λ

Tx,y(ω(Λ))
(
|Λ ∩ (U − x)| − 1

)

+
∑

x,y∈ξ(Λ) : x∈ΛL+1,(x,y)/∈Λ2

Tx,y(ω(Λ)) |Λ ∩ (U − x)|.

(3.7)
It remains to show that the sum of the two last sums is nonnegative. Note that the sum on x in the�rst sum may be restri
ted to x ∈ ξ ∩ (Λ \ΛL−1). For ea
h su
h x and for any y ∈ ξ ∩Λ, there exist apositive integer m(x) ≤ d and a set {x′1, y′1, . . . , x′m(x), y

′
m(x)}, su
h that x′i ∈ ξ(Λ) ∩ΛL+1, x′i = x+Lziand y′i = y + Lzi for some zi ∈ Z

d, and
m(x)∑

i=1

|Λ ∩ (U − x′i)| = |Λ ∩ (U − x)| − 1.Then Tx,y(ω(Λ)) = Tx′,y′(ω(Λ)) by Λ-periodi
ity of ω(Λ). This shows that the sum of the two last sumsin (3.7) is nonnegative, whi
h �nishes the proof of (ii). �Re
all that LN = (N/ρ)d. Applying Lemmas 3.1 and 3.2(i) to the representation in Proposition 1.1,we obtain, for any R,M,K,S > 0, the upper bound
ZN (β,ΛLN

) ≤ e|ΛLN
|q
E

[
exp

{
− |ΛLN

|
〈
RΛLN

,ωP
,Φ(R,M,K)

β 1l{NΛR
≤ S}

〉}

× exp
{
CNΛLN

\ΛLN−R−2
(ωP)

}
1l{〈RΛLN

,ωP
,N (ℓ)

U 〉 = ρ}
]
, N ∈ N,

(3.8)and, using Lemmas 3.1 and 3.2(ii), the lower bound
ZN (β,ΛLN

) ≥ e|ΛLN
|q
E

[
e
−|ΛLN

|〈RΛLN
,ωP

,Φβ〉1l{〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ}
]
, N ∈ N. (3.9)The main point of introdu
ing the stationary empiri
al �eld is that the family (RΛL,ωP

)L>0 satis�esa large-deviations prin
iple on Pθ, whi
h is known from the work by Georgii and Zessin. On Pθ we
onsider the following topology. A measurable fun
tion g : Ω → R is 
alled lo
al if it depends onlyon the restri
tion of ω to some bounded open 
ube, and it is 
alled tame if |g| ≤ c(1 + NΛ) for somebounded open 
ube Λ and some 
onstant c ∈ R
+. We endow the spa
e Pθ with the topology τL of lo
al
onvergen
e, de�ned as the smallest topology on Pθ su
h that the mappings P 7→ 〈P, g〉 are 
ontinuousfor any g ∈ L, where L denotes the linear spa
e of all lo
al tame fun
tions. It is 
lear that the map

P 7→ 〈P,NU 〉 is τL-
ontinuous; however, the map P 7→ 〈P,N (ℓ)

U 〉 is only lower semi
ontinuous.Lemma 3.3 (Large deviations for RΛL,ωP
). The family of measures RΛL,ωP

satis�es, as L → ∞, alarge-deviations prin
iple in the topology τL with speed |ΛL| and rate fun
tion Iβ : Pθ → [0,∞] de�nedin (1.20). The fun
tion Iβ is a�ne and lower τL-semi
ontinuous and has τL-
ompa
t level sets.Proof. This is [GZ93, Theorem 3.1℄. �Our goal is to apply Varadhan's lemma to the expe
tations on the right hand sides of (3.8) and(3.9). In 
onjun
tion with the large-deviations prin
iple of Lemma 3.3, this formally suggests thatboth (1.25) and (1.26) should be valid, as we explain now. Indeed, �rst 
onsider (3.9) and note thatthe map P 7→ 〈P,Φβ〉 has the proper 
ontinuity property for the appli
ation of the lower bound halfof Varadhan's lemma. If one negle
ts the fa
t that the 
ondition 〈P,N (ℓ)

U 〉 = ρ does not de�ne an openset of P 's, then one easily formally obtains (1.26) from (3.9).



16 Now we 
onsider (3.8). Assume that the term NΛLN
\ΛLN−R−2

(ωP) is a negligible error term and thattaking the trun
ation parameters R,M,K and S to in�nity will �nally turn Φ(R,M,K)

β 1l{NΛR
≤ S}〉into Φβ. The fun
tional P 7→ 〈P,Φ(R,M,K)

β 1l{NΛR
≤ S}〉 has the su�
ient 
ontinuity property for theappli
ation of the upper bound half of Varadhan's lemma. However, the fun
tional P 7→ 〈P,N (ℓ)

U 〉is not upper semi
ontinuous. Hen
e, the equality 〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ is turned into the inequality
〈P,N (ℓ)

U 〉 ≤ ρ in the resulting variational formula. Therefore, one easily formally obtains (1.25) from(3.8). In parti
ular, our upper and lower bounds in Theorem 1.2 may di�er. For small β resp. small
ρ, we improve the proof in Lemma 3.4 and a
hieve a 
oin
iden
e of upper and lower bounds, but thishas nothing to do with large-deviations arguments.The la
k of upper semi
ontinuity of the fun
tional P 7→ 〈P,N (ℓ)

U 〉 
auses serious te
hni
al problemsin the proof of the lower bound, sin
e the 
ondition 〈P,N (ℓ)

U 〉 = ρ must be approximated by some open
ondition.In Lemma 3.2, we already estimated away all the intera
tion involving 
y
les of length > K, and inthe proof of the lower bound we will restri
t the 
on�guration spa
e to marks with lengths ≤ K. Thisis why our variational formulas spot only the presen
e of `�nitely long' 
y
les.3.2. The upper bound for empty boundary 
ondition. In this se
tion, we prove the upper boundin (1.25) for bc = ∅. A

ording to (3.8), it will be su�
ient to prove
lim sup

R,M,K,S→∞
lim sup
N→∞

1

|ΛLN
|
log E

[
exp

{
− |ΛLN

|
〈
RΛLN

,ωP
,Φ(R,M,K)

β 1l{NΛR
≤ S}

〉}

× exp
{
CNΛLN

\ΛLN−R−2
(ωP)

}
1l{〈RΛLN

,ωP
,N (ℓ)

U 〉 = ρ}
]
≤ −χ(≤)(β, ρ).

(3.10)An outline of the proof is as follows. We separate �rst the two exponential terms from ea
h otherwith the help of Hölder's inequality. The latter term will turn out to be a negligible error term. Thefun
tional that appears in the �rst exponent turns out to be lo
al and bounded. Sin
e its integralagainst a probability measure P is a τL-
ontinuous and bounded fun
tion of P , Varadhan's lemma
an be applied and expresses the limit superior in terms of the variational formula for the trun
atedversions of the intera
tion fun
tionals. The indi
ator on the event {〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ} is estimatedagainst the indi
ator on its 
losure, whi
h is the same set with `≤' instead of `='. In this way, weobtain an upper bound against a trun
ated version of the variational formula −χ(≤)(β, ρ). By lettingthe trun
ation parameters go to in�nity, this formula 
onverges to −χ(≤)(β, ρ).Let us turn to the details. We abbreviate RN = RΛLN
,ωP

.We pi
k η ∈ (0, 1) and start from (3.8), then Hölder's inequality gives
ZN (β,ΛLN

) ≤ e|ΛLN
|q
E

[
e−

1
1−η

|ΛLN
|〈RN ,Φ

(R,M,K)
β 1l{NΛR

≤S}〉1l{〈RN ,N
(ℓ)

U 〉 ≤ ρ}
]1−η

× E

[
e

1
η
CNΛLN

\ΛLN−R−2
(ωP)

]η
;

(3.11)note that we also estimated `= ρ' against `≤ ρ' in the indi
ator. The se
ond term on the right handside of (3.11) is easily estimated using the fa
t that NΛLN
\ΛLN−R−2

is a Poisson random variable withparameter q × |ΛLN
\ ΛLN−R−2| and that this parameter is of surfa
e order Ld−1

N = o(|ΛN |). Hen
e,the expe
tation is estimated
E

[
e

1
η
CNΛLN

\ΛLN−R−2
(ωP)

]η
= e−ηq|ΛLN

\ΛLN−R−2| exp
{
ηeC/ηq|ΛLN

\ ΛLN−R−2|
}
≤ eo(|ΛLN

|).



17We turn to the �rst term on the right hand side of (3.11). It turns out that Φ(R,M,K)

β 1l{NΛR
≤ S} isbounded. In fa
t,

Φ(R,M,K)

β (ω)1l{NΛR
(ω) ≤ S} ≤

1

2
Mβ

[ ∑

x∈U∩ξ

ℓ(fx)
∑

y∈ΛR∩ξ

ℓ(fy) +
( ∑

x∈U∩ξ

ℓ(fx)
)2]

1l{NΛR
(ω) ≤ S}

≤MβK2S2. (3.12)Furthermore, it is easily seen that it is also lo
al. Therefore, the map
P 7→

〈
P,Φ(R,M,K)

β 1l{NΛR
≤S}

〉is bounded and 
ontinuous on Pθ with respe
t to the topology τL. Now we 
an apply a variant ofVaradhan's lemma [DZ98, Thm. 4.3.1℄ in 
onjun
tion with the large-deviations prin
iple of Lemma 3.3,to obtain that
lim sup
N→∞

1

|ΛLN
|
log E

[
exp

{
−

1

1 − η
|ΛLN

|
〈
RN ,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉}
1l{〈RN ,N

(ℓ)

U 〉 ≤ ρ}
]

≤ − inf
P∈Pθ : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) +

1

1 − η
〈P,Φ(R,M,K)

β 1l{NΛR
≤ S}〉

)
,

(3.13)sin
e the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 ≤ ρ} is 
losed.It remains to prove that
lim inf

R,M,K→∞,η↓0
lim inf
S→∞

inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,S,η(P )

)
≥ inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + F (P )

)
, (3.14)where we used the abbreviations F (P ) = 〈P,Φβ〉 and FM,R,K,S,η(P ) = 1

1−η 〈P,Φ
(R,M,K)

β 1l{NΛR
≤ S}〉.Fix M,R,K > 0 and η ∈ (0, 1) and pi
k a sequen
e Sn → ∞ and some Qn satis�ng 〈Qn,N

(ℓ)

U 〉 ≤ ρsu
h that
Iβ(Qn) + FM,R,K,Sn,η(Qn) < inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)
+

1

n
. (3.15)By 
ompa
tness of the level sets of Iβ, we may assume that the limiting measure Q = limn→∞Qn existsin Pθ, where the limit is taken along some suitable subsequen
e. Noti
e further that 〈Q,N (ℓ)

U 〉 ≤ ρ byFatou's lemma. Fix any large S > 0, then for n su�
iently large,
inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)
> Iβ(Qn) + FM,R,K,Sn,η(Qn) −

1

n

≥ Iβ(Qn) + FM,R,K,S,η(Qn) −
1

n
,

(3.16)where the se
ond inequality uses the monotoni
ity of FM,R,K,S,η in S. Now send n → ∞ and usethe lower semi-
ontinuity of Iβ and the 
ontinuity of FM,R,K,S,η, to get that the limit inferior of theright hand side of (3.16) is larger or equal to Iβ(Q) + FM,R,K,S,η(Q). Sending S → ∞ and using themonotone 
onvergen
e theorem, we arrive at
lim inf
S→∞

inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,S,η(P )) ≥ inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,∞,η(P )).In a similar way one proves that
lim inf

R,M,K→∞,η↓0
inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,∞,η(P )) ≥ inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) + F (P )

)
,whi
h implies (3.14) and ends the proof of (3.10).



183.3. The lower bound for empty boundary 
ondition. In this se
tion, we prove the lower boundin (1.26) for bc = ∅. A

ording to (3.9), it will be su�
ient to prove
lim sup
N→∞

1

|ΛLN
|
log E

[
e
−|ΛLN

|〈RΛLN
,ωP

,Φβ〉1l{〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ}
]
≥ −χ(=)(β, ρ). (3.17)We follow the standard strategy of 
hanging the measure so that untypi
al events be
ome typi
al, and
ontrolling the Radon-Nikodym density by means of M
Millan's theorem. However, for our problemwe have to over
ome two major di�
ulties. First, the map P 7→ 〈P,Φβ〉 is not upper semi
ontinuous,and se
ond, the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 = ρ} appearing in the indi
ator is not open. This set indu
eslong-range 
orrelations not only between the points of the pro
ess, but also between their marks.Therefore, we 
annot use the results in [G94℄ for our proof.Our strategy is as follows. In Lemma 3.7, we repla
e the 
ondition 〈P,N (ℓ)

U 〉 = ρ by the 
ondition
|〈P,N (ℓ)

U 〉−ρ| < δ for some small δ and 
ontrol the repla
ement error. This 
ondition be
omes an open
ondition when restri
ting the mark spa
e E to a 
ut-o� version. A restri
tion of Pθ in Lemma 3.8makes the map P 7→ 〈P,Φβ〉 
ontinuous. In order to apply M
Millan's theorem to the transformedpoint pro
ess, an ergodi
 approximation is 
arried out in Lemma 3.10.Let us turn to the details. First, we prepare for relaxing the 
ondition `= ρ' to `≈ ρ' in the followingstep, whi
h is of independent interest. Bounding the quotient ZN+1/ZN of partition fun
tions is oftenthe key step to prove the equivalen
e of the 
anoni
al ensemble with the grand 
anoni
al ensemble,where the parti
le number is not �xed but governed by the mean. In the following, we give a lowerbound in our 
ase, whi
h will also imply a non-trivial upper bound for the limiting free energy. Ourproof is 
arried out in the setting of the 
y
le expansion introdu
ed in Se
tion 2 and is independent ofthe reformulation in terms of the marked Poisson point pro
ess.Lemma 3.4. For any N ∈ N and any measurable set Λ ⊂ R
d,

ZN+1(β,Λ)

ZN (β,Λ)
≥ (4πβ)−

d
2

|Λ|

N + 1
e−Nβα(v)/|Λ|, (3.18)where we re
all that α(v) =

∫
Rd v(|x|) dx.Proof. The strategy is as follows. We start with the 
y
le expression for the partition fun
tion

Zl. We then add a parti
le, i.e., an additional 
y
le of length one, and 
ontrol the 
hanges in the
ombinatorial fa
tor and in the energy. Here our assumption ∫
Rd v(|x|) dx < ∞ allows to bound theadditional intera
tion energy.We abbreviate ZN (β,Λ) by ZN in this proof. Re
all (2.1). A

ording to Lemma 2.1, the 
y
lerepresentation of the partition fun
tion reads

ZN =
∑

λ∈PN

F1(λ)F2(λ), (3.19)with the 
ombinatorial and intera
tion part
F1(λ) =

N∏

k=1

(4πβk)−dλk/2|Λ|λk

λk!kλk
and F2(λ) =

( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β

]
.De�ne the inje
tion

T : PN → PN+1, T (λ) = λ̃ with λ̃k =

{
λ1 + 1 if k = 1

λk if k ≥ 2.



19All the terms in (3.19) are nonnegative, hen
e we may estimate
ZN+1 ≥

∑

eλ∈PN+1 : eλ1≥1

F1(λ̃)F2(λ̃) =
∑

λ∈PN

F1(T (λ))F2(T (λ))

=
∑

λ∈PN

F1(T (λ))

F1(λ)

F2(T (λ))

F2(λ)
F1(λ)F2(λ).

(3.20)The �rst quotient on the right hand side of (3.20) is bounded from below as follows
F1(T (λ))

F1(λ)
= (4πβ)−d/2 |Λ|

λ1 + 1
≥ (4πβ)−d/2 |Λ|

N + 1
. (3.21)The se
ond quotient is estimated via Jensen's inequality as follows. Re
all that B(k,i)

(j−1)β+s is theBrownian bridge of the j-th leg of the i-th 
y
le of length k, 1 ≤ i ≤ λk.
F2(T (λ)) = E

(β)

Λ ⊗
( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β exp

{
−

∑

k∈N

λk∑

i=1

k∑

j=1

∫ β

0
v(|Bs −B(k,i)

(j−1)β+s|) ds
}]

≥
( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β exp

{
−

∑

k∈N

λk∑

i=1

k∑

j=1

∫ β

0
E

(β)

Λ

[
v(|Bs −B(k,i)

(j−1)β+s|)
]
ds

}]
.

(3.22)Given λ ∈ PN and k ∈ N, i ∈ {1, . . . , λk}, j ∈ {1, . . . , k}, we write f(s) := B(k,i)

(j−1)β+s, and we estimatethe expe
tation in the exponent as follows.
E

(β)

Λ (v(|Bs − f(s)|) =
1

|Λ|

∫

Λ
dx

∫

Λ
dy

gs(x, y)v(|y − f(s)|)gβ−s(y, x)

gβ(x, x)

=
1

|Λ|

∫

Λ
dy v(|y − f(s)|)

∫

Λ
dx

(gβ−s(y, x)gs(x, y)

gβ(y, y)

) gβ(y, y)

gβ(x, x)

=
1

|Λ|

∫

Λ
dy v(|y − f(s)|),

(3.23)sin
e, be
ause of gβ(x, x) = gβ(y, y), the integral over x is exa
tly 1. An upper bound follows easilybe
ause the intera
tion potential is nonnegative, i.e.,
E

(β)

Λ (v(|Bs − f(s)|) ds =
1

|Λ|

∫

Λ
dy v(|y − f(s)|) ≤

1

|Λ|

∫

Rd

v(|x|) dx =
1

|Λ|
α(v). (3.24)Using this in (3.22), we get

F2(T (λ)) ≥
( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,βe

−
P

k∈N

Pλk
i=1

Pk
j=1 β 1

|Λ|
α(v)

]
= F2(λ)e

−Nβ
|Λ|

α(v)
.Using this and (3.21) in (3.20), the assertion follows. �Now we draw two 
orollaries. First, we give an upper bound for the free energy, introdu
ed in (1.3).Corollary 3.5 (Upper bound for the free energy). For any β, ρ ∈ (0,∞),

lim sup
N→∞

−
1

β

1

|ΛLN
|
logZN (β,ΛLN

) ≤
ρ

β
log

(
ρ(4πβ)

d
2

)
+ ρ2α(v).Proof. Re
all that ΛLN

is the 
entred box with volume N/ρ. We use Lemma 3.4 iteratively, to get
ZN (β,ΛLN

) =

N−1∏

l=1

Zl+1(β,ΛLN
)

Zl(β,ΛLN
)

≥
N−1∏

l=1

(
(4πβ)−

d
2
1

ρ
e−βα(v)ρ

)
=

(
(4πβ)−

d
2
1

ρ
e−βα(v)ρ

)NThe assertion follows by taking lim supN→∞− 1
β

1
|ΛLN

| log. �



20Corollary 3.6. Fix β, ρ ∈ (0,∞) and a box ΛLN
⊂ R

d satisfying |ΛLN
| = N/ρ. Assume that (β, ρ) ∈

Dv. Then, for any N, Ñ ∈ N satisfying Ñ ≤ N ,
E

[
e
−HΛLN

(ωP)
1l{N (ℓ)

ΛLN
(ωP) = N}

]
≥ E

[
e
−HΛLN

(ωP)
1l{N (ℓ)

ΛLN
(ωP) = Ñ}

]
.In parti
ular, the map Ñ 7→ Z eN (β,ΛLN

) is in
reasing in Ñ ∈ {1, . . . ,N}.Proof. Observe that, for l < N , by Lemma 3.4,
Zl+1(β,ΛLN

)

Zl(β,ΛLN
)

≥ (4πβ)−
d
2
|ΛLN

|

l + 1
e−lβα(v)/|ΛLN

| ≥ (4πβ)−
d
2
1

ρ
e−βρα(v) ≥ 1,where the last step follows from (β, ρ) ∈ Dv. Hen
e, for any Ñ ∈ N satisfying Ñ ≤ N , we have

ZN (β,ΛLN
) ≥ Z eN (β,ΛLN

). Now use Proposition 1.1 to �nish. �OpennessAs we already mentioned, some of the te
hni
al di�
ulties for the appli
ation of Varadhan's lemma
ome from the fa
t that the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 = ρ} is not open. This problem will be taken 
areof in the following lemma: we derive a lower bound for the right-hand side in (3.9) in terms of thesame expe
tation, where the stri
t 
ondition = ρ is repla
ed by the 
ondition ∈ (ρ− δ, ρ+ δ), for some
δ > 0. Though this set is not open in Pθ, it will be open after restri
ting Ω to some 
ut-o� version
Ω(K,R), whi
h we will introdu
e a bit later.Lemma 3.7. Fix β, ρ ∈ (0,∞) and a box ΛLN

⊂ R
d satisfying |ΛLN

| = N/ρ. We abbreviate RN (ω) =

RΛLN
,ω for ω ∈ Ω. Fix δ ∈ (0, ρ). Then for any N ∈ N,

E

[
e
−HΛLN

(ωP)
1l{〈RN (ωP), N (ℓ)

U 〉 = ρ}
]

≥
(C1 ∧ C2)

δ|ΛLN
|

2δ|ΛLN
| + 2

E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ + δ)}
]
,

(3.25)where C1 = 1 ∧
(
e−(ρ+δ)βα(v)(4πβ)−d/2 1

ρ+δ

) and C2 = e
− q

ρ−δ .Proof. De�ne the subset
Pl =

{
P ∈ Pθ : 〈P,N (ℓ)

U 〉 =
l

|ΛLN
|

}of probability measures. Abbreviate
Y (1)

l = E

[
e
−HΛLN

(ωP)
1lPl

(RN (ωP))
]
, (3.26)

Y (2)

l = E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1lPl
(RN (ωP))

]
. (3.27)Noti
e that, sin
e N/|ΛLN

| = ρ, the left-hand side of (3.25) is equal to Y (1)

N , while the expe
tation onthe right-hand side is equal to ∑

l∈N : (ρ−δ)|ΛLN
|<l<(ρ+δ)|ΛLN

|

Y (2)

l .We now estimate the quotients Y (1)

l+1/Y
(1)

l , respe
tively Y (2)

l+1/Y
(2)

l , from below and above. More pre
isely,we show, for any l ∈ N0,
Y (1)

l+1 ≥ C1Y
(1)

l if (ρ− δ)|ΛLN
| < l ≤ ρ|ΛLN

|, (3.28)and
Y (2)

l ≥ C2Y
(2)

l+1 if ρ|ΛLN
| ≤ l < (ρ+ δ)|ΛLN

|. (3.29)The proof of (3.28) follows from Lemma 3.4, 
ombined with Proposition 1.1. Now we prove (3.29).



21We �nd a map T : Pl+1 → Pl that des
ribes a thinning pro
edure with the parameter p = l
l+1 .De�ne the spa
e of extended 
on�gurations

Ω̃ =
{
(ω, e) : ω ∈ Ω, e = (ex)x∈ξ ∈ {0, 1}ξ

}and the thinning map
T : Ω̃ → Ω, T (ω, e) =

∑

x∈ξ

exδ(x,fx). (3.30)Given ω =
∑

x∈ξ δ(x,fx), let µξ be the ξ-fold produ
t measure of the Bernoulli measure on {0, 1} withparameter p on {0, 1}ξ . The mapping
T : Pl+1 → Pl, T (P ) = (P ⊗ µξ) ◦ T

−1, (3.31)des
ribes the distribution of what is left from a 
on�guration with distribution P after deleting ea
hparti
le independently with probability p. Given P ∈ Pl+1, it follows
〈T (P ), N (ℓ)

U 〉 =

∫

Ω
P (dω)

∫

Ωξ

µξ(de)
∑

x∈ξ∩U

exℓ(fx) =

∫

Ω
P (dω)

∑

x∈ξ∩U

pℓ(fx) = p〈P,N (ℓ)

U 〉

=
l

l + 1
〈P,N (ℓ)

U 〉 =
l

|ΛLN
|
,whi
h shows that T : Pl+1 → Pl is well de�ned. Sin
e T removes parti
les, and therefore energy, theestimate

〈P,Φβ〉 ≥ 〈T (P ),Φβ〉, P ∈ Pl+1, (3.32)follows easily. Inequality (3.32) gives the estimate
Y (2)

l+1 ≤ E

[
e−|ΛLN

|〈T (RN (ωP)),Φβ〉1lPl
(T (RN (ωP)))

]

=

∫

Pl

e−|ΛLN
|〈P,Φβ〉

dQ ◦ R−1
N ◦ T −1

dQ ◦ R−1
N

(P ) Q ◦ R−1
N (dP ),

(3.33)where we re
all that Q is the distribution of the marked Poisson pro
ess ωP, and we 
on
eive RN as amap Ω → Pθ; note that RN depends only on the 
on�guration in ΛLN
.The main task is to estimate the 
orresponding Radon-Nikodym density. First we argue that

Q ◦ R−1
N ◦ T −1 =

(
Q⊗ µξ

)
◦ T−1 ◦ R−1

N . (3.34)Indeed, the left hand side is the distribution of T (RN (ωP)), and the right hand side is the distributionof RN (T (ωP, e)), where, given ξP, the sequen
e e = (ex)x∈ξP is a random Bernoulli pro
ess withparameter p. It is 
lear that these two distributions 
oin
ide, sin
e T (RN (ωP)) is obtained from ωP bydeleting ea
h parti
le in the 
on�guration θY ((ωP)ΛLN
) (where Y is uniformly distributed over ΛLN

)independently with probability p, and RN (T (ωP, e)) is obtained from ωP by �rst deleting ea
h parti
lein (ωP)ΛLN
independently with probability p and then applying the random shift θY to the remainderof the 
on�guration. By the thinning property of Poisson pro
esses, these two operations lead to thesame 
on�guration distribution.By (3.34), it su�
es in (3.33) to identify the density

ϕN =
d
(
(Q ⊗ µξ) ◦ T

−1 ◦ R−1
N

)

d(Q ◦ R−1
N )

(3.35)only on the image RN (Ω). We 
laim that
ϕN (RN (ω)) = p|ξ∩ΛLN

|e(1−p)|ΛLN
|, ω ∈ Ω. (3.36)



22This is shown as follows. First note that, sin
e RN (ω) depends on the 
on�guration ω in ΛLN
only, itsu�
es to show, for any measurable set A ⊂ Ω that depends on ΛLN

only, that
(Q⊗ µξ)(T

−1(A)) =

∫

A
Q(dω) p|ξ∩ΛLN

|e(1−p)q|ΛLN
|. (3.37)This 
an be seen as follows. The measure (Q ⊗ µξ) ◦ T

−1 on the left-hand side is the distribution ofwhat is left from a Poisson pro
ess ωP in Λ after removing ea
h parti
le independently with probability
p. The measure with Q-density ω 7→ p|ξ∩ΛLN

|e(1−p)q|ΛLN
| is the same measure, as it expli
itly des
ribesthis pro
edure: it is equal to the quotient of the probabilities of having pre
isely |ξ ∩ ΛLN

| parti
lesunder the Poisson distributions with parameters pq|ΛLN
| and q|ΛLN

|, respe
tively. This proves (3.37)and therefore (3.36).Note that, for (ρ− δ)|ΛLN
| < l ≤ ρ|ΛLN

|,
ϕN (RN (ω)) ≤ e(1−p)q|ΛLN

| = e
q

l+1
|ΛLN

| ≤ e
q

ρ−δ , ω ∈ Ω.Hen
e, from (3.33) we have
Y (2)

l+1 ≤ e
q

ρ−δ

∫

Pl

e−|ΛLN
|〈P,Φβ〉Q ◦ R−1

N (dP ) = e
q

ρ−δY (2)

l ,and thus the estimate (3.29).Now we �nish the proof of the lemma subje
t to (3.28) and (3.29). By Lemma 3.2(ii), we have
Y (1)

N ≥ Y (2)

N and thereforel.h.s. of (3.25) = Y (1)

N ≥
1

2δ|ΛLN
| + 2

( ∑

(ρ−δ)|ΛLN
|<l≤ρ|ΛLN

|

Y (1)

N +
∑

ρ|ΛLN
|<l<(ρ+δ)|ΛLN

|

Y (2)

N

)
.For (ρ− δ)|ΛLN

| < l ≤ ρ|ΛLN
| the estimate (3.28) gives

Y (1)

N ≥ C1Y
(1)

N−1 ≥ · · · ≥ C
δ|ΛLN

|

1 Y (1)

l ≥ C
δ|ΛLN

|

1 Y (2)

l ,be
ause C1 ≤ 1, where we again used Lemma 3.2(ii). On the other hand, for ρ|ΛLN
| < l < (ρ+δ)|ΛLN

|the estimate (3.29) gives
Y (2)

N ≥ C2Y
(2)

N+1 ≥ · · · ≥ C
δ|ΛLN

|

2 Y (2)

l ,where we used C2 < 1. Therefore
Y (1)

N ≥
(C1 ∧ C2)

δ|ΛLN
|

2δ|ΛLN
| + 2

∑

(ρ−δ)|ΛLN
|<l<(ρ+δ)|ΛLN

Y (2)

l = r.h.s. of (3.25), (3.38)whi
h �nishes the proof of the lemma. �As a 
on
lusion of Lemma 3.7 we have the following lower bound, for any su�
iently large N ∈ N.
ZN (β,ΛLN

) ≥ e|ΛLN
|(q−Cδ)

E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
, (3.39)for any δ ∈ (0, ρ

2 ) and some C depending only on β, ρ and v. Furthermore, if (β, ρ) ∈ Dv, then we 
an
ombine Lemma 3.7 with Corollary 3.6 to get, for any ρ̃ ∈ (0, ρ] and any δ ∈ (0, eρ
2 ), for any su�
ientlylarge N ∈ N,

ZN (β,ΛLN
) ≥ e|ΛLN

|(q−Cδ)
E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ̃− δ, ρ̃+ δ)}
]
. (3.40)Hen
e, in order to prove both bounds in (1.26), it is enough to prove

lim inf
δ↓0

lim inf
N→∞

1

|ΛLN
|
log E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
≥ −χ(=)(β, ρ), (3.41)for any β, ρ ∈ (0,∞), sin
e χ(≤)(β, ρ) = infeρ∈(0,ρ) χ

(=)(β, ρ).



23Restri
tion of the mark spa
eWe will approximate the mark spa
e E by the 
ut-o� version
E(K,R) :=

K⋃

k=1

Ck,R, where Ck,R :=
{
f ∈ Ck : sup

s∈[0,kβ]
|f(s) − f(0)| ≤ R

}
.Let Ω(K,R) denote the set of lo
ally �nite point measures on R

d×E(K,R). De�ne the 
anoni
al proje
tion
πK,R : Ω → Ω(K,R) by

πK,R(ω) = ω(K,R) =
∑

x∈ξ : fx∈E(K,R)

δ(x,fx).On Ω(K,R) we 
onsider the Poisson point pro
ess
ω(K,R)

P = πK,R(ωP) =
∑

x∈ξP : Bx∈E(K,R)

δ(x,Bx) (3.42)as the referen
e pro
ess. The distribution of ω(K,R)

P is denoted Q(K,R), its intensity measure is ν(K,R) =∑K
k=1 ν

(K,R)

k , where ν(K,R)

k is the restri
tion of νk to Ω(K,R); see (1.7). By I(K,R)

β we denote the ratefun
tion with respe
t to ω(K,R)

P , that is, I(K,R)

β is de�ned as Iβ in (1.20) with ωP repla
ed by ω(K,R)

P . Ifthere is no 
onfusion possible, we identify the set Pθ(Ω
(K,R)) of shift-invariant marked random point�elds on Ω(K,R) with the set of those P ∈ Pθ = Pθ(Ω) that are 
on
entrated on Ω(K,R). A variant ofLemma 3.3 gives that (R

ΛL,ω
(K,R)
P

)L>0 satis�es the large-deviations prin
iple with rate fun
tion I(K,R)

β .Observe that R
ΛL,ω

(K,R)
P

= RΛL,ωP
◦ π−1

K,R. Hen
e, a

ording to the 
ontra
tion prin
iple, we have theidenti�
ation
I(K,R)

β (P ) = inf{Iβ(Q) : Q ∈ Pθ, Q ◦ π−1
K,R = P}, (3.43)sin
e the map Q 7→ Q ◦ π−1

K,R is 
ontinuous.For a while, we keep K and R �xed. Now we work on the expe
tation on the right-hand side of(3.9). We obtain a lower bound by requiring that RΛLN
,ωP

be 
on
entrated on Ω(K,R). On this event,we may repla
e RΛLN
,ωP

by R
ΛLN

,ω
(K,R)
P

, and we may repla
e the expe
tation E with respe
t to thePoisson pro
ess ωP by the expe
tation E(K,R) with respe
t to ω(K,R)

P . We write RN for R
ΛLN

,ω
(K,R)
P

inthe following. Hen
e, we 
an extend (3.39) by
ZN (β,ΛLN

) ≥ e|ΛLN
|(q−Cδ)

E
(K,R)

[
e−|ΛLN

|〈RN ,Φβ〉1l{〈RN ,N
(ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
. (3.44)Noti
e that {P ∈ Pθ(Ω

(K,R)) : 〈P,N (ℓ)

U 〉 ∈ (ρ − δ, ρ + δ)} is an open set. In order to apply the lowerbound of Varadhan's lemma to the right-hand side, we need to have that the map P 7→ 〈P,Φβ〉 isupper semi
ontinuous. This will be a
hieved by a further restri
tion pro
edure.ContinuityWe prove the 
ontinuity of the map P 7→ 〈P,Φβ〉 on the following suitable subset of measures. For
r ∈ (0,∞), put

Γr =
{
ω ∈ Ω(K,R) : Tx,y(ω) ≤ r ∀x, y ∈ ξ, and |x− y| ≥

1

r
for all distin
t x, y ∈ ξ

}
, (3.45)where Tx,y(ω) was de�ned in (1.15). Denote

Pθ,r :=
{
P ∈ Pθ(Ω

(K,R)) : P (Γr) = 1
}
.In the following lemma we use that the map t 7→ td−1 sups≥t−2R v(s) is integrable, whi
h easily followsfrom the temperedness assumption in Assumption (v).Lemma 3.8. For any r > 0, the map P 7→ 〈P,Φβ〉 is 
ontinuous on the set Pθ,r.



24Proof. We adapt the proof of the lower bound in [G94, Thm. 2℄. Re
all that πn : Ω → Ω2n denotesthe proje
tion πn(ω) =
∑

x∈ξ∩Λ2n
δ(x,fx) on the box Λ2n = [−n, n]d. For any P let Pn := P ◦ π−1

n . Let
P,P (1), P (2), . . ., be in Pθ,r su
h that P (k) ⇒ P as k → ∞. Then we have, for any n, k ∈ N,

|〈P,Φβ〉 − 〈P (k),Φβ〉|

≤ |〈P,Φβ − Φβ ◦ πn〉| + |〈P (k) − P,Φβ ◦ πn〉| + sup
k∈N

|〈P (k),Φβ − Φβ ◦ πn〉|

≤ |〈P (k) − P,Φβ ◦ πn〉| + 2 sup
eP∈Pθ,r

〈P̃ , |Φβ − Φβ ◦ πn|〉.

(3.46)Observe that the last term on the right-hand side vanishes a n → ∞ sin
e Φβ ◦ πn 
onverges to Φβuniformly on Γr. Indeed, for ω ∈ Γr estimate
Φβ(ω) − Φβ

(
πn(ω)

)
=

∑

x∈U∩ξ

∑

y∈ξ∩Λc
2n

Tx,y(ω) ≤
1

2

∑

x∈U∩ξ

∑

y∈ξ∩Λc
2n

K2β sup
s≥|x−y|−2R

v(s), (3.47)where we also used that ℓ(fx) ≤ K and sups∈[0,βℓ(fx)] |fx(s)−fx(0)| ≤ R for any x ∈ ξ, sin
e ω ∈ Ω(K,R).Sin
e |x− y| ≥ 1
r for any distin
t x, y ∈ ξ, the upper bound is not larger than

K2βCr,R

∫ ∞

n
td−1 sup

s≥t−2R
v(s) dt,for some Cr,R depending only on r and R. Now use that map t 7→ td−1 sups≥t−2R v(s) is integrable.For any n, the �rst term on the right-hand side of (3.46) vanishes as k → ∞ sin
e P (k) 
onvergesweakly to P , and Φβ ◦ πn is lo
al and bounded on Γr. �Ergodi
 approximationAs a preparation for the 
onstru
tion of an ergodi
 approximation, we now show that any P with �niteenergy is tempered, that is, the expe
tation of the square of the mean-parti
le density is �nite. Herewe use the assumption that lim infr↓0 v(r) > 0, whi
h is part of Assumption (v). Hen
e, we may pi
k

R∗ > 0 and ζ > 0 su
h that v(|x|) ≥ ζ for all |x| ≤ R∗.Lemma 3.9 (Temperedness). Fix K,R ∈ N, and let P ∈ Pθ(Ω
(K,R)) with 〈P,Φβ〉 <∞. Then

〈P,N2
U 〉 <∞ and 〈P, (N (ℓ)

U )2〉 <∞.Proof. We may assume that R∗ < 1
2 . Therefore, we obtain a lower bound for 〈P,Φβ〉 by restri
tingthe sums on x, y to x, y ∈ ΛR∗/4 = [−R∗

4 ,
R∗

4 ]d and by dropping all the parts of the 
y
les ex
ept forthe �rst one:
〈P,Φβ〉 =

1

2

∫
P (dω)

∑

x∈ξ∩U,y∈ξ

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
v(|fx(iβ + s) − fy(jβ + s)|) ds

≥
1

2

∫
P (dω)

∑

x,y∈ξ∩ΛR∗/4

1l{x 6= y}

∫ β

0
v(|fx(s) − fy(s)|) ds.

(3.48)De�ne, for any ω ∈ Ω(K,R) and x ∈ ξ,
τx(ω) = inf{s ∈ [0, β] : |fx(s) − x| > R∗/4} ∧ δ. (3.49)Note that |x − y| ≤ R∗/2 on the right-hand side of (3.48). Sin
e v(|x|) ≥ ζ for all |x| ≤ R∗, ea
hintegral on the right hand side of (3.48) 
an be estimated from below as follows.

∫ β

0
v(|fx(s)− fy(s)|) ds ≥

∫ τx(ω)∧τy(ω)

0
v(|fx(s)− fy(s)|) ds ≥ ζ (τx(ω) ∧ τy(ω)), x ∈ ξ(k), y ∈ ξ(k′).



25We get a further lower bound in (3.48) by inserting the indi
ator on the event {τx = δ = τy}:
〈P,Φβ〉 ≥

δζ

2

∫
P (dω)#

{
(x, y) ∈

(
ξ ∩ ΛR∗/4

)2
: x 6= y, τx = δ = τy

}
.Sin
e the event {τx = δ} is de
reasing for de
reasing δ and its probability tends to one as δ ↓ 0, theabove 
ounting variable tends to the number of distin
t pairs in ξ∩ΛR∗/4. Hen
e, for some su�
ientlysmall δ > 0, we have

〈P,Φβ〉 ≥
δζ

4

∫
P (dω)#

{
(x, y) ∈

(
ξ ∩ ΛR∗/4

)2
: x 6= y

}
≥
δζ

8

〈
P,N2

ΛR∗/4

〉
.Hen
e, if 〈P,Φβ〉 is �nite, then, by shift-invarian
e of P , also 〈P,N2

Λ〉 is �nite for any bounded box Λ.Sin
e P is 
on
entrated on 
on�gurations with bounded leg length, also 〈P, (N (ℓ)

Λ )2〉 is �nite for anybounded box Λ. �Now we approximate any probability measure on Ω(K,R) with an ergodi
 measure. De�ne
ψR(t) :=

{
sups≥t−2R v(s) if t ≥ 3R,

v(R) if t ∈ [0, 3R].
(3.50)Re
all from Assumption (v) that ψR(t) = O(t−h) for some h > d.Lemma 3.10 (Ergodi
 approximation). Fix K,R ∈ N and ε > 0. Then, for any P ∈ Pθ(Ω
(K,R))satisfying I(K,R)

β (P ) + Φβ(P ) < ∞ and for any neighborhood V of P in Pθ(Ω
(K,R)), there exists anergodi
 measure P̃ ∈ V and some r > 0 su
h that P̃ (Γr) = 1, and 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and

I(K,R)

β (P̃ ) ≤ I(K,R)

β (P ) + ε.Proof. This is similar to [G94, Lemma 5.1℄. Re
all that Pn denotes the proje
tion of P on Ωn,the 
on�guration spa
e on the box Λ2n = [−n, n]d. Sin
e 〈P,Φβ〉 < ∞, and as Φβ ≥ 0, we have
〈Pn,Φβ〉 < ∞. Hen
e limr→∞ Pn(Γr) = 1, for any n ∈ N. Therefore, we 
an 
hoose a sequen
e
r(n) → ∞ su
h that limn→∞ Pn(Γr(n)) = 1. Set m = n+ 3R. Denote by P̂ (n) the probability measureunder whi
h the parti
le 
on�gurations in the (up to the boundary, disjoint) boxes Λm + 2mk, with
k ∈ Z

d, are independent and distributed as P ′
n := Pn(· | Γr(n)). In parti
ular, no points are 
ontainedin the 
orridors (Lm\Λn) + 2mk.We now put

P (n) =
1

|Λm|

∫

Λm

P̂ (n) ◦ θz dz.It is then 
lear that P (n) ∈ Pθ. A standard argument shows that P (n) is ergodi
; see, e.g., [G88,Theorem 14.12℄. Sin
e Γr(n) is shift invariant, and P̂ (n)(Γr(n)) = 1, it also follows that P (n)(Γr(n)) = 1.We 
laim that P̃ = P (n) with n su�
iently large, satis�es the requirements. For this, we have toshow that (1) lim supn→∞ Iβ(P (n)) ≤ Iβ(P ), (2) lim supn→∞〈P (n),Φβ〉 ≤ 〈P,Φβ〉, and �nally (3) P (n)
onverges weakly to P .The proof of (1) 
an be found in the proof of [G94, Lemma 5.1℄.Now we turn to the proof of (2). First note that
〈P (n),Φβ〉 =

1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω )

∑

x∈ξ∩(U−z)

∑

y∈ξ

Tx,y(ω), (3.51)where we re
all the notation in (1.15). The sum on y in (3.51) will be split in the sum over y ∈ ξ ∩Λnand the remainder. The �rst sum is handled as follows. As x, y both belong to Λn, the measure P̂ (n)
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an be repla
ed by P ′
n. Furthermore, sin
e Tx,y(ω) ≥ 0, the integration with respe
t to P ′

n may beestimated against the integration with respe
t to P (·)/Pn(Γr(n)). This gives
1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λn

Tx,y(ω)

≤
1

Pn(Γr(n))

1

|Λm|

∫

Λm

dz

∫
P (dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ

Tx,y(ω).Now use the shift invarian
e of P and re
all that limn→∞ Pn(Γr(n)) = 1 to see that the last expressionapproa
hes 〈P,Φβ〉.Now we 
onsider the remainder sum in (3.51), where y is summed over ξ ∩ Λc
m. Observe that

|x− y| ≥ 3R, hen
e we may estimate
Tx,y(ω) ≤ βK2ψR(|x− y|) ≤ βK2 sup

x : |x|≤|z|+1
ψR(|x− y|) ≤ βK2ψR(|y| − |z| − 1)where in the last inequality we used the fa
t that |x− y| ≥ |x| − |y| and that ψR(·) is non-in
reasing.Now we distinguish to whi
h of the boxes Λn + 2km, with k ∈ Z

d, the point y belongs (re
all that the
on�gurations in these boxes are independent). Hen
e for any z ∈ Λm, we have that
∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω)

≤ βK2
∑

k∈Zd\{0}

∫

Ωn

P ′
n(dω(1))

∫

Ωn

P ′
n(dω(2))#(ξ(1) ∩

(
U − z)

) ∑

y∈(ξ(2)∩Λn)+2km

ψR(|y| − |z| − 1)

≤
βK2

Pn(Γr(n))2
〈P,NU 〉〈P,NΛn〉

∑

k∈Zd\{0}

ψR(2|k|m −m− |z| − 1),where we estimated integrals with respe
t to P ′
n against integrals with respe
t to P/Pn(Γr(n)) twi
e,and used the shift invarian
e of P . Now we use Assumption (v) and obtain a 
onstant C (dependingonly on R) su
h that ψR(t) ≤ Ct−h for any t ≥ 0. Using this in the last display gives that

∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω)

≤
βK2C2d

Pn(Γr(n))2
〈P,NU 〉

2nd
∑

k∈Zd\{0}

(2|k|m−m− |z| − 1)−h.Now add the fa
tor 1/|Λm| and integrate over z ∈ Λm. Pi
k some l = l(n) su
h that l ∼ n and
nd(n − l)−h → 0 as n → ∞ and split the integral on z ∈ Λm into the integrals on z ∈ Λl and on theremainder. Then it is easy to see that

lim
n→∞

1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω )

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω) = 0.Now we have shown (2), i. e., that lim supn→∞〈P̂ (n),Φβ〉 ≤ 〈P,Φβ〉.For the proof of (3), we pi
k f ∈ L with some bounded measurable ∆ ⊂ R
d su
h that f = f(· ∩ ∆)and |f | ≤ N∆. To estimate the di�eren
e of |P (n)(f) − P (f)| we integrate over the box Λm and get

|P (n)(f) − P (f)| ≤
1

|Λm|

∫

Λm

dx 1l{x+ ∆ ⊂ Λm}
∣∣Pn(f ◦ θx | Γr(n)) − P (f ◦ θx)

∣∣

+
1

|Λm|

∫

Λm

dx 1l{x+ ∆ 6⊂ Λm}
∣∣P̂ (n)(N∆+x) + P (N∆+x)

∣∣.
(3.52)



27Now P (N∆+x) ≤ |∆|µ(P )
Pn(Γr(n))

, where µ(P ) <∞ is the intensity of P . In the same way we obtain
P̂ (n)(N∆+x) = Pn(N∆+xmod 2m+1 | Γr(n)) ≤

|∆|µ(P )

Pn(Γr(n))
.Hen
e the se
ond term on the right hand side of (3.52) is not larger than the volume of {x ∈ Λm : x+

∆ 6⊂ Λm} (whi
h is of surfa
e order of Λm) times O(|Λm|−1), i.e., it vanishes. Con
erning the �rstterm on the right hand side of (3.52), we estimate
∣∣Pn(f ◦ θx | Γr(n)) − P (f ◦ θx)

∣∣

≤
∣∣∣

1

Pn(Γr(n))
− 1

∣∣∣Pn(N∆+x; Γr(n)) + Pn(N∆+x; Γc
r(n))

≤ |∆|µ(P )
∣∣∣

1

Pn(Γr(n))
− 1

∣∣∣ + P (N2
∆)1/2(1 − Pn(Γr(n)))

1/2.By Lemma 3.9, P (N2
∆) is �nite, hen
e the right-hand side vanishes as n→ ∞. Therefore, also the �rstterm on the right hand side of (3.52) vanishes, and we 
on
lude that (3) holds. �Final step: proof of the lower bound in (1.26):Now we 
an �nish the proof of the lower bound in (1.26). Re
all that it is su�
ient to prove (3.41) forany β, ρ ∈ (0,∞), to get both lower bounds in (1.26). Fix K,R ∈ N and δ ∈ (0, ρ). We start from theright-hand side of (3.44). Fix ε > 0, and pi
k P ∈ Pθ(Ω

(K,R)) satisfying I(K,R)

β (P ) + 〈P,Φβ〉 < ∞ and
|〈P,N (ℓ)

U 〉 − ρ| < δ. By Lemma 3.10, we may �x some r > 0 and some ergodi
 measure P̃ ∈ Pθ(Ω
(K,R))satisfying |〈P,N (ℓ)

U 〉 − ρ| < δ and 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and I(K,R)

β (P̃ ) ≤ I(K,R)

β (P ) + ε and P̃ (Γr) = 1.Sin
e I(K,R)

β (P̃ ) <∞, for N large enough there is a density f (K,R)

N of the proje
tion P̃LN
of P̃ to Ω(K,R)

LNwith respe
t to the proje
tion Q
(K,R)

LN
of the restri
ted marked Poisson point pro
ess Q(K,R) to ΩLN

,where we re
all that ΩLN
is the set of restri
tions of 
on�gurations in Ω to ΛLN

, and Ω(K,R)

LN
is de�nedanalogously. We 
on
eive RN as a map RN,· : ΩLN

→ Pθ(Ω
(K,R)). Now introdu
e the event

CN =
{
ω ∈ Ω(K,R)

LN
: 〈RN,ω,Φβ〉 ≤ 〈P̃ ,Φβ〉 + ε,

1

|ΛLN
|
log f (K,R)

N (ω) ≤ I(K,R)

β (P̃ ) + ε
}
. (3.53)Then we 
an estimate

E
(K,R)

[
e−|ΛN |〈RN ,Φβ〉1l{|〈RN , N

(ℓ)

U 〉 − ρ| < δ}
]

=

∫

Ω
(K,R)
LN

dQ(K,R)

LN
e−|ΛN |〈RN ,Φβ〉1l{|〈RN ,N

(ℓ)

U 〉 − ρ| < δ}

≥

∫

CN

P̃LN
(dω)

1

f (K,R)

N (ω)
e−|ΛN |〈RN ,Φβ〉1l{|〈RN ,N

(ℓ)

U 〉 − ρ| < δ}

≥ e−|ΛLN
|(I

(K,R)
β ( eP )+ε)e−|ΛLN

|(〈 eP ,Φβ〉+ε)P̃LN

(
CN ∩ {ω ∈ Ω(K,R)

LN
: |〈RN ,N

(ℓ)

U 〉 − ρ| < δ}
)
. (3.54)The 
ontinuity of the map P 7→ 〈P,Φβ〉 (see Lemma 3.8), the law of large numbers and M
Millan'stheorem imply that

P̃LN

(
{ω ∈ Ω(K,R)

LN
: |〈RN,ω, N

(ℓ)

U 〉 − ρ| < δ, 〈RN,ω ,Φβ〉 ≤ 〈P̃ ,Φβ〉 + ε,

1

|ΛLN
|
log f (K,R)

N (ω) ≤ I(K,R)

β (P̃ ) + ε}
)
→ 1 as N → ∞.Using this in (3.54) and this in (3.44), we arrive at

lim inf
N→∞

1

|ΛLN
|
logZN (β,ΛLN

) ≥ q − δ − I(K,R)

β (P̃ ) − ε− 〈P̃ ,Φβ〉 − ε. (3.55)



28Now re
all that 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and I(K,R)

β (P̃ ) ≤ Iβ(P ) + ε. Now we 
an let ε ↓ 0 and take thein�mum over P , to obtain
lim inf
N→∞

1

|ΛLN
|
logZN (β,ΛLN

) ≥ q − δ − inf
P∈Pθ(Ω(K,R)) : |〈P,N

(ℓ)
U 〉−ρ|<δ

{
I(K,R)

β (P ) + 〈P,Φβ〉
}Our last step is to approa
h the variational formula χ(=)(β, ρ) on the right-hand side of (1.26) bythe �nite-K and �nite-R versions.Lemma 3.11 (Removing the 
ut-o�). For any δ ∈ (0, ρ),

lim sup
K,R→∞

inf
P∈Pθ(Ω(K,R)) : |〈P,N

(ℓ)
U 〉−ρ|<δ

{
I(K,R)

β (P ) + 〈P,Φβ〉
}

≤ inf
P∈Pθ(Ω): 〈P,N

(ℓ)
U 〉=ρ

{
Iβ(P ) + 〈P,Φβ〉

}
= χ(=)(β, ρ).

(3.56)Proof. Fix P ∈ Pθ satisfying 〈P,N (ℓ)

U 〉 = ρ and Iβ(P )+Φβ(P ) <∞. For K,R ∈ N, 
onsider PK,R =

P ◦π−1
K,R. Then we have PK,R(Ω(K,R)) = 1 and 〈PK,R,N

(ℓ)

U 〉 = 〈P, πK,R ◦N (ℓ)

U 〉 ↑ 〈P,N (ℓ)

U 〉 for K,R → ∞by the monotonous 
onvergen
e theorem. Hen
e, for K and R su�
iently large, |〈PK,R,N
(ℓ)

U 〉− ρ| < δ.Observe that 〈PK,R,Φβ〉 ≤ 〈P,Φβ〉 sin
e Φβ ≥ 0. By (3.43), we have I(K,R)

β (PK,R) ≤ Iβ(P ). Finally,observe that the in�mum over P su
h that |〈P,N (ℓ)

U 〉 − ρ| < δ is obviously not larger than the in�mumover P satisfying 〈P,N (ℓ)

U 〉 = ρ. �3.4. Proof of Theorem 1.2 for Diri
hlet and periodi
 boundary 
onditions. In this se
tion,we show how to adapt the proof of Theorem 1.2 for empty boundary 
onditions to obtain the prooffor Diri
hlet and periodi
 boundary 
onditions. Let us make a 
ouple of obvious observations. First,the restri
tion of the periodised Brownian bridge measure on paths that do not leave the box Λ equalsthe Brownian bridge measure with Diri
hlet boundary 
onditions, i.e.,
µ(per,kβ)

x,x |
C
(Dir)
k,Λ

= µ(Dir,kβ)
x,x .Hen
e, it is easy to see that q(Dir) ≤ q(per) and that

Z(Dir)

N (β,Λ) ≤ ZN (β,Λ) ≤ Z(per)

N (β,Λ), (3.57)sin
e the Feynman-Ka
 formula for Z(Dir)

N 
ontains only those paths that stay in Λ all the time withthe same distribution as under whi
h they appear in the formula for Z(per)

N . Hen
e, it will be su�
ientto prove the upper bound in (1.25) for Z(per)

N and the lower bound in (1.26) for Z(Dir)

N only.We start with the representation of Z(Dir)

N and Z(per)

N given in Proposition 1.1. The �rst step is toshow that the weights q(bc) 
onverge to q =
∑

k∈N
qk. For notational reasons, we now write q(bc)

Λ for
q(bc).Lemma 3.12. Let b
 ∈ {Dir, per}. Then

lim
N→∞

q(bc)

ΛN
= q. (3.58)Proof. Re
all that we write L = LN = (N/ρ)1/d for the side length of the box Λ.(a) First we 
onsider periodi
 boundary 
onditions. Then we have

q(per)

ΛN
= (4πβ)−d/2

N∑

k=1

1

k1+d/2

∑

z∈Zd

e−
|z|2

4kβ
L2

. (3.59)



29Sin
e the sum on k = 1, . . . , N and z = 0 
onverges towards (4πβ)−d/2
∑∞

k=1
1

k1+d/2 = q, we only haveto show that ∑N
k=1

1
k1+d/2

∑
z∈Zd\{0} e−

|z|2

4kβ
L2 vanishes as N → ∞.Using an approximation with an integral, one sees that, for some C ∈ (0,∞), only depending on d,

∑

z∈Zd\{0}

e−a|z|2 ≤ ca−d/2 for all a ∈ (0,∞).Using this with a = L2/(4βk), we see that ∑
z∈Zd\{0} e−

|z|2

4kβ
L2 is of order kd/2L−d. Using that N isof order Ld and applying the harmoni
 series, we see that ∑N

k=1
1

k1+d/2

∑
z∈Zd\{0} e−

|z|2

4kβ
L2 is of order

L−d logL and therefore vanishes as N → ∞.(b) Now we 
onsider Diri
hlet boundary 
onditions. For any M ∈ N and δ ∈ (0, 1), we get, for anysu�
iently large N ,
q(Dir)

Λ =
1

|Λ|

N∑

k=1

1

k

∫

Λ
dxµ(kβ)

x,x

(
B[0,kβ] ⊂ Λ

)
≥

M∑

k=1

1

k

1

|Λ|

∫

(1−δ)Λ
dxµ(kβ)

x,x

(
B[0,kβ] ⊂ Λ

)
. (3.60)It is easy to see that, in the limit N → ∞, the integrand µ(kβ)

x,x (B[0,kβ] ⊂ Λ) tends to µ(kβ)

0,0 (1l) =

(4πkβ)−d/2, uniformly in x ∈ (1 − δ)Λ and k ∈ {1, . . . ,M}. Hen
e,
lim

N→∞
q(Dir)

Λ ≥
M∑

k=1

1

k
(4πkβ)−d/2 |(1 − δ)Λ|

|Λ|
,whi
h tends to q as M → ∞ and δ ↓ 0.

�Proof of the upper bound for periodi
 boundary 
ondition.We 
ontinue to write Λ for ΛLN
, where LN = (N/ρ)1/d. We adapt the proof of the upper bound inSe
tion 3.2 for periodi
 boundary 
onditions. The main idea is to drop all the paths that rea
h theboundary of the box Λ and to use that their distribution is equal to the one under the free Brownianbridge measure. Let us introdu
e the random variable

N (ℓ,�)

Λ (ω) =
∑

x∈ξ∩Λ

ℓ(fx)1l{fx([0, βℓ(fx)]) ⊂ Λ◦}, (3.61)the total length of marks in Λ with path in Λ◦. Furthermore, let
H (�)

Λ (ω) =
∑

x,y∈ξ∩Λ

T (�)
x,y (ω), ω ∈ Ω,with

T (�)
x,y (ω) =

1

2

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x, i) 6= (y, j)}

1l{fx([0, βℓ(fx)]), fy([0, βℓ(fy)]) ⊂ Λ◦}

∫ β

0
v(|fx(iβ + s) − fy(jβ + s|)ds,be the Hamiltonian in (1.14) restri
ted to paths in Λ◦. Note that su
h that paths have the samedistribution under the periodised Brownian bridge measure as under the free one or the one with



30Diri
hlet boundary 
ondition. Hen
e, we estimate
E

(per)

[
e−HΛ(ω)1l{N (ℓ)

Λ (ω) = N}
]
≤ E

(per)

[
e−HΛ(ω)1l{N (ℓ,�)

Λ (ω) ≤ N}
]

≤ E
(Dir)

[
e−H

(�)
Λ (ω)1l{N (ℓ,�)

Λ (ω) ≤ N}
]

≤ E

[
e−H

(�)
Λ (ω)1l{N (ℓ,�)

Λ (ω) ≤ N}
]
.

(3.62)Hen
e, we 
an use the same ideas as in Se
tion 3.2, the only di�eren
e is that we have to deal solelywith paths that stay within the open box Λ◦. It is straightforward to see that an adapted version ofLemma 3.1 holds, i.e.,
|Λ|〈RΛ,ω,N

(ℓ,�)

U 〉 = N (ℓ,�)

Λ (ω). (3.63)We introdu
e the same trun
ation parameters for the box Hamiltonian above as in Lemma 3.2, i.e.,we de�ne
Φ(R,M,K,�)

β (ω) =
∑

x∈ξ(≤K)∩U

∑

y∈ξ(≤K)∩ΛR

T (M,�)
x,y (ω),where T (M,�)

x,y is the trun
ated version of T (�)
x,y above. Hen
e, we get

H (�)

Λ (ω) ≥ |Λ|〈RΛ,ω,Φ
(R,M,K,�)

β 1l{N (�)

ΛR
≤ S}〉 − CN (�)

ΛL\ΛL−R−2
(ω). (3.64)Now (3.63) and (3.64) allow to dedu
e the 
orresponding upper bound on the right hand side of (3.13),i.e.,

lim sup
N→∞

1

|ΛLN
|
log E

[
exp

{
−

1

1 − η
|ΛLN

|
〈
RN ,Φ

(R,M,K,�)

β 1l{N (�)

ΛR
≤ S}

〉}
1l{〈RN ,N

(ℓ,�)

U 〉 ≤ ρ}
]

≤ − inf
P∈Pθ : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) +

1

1 − η
〈P,Φ(R,M,K)

β 1l{NΛR
≤ S}〉

)
,

(3.65)where the box 
ondition to stay within Λ◦ disappeared in the limit N → ∞. The proof for the upperbound is �nished with the same steps as for the empty boundary 
ase.Proof of the lower bound for Diri
hlet boundary 
onditions.We 
ontinue to write Λ for ΛLN
, where LN = (N/ρ)1/d. The strategy for Diri
hlet boundary 
onditionsis as follows. First we pi
k some ε ∈ (0, 1

2) and 
onsider Λ̃ = (1 − ε)Λ and ∂Λ = Λ \ Λ̃. The ideais to require that ∂Λ re
eives no parti
le and that the marks of all parti
les in Λ̃ have length ≤ Kand spatial extension ≤ R. In this way, we get a lower estimate against the trun
ated version of thePoisson pro
ess on Λ̃ rather than on L. The only di�eren
e to the proof for empty boundary 
onditionis then that Lemma 3.7, whi
h was given before the introdu
tion of the trun
ation, now has to beproved with the presen
e of the trun
ation, whi
h requires some adaptation. Every other step of theproof is literally the same for Λ instead of Λ̃, whi
h means that in the end of the proof, the parameter
ε has to be sent to 0, whi
h is extremely simple.Let us 
ome to the details. We �rst show that there exist c > 0 and CK,R > 0 su
h that, for any
N,R,K ∈ N,

E
(Dir)

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]
≥ e−εc|Λ|e−CK,R|Λ|

E
(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
, (3.66)



31where CK,R → 0 as R→ ∞ and afterwards K → ∞. This is done as follows. Estimate
E

(Dir)

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]

= E

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}1l{∀x ∈ ξ : Bx([0, βℓ(Bx)]) ⊂ Λ}
]

≥ E

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}1l{∀x ∈ Λ̃ : Bx ∈ E(K,R)}

× 1l{∀x ∈ ξP : Bx([0, βℓ(Bx)]) ⊂ Λ}1l{N∂Λ(ωP) = 0}
]

= E

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}1l{∀x ∈ Λ̃ : Bx ∈ E(K,R)}

× 1l{N∂Λ(ωP) = 0}1l{ωP(Λ̃ ×
(
E(K,R)

)c
) = 0}

]
.

(3.67)
Independen
e of the events in the indi
ators givesr.h.s. of (3.67) = E

(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
Q(N∂Λ(ωP) = 0)Q

(
ωP(Λ̃ ×

(
E(K,R)

)c
) = 0

)

= E
(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
e−q|∂Λ|e−ν(eΛ×(E(K,R))c), (3.68)sin
e NeΛ(ωP) and ωP(Λ̃ ×

(
E(K,R)

)c
) are Poisson distributed with respe
tive parameters q|∂Λ| and

ν(Λ̃ × (E(K,R))c). We estimate q|∂Λ| ≤ cε|Λ| for some c > 0 and
ν(Λ̃ ×

(
E(K,R)

)c
) ≤ |Λ̃|

∞∑

k=K+1

qk
k

+ |Λ̃|
K∑

k=1

µ(kβ)

0,0

(
max

s∈[0,βk]
|Bs| > R

)
≤ |Λ|CK,R, (3.69)with some CK,R that vanishes as R→ ∞ and afterwards K → ∞. Hen
e, we have got (3.66).Now we need a version of Lemma 3.7 for trun
ated point pro
esses, i.e., we need to show that, forany R,K ∈ N and for any δ ∈ (0, ρ), for all su�
iently large N ,

E
(K,R)

[
e−HΛ(ωP)1l{〈RN (ωP), N (ℓ)

U 〉 = ρ}
]

≥
(C1 ∧C2)

δ|Λ|

2δ|Λ| + 2
E

(K,R)

[
e−|Λ|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
,

(3.70)where C1 and C2 may depend on R and K.Sin
e Lemma 3.4 was used in the proof of Lemma 3.7, we �rst need a trun
ated version of Lemma 3.4.For this we 
onsider the trun
ated version of ZN (β,Λ):
Z(K,R)

N (β,Λ) =
∑

λ∈PN :
PK

k=1 kλk=N

K∏

k=1

(q(R)

k,Λ)λk |Λ|λk

λk!kλk

K⊗

k=1

(
E

(R,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
, (3.71)where

q(R)

k,Λ =
1

|Λ|

∫

Λ
dxµ(kβ)

x,x

(
max

s∈[0,βk]
|Bs −B0| ≤ R

)
,and where E

(R,kβ)

Λ is the expe
tation with respe
t to the probability measure
P

(R,kβ)

Λ (df) =

∫
Λ dxµ(kβ)

x,x

(
df1l{maxs∈[0,βk] |fs − f0| ≤ R}

)

|Λ|q(R)

Λ

.



32All steps in the proof of Lemma 3.4 are easily adapted, but the estimate in (3.24) needs a slightlydi�erent argument. We now estimate
E

(R,β)

Λ (v(|Bs − f(s)|) =
1

q(R)

Λ |Λ|

∫

Λ
dxEx

[
v(|Bs − f(s)|)1l{ max

0≤s≤β
|Bs −B0| ≤ R}, Bβ ∈ dx

]
/dx

≤
(4πβ)−d/2

q(R)

Λ |Λ|

∫

Λ
dx

∫

Λ
dy

gs(x, y)v(|y − f(s)|)gβ−s(y, x)

gβ(x, x)
.Now we 
an pro
eed as in (3.23)-(3.24) and obtain that E

(R,β)

Λ (v(|Bs − f(s)|) ≤ α(v)(4πβ)−d/2

q
(R)
Λ |Λ|

. Hen
e,we get the following trun
ated version of Lemma 3.4:
Z(K,R)

N+1 (β,Λ)

Z(K,R)

N (β,Λ)
≥

|Λ|

N + 1
exp

(
−
Nβα(v)(4πβ)−d/2

|Λ|q(R)

Λ

)
. (3.72)Using this instead of Lemma 3.4 in the proof of Lemma 3.7, we get the trun
ated version (3.70) ofLemma 3.7 with C2 as before and with C1 repla
ed by

C(R)

1 = 1 ∧
q(R)

Λ

ρ+ δ
exp

(
−

(ρ+ δ)βα(v)(4πβ)−d/2

q(R)

Λ

)
.The remaining proof of the lower bound is exa
tly as in the 
ase of empty boundary 
ondition, with

Λ̃ instead of Λ. This slight di�eren
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