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Abstract

We propose a finite volume scheme for the approximation of a biharmonic prob-
lem, with Dirichlet boundary conditions. We prove that the piece-wise constant
approximate solution converges in L2(Ω) to the exact solution, as well as the dis-
crete approximate of the gradient and the discrete approximate of the Laplacian of
the exact solution. These results are confirmed by numerical results.

1 Introduction

We consider a polygonal open connected domain Ω ⊂ Rd, with d integer strictly positive.
Let f ∈ L2(Ω). The following biharmonic problem: find a function u, defined on Ω, such
that

∆(∆u) = f on Ω, (1)

u = ∆u = 0 on ∂Ω. (2)

can be solved by many methods, since it resumes to the consecutive resolution of two
Laplace problems with homogeneous Dirichlet boundary condition, the first one for ob-
taining ∆u, the second one for obtaining u. Unfortunately, this does no longer hold in
the case of problem (1), with the full Dirichlet boundary conditions:

u = ∇u · n = 0 on ∂Ω. (3)

In order to provide a weak formulation of Problem (1) with boundary conditions (3), we
introduce the function space H2

0 (Ω), which is defined as the closure of C∞
c (Ω) in H2(Ω).

Thanks to the Lipschitz regularity of the boundary, we get that

H2
0 (Ω) = {u ∈ H2(Ω) ∩H1

0 (Ω), ∇u · n = 0 a.e. on ∂Ω}. (4)

The weak formulation of Problem (1) with Dirichlet boundary conditions (3) is then given
by

u ∈ H2
0 (Ω), ∀v ∈ H2

0 (Ω),

∫
Ω

∆u(x)∆v(x)dx =

∫
Ω

f(x)v(x)dx.

In this paper, we will consider the more general problem

u ∈ H2
0 (Ω), ∀v ∈ H2

0 (Ω),

∫
Ω

∆u(x)∆v(x)dx =

∫
Ω

(f(x)v(x) + g(x) · ∇v(x) + l(x)∆v(x))dx,

f ∈ L2(Ω), g ∈ L2(Ω)d, l ∈ L2(Ω).
(5)
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Indeed, Problem (5) arises in the theory of the two-dimensional incompressible Navier-
Stokes equations, since, for all divergence-free weakly differentiable vector fields U ∈
[H1

0 (Ω)]2, there exists one and only one stream functions u ∈ H2
0 (Ω) (see [7]) such that

U1 = ∂2u and U2 = −∂1u, which also is the solution of the problem

u ∈ H2
0 (Ω), ∀v ∈ H2

0 (Ω),

∫
Ω

∆u(x)∆v(x)dx =

∫
Ω

(∂2U1(x)− ∂1U2(x))∆v(x)dx.

Then, from the Stokes problem −∆U1 + ∂1p = F1, −∆U2 + ∂2p = F2, one gets that u is
the unique weak solution of the biharmonic problem

u ∈ H2
0 (Ω), ∀v ∈ H2

0 (Ω),

∫
Ω

∆u(x)∆v(x)dx =

∫
Ω

(−F2(x)∂1v(x) + F1(x)∂2v(x))dx.

We recall that Problem (5) has one and only one solution, due to Riesz theorem and to
the fact that ‖∆u‖L2(Ω) is an equivalent norm to ‖u‖H2(Ω) in H2

0 (Ω). Indeed, the Poincaré
inequality

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) ≤ diam(Ω)‖∇u‖L2(Ω)d

and

∀u ∈ H2
0 (Ω), −

∫
Ω

u∆u dx =

∫
Ω

∇u · ∇u dx

imply
∀u ∈ H2

0 (Ω), ‖∇u‖L2(Ω)d ≤ diam(Ω)‖∆u‖L2(Ω).

Besides, the following equality which is an immediate consequence of two integrations by
parts

∀ϕ ∈ C∞
c (Ω),

∫
Ω

(∆ϕ(x))2dx =
d∑

i=1

d∑
j=1

∫
Ω

∂2
iiϕ(x)∂2

jjϕ(x)dx =
d∑

i=1

d∑
j=1

∫
Ω

(∂2
ijϕ(x))2dx,

(6)
completes the proof of the equivalence of the norms.

The standard numerical method for the approximation of Problem (5) is the conformal
finite element method. It consists in defining, on a partition of Ω with polyhedra, elemen-
tary basis functions such that the reconstructed basis functions on Ω belong to C1(Ω). It
is easy to define such a basis on cartesian meshes, since it suffices to consider the general-
isation in 2D or 3D of the P 3 Hermite finite element in 1D. This task becomes much more
difficult on more general meshes. For example, the Argyris finite element on triangles in
2D appears to have complex basis functions. Therefore, nonconformal methods have been
studied on more general meshes. Indeed, only few works address the approximation of
this problem, using different numerical methods (see [1, 10, 2]).

It is then worth to notice that the discretization of this problem, using a finite volume
method on grids with some orthogonality property (see [5]), arises in the classical finite
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volume scheme [8, 9] for the incompressible Navier-Stokes equations [3]. In this situation,
the finite volume method, used for the approximation of the discrete Laplace operator
involved in the weak formulation (5), provides a discrete weak formulation, where no
consistency is a priori proven on the discrete Laplace operator applied to the interpolation
of a regular function.

Moreover, such a consistency property does not hold for this discrete Laplace operator
in general (see [5]) on triangular meshes or rectangular meshes with nonconstant space
steps. Hence, in the convergence proof, one has to prove that it is possible to strongly
approximate ∆ϕ, where ϕ is a regular function with compact support in Ω, in the discrete
space, the approximation being strongly convergent to ϕ. This property is developped in
Lemma 3.3. Error estimates are proposed in the case where the solution of the continuous
problem has some regularity. These estimates are not sharp, as shown by the numerical
results.

This paper is organized as follows. The scheme is presented in Section 2. The mathe-
matical analysis is derived in Section 3, and finally, numerical results (in 1D, 2D and 3D,
using various types of meshes) are provided in Section 4.

2 Approximation of the Dirichlet problem

The notations are summarized in Figure 1 for the particular case d = 2 (we recall that
the case d ≥ 3 is considered as well).

dK,σ

xL

xK

|σ|

K|LL
K

xσ

DK,σ

dKL

Figure 1: Notations for a control volume K in the case d = 2

We first define an admissible mesh in the sense of [5] and [6]. In the following definition,
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we say that a bounded subset of Rd is polygonal if its boundary is included in the union
of a finite number of hyperplanes.

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset
of Rd, and ∂Ω = Ω \ Ω its boundary. An admissible finite volume discretization of Ω,
denoted by D, is given by D = (M, E ,P), where:

• M is a finite family of non empty open polygonal convex disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \K be
the boundary of K and |K| > 0 denote the measure of K.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for
all σ ∈ E, there exists a hyperplane E of Rd and K ∈M with σ = ∂K ∩E and σ is
a non empty open subset of E. We then denote by |σ| > 0 the (d− 1)-dimensional
measure of σ. The set of interior (resp. boundary) edges is denoted by Eint (resp.
Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). We assume
that, for all K ∈ M, there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. We
then denote by EK,ext = EK ∩ Eext and EK,int = EK ∩ Eint. It then results from the
previous hypotheses that, for all σ ∈ E, either σ ⊂ ∂Ω or there exists (K,L) ∈ M2

with K 6= L such that K ∩ L = σ; we denote in the latter case σ = K|L.

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M. We assume
that xK ∈ K for all K ∈ M. Furthermore, for all σ ∈ E such that there exists
(K,L) ∈ M2 with σ = K|L, it is assumed that xK 6= xL, that the straight line
(xK , xL) going through xK and xL is perpendicular to K|L and that the vector from
xK to xL points outward of K. For all K ∈ M and all σ ∈ EK, let zσ be the
orthogonal projection of xK on σ. We suppose that zσ ∈ σ if σ ⊂ ∂Ω.

Remark 2.1 In the above definition, we could relax the hypothesis xK ∈ K, since this
does not necessarily occur in the case of Delaunay triangulations. This leads to a few
technical difficulties in the proofs below: in particular, the property∑

σ∈EK

|σ|dK,σ = d |K| (7)

does no longer hold, which makes necessary some additional geometric hypotheses.

The following notations are used. The size of the discretization is defined by:

hD = sup{diam(K), K ∈M}.

For all K ∈ M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward to
K. We denote by dK,σ the Euclidean distance between xK and σ.
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For all σ ∈ Eint, an orientation is chosen by defining one of the two unit normal vectors
nσ, for each σ ∈ Eint, and we denote by K−

σ and K+
σ the two adjacent control volumes

such that nσ is oriented from K−
σ to K+

σ . We then set

dσ = d(xK−
σ
, xK+

σ
) = d(xK−

σ
, σ) + d(xK+

σ
, σ). (8)

For all σ ∈ Eext, we denote the control volume K ∈M such that σ ∈ EK by Kσ; we define

dσ = d(xKσ , σ), (9)

and we define nσ by nσ = nKσ ,σ For all K ∈M and σ ∈ EK , we define

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ},

For all σ ∈ Eint, let K,L ∈ M be such that σ = K|L; we set Dσ = DK,σ ∪DL,σ. For all
σ ∈ Eext, let K ∈M be such that σ ∈ EK ; we define Dσ = DK,σ.

For all σ ∈ E , we define

xσ =
1

|σ|

∫
σ

x dγ(x). (10)

We shall measure the regularity of the mesh through the function θD defined by

θD = inf

{
dK,σ

diam(K)
,
dK,σ

dσ

, K ∈M, σ ∈ EK

}
. (11)

Definition 2.2 Let Ω be an open bounded polygonal subset of Rd, and D an admissible
discretization of Ω in the sense of Definition (2.1). We define HD as the set of functions
u ∈ L2(Ω) which are constant in each control volume. For u ∈ HD, we denote by uK the
constant value of u in K. We define the interpolation operator PD : C(Ω) → HD, by
u 7→ PDu such that

PDu(x) = u(xK) for a.e. x ∈ K, ∀K ∈M. (12)

For any u ∈ HD, we denote

δσu = uK+
σ
− uK−

σ
,∀σ ∈ Eint and δσu = 0− uKσ ,∀σ ∈ Eext, (13)

and

δK,σv = −vK , ∀σ ∈ EK,ext and δK,σv = vL − vK , ∀σ = K|L ∈ EK,int, ∀K ∈M. (14)

We introduce the following symmetric bilinear form:

[u, v]D =
∑
σ∈E

|σ|
dσ

δσuδσv, ∀u, v ∈ (HD)2, (15)
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which defines a scalar product in HD. We then denote ‖u‖D = ([u, u]D)1/2 for all u ∈ HD.

We define ∇D : HD → (HD)d and ∇̃D : HD → (L2(Ω))d respectively by

|K|∇Ku =
∑
σ∈EK

|σ|
dσ

δK,σu (xσ − xK), ∀K ∈M, ∀u ∈ HD, (16)

and

∇̃Du(x) = d
δσum

dσ

nσ, for a.e. x ∈ Dσ, ∀σ ∈ E , ∀u ∈ HD. (17)

We define ∆D : HD → HD by

|K|∆Ku =
∑
σ∈EK

|σ|
dσ

δK,σu, ∀K ∈M, ∀u ∈ HD. (18)

We define

HD,0 = {u ∈ HD, uK = 0 for all K ∈M such that EK,ext 6= ∅} (19)

Thanks to the above definitions, we have

−
∫

Ω

u(x)∆Dv(x)dx = [u, v]D, ∀u, v ∈ (HD)2. (20)

We now approximate Problem (5) by

u ∈ HD,0, ∀v ∈ HD,0,

∫
Ω

∆Du(x)∆Dv(x)dx =

∫
Ω

(f(x)v(x)+g(x)·∇Dv(x)+l(x)∆Dv(x))dx.

(21)

Remark 2.2 It is possible to replace ∇Dv (defined by (16)) in (21) by ∇̃Dv (defined by

(17)). We can see that the difference between
∫

Ω
g(x) · ∇Dv(x)dx and

∫
Ω

g(x) · ∇̃Dv(x)dx
resumes to different averaging formula of g on Dσ. One choice or the other one could be
preferred, depending on the regularity of g.

Remark 2.3 Considering the particular case g = 0 and l = 0, we notice that (21) can
also be written as

u ∈ HD,0, ∀v ∈ HD,0,
∑

K∈M

|K|∆Ku∆Kv =
∑

K∈M

vK

∫
K

f(x)dx.

We can then regard the above relation as a finite volume scheme. Indeed, we take in (21),
v = 1K for K ∈M with EK,ext = ∅. We have∑

L∈M

|L|∆Lu∆Lv =
∑
σ∈EK

|σ|
dσ

δK,σ∆Du,
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which is a discrete equivalent of∫
K

∆(∆u)(x)dx =
∑
σ∈EK

∫
σ

∇(∆u)(x) · nK,σdγ(x).

The scheme can then also be written as

|K|∆K(∆Du) =

∫
K

f(x)dx, ∀K ∈M such that EK,ext = ∅,

and
uK = 0, ∀K ∈M such that EK,ext 6= ∅.

We can now derive the mathematical properties of the scheme, thanks to that of the
discrete operator ∆D, already studied in [5].

3 Study of the convergence of the scheme

We have the following estimate.

Lemma 3.1 (Existence, uniqueness and estimate on the solution of (21))

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?, let f ∈ L2(Ω),
g ∈ L2(Ω)d, l ∈ L2(Ω) and let D be an admissible finite volume discretization of Ω in the
sense of Definition 2.1 and let θ < θD. Then there exists C > 0, only depending on Ω,
such that, for any u ∈ HD,0 such that (21) holds, then

‖u‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖l‖L2(Ω)), (22)

‖u‖D ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖l‖L2(Ω)), (23)

and
‖∆Du‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖l‖L2(Ω)). (24)

and there exists C ′ > 0, only depending on Ω and θ, such that

‖∇Du‖L2(Ω)d ≤ C ′(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖l‖L2(Ω)). (25)

As a consequence, there exists one and only one u ∈ HD,0 such that (21) holds.

Proof. We first recall the discrete Poincaré inequality [5]:

‖v‖L2(Ω) ≤ diam(Ω)‖v‖D, ∀v ∈ HD. (26)

therefore, thanks to (20) and (26), we get:

‖u‖D ≤ diam(Ω)‖∆Du‖L2(Ω), (27)
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We also recall that the following inequality, given in [6],

‖∇Du‖L2(Ω)d ≤ θ
√
d‖u‖D, (28)

is a consequence of the Cauchy-Schwarz inequality and of Definitions (11) and (16). Hence,
setting v = u in (21), and using the Cauchy-Schwarz inequality, we get

‖∆Du‖L2(Ω) ≤ diam(Ω)2‖f‖L2(Ω) + θ
√
d diam(Ω)‖g‖L2(Ω)d + ‖l‖L2(Ω),

which proves

‖u‖D ≤ diam(Ω)(diam(Ω)2‖f‖L2(Ω) + θ
√
d diam(Ω)‖g‖L2(Ω)d + ‖l‖L2(Ω))

and

‖u‖L2(Ω) ≤ diam(Ω)2(diam(Ω)2‖f‖L2(Ω) + θ
√
d diam(Ω)‖g‖L2(Ω)d + ‖l‖L2(Ω)).

The three above inequalities provide (24), (23) and (22) (note that the example provided in
Section 4.1 indicates that the above inequalities lead to the optimal orders with respect to
diam(Ω)). We then get (25) using (28). Finally, we conclude the existence and uniqueness
of the solution to (21), which leads to a square linear system, from the estimate (22),
setting f = 0. ¤

Lemma 3.2 (Compactness of a sequence of approximate solutions)

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?, let (Dm)m∈N be a
sequence of admissible finite volume discretizations of Ω in the sense of Definition 2.1
such that hDm tends to 0 as m → ∞ and there exists θ > 0 with θ < θDm for all
m ∈ N. We assume that there exists C > 0 and um ∈ HDm,0, for all m ∈ N, such that
‖∆Dmum‖L2(Ω) ≤ C for all m ∈ N. Then there exists a subsequence of (Dm)m∈N, again
denoted (Dm)m∈N, and u ∈ H2

0 (Ω), such that the corresponding subsequence (um)m∈N
satisfies

1. the sequence (um)m∈N converges in L2(Ω) to u,

2. the sequence (∇Dmum)m∈N converges in L2(Ω)d to ∇u,

3. the sequence (∆Dmum)m∈N weakly converges in L2(Ω) to ∆u.

Proof. We first extract a subsequence of (Dm)m∈N, such that (∆Dmum)m∈N weakly
converges to some w ∈ L2(Ω). Let u ∈ H1

0 (Ω) such that

∀v ∈ H1
0 (Ω),

∫
Ω

∇u(x) · ∇v(x)dx = −
∫

Ω

w(x)v(x)dx.

Then, from an immediate adaptation of the results of [6], we get that (um)m∈N converges in
L2(Ω) to u and (∇Dmum)m∈N converges in L2(Ω)d to ∇u. We then get that ∆u(x) = w(x)
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for a.e. x ∈ Ω, which proves that ∆u ∈ L2(Ω). Let us prove that u ∈ H2
0 (Ω). Using

definition (17), we prolongate ∇̃Dmum by 0 in Rd \Ω. For ϕ ∈ C∞
c (Rd) (hence ϕ does not

necessarily vanish at the boundary of Ω), we define

∇̂Dmϕ(x) =
δσPDmϕ

dσ

nσ +∇ϕ(xσ)− (∇ϕ(xσ) · nσ)nσ,

for a.e. x ∈ Dσ, for all σ ∈ E . We set ∇̂Dmϕ(x) = ∇ϕ(x) for a.e. x ∈ Rd \ Ω.

Using the results of [4], we get that the sequence (∇̃Dmum)m∈N weakly converges to ∇u
in L2(Rd)d, where ∇u is prolonged by 0 outwards from Ω. We consider the expression

Tm =
∑

σ∈Eint

|σ|
dσ

δσumδσPDmϕ.

On the one hand, we have that

Tm =

∫
Rd

∇̃Dmum(x) · ∇̂Dmϕ(x)dx,

which implies

lim
m→∞

Tm =

∫
Rd

∇u(x) · ∇ϕ(x)dx.

On the other hand, thanks to um ∈ HDm,0, we have

Tm = −
∑

K∈M

ϕ(xK)∆Kum = −
∫

Ω

PDmϕ(x)∆Dmum(x)dx.

Hence, passing to the limit, we get

−
∫

Ω

ϕ(x)∆u(x)dx =

∫
Rd

∇u(x) · ∇ϕ(x)dx.

This proves that ∇u ∈ Hdiv(Rd) and that, prolonging ∆u by 0 outwards of Ω, we have
∆u ∈ L2(Rd). Since u ∈ H1(Rd), this implies that u ∈ H2(Rd) (this also is a consequence
of (6), which holds with Ω = Rd). Since ∇u = 0 in Rd \ Ω, we get that ∇u · n∂Ω = 0 in
the appropriate sense. Hence u ∈ H2

0 (Ω). ¤

Lemma 3.3 (Interpolation of regular functions with compact support)

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?, let D be an admissible
finite volume discretization of Ω in the sense of Definition 2.1 and let θ > 0 with θ < θD.
Let ϕ ∈ C2

c (Ω) and let a = d(support(ϕ), ∂Ω). Then there exists C > 0, only depending
on θ, and v ∈ HD,0 such that

1.

‖v − ϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (29)
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2.

‖v − PDϕ‖D ≤ ChD
|ϕ|2
a2

, (30)

3.

‖∆Dv −∆ϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (31)

where |ϕ|2 = maxi,j=1,d ‖∂2
ijϕ‖L∞(Ω).

Proof. Let ρ ∈ C∞
c (Rd,R+) be the function defined by

ρ(x) =
exp(−1/(1− |x|2))∫

B(0,1)
exp(−1/(1− |y|2))dy

, ∀x ∈ B(0, 1),

and ρ(x) = 0 for x /∈ B(0, 1). Let ψ (see Figure 2) be the function defined by

ψ(y) =

∫
x∈Ω,d(x,∂Ω)> a

2

(
4

a

)d

ρ

(
4

a
(y − x)

)
dx, ∀y ∈ Ω. (32)

Then the function ψ satisfies that ψ ∈ C∞
c (Ω), ψ(x) ∈ [0, 1] for all x ∈ Ω, ψ(x) = 0 for

Ω
aa

ψ

ϕ

1

Figure 2: Functions ϕ and ψ

all x ∈ Ω such that d(x, ∂Ω) < a
4

and ψ(x) = 1 for all x ∈ Ω such that d(x, ∂Ω) > 3a
4
.

The idea of the proof is to consider the discrete solution of the Laplace problem with
the right hand side −∆ϕ, and to multiply it by ψ. Then the proof mimicks the identity
∆(ψv) = v∆ψ + 2∇ψ · ∇v + ψ∆v.

We first suppose that D is such that hD < a
4
. We denote in the following ψK = ψ(xK),

ϕK = ϕ(xK) for all K ∈M and ψD = PDψ, ϕD = PDϕ. Let us define ṽ ∈ HD such that

−|K|∆K ṽ = −
∫

K

∆ϕ(x)dx, ∀K ∈M, (33)
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which is equivalent to

∀w ∈ HD, [ṽ, w]D = −
∫

Ω

∆ϕ(x)w(x)dx. (34)

Let us remark that ṽ satisfies thanks to (33)

|K|ψK∆K ṽ =

∫
K

∆ϕ(x)dx, ∀K ∈M. (35)

Indeed, if
∫

K
∆ϕ(x)dx 6= 0, then K ∩ support(ϕ) 6= ∅, which implies d(xK , ∂Ω) > 3a

4
, and

therefore ψK = 1. Otherwise, ∆K ṽ =
∫

K
∆ϕ(x)dx = 0.

Using the results of [5], since the solution of the continuous Laplace problem is ϕ ∈ C2(Ω),
we can write the following error estimates:∑

K∈M

|K|(ṽK − ϕK)2 ≤ CΩh
2
D |ϕ|22, (36)

and ∑
σ∈E

|σ|
dσ

(δσ(ṽ − ϕD))2 ≤ CΩh
2
D |ϕ|22, (37)

where CΩ only depends on Ω. We define v ∈ HD,0 by its values in all K ∈ M, given by
vK = ψK ṽK (recall that, for all K ∈ M such that EK,ext 6= ∅, then d(xK , ∂Ω) < a

4
, hence

ψK = 0). We first remark that

|vK − ϕK | = |ψK ṽK − ψKϕK | ≤ |ṽK − ϕK |,

which proves (29) thanks to (36) since a ≤ diam(Ω). Let us notice that the identity
ab− cd = c(b− d) + d(a− c) + (a− c)(b− d) yields

δK,σv = ψKδK,σṽ + ṽKδK,σψD + δK,σṽ δK,σψD.

Hence we get

|K|∆Kv = |K|ψK∆K ṽ + |K|ṽK∆KψD +
∑
σ∈EK

|σ|
dσ

δK,σψDδK,σṽ.

We remark that, for all K ∈ M such that ∆KψD 6= 0, then ϕK = 0, and for all σ ∈ E
such that δσψD 6= 0, then ϕK+

σ
= ϕK−

σ
= 0. This leads, using (35), to

|K|∆Kv =

∫
K

∆ϕ(x)dx+ |K|(ṽK − ϕK)∆KψD +
∑
σ∈EK

|σ|
dσ

δK,σψDδK,σ(ṽ − ϕD).

Moreover, a Taylor expansion provides

δK,σψD = dσ∇ψK · nK,σ + d2
σ

CK,σ

a2
,

11



with CK,σ bounded by a constant. Since
∑

σ∈EK
|σ|nK,σ = 0,

∑
σ∈EK

|σ|dK,σ = d |K| and
dσ ≤ dK,σ/θ, we get

|K||∆KψD| =

∣∣∣∣∣∑
σ∈EK

|σ|dσ
CK,σ

a2

∣∣∣∣∣ ≤ C2

a2
|K|,

where C2 only depends on θ. Hence we get∑
K∈M

|K|
(

∆Kv −
1

|K|

∫
K

∆ϕ(x)dx

)2

≤ 2
C2

2

a4

∑
K∈M

|K|(ṽK − ϕK)2

+2
∑

K∈M

1

|K|

(∑
σ∈EK

|σ|
dσ

δK,σψDδK,σ(ṽ − ϕD)

)2

.

Thanks to the Cauchy-Schwarz inequality, we have(∑
σ∈EK

|σ|
dσ

δK,σψDδK,σ(ṽ − ϕD)

)2

≤
∑
σ∈EK

|σ|
dσ

(δK,σψD)2
∑
σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2

≤ C2
1

a2
|K|

∑
σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2,

where C1 only depends on θ. Hence∑
K∈M

|K|
(

∆Kv −
1

|K|

∫
K

∆ϕ(x)dx

)2

≤ 2
C2

2

a4

∑
K∈M

|K|(ṽK − ϕK)2

+2
C2

1

a2

∑
K∈M

∑
σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2.

This leads, thanks to (36) and (37), to∑
K∈M

|K|
(

∆Kv −
1

|K|

∫
K

∆ϕ(x)dx

)2

≤ 2C2
2 + 4C2

1a
2

a4
CΩh

2
D |ϕ|22, (38)

hence proving (31) thanks to the regularity of ∆ϕ and thanks to a ≤ diam(Ω). Finally,
since (38) can also be written

‖∆Dv −∆Dṽ‖2
L2(Ω) ≤

C

a4
h2
D |ϕ|22,

we get, thanks to (20) and (26),

‖v − ṽ‖2
D ≤ diam(Ω)2 C

a4
h2
D |ϕ|22.

Hence we deduce (30) from (37) using the triangle inequality and a ≤ diam(Ω).

In the case where hD ≥ a
4
, we set v = 0. Since ‖ϕ‖L2(Ω) and ‖ϕD‖D are bounded, up to

some constants only depending on Ω, by ‖∆ϕ‖L2(Ω), and using 1
4
≤ hD

a
, we conclude that

the lemma holds for all hD > 0. ¤

12



Remark 3.1 Lemma 3.3 is the main tool for a similar interpolation result which is needed
in the convergence proof [3] for a finite volume discretization of the incompressible Navier-
Stokes equations. In that case, we have to construct discrete test functions with homo-
geneous Dirichlet boundary values, which are discretely divergence-free and converge to
regular divergence-free test functions with compact support.

We can now state the convergence of the scheme.

Theorem 3.1 (Convergence of the scheme)

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?, let f ∈ L2(Ω),
g ∈ L2(Ω)d and l ∈ L2(Ω). Let u ∈ H2

0 (Ω) be the solution of Problem (5).

Let (Dm)m∈N be a sequence of admissible finite volume discretizations of Ω in the sense of
Definition 2.1 such that hDm tends to 0 as m → ∞ and there exists θ > 0 with θ < θDm

for all m ∈ N. Let um ∈ HDm,0, for all m ∈ N, be the solution of (21). Then the following
holds:

1. the sequence (um)m∈N converges in L2(Ω) to u,

2. the sequence (∇Dmum)m∈N converges in L2(Ω)d to ∇u,

3. the sequence (∆Dmum)m∈N converges in L2(Ω) to ∆u.

Proof. Thanks to Lemmas 3.1 and 3.2, we get the existence of a subsequence of
(Dm)m∈N, again denoted (Dm)m∈N, and of u ∈ H2

0 (Ω) such that the conclusion of Lemma
3.2 hold. Let ϕ ∈ C∞

c (Ω) be given. We take, in (21), v = vm where vm is given by
Lemma 3.3 for D = Dm. Passing to the limit (thanks to weak/strong convergence) and
by density of C∞

c (Ω) in H2
0 (Ω), we get that u is the solution of Problem (5). By a classical

argument of uniqueness, we get that all the sequence converges. Setting v = um in (21),
we get the convergence of ‖∆Dmum‖2

L2(Ω) to
∫

Ω
(f(x)u(x)+g(x) ·∇u(x)+ l(x)∆u(x))dx =∫

Ω
(∆u(x))2dx. In addition to the weak convergence of ∆Dmum to ∆u, this provides the

convergence in L2(Ω) of ∆Dmum to ∆u. ¤

Let us now state error estimate results, that, for the sake of simplicity, we only provide
in the case g = 0 and l = 0.

Theorem 3.2 (Error estimate in the case where u ∈ C4
c (Ω))

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?. Let us assume
that u ∈ C4

c (Ω) is given and that f = ∆(∆u). Let D be an admissible finite volume
discretization of Ω in the sense of Definition 2.1 and let θ > 0 with θ < θD. Let uD ∈ HD,0

be the solution of (21). Then there exists C > 0, only depending on Ω, θ and u such that

1.
‖uD − u‖L2(Ω) ≤ ChD, (39)

13



2.
‖∇DuD −∇u‖L2(Ω)d ≤ ChD, (40)

3.
‖∆DuD −∆u‖L2(Ω) ≤ ChD. (41)

Proof. In this proof, we denote by Ci various positive quantities only depending on Ω,
u and θ. Let us first take any w ∈ HD,0. We have∫

Ω

w(x)∆(∆u)(x)dx =

∫
Ω

w(x)f(x)dx,

which leads, thanks to wK = 0 if K has a common boundary with ∂Ω, to

−
∑

σ∈Eint

δσw

∫
σ

∇(∆u)(x) · nσdγ(x) =
∑

K∈M

wK

∫
K

f(x)dx.

We set, for σ ∈ Eint,

Rσ =
1

|σ|

∫
σ

∇(∆u)(x) · nσdγ(x)− δσPD∆u

dσ

.

We have the existence of C4, only depending on u (as in [5]), such that

|Rσ| ≤ C4dσ. (42)

Using w ∈ HD,0, we have ∑
σ∈Eint

|σ|
dσ

δσwδσPD∆u = [w,PD∆u]D.

Therefore, using (20), we have∑
K∈M

|K|∆u(xK)∆Kw =
∑

K∈M

wK

∫
K

f(x)dx+
∑

σ∈Eint

|σ|Rσδσw.

Let us now introduce some v ∈ HD,0, which will be chosen later as some discrete interpo-
lation of u. We have∑
K∈M

|K|∆Kv∆Kw =
∑

K∈M

wK

∫
K

f(x)dx+
∑

σ∈Eint

|σ|Rσδσw+
∑

K∈M

|K|(∆Kv−∆u(xK))∆Kw.

We now subtract the above equation with (21), in which we replace v by w and we get∑
K∈M

|K|∆D(v − uD)∆Kw =
∑

σ∈Eint

|σ|Rσδσw +
∑

K∈M

|K|(∆Kv −∆u(xK))∆Kw.

14



Thanks to the Cauchy-Schwarz inequality, we have the existence of C5 such that∣∣∣∣∣ ∑
σ∈Eint

|σ|Rσδσw

∣∣∣∣∣ ≤ C5hD‖w‖D,

which provides, thanks to (20), (26) and (27)∣∣∣∣∣ ∑
σ∈Eint

|σ|Rσδσw

∣∣∣∣∣ ≤ C6hD‖∆Dw‖L2(Ω).

Replacing w by (v − uD) we obtain

‖∆D(v − uD)‖L2(Ω) ≤ C6hD +

(∑
K∈M

|K|(∆Kv −∆u(xK))2

) 1
2

Finally, we use the triangle inequality and obtain

‖∆u−∆DuD‖L2(Ω) ≤

(∑
K∈M

∫
K

(∆u−∆u(xK))2 dx

) 1
2

+C6hD+2

(∑
K∈M

|K|(∆Kv −∆u(xK))2

) 1
2

Now we choose v ∈ HD,0 according to Lemma 3.3 using ϕ = u. Thanks to (31) and
∆u ∈ C2(Ω), we get the existence of C7 such that(∑

K∈M

|K|(∆Kv −∆u(xK))2

) 1
2

≤ C7hD.

Gathering the above results, we get

‖∆u−∆DuD‖L2(Ω) ≤ C8hD,

and, thanks to (20) and (26),

‖PDu− uD‖D ≤ C9hD,

and
‖PDu− uD‖L2(Ω) ≤ C10hD.

Using (28), we conclude the proof of the theorem. ¤

Theorem 3.3 (Error estimate in the case where u ∈ C4(Ω) ∩H2
0 (Ω))

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?. Let us assume that
u ∈ C4(Ω) ∩H2

0 (Ω) is given and that f = ∆(∆u). Let D be an admissible finite volume
discretization of Ω in the sense of Definition 2.1 and let θ > 0 with θ < θD. Let uD ∈ HD,0

be the solution of (21). Then there exists C > 0, only depending on Ω, θ and u such that

15



1.
‖uD − u‖L2(Ω) ≤ Ch

1/5
D , (43)

2.
‖∇DuD −∇u‖L2(Ω)d ≤ Ch

1/5
D , (44)

3.
‖∆DuD −∆u‖L2(Ω) ≤ Ch

1/5
D . (45)

Proof. For a given a > 0 (which will be chosen later), we define the function ψa by
(32). We remark that the function ua defined by ua(x) = u(x)ψa(x) for all x ∈ Ω is such
that

‖∆u−∆ua‖L2(Ω) ≤ C
√
a, (46)

where C only depends on u. Indeed, we have

∆ua(x) = ψa(x)∆u(x) + 2∇ψa(x) · ∇u(x) + u(x)∆ψa(x),

which gives

∆ua(x)−∆u(x) = (ψa(x)− 1)∆u(x) + 2∇ψa(x) · ∇u(x) + u(x)∆ψa(x).

Since there exists Cu > 0, only depending on u, such that for all x ∈ Ω, |∇u(x)| ≤
Cud(x, ∂Ω) and |u(x)| ≤ Cud(x, ∂Ω)2, we get the existence of C ′

u, only depending on u,
such that

|∆ua(x)−∆u(x)| ≤ C ′
u, ∀x ∈ Ω such that d(x, ∂Ω) ≤ a,

remarking that |∇ψa(x)| ≤ C0/a and |∆ψa(x)| ≤ C0/a
2, with C0 being a constant. Using

∆ua(x) = ∆u(x) if d(x, ∂Ω) > a, we get

‖∆u−∆ua‖2
L2(Ω) ≤ meas(∂Ω) a (C ′

u)
2.

We now reproduce the proof of Theorem 3.2 until the choice of v ∈ HD,0, which is now
given by Lemma 3.3 for ϕ = ua. We then get that∑

K∈M

|K|(∆Kv −
1

|K|

∫
K

∆ua(x)dx)
2 ≤ C

h2
D

(a/4)4
.

Using the triangle inequality we thus get the existence of C11, only depending on u, such
that ∑

K∈M

|K|(∆Kv −∆u(xK))2 ≤ C11

(
h2
D + a+

h2
D
a4

)
.

It now suffices to choose a = h
2/5
D (note that, for small values of hD the case hD ≤ a/4

holds, which allows the function v given by Lemma 3.3 to be different from 0), which
leads to the conclusion of the proof. ¤
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4 Numerical results

We consider in this section 1D, 2D and 3D examples with various types of meshes in the
2D case. Note that, in particular, the discrete Laplace operator is not consistent in the
case of triangular meshes or rectangular meshes with nonconstant space steps. In the
tables below we use for the difference of the approximate solution uD ∈ HD,0 and the
exact solution u ∈ H2

0 (Ω) the following discrete norms defined by

E0 =

(∑
K∈M

|K|(uK − u(xK))2/
∑

K∈M

|K|u(xK)2

)1/2

,

E1 =

(∑
K∈M

|K| |∇KuD −∇u(xK)|2 /
∑

K∈M

|K||∇u(xK)|2
)1/2

,

and

E2 =

(∑
K∈M

|K|(∆KuD −∆u(xK))2/
∑

K∈M

|K|(∆u(xK))2

)1/2

.

4.1 1D example

We solve the problem
u(4)(x) = −1, x ∈ [0, L],

u(0) = u(1) = u′(0) = u′(L) = 0,

which is the classical problem of the completely fixed beam, under uniform load. The
analytical solution is given by

u(x) = −(x(L− x))2

24
.

The exact minimum value of u is −L4/(24 24) ' −0.002604167 L4.

n Nmat E0 order E1 order E2 order umin umax

100 484 4.29E-4 - 6.27E-4 - 1.12E-4 - -0.0026031 0
200 984 1.07E-4 ' 2 1.57E-4 ' 2 2.80E-5 ' 2 -0.0026039 0
400 1984 2.68E-5 ' 2 3.92E-5 ' 2 6.99E-6 ' 2 -0.0026041 0

Table 1: Convergence orders, in the case L = 1

In this standard example, we get convergence with order 2 for u, ∇u and ∆u. This conver-
gence order is lower than that obtained using conformal H2 finite element methods, but
may be sufficient in practice. Note that ‖f‖L2(Ω) =

√
L, and that ‖∆u‖L2(Ω), ‖∇u‖L2(Ω)

and ‖u‖L2(Ω) behave with L as Li‖f‖L2(Ω) with respectively i = 2, 3, 4, which shows that
the constants found in the proof of Lemma 3.1 have the optimal order.
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Figure 3: Exact and approximate solutions with n = 200.

4.2 2D example

Let us consider the 2D problem, where the solution is given by (5) with f = ∆(∆u),
g = 0, l = 0, Ω =]0, 1[2 and

u(x1, x2) = (1− cos(2πx1))(1− cos(2πx2)), ∀(x1, x2) ∈ [0, 1]2.

We then have

∆(∆u)(x1, x2) = (2π)4(4 cos(2πx1) cos(2πx2)− (cos(2πx1) + cos(2πx2)))

We then have the following numerical results, for different meshes (squares or triangles).

Mesh Nmat E0 order E1 order E2 order umin umax

20x20 3856 1.04E-2 - 6.03E-3 - 1.03E-2 - 0 3.991
40x40 18016 2.58E-3 ' 2 1.49E-3 ' 2 2.56E-3 ' 2 0 3.998

1400 tr. 12736 3.99E-3 - 5.27E-2 - 5.97E-3 - 0 3.998
5600 tr. 53456 9.89E-4 ' 2 2.63E-2 ' 1 2.53E-3 ≥ 1 0 3.9995
22400 tr. 218896 2.47E-4 ' 2 1.31E-2 ' 1 1.20E-3 ≥ 1 0 3.9999

Table 2: Convergence orders

In this example, we again get convergence with order 2 for u, ∇u and ∆u using square
meshes, but only order 1 using triangular meshes. Again, this convergence order is lower
than that obtained using conformal H2 finite element methods, but we remark that the
complexity of conformal finite element methods increases with that of the chosen element.
For example, the Argyris triangular finite element should be used for getting conformal
approximation in H2(Ω). This element has complex degrees of freedom, and the compu-
tation of the elementary stiffness matrix is much more complex than the implementation
of this finite volume method.

It is worth noticing that in this case, for any function ϕ ∈ C∞
c (Ω), the function ∆DPDϕ

has no chance to converge to ∆ϕ in L2(Ω) using the triangular meshes.
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Figure 4: The solution for mesh with 1400 tr., grid (left), solution (right)

4.3 3D example

Let us consider the 3D problem, where the solution is given by (5) with f = ∆(∆u),
g = 0, l = 0, Ω =]0, 1[3 and

u(x1, x2, x3) = (1− cos(2πx1))(1− cos(2πx2))(1− cos(2πx3)), ∀(x1, x2, x3) ∈ [0, 1]3.

We then have

∆(∆u)(x1, x2, x3) = (2π)4( 4(cos(2πx1) cos(2πx2) + cos(2πx2) cos(2πx3) + cos(2πx3) cos(2πx1))
−(cos(2πx1) + cos(2πx2) + cos(2πx3))
−9 cos(2πx1) cos(2πx2) cos(2πx3))

We then have the following numerical results, for cubic meshes with n3 control volumes.

Mesh Nmat E0 order E1 order E2 order umin umax

8x8x8 3960 0.721E-01 - 0.564E-01 - 7.49E-2 - 0 7.57
16x16x16 60536 0.175E-01 ' 2 0.134E-01 ' 2 1.82E-2 ' 2 0 7.90
32x32x32 637560 0.435E-02 ' 2 0.329E-02 ' 2 4.52E-3 ' 2 0 7.98
2000 Vor. 78597 0.958E-01 - 0.238 - 0.281 - -0.015 7.83
16000 Vor. 955719 0.475E-01 ' 1 0.114 ' 1 0.172 ≤ 1 -0.002 7.85

Table 3: Convergence orders

In this 3D example, we again get convergence with order 2 for u, ∇u and ∆u with cubic
meshes. We recall that it is not possible to consider tetrahedral admissible meshes in 3D
in the sense of Definition 2.1. The more general meshes that we can consider here are the
Voronöı meshes (recall that the control volumes are defined, for any point xK , as the set of
the points of Ω closer to xK than to any point xL for L 6= K). Note that, for such meshes,
no standard finite element techniques are available. In Table 3, we present the results
obtained using two Voronöı meshes, with respectively 2000 and 16000 control volumes.
The centers of the control volumes are randomly generated. The convergence orders
remain significant, although in this case again, for any function ϕ ∈ C∞

c (Ω), the function
∆DPDϕ has no chance to converge to ∆ϕ in L2(Ω). We observe that the maximum and
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Figure 5: From left to right: solution obtained with mesh 32x32x32, at x1 = .2, at
x1 = .5, solution obtained with Voronöı mesh with 16000 control volumes, at x1 = .2 and
at x1 = .5

minimum values are not as precise as those obtained using cubic meshes. It is interesting
to notice that the nonzero terms in the matrix are much more numerous, in comparison
with cubic meshes, for comparable mesh sizes.
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