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Abstract

We consider the inverse problem for an elastic body emerged in a fluid due to an
acoustic wave. The shape of this obstacle is to be reconstructed from the far-field
pattern of the scattered wave. For the numerical solution in the two-dimensional
case, we compare a simple Newton type iteration method with the Kirsch-Kress
algorithm. Our computational tests reveal that the Kirsch-Kress method converges
faster for obstacles with very smooth boundaries. The simple Newton method,
however, is more stable in the case of not so smooth domains and more robust with
respect to measurement errors.
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Figure 1: Acoustic wave and obstacle.

1 Introduction

If an elastic body is subject to an acoustic wave propagating through the surrounding
fluid, then an elastic wave is generated inside the body, and the acoustic wave is per-
turbed (cf. Figure 1). The wave perturbation is characterized by the asymptotics of the
scattered field, namely, the far-field pattern. Suppose the material properties of body
and surrounding fluid are known. Then the usual inverse problem of obstacle scattering
is to determine the shape of the body from measured far-field data generated by plane
waves incident from one or from a finite number of directions. This problem is extremely
ill-posed such that regularization techniques are needed for the solution.

Clearly, the same numerical methods used for the inverse problems for obstacles with
sound-hard and sound-soft boundaries or for penetrable obstacles can be adapted to the
scattering by elastic bodies. Among the available numerical methods, in recent years
factorization methods are very popular (cf. e.g. [11]). Without any a priori information
about geometrical details like connectivity components or holes, these methods provide
good approximations for the shape of the obstacle. The case of acoustic scattering by



Figure 2: Domains.

elastic bodies in [15] is treated by the linear sampling method. Classical methods such
as in |3, 14] (cf. [4] for the case of scattering by elastic obstacles) generally require more
information on the geometry of the obstacle. For instance, the boundary of the obstacle
is required to be homeomorphic to a circle for 2-D and to a sphere for 3-D problems,
respectively. Starting from a reasonable initial guess, the parametrization of the obstacle
boundary is approximated in a Newton type iteration. Though the accuracy of the recon-
structed solution is always limited by the ill-posedness, we expect the classical Newton
approach to be more accurate than the factorization methods. To avoid the solution of
direct problems in each step of iteration, besides the boundaries also the wave field can be
included into the components of the iterative solutions. For instance, a method proposed
by Kirsch and Kress (cf. e.g. [12, 3, 20| and cf. 5] for the case of scattering by elastic
obstacles) represents the waves by potentials with generating layer functions defined over
artificial curves. Note that, for inverse problems in acoustic scattering by elastic obsta-
cles, difficulties with unpleasant eigensolutions of the direct problem, referred to as Jones
modes, can be avoided if the Kirsch-Kress method is applied.

In this paper we consider the two-dimensional case and compare the simple Newton
method of [4] with the Kirsch-Kress method of [5] for which we present numerical results
for the first time. We start discussing the solution of the direct problem in Section 2. Using
the direct solution, we introduce the two numerical schemes for the inverse problem in
Section 3. Then we recall the convergence results from [4, 5|. In Section 4 we discuss
some details of the implementation. Finally, we present numerical results in Section 5.
Our results show that the Kirsch-Kress method converges faster for obstacles with very
smooth boundaries. The simple Newton method, however, is more stable in the case of
not so smooth domains and more robust with respect to measurement errors.

2 Direct problem: Elastic obstacle in fluid

Suppose a bounded elastic body is emerged in a homogeneous compressible inviscid fluid.
We denote the domain of the body by €, its boundary curve by I' (cf. Figure 2), and



assume that an incoming plane wave is moving in the exterior Q¢ := R? \ ) toward the
body. This wave is scattered by the body and generates an elastic wave inside the body.
Mathematically, the acoustic wave is described by the pressure perturbation p over 2¢ and
by the displacement function u on 2. The displacement fulfills the Navier (time-harmonic
Lamé) equation

Nu(z) + ow’u(z) = 0, x€Q, (2.1)
KNu(xz) = plAu(z)+ A+ u) VIV -u(z)].
Here w is the frequency, g the density of body, and A, i are the Lamé constants. The total

pressure p is the sum of the incoming wave p"*¢ and the scattered wave p* which satisfies
the Helmholtz equation and the radiation condition at infinity

Ap*(z) + ky’p*(x) = 0, x €9 (2.2)
T . _
e V() —ikup(z) = o(l2]7V?), x| — oo, (2.3)

|

where k2 = w?/c? is the wave number and ¢ the speed of sound. The pressure and the
displacement field are coupled through the transmission conditions

(@) - v(z) = QfLQ{ﬁp;fHapgjx)},xer, (2.4)
tul(z) = —{p(a +me 0)} v(z), zel, (2.5)

tlu)(z) = Q;L%‘F + A[V -] I/‘F + pv x [V x u]|F

o Vo (O iz — Oyt
x [V x UHF T <1/1(8mu1 - amU?)) ‘F‘

Here oy is the density of the fluid and v denotes the unit normal at the points of I' exterior
with respect to 2.

For numerical computations, we truncate the exterior domain €2¢ to the annular domain
Qg with the outer boundary I'y. The Helmholtz equation (2.2) is solved over Qg

Ap*(z) + ku'p*(x) = 0, z€ Qg (2.6)

and the nonlocal boundary condition

VT () + 5 el ) — KED I @) = 0, ey, (27)

IG(z,y; ky)
K%p(z) = 2 D) (y)dpy,
rop(x) /F T ony) p(y)dr,y

Vio(z) = /F G(x,y; kw)o(y)dr,y,

i
Gy k) = H (hule = ) (2:8)

is imposed, where Ho(l) is the Hankel function of the first kind and of order 0 (cf. the
boundary integral equation techniques in [10]). The corresponding variational formulation



of (2.1), (2.6), (2.4), (2.5), and (2.7) takes the form: Find (u,p*, o) with u € [H'(Q)]?
p* € HY(QR), and 0 € H~Y/2(T) such that

mc

—frp v-v
’an

B((u,pS,U)T>(v,q5,X)T) = R(pmc,(vvqs,xf) =| L7 (2.9)
0

is valid for any v € [H'(Q)]?, ¢ € H'(QR), and x € H~/2(Iy). The sesqui-linear form B
is given by

a((u,p’, o), (v,¢°x)"

")
B((wp' o) (0 0)T) = bﬂwﬁmT,vqug ,

¢ ((u,p*,0)", (v, 6%, %) "

a ((u’ps7 O')T’ (?)7 qS)X)T) = \/Q {/\v uV v+ g Z [8Zu]%+ GZUJT’U]}

ij=1
—Qm%@}—l-/psnﬁ,
r
b((u,p®,0)", (v,¢*,x)") = / {VpS-VqS—kw2p?}+9fw2/u‘ ng
Qr r
_/ 0-67
To
1 _
c((u,p®,0)", (v,¢*,x)") = /F {V190‘30+ <§I—K§§)ps}x-
0

The system (2.9) can be solved by the finite element method. Suppose the boundary
I' of the obstacle is piecewise smooth and choose the auxiliary curves [y such that the
corresponding interior domain has no Dirichlet eigenvalue equal to k2 for the negative
Laplacian. Then existence and uniqueness of the variational solutions as well as the
convergence of the finite element method (cf. [4]) can be shown whenever there is no
nontrivial solution wuq of

Kug(x) + pwiup(r) = 0, v €Q,
tlugl(x) = 0, x €T, (2.10)
up(z) v = 0, zel.

Note that nontrivial solutions of (2.10) are called Jones modes, and a frequency w, for
which the given domain €2 has a nontrivial solution of (2.10), is called Jones frequency.
It is known that domains with Jones frequencies exist at least in the three-dimensional
case, but are exceptional (cf. [16, §8]).

Alternatively to the finite element solution, the complete pressure function and the dis-
placement field can be approximated by potentials with sources over auxiliary curves
(cf. Figure 3). We introduce the curve I'; “close” to I', but inside 2, and the curve I, in
Qg surrounding I'. We represent the pressure and the displacement by

pa) = [Vice] (o), z € &, ulz) = [Vilg] (a). 2 € © (2.11)



Figure 3: Domains and auxiliary curves

with a scalar layer function ¢; and a vector layer g.. The potentials are defined by
Virle) = [ p)Gleyik) day. o € B2 (212)
A

[Vflu} (x) = /AGEZ(y,:L‘)u(y) day, © € R?, (2.13)

1 1 92 2
el o . o . _ .
G (y, ) := . (G(x,y, ks)dij + W2 Duid; (G(z,y; ks) — G(z,y; kp))) ,

i.j=0

where the fundamental solution G(-, - ; k) is given in (2.8) and the wave numbers k, and k;
are defined by ow® = (A-2p)k> = pk? . The layer functions in (2.12) and (2.13) are chosen
such that the corresponding pressure and displacements fields satisfy the transmission
conditions (2.4) and (2.5). In other words, to get a good approximate solution we have
to solve the integral equations

t[VFeﬁlgﬁe](x) + [Vicoil(z)v(z) = —p™v(z), v €T, (2.14)
waQV(l') . [Vﬁlgﬁe](az) — 0 [Viipil(z) = 0,p™(z), x €T. (2.15)

Numerical methods based on the discretization of (2.12), (2.13), (2.14) and (2.15) are well-
known to exhibit high rates of convergence (cf. e.g. Sect. 9.8 in [6] and [2, 7, 9]). However,
for not so simple geometries, an appropriate choice of I'; and I'. and an appropriate
quadrature of the integrals is not trivial. A bad choice may lead to extremely ill-posed
equations (2.14), (2.15) and to false results.

For a point z tending to infinity, the scattered pressure field p*(z) is known to have the
following asymptotics

5( ) ethwlzl of T Lo 1 | | (2 16)
r) = T — — T| — 00 .
b 72 P \Ja] 2 ) ’

eirr/4

pe(e") = NG { [ikury - €] ply) + aup@)}eiikwy'eitdny-
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Figure 4: Geometry of scatterer.

Real part of pressure Imag.part of pressure

-2t 2t

-15

Figure 5: Pressure field: real and imaginary parts.

The function F[p*](t) := p>(el!) is called the far-field pattern of the scattered field. This
is the entity which can be measured.

We conclude this section by a numerical example. If we choose the nonconvex domain
with boundary curve I' according to Figure 4, the constants

w = 1.5707963267948966 kHz o = 6.75-1078 kg/m”’,
A = 1.287373095 Pa, p = 0.66315 Pa, (2.17)
¢ = 1500 m/s, of = 2.5-107% kg/m”’,

and the direction of the incoming plane wave equal to v = (1,0)", then we get by the
finite element method [4] the pressure function, the displacement field, and the far-field
pattern plotted in Figures 5-8.
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Figure 8: Far-field pattern.

3 Inverse problem and iterative approximation

Now we suppose that the boundary curve I' of the obstacle is star-shaped and included
between the inner curve I'; := {z € R? : || = r;} and the outer curve I, := {z € R? :
|z| =1}, ie,

I = {r(t)e’: 0<t<2r}, r(t)=ao+ Z {a; cos(jt) + b; sin(jt) }

J=1

with the constraint r; < r(t) < r., 0 <t < 2x. To avoid this constraint, we can use the
parametrization

Te + 75 Te —T

F=T":={f(t)e’: 0<t<2r}, I(t):= 5 -

: arctan(r(t)). (3.1)

Having in mind this representation, the star-shaped curve is uniquely determined by the
real valued function r or, equivalently, by the Fourier coefficients {&j,[;j}. The direct
problem of the previous section defines a continuous mapping (cf. [4])
F: H1?0,2r] — L2,.[0,27], T"— p™,

where p> = F[p®] is the far-field of the scattered field p®, and p°® is the pressure part
of the solution (p®,u) to the direct problem (2.1), (2.6), (2.4), (2.5), and (2.7) including
the interface I' = I'™ and a fixed incoming plane wave p™*. The space H,f7[0,27] is
the periodic Sobolev space of order 1+ & > 1 over the interval [0,27]. L?[0,27] is the
corresponding Lebesgue space. Now the inverse problem is the following: For a given far-
field pattern p*>, find the shape of the obstacle with boundary rg, such that the scattered
field corresponding to the fixed incoming plane wave p™° has the far-field pattern p*, i.e.,
such that F(rsy) = p>. To our knowledge, results on the uniqueness of the solution rg,
are not known yet.



We now define three different optimization problems equivalent to the inverse problem.
Numerical algorithms for the inverse problem can be derived simply by applying numerical
minimization schemes to the optimization problems. More precisely, the minimization
schemes are applied to regularized modifications of the optimization problems.

The first optimization problem is to find a least-squares solution r,,;,, i.e., a minimizer of
the following problem

inf ~ J,(r), Ty (x) = [1F(r) = p*[|Z2p0,20]

reHEde[0,2n)

Since the inverse problem is ill-posed and since the measured far-field data is given with
noise, we replace the last optimization problem by

AT, T = 1P e F ey (52)

where v is a small positive regularization parameter. As usual this parameter is to be
chosen in dependence on the noise level. To guarantee convergence for noise level tending
to zero and for v — 0, we suppose

(ee}

Hp - p?LC())isy”iz[O’zﬂ <cvy (33)

for a constant ¢ independent of y. The first numerical algorithm (cf. [4]) consists now
in discretizing the mapping F' by finite elements and applying a Gauss-Newton method
to determine a minimizer of (3.2). This is a modified Newton method for the operator
equation F'(ry) = ppo,,,, Which we shall call the simple Newton iteration.

Theorem 3.1 ([4]) Suppose Ty is chosen such that the corresponding interior domain
has no Dirichlet eigenvalue equal to k2 for the negative Laplacian. Then we have:

i) For any v > 0, there is a unique minimizer r7 of (3.2).

ii) Suppose 7 is a set of minimizers for (3.2). Then the minima of the functionals,
T} (x7), tend to inf, piicig o Ty (r) for vy — 0.

per

ii1) Suppose the far-field pattern p> is the exact pattern for a fized solution r* of the
inverse problem, i.e., F(r*) = p® and Jj(v*) = 0. Then, for e > 0 and for any
set of minimizers r”, there exists a subsequence x* converging weakly in H;;;F [0, 27]

and strongly in H2'[0,27], 0 < ¢’ < ¢, to a solution v™* of (3.2) with v = 0 and,

per
therewith, to a solution of the inverse problem.

w) 1If, additionally to the assumptions of iii), the solution r* of the inverse problem is
unique, then we even get that 7 tends to r* weakly in H)}[0,27] and strongly in
H*2'0,27], 0 < €/ < e.

per

Unfortunately, for the first method the computation of F' requires a solution of a direct
problem. In particular, if the curve I' is the boundary of a domain with Jones frequency
or close to such a boundary, the direct solution by finite elements is not easy. One way
would be to compute with slightly modified frequencies. However, it might be difficult to



check whether the curve is “close” to the boundary of a domain with Jones frequency and
to choose a modified frequency appropriately.

In order to motivate the second numerical method, the Kirsch-Kress algorithm, which
corresponds to a third optimization problem, we introduce a second intermediate opti-
mization method first. The plan is to define a method, where a solution of the direct
method is not needed. Therefore, besides the unknown curve I' the pressure p® and the
displacement field u are included into the set of optimization “parameters”. Additionally
to the term of the least squares deviation of F[p°] from pjo,.,, new terms are needed
which enforce the fulfillment of the equations (2.1), (2.6), (2.4), (2.5), and (2.7) at least
approximately. Hence, the regularized second optimization problem is to find a minimizer

(rmin7 Umin, pmm) Of

inf T2 p). (3.4)

reHpd, [0,2n), ue[HY (Q)]2, p*€HY (Qr)

J2(v,u,p”) = ||Fp’] - Piiisyniz[o,zﬂ) Au+ WQ““?H*(Q)P +

189 + k0|1 g + elul + {7+ 07 vy +

ey 1 aps N 8pinc 2
wa2 ov ov

+
H-1/2(T)

v + )~ gl

H'/2(Iy)

Yl 2t 0.0 +7HuHH1 )+ 1P ()

where 7 is a small positive regularization parameter. Of course, this is a theoretical
optimization problem only. For a numerical realization, the operators should be replaced
by those of the variational formulation (2.9). However, it is clearly seen that the price for
avoiding a solution of the direct problem is an increase in the number of the optimization
“parameters”. The numerical solution of the discretized optimization problem (3.4) is
higher dimensional and might be more involved than that for the case of (3.2).

The third optimization problem is a modification of (3.4). The optimization “parameters”
u and p°® are replaced by the layer functions ¢; and . of the potential representations
(2.11). In other words, in the numerical discretization the finite elements over the domains
Q2 and Qg are replaced by lower dimensional boundary elements over the curves I'; and
I.. Instead of the terms in J> enforcing the conditions (2.1), (2.6), (2.4), (2.5), and (2.7),
we only need terms enforcing (2.14) and (2.15). Hence, the regularized third optimization
problem is to find a minimizer (T,in, ©imin, Pe.min) Of

inf jj(ragphﬁe)) (35>

rEH2EE[0,2n), o € H1(D;), Ge€[H-L(Te)]2

2
TE (0 00, = c\)f[vaaoi]—pzz,-sy o T2 + G 2 +
2 2
t Vel ; ; inc H 2 vV | — (9 vV | = 81/ inc 7
H 1)+ Vel v+t || ooy T 1|27 [Vilge] — 0. [Viei] — dup .

where 7 is a small positive regularization parameter and c a positive calibration constant.
We choose the layers ¢; min and @e min in an unusual Sobolev space of negative order
to enable approximations by Dirac-delta functionals, i.e., by the method of fundamental

10



solutions. Though the number of optimization parameters in a discretization of (3.5)
is larger than that in a discretization of (3.2), the objective functional j$’ is simpler
than jvl. Applying an optimization scheme like the conjugate gradient method or the
Levenberg-Marquardt algorithm to (3.5), we arrive at the Kirsch-Kress method. Note
that the accuracy of the solution of this method is limited by the accuracy of solving the
integral equations (2.14) and (2.15) with a Tikhonov regularization. To improve this, the
curves ['; and I', can be updated during the iterative solution of the optimization problem
(compare the iterative schemes in [14]).

Theorem 3.2 (|5]) Suppose k2 is not a Dirichlet eigenvalue for the negative Laplacian
in the interior of I'; and that p™ s the exact far-field pattern of a scattered field p*
corresponding to some I'"" . Then we have:

i) For any vy > 0, there is a unique minimizer (v, ]}, @) of (3.5).

ii) Suppose (v7, @), GY) is a set of minimizers for (3.5). Then the minima of the func-
tionals, the jj(r”, !, gY), tend to zero for v — 0.

iii) For any set of minimizers (v7, ], 3)), there exists a subsequence (v, o™ 1) such
that ¥’ converges weakly in HX?[0,27] and strongly in HX2'[0,27], 0 <& <e, to
a solution r™* of the inverse problem.

w) If, additionally, the solution r* of the inverse problem is unique, then we even get
that vV tends to v* weakly in H'F¢[0,27] and strongly in H'*¥'0,27], 0 < &' < e.

per per

A discretization of the optimization problem (3.5) is presented in Section 6.3.

4 Some details of the implementation

For the solution of the optimization problems, a lot of numerical optimization schemes
are available (cf. [17]). Unfortunately, global methods which yield the global minimum
are often very slow. We recommend gradient based local optimization schemes. They
provide local minimizers, i.e. solutions with minimal value of the objective functional
in a neighbourhood of the minimizer. In general, it cannot be guaranteed that the local
minimizer is the global minimizer. However, using a good initial guess, the local minimizer
will coincide with the global. In particular, we have tested the Gauss-Newton method,
the Levenberg-Marquardt algorithm (cf. [13]), and the conjugate gradient method. The
last method has been tested for the Kirsch-Kress method to avoid the solution of linear
systems in the size of the direct problem.

In order to compute derivatives of the objective functionals in case of the simple New-
ton iteration the calculus of shape derivatives can be applied. The derivatives result from
solving the finite element system of the direct problem with new right-hand side vectors.
This is fast if the finite element system is solved by an LU factorization for sparse systems
(cf. [18, 4]). The derivatives for the Kirsch-Kress method can be obtained by a simple
differentiation of the kernel functions in the potential representations. Since the elasticity
kernel contains second-order derivatives of the acoustic kernel and since the terms enforc-
ing the transmission conditions contain first-order derivatives of the elastic potential, we

11



need fourth order derivatives of the acoustic kernel. We present the needed formulas in
Section 6.

Normally, quadrature rules are needed if the layer functions ¢; and g, in the potential
representation (2.11) are approximated by functions of a finite dimensional space. The
potential integrals of these functions must be approximated by appropriate quadratures.
However, in the case of the Kirsch-Kress method we can approximate the layer functions
by linear combinations of Dirac delta functions

M
. 2TK
©i o~ M= ;b,ﬁmm, be € C, x;, i=miet | t, = T (4.1)
M
Be ~ Gensi= Z Ck0z.,, Cr € C?, Tep i= roeite. (4.2)
k=1

This works since the potential operators are smoothing operators from the curve I'., I'; to
I'. Only in the case that I', or I'; is close to I', a trigonometric or spline approximation
of p; and g, together with an accurate quadrature must be employed.

Another important issue is the scaling of the optimization scheme. Indeed, the number
of necessary iterations depends on the conditioning of the optimization problem. Using
an appropriate scaling, the conditioning can be essentially improved. The first choice
is, of course, the natural scaling. The far-field values should be scaled such that the
measurement uncertainties of the scaled far-field values coincide, and the parameters
should be scaled in accordance with the accuracy requirements. A scaling different from
the natural one is chosen not to improve the reconstruction operator, but to speed up
the optimization algorithm. This calibration may include different constants in front of
the individual terms in the objective functional (cf. the factors ¢ and 7 in the definition
of \773) and the replacement of the optimization parameters by the products of these
parameters with convenient constants. The constants can be chosen, e.g., to minimize
the conditioning of the Jacobian of the mapping that maps the parameters to the far-field
values. Alternatively, the constants can be chosen by checking typical test examples with
known solution. To improve the conditioning of the optimization in the Kirsch-Kress
method, we have replaced the “optimization parameters” r, ¢;, and g, by the parameters

/

r = r/CI‘7 QOZ, - QPi/Cz‘y 956, - QBe/Ce- (43)

5 Numerical results

We have employed 1) the simple Newton iteration and ii) the Kirsch-Kress method, both
with a circle as initial solution, to reconstruct two different obstacles. The first is an easy
egg shaped domain (cf. Figure 9) with a boundary given by (3.1), by 7, = 2, r. = 6, and
by the fast decaying Fourier coefficients

= 07
dlz—l, &2 = 01, &3 - 001, &4 - —0001, CAL5:00001, (51)
by= 1, by = 0.1, b3 = 0.01, by = 0.001, b5=0.0001.

12
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Figure 9: Initial solution and egg shaped domain.

The second body is the nonconvex obstacle from the end of Section 2 (cf. Figure 10), and
its boundary is given by r; = 2, r. = 6 and by the Fourier coefficients

ap = 07
&1: 1, dg — 010, dg — 0040, &4 — 0016, &5:0008, (52)
biy=—1, by = 0.02, b3 = —1.500, by = —0.010, b5=0.008.

In all computations, we have chosen the physical constants in accordance with (2.17).
The incoming plane wave has been fixed to p™e(z) := €0 Moreover, for all initial
curves and all iterative solutions, we have fixed the zeroth Fourier coefficient ay to zero.
The “measured” far-field data {p=(k/M"), k = 1,...,M"}, M" = 80 (cf. Figure 8)
has been simulated by the piecewise linear finite element method (FEM) described in
Section 2. To avoid what is called an inverse crime, we have chosen the meshsize of
the FEM grid (determined by NETGEN [19]) for the far-field computation by a factor
of at least 0.25 smaller than that of the FEM grids involved in the inverse algorithms.
Our tests have revealed that the far-field of the FEM method is more reliable than that
computed by the regularized system (2.14)-(2.15). The scaling parameters ¢, ¢, ¢;, and
ce for the Kirsch-Kress method (cf. (4.3) and the definition of J?) have been determined
experimentally such that the reconstruction by Gauss-Newton iteration converges with
the smallest number of iteration steps. For example, for the egg shaped domain and
M=M’"=44 points of discretization for the approximate integration over I', T';, I, (cf. the
discretized objective functional in (6.5)), these values are ¢ = 4000, ¢, = 1, ¢; = 0.1, and
ce = 0.005.

The results for the egg shaped domain and for the simple Newton iteration have been
similar to those presented in [4|, where the constants where slightly different and the
obstacle was similar to our nonconvex body. After a small number (< 20) of iterations,
the algorithm reconstructs the obstacle. The regularization parameter v can even be set
to zero, which is not surprising since only 10 unknown real parameters are reconstructed
from 160 real measurement values. Table 1 exhibits the meshsize h, the number of Gauss-
Newton iterations it, and the accuracy err := ||T — Tpgar||rjo,2+ Of the reconstruction
rrpy.  The results for the nonconvex obstacle are similar (cf. Table 2). Most of the
computing time is spent on the evaluation of the objective functional including the solution
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Figure 10: Initial solution and nonconvex domain.

of a direct problem. Therefore, it is not necessary to replace the expensive Gauss-Newton
iteration by a different optimization scheme.

We have started the tests of the Kirsch-Kress method with the nonconvex domain. How-
ever, the optimization algorithms did not converge. To fix the problem, we have checked
the solution of the corresponding direct problem. We have observed that the far-field of
the solution computed by (2.11), (2.14), and (2.15) did not match that of the FEM. Even
a Tikhonov regularization in accordance with the last four terms of the functional .73
did not help. Only a regularization with a truncated singular value decomposition and a
well-chosen truncation parameter led to the correct far field. In other words, the reason
for the divergence of the Kirsch-Kress method is the high degree of ill-posedness of the
system (2.14),(2.15). On the other hand, if we commit the inverse crime and take the in-
correct far-field data computed by solving (2.14),(2.15), then the Kirsch-Kress algorithm
does converge.

To show the convergence of the Kirsch-Kress method with FEM generated far-field data,
we consider the egg shaped domain. This time the solution curve has a higher degree
of smoothness, and the direct solution of (2.14),(2.15) together with a Tikhonov regu-
larization yields a far-field solution close to that of the FEM. Table 3 shows that the
Kirsch-Kress method converges for the egg shaped domain. Indeed, the table shows the
regularization parameter v, the error ||T — T xx]| Leer(o2n] Of the Kirsch-Kress reconstruc-
tion rxx, and the number of necessary iteration steps. These depend on the number

’ h H err ‘ it ‘
0.5 0.0759 6
0.25 0.0247 8
0.125 0.00876 | 8
0.0625 | 0.00329 | 10
0.03125 || 0.00156 | 10

Table 1: Reconstruction of egg shaped domain by simple Newton
iteration.
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Figure 11: Initial solution with Fourier coefficients a
modified curves I'; and T',.

of discretization points M = M’ for the approximate integration over I', I';, T'. (cf. the
discretized objective functional in (6.5)) and on the choice of the optimization method.
In particular, we have checked the Gauss-Newton method with experimentally chosen
regularization parameter v (GNw), the Levenberg-Marquardt method with the same reg-
ularization parameter (LMw), and the Levenberg-Marquardt method without regulariza-
tion (LMo). The results show much better approximations than for the simple Newton
iteration. Unfortunately, the conjugate gradient method did not converge.

To get convergence of the Kirsch-Kress method also for the nonconvex domain of Figure
10, we have changed the curves I'; and T, (cf. Figure 11). If these are closer to the curve
'™, then the degree of ill-posedness of the operators in (2.14),(2.15) is reduced. We have
chosen the initial guess of the Fourier coefficients as

ad= 0.0,
9= 13, a) = —0.10, a) = 0.1, al = —0.05, a2= 0.018, (5.3)
W=-08, b = 005 0 =-17 i = 003, b=-0.020

Since the iteration, with this initial solution, converged to a false local minimum, we have
introduced an initial solution closer to the true solution in (5.2). We have checked the
initial solution

0,...,5, Bg::%(z}?+l§i),z‘:1,...,5
’ h H err \ it‘
0.25 1.1435 [ 20
0.125 || 0.00924 | 17
0.0625 | 0.00401 | 15
0.03125 || 0.00157 | 18

Table 2: Reconstruction of nonconvex domain by simple Newton

1teration.
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and observed convergence. In particular, we had to choose a larger number of discretiza-
tion points on the curves I', T';, I',, namely M = M’ = 352. We have set the regularization
parameter v = 10~% and the scaling constants to ¢ = 10000, ¢, = 1, ¢; = 1, and ¢, = 0.2.
For the initial solution {a}, I;Zl}, we got the reconstructed curve within 11 iterations of the

Gauss-Newton method. The error ||T — Ty || oco,2.] = 0.296 of the initial parametrization
r;n; with Fourier coefficients a!, b! has been reduced to |IT — Trre|| £oof0,2,) = 0.000279.

1771

Finally, we have checked perturbed far-field data. For different values of ¢, we have
added a random number, uniformly distributed in [—¢,¢], to the far-field values of the
egg shaped domain. Tables 4 and 5 show the reconstruction accuracy depending on ¢ for
the simple Newton iteration with FEM stepsize 0.03125 and for the Kirsch-Kress method
with a number of discretization points M = M’ = 44, respectively. Obviously, the simple
Newton iteration is much more robust with respect to random perturbations. For the
Kirsch-Kress method with M = M’ = 352 points applied to the nonconvex domain (cf.
Figure 11), the test results are shown in Table 6.

Summarizing the results, the advantage of the Kirsch-Kress method is the high accuracy
of reconstruction. Since methods like the conjugate gradient algorithm do not necessarily
converge, we cannot claim that, using the Kirsch-Kress method, the solution of large linear
systems in the size of the matrices of the direct methods can be avoided. The disadvantage
of the Kirsch-Kress method is that small measurement uncertainties of the far-field data,
high degrees of ill-posedness, and bad scalings can lead to divergent iterations.

number of 7y GNw LMw LMo
points M = M’
22 4-107% [ 0.05427  (13) | 0.05461 (30) | 0.06793 (30)
44 0.25-107'2 |/ 0.002136 (13) | 0.002007  (320) | 0.002095 (320)
88 4-107 11 0.0002126 (13) | 0.0002107  (80) | 0.0001997 (160)

Table 3: Reconstruction accuracy (number of iterations) in depen-
dence on the optimization method and on the number
of discretization points for the egg shaped domain.
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e [ IF— Frpalle= |
0. 0.001568
0.001 |  0.002637
0.005 |  0.007156

0.01 0.01368
0.05 0.05433
0.1 0.1087
0.2 0.2339

Table 4: Reconstruction error of the simple Newton iteration de-
pending on the stochastic perturbation of the far-field
data, egg shaped domain, regularization parameter v=0.

e [ v [lIF -l |
0. 025 10 2] 0002136
0.0001 | 0251071 | 0.003640
0.001 | 025-107 | 0.02041
0.003 | 0.25-10° | 0.05686
0005 | 1-107 | 0.09997

Table 5: Reconstruction error of the Kirsch-Kress method depen-
ding on the stochastic perturbation of the far-field data,
egg shaped domain.

e [y JIE—Fraclle | ]
0.00000 | 10-° | 0.00028 | 11
0.00010 | 107% | 0.0141 |13
0.00025 | 107 | 0.0345 |11
0.00100 | 107% | 0.113 8
0.00250 | 10° | 0.187 9

Table 6: Reconstruction error of the Kirsch-Kress method depen-
ding on the stochastic perturbation of the far-field data,
nonconvex domain.

17



6 Appendix:
Derivatives of the 2D discretized objective functional

6.1 Derivatives of the points at the parameterized curve and of
the normal vector with respect to a

Now we derive formulas for the parameterization point z,(¢) := ¥(¢) exp(i¢) (cf. 3.1) on
the approximate interface, for the normal v at z, ., and for their derivatives with respect
to the Fourier coefficients. Clearly, the set of coefficients is to be truncated such that we
can compute with a finite set of parameters {ao, a;, l;j : 7=1,2,...,n}. To simplify the
formulas, we set N = 2n+ 1 and collect these Fourier coefficients in the set {a, : ¢ € Iy}
and write the parametric representation as

2e(C) == (Q) €, p(¢) = arctan( Z Ch%(C)) : (6.1)

2 T
veln

Here v,(¢) = cos(j¢) if a, = a; and ,(¢) = sin(j¢) if a, = b;. For the derivatives, we
arrive at

re—ri  Dery @ (C)

/ C — ;
O s et Q)

0 Ty 1/%(()

8aL I'(C) N ™ 1 + (EL’EIN aL/wL’(C))2 ,

D) _ reen ¥.(¢) i
8aL xr(C) ™ 14+ (ZL’EIN aL/wL’(C))2 o

0 o _ rem ¥ (C)

da, " (©) T (Y, arthe(Q)

-9 Te—T; [ZLIEIN ablw:’(g)] [ZL/EIN aL/wu(C)] wL(C)
. .
m (14 (Sery wete(©))’]

A normal 7 to the curve at z,(¢) and the unit normal v are given by

Pael()) = ei’f“a%wo] - e”/?a%[r«) ]

e[ e Hr(Q) e ] = [e7TA(Q) +1(O)] €
[6—i7r/2 / + ] IJ(C) el(C=7/2) —f-I‘(C) ei¢
|€‘i”/21"(€) 1‘( )| r'(¢)* +1(¢)”
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The derivatives of these entities can be computed by the formulas

0 v(z:(0)) = i r'(¢) ei(C—n/Q)_'_i r(¢) i

da, da, \/T(C)2+1(C)2 da, /v (C)? 1 r(C)? )
9 r'(¢) _ 0¥ (O 1P(QL2r(Q0,r(C) + 26(0)0ur(Q)}
da. \/r'(()? +r(()? rQ)?+r(Q)? 2 T

JGEEEGE NEGEEGE |
() N (S I 5[ L (S A (SR (S A1
Oa PP VPO (P V(P10

6.2 Values and derivatives of incoming wave and kernel functions

Suppose v is the direction of the incoming wave, then
plnc(x) _ eikw vinc.g ’
0, p"(x) = ik, e [
Oy Oy P () = =k M [0 [0,

For the derivatives of the acoustic Green kernel, we obtain (cf. [1])

i .
Gloy) = 7Ho (ke —yl), 1y (1) = (1) + 1Yo (1),
ik G ) 1)y .
0s,G(2,y) = Z[Ho ](k|$—y|)w7 [Hy T'(t) := = Ju(t) —iYa(t),
_ ke Wi %)
0y, G(wy) =  [Ho'V'(kle —yl) e
i — 25, — Ay, _
0,,0,Gw,y) = () (ko — ) 20— 20 ) — )
4 [z —yl
ik? (2 — y5)(x —y1)
__H(l) . J j _
4 0 (k’l’ y’) |x—y|2

For the third order derivatives, we observe

0r,, 01,00, G () = 2 H{ (Rl y|){ o yj)(ﬁ = Zlﬁfwm —

B (T — Ym)6j0 + (21 — Y1) Sjm + (2 — Y;)01m
4|z —yl?

P H (Kl y|>{ o = ym;ﬁf__j?(x’ )15 k2la -y

(@ = ym) S5+ (@ — y)jm + (25 — Y5)0m
[z —y[?
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(v — )y — 20) (Ym — Tm)

@m@%%wa)ZM%ﬁWMI—yD{

(ym - xm)éj,l + (yl - ml)éj,m + (y]

|z —y|*

- xj)él,m }

Az —y|?

ik (Ym — Tm) (Y5 — 25) (Y1 — 1)
WOV (ke — J J 8 — k2|r — ul?
5 [H) (bl = o)) e 8~ K2l — ]
_ (ym - xm)éj,l + (yl — xl>§j,m + (yj — xj)(sl,m
lz =yl
The fourth order derivatives take the form
Dy 0y O, 0 G (2, y) =
. - m — dm 6n (y_x>(ym_xm)5nl
lsz(l) k T — (yl 'Tl)(y T ) 5] J J s
0 ( ‘ y‘) ’m_y’4 |9c—y]4
+ (yJ — xj)(yl - xl>5n,m - 5j,l5n,m + 6j,m6n,l + 5l,m5n,j
|z —yl|! dlz — yl?
SR T— )(ym - xm>(5j,l + (y1 — ~rl)5j,m + (yj - Ij)(sl,m
|z —yl|*
(yn - xn)(ym - xm)(y — Iy (y - )
- e e -
—i—i/{[Hél)]/(k’-T _ y’){ [2 k2’$ _ y’2 _ 12} (yj — xj)(yl - ’x;)gﬁyn’; xm)(yn — In)
+ 8= Ky — =] x
( —r )(ym - xm)(sj,l + (yl - xl)(sj,m + (yj - xj)5l,m
Yn n 4|x — y|5
+[8— Kz —yl’] x
(Y; — 7)W= 20)0nm + Ym — To) (Y1 — 20) 05 + (Y — Tn) (Y5 — ;)0

4o —y|

5

5j,l5n,m + 5j,m5n,l + 5l,m5n,j
2]z —y[?

} |

For the derivatives of the elastic Green kernel, we conclude

1
[Gel ($’ y)]j,l = ; G(ZL‘, Y; ks)éj,l +
e 1 1
aym [G l(x’ y)]jvl = ; aymG(xa Y; ks)dj,l + Iu_k:g
1
_M_kgaymézjale($, Y; kp)
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1
(9y 0, [Gel(x7y)]j,l = _aynaymG<xay; ks>5j,l+ k28ynaymaxjarlG<x y: )

n " Ym

——0y,,0y,, 02,00, G (2,3 kp)

k?2 Yn ~Ym

’ Z?:l V0, (G (,y) 1, )
ty G Z, Jd= 2 9
[ ( y)] K ( ijl Vjayj [Gel (l’, y)]Z,l

+A [ayl (G (2, y) 1 + 0, [G (x, y)]z,l} v

+H( ( GelEx, Y)loy — Oy, Gel(x,yi]u)) |

Z] 1 a a [ )
N9, D[ G (@) 11+ By D [ G (,9) 2| v

(VQ 0y, Oy | Gel :E,y)] aymayz[Gel(xvy)] l))
)i Jlet) )

30,0, G (z,
aymty[Gel(iU,y)].,l = 2u ( Zy 1¥3%m yﬂ[ (x y)]l,l )
G* ( Y ]2,z
+

v aym Oy (G2, y) 14 — Oy, Oy [G (2, y

ml Gel x y 1l
O ty|G (2, 9)]0 = 2p O z
G6 x y

ym 2,1

O1,m
+)\[@y1 (G (2, y) |1 + 0, [G (2, y)}m}( " >
Yy

1n (021G (2. 9) s = 0, [ G (2,9) a1 )

6.3 Least squares approach for the Gauss-Newton algorithm

Suppose Iy is the index set of the Fourier coefficients from Subsection 6.1 and the layer
functions of the Kirsch-Kress method are approximated by (4.1), (4.2). Furthermore,
suppose the L? norms on I'" and [0, 27] in J? are discretized by

; 21K
2 1Ty .
Hf”%ﬂ(l"t) ~ Z ’f(xr,ﬁ)’ y  Lrg = r<7_,‘€)e y Th *= M? (63)
M 2TK
90 00m ~ Dl o= (64)
k=1
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Then the discretized objective functional for (3.5) is of the form
2

jN,M,M’,’y (SOi,M,@e,M,I‘N> : HM< r=1> (CK)HM 1 (GL)LGIN) -R 2’ (6-5)
Mii= (M), (Ma), (M), (M), (Ms,0) ),

R = ((Rik), (Raw)s (Rans) s (Rant) . (Rs) ).

where
1
RI,K = \/—pnozsy(aﬁ )7
RZ,/{’ = 07
ng,{/,l = O, (66)
R4,Fm‘/,l = 0,
R57,€I = O,
17r/4
M ((b,{), (CH)? (ab)> L = \/Wﬁ Z b, e_”““ exp(io)-z;, ", K = 1,..., M”,
M((bn), (cx), (aL))M - \/FZ Zlog sin?(n[K — k] /M) bs, & =1,..., M,
M<(b")’(c">’(ab>>3,€/l = \/_Zlogsm 7|k —k]/M)[c.];, & =1,...,M,1=1,2,
T k=1
1
M((bl‘i)a(clf)?(aL))‘lH,l = \/WZ Gel xe m'rrn) C“Hl
Y k=1
1 M
v ;w(:vm 2im) [ (e0)], (6.7)
P G L | T S VA TP
\/M
1 M
M ((bn); (¢x), (%))5 y = N Z V(Tp ) - Ge (xe,,{, xr,,{/) Cp
’ k=1
1 M
- anau(m )G(:Cr Ky Li n)
VM’ o; w? —
_aypinc (xr,n’) r_ 1 M,
\/ng w? L ’

Here we define the expression {logsin?(70/M)} as 0. This leads to the following formulas
for the derivatives. For the first components, we get

O (@) = o (ool hoemlion) i) )

O[Re b RN e Srkyvar \ sin(—ky exp(ioy) - 2;,) ’
0 B elm/4 —sin(—k, exp(ioy) - 7 ) ’

J0[Sm b,] M <(b“)’ (cx), (CLL>> Le 8Tk < cos(—k, exp(iow) - i) ) ’
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For the second components, we obtain

%M((bn),(cﬁ),(%)kw _ \/\/_; < logsin2(7r[g' — K|/M) ) ’
ﬁ/\/{((b”)’ (). <ab)>2,n/ - \/\/_; < logsinQ(W[g’ — K] /M) ) '

For the third components, we have

O M( e @) =

J[Sm [c,]/] 3,1

( log sin2(7r[/£’0— K] /M) S, )T |

( log Sin2(7r[/i/0— K]/ M) oy )T'

2% als

The derivatives of the fourth components take the form

9 M((b@,(cﬁ,(m)) . 1 ( §ReG(a:r,m,xi,n)[v(xr,m)]]zl )77

8[3% b,{] 4,k! 1 VM’ Sm G(fr,ff’y xi,n) [ (xr K/ )
0 B 1 —Qm G(xmx, xm) V(Zy ) !
J[Sm bH]M<(b”)’ (c). (%))47”,’1 B +\/M ( Re G (Trw, T ) [V (@e0)]i ) ’

1 ( [[txm,([%eGe’(xe,mxr,n’)]ml)m}l' )T,

txr,n’ ([%m Gel (ze,na xr,n’)]m,l)m] l

0

J[Sm [e]i]

M((b) (@), =

4,671
1 ( — [txrﬁ, ([%Hl Gel ($e,n> xr,n’)]m,l)m] Il ) !

VM’ [txrﬁ/ ([§Re Gel (xe,m xr,n’)]m,l)m] I
0
aaLM(<bn>’<cﬂ>’<m>>m -
el 6
o lte, G (xemxm)cnﬂ,a [ ]
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Finally, for the fifth components, we obtain

0 o 1 Gy(xm,)%e G(:Em/, xm) T
O[Re by] M ((b”)’ (cx). (ab)>57n/ T VM g5 2 ( Ou(a,,.) S G (e, Ti) '

L _ 1 _aV(CCmN/)S\ﬂn G(xr,n’a xi,n) !
8[%111 bn] M ((bN)’ (Cﬁ)’ (Ch)) 5,k - VM oy w? ( ay(acrm/)gﬁe G(wr,n/, .Ti,/i) 7

e gy M () (). @), =

1<M%MW%WW%wmﬁmm>T

V(xrﬁ/) ’ (%Hl [Gel ('xr,/{’a xi,n)}

m,l/ m

V(xr,m/) : (3%8 [GGI (xl‘7fi’7 :Bi,m}m )

1 _V($r7m’) . (%m [Gel (xr,,‘-i’y xi,:‘@} m,l>m !
/m ,

0 1« )

5 M0 (0. (@) = =S T[C (e ) ] g )] +

k=1

0

M
Z V(Ir,m’) : grad Tyt [Gel (fL'e,m xl‘,l‘i/) Cn} a_a[xr,fc’]

1
VM’

k=1

—_

0

M
- T AN /
N > Tbeerad,,  G(wew, 7in)] S, V()]

M = 0
; bev () - grad | [grad o, G (e min) | 5

o Tl )] ()
=

1

R i

1

o o)

V(2ew) - grad ,  [grad mm,pmc (2]

r,x/
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