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Abstract

Highly nonlinear wave propagation scenarios hold the potential to serve
for energy concentration or pulse duration reduction of the input wave form,
provided that a small range of input parameters be maintained. In particular
when phenomena like rogue-wave formation or few-cycle optical pulses gener-
ation come into play, it becomes increasingly difficult to maintain control of
the waveforms. Here we suggest an alternative approach towards the control
of waveforms in a highly nonlinear system. Cascading pulse self-compression
cycles at reduced nonlinearity limits the increase of input parameter sensitiv-
ity while still enabling an enhanced compression effect. This cascaded method
is illustrated by experiments and in numerical simulations of the Nonlinear
Schrödinger equation, simulating the propagation of short optical pulses in a
self-generated plasma.

The occurrence of modulational instabilities or similar temporal pulse break-up sce-
narios is a characteristic feature of the nonlinear propagation of waves. Two proto-
typical examples for such events are the Benjamin-Feir instability [1] of deep-water
waves and the azimuthal modulational instability of spatial solitons of the Nonlinear
Schrödinger equation in optics [2]. Similar phenomena have been reported to occur
in Bose-Einstein condensates [3], in plasma physics [4, 5], and in the propagation
of short laser pulses [6, 7, 8, 9]. In self-generated optical filaments, temporal break-
ups serve to actively compress femtosecond laser pulses [10, 11]. Recently, there
has been revived interest in such phenomena as they can give rise to an unusual
increase of pulse amplitude or concentration of energy and to the appearance of so-
called rogue waves [12, 13]. The probability for the appearance of these rare events
rapidly decreases with their amplitude. As the physical systems are deterministic,
perfect control of the input wave should, in principle, enable an arbitrary increase
of wave amplitude within the system’s limitations. However, exploitation of rogue
wave phenomena [14] is technically limited by the feasibility of control over the input
wave. In most systems, a fundamental limitation also arises due to quantum noise
[8]. In the following, we will present a new approach for exploiting rare events in
a highly nonlinear system, cascading the process while at the same time limiting
the underlying nonlinearity in every step. The latter measure maintains control
over the output wave when exploiting such events, e.g., for waveform compression.
We illustrate this cascaded waveform control for the propagation of short pulses
in self-generated filament that are suitably described by the Nonlinear Schrödinger
equation [10, 11]. In this system, pulse compression factors on the order of 3 to
5 have been previously discussed [15, 16, 17, 18, 19] in single-compression cycles.
For an investigation of the double self-compression mechanism in noble gases, we
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perform numerical simulations of the generalized Nonlinear Schrödinger equation
[18] which couples the envelope E of the electric field to the plasma density ρ of the
medium according to

∂zE =
i

2k0

T−1∆⊥E + iDE + i
ω0

c
n2T |E|2E − i

k0

2ρc
T−1ρ(E)E (1)

−
σ

2
ρE −

UiW (I)(ρnt − ρ)

2I
E ,

∂tρ = W (I)(ρnt − ρ) +
σ

Ui
ρI (2)

Here, I = |E|2 is the cycle-averaged field intensity. Assuming cylindrical symmetry,
the transverse Laplacian may be reduced to ∆⊥ = (1/r)∂rr∂r, where r = (x2+y2)1/2

in cylindrical coordinates. Space-time focusing and self-steepening are introduced
by the operator T = 1 + i

ω0

∂t, the operator T−1 being evaluated in the Fourier
domain. Correspondingly, the operator D modeling dispersion is treated in the
Fourier domain according to

D̃(ω) = k(ω) − k0 − (ω − ω0)
∂k

∂ω
|ω=ω0

(3)

where k(ω) = n(ω)ω/c is the wavenumber at the angular frequency ω, and n(ω)
is the frequency dependent refractive index according to Ref. [20]. The carrier
frequency of the laser field and corresponding wavenumber are denoted by ω0 and
k0, respectively, with a carrier wavelength λ = 800 nm. n2 is the nonlinear refractive
index [21] and Ui corresponds to the ionization potential of the medium. Further
on, ρc = 1.73 × 1021 cm−3 is the critical plasma density at ω0, and ρnt denotes the
neutral density of the medium. σ is the cross section for collisional ionization. The
ionization rate W (I) is modelled according to Peremolov, Popov and Terent’ev [22]
and adequately describes both multiphoton and tunneling ionization processes. The
optical field envelope E is discretized on a numerical grid consisting of 6144 × 4096
points and propagated according to the generalized Nonlinear Schrödinger Equation
(1). We use a parallelized algorithm on our HP Blade cluster consisting of 48
compute nodes, each being equipped with two Intel Xeon Quad-Core (X5355) CPUs.
Based on experimental parameters discussed below, as initial conditions we assume
2.5mJ optical input pulses at 800 nm and with initial beam waist w0 = 2.5mm and
pulse duration tFWHM = 120 fs, being focused by an f = 1.5m lens into a noble gas.
To identify the small parameter range giving rise to compressed output waveforms
on the axis of the filament, a parameter scan is performed by varying the gas pressure
in a range from 100 to 120 kPa, at otherwise fixed input parameters, see Fig. 1. At
a pressure p = 106 kPa, our simulations predict plasma-dominated dynamics in a
relatively short nonlinear focal zone succeeded by a 1m long self-generated channel,
in which Kerr self-focusing effectively balances linear diffraction, see Fig. 1(a). This
figure clearly reveals how a splitting event at z = 1.4 m close to the linear focus
position merges into formation of one isolated and shorter pulse. The splitting
initially produces two pulses, one at t = −100 fs and a second one at t = +60
fs. At z = 1.6 m, each of these subpulses is roughly 40 fs wide, which is a natural
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Figure 1: (a) Evolution of on-axis intensity profile along z for pulse self-compression
into a sub-diffractive channel in argon, p = 106 kPa. (b) Corresponding evolution
for the double self-compression scenario at p = 109 kPa. Inset: close-up on the pulse
break-up in the second focus, accompanied by shock wave formation. (c) Evolution
of on-axis peak intensity for pressure from 106 to 120 kPa.

consequence of the split. Upon further propagation (z = 1.7 m), the pulse at negative
delays dies out quickly, leaving only one isolated and shortened pulse behind. This
prototypical split-isolation cycle has already been discussed in [18, 19, 23] as the
origin of on-axis pulse self-compression [17]. After the split-isolation cycle, plasma
generation has effectively ceased, such that pulse shaping in the elongated channel
at z > 1.7 m is now dominated by an interplay between Kerr-type self-refraction and
linear optical effects. Notably, self-focusing compensates diffractive optical effects,
giving rise to a sub-diffractive nature of this final nonlinear propagation stage as
also observed by Faccio et al. [24].

Increasing the pressure to 109 kPa, we disturb the delicate balance in the non-
diffractive channel by a slight increase of Kerr nonlinearity. This increase triggers
a refocusing event 0.5m behind the first nonlinear focus, and a second strongly
ionized zone evolves [Figs. 1(b),(c)]. Here the pulse experiences a second split-
isolation cycle that shows superficially the same behavior as the first one, i.e., the
surviving pulse from the first cycle splits into two at z = 2.2m. In contrast to the
first cycle, the trailing pulse dies out at t ≈ 80 fs, leaving only one isolated and yet
again shortened pulse at t ≈ 50 fs behind. In the subsequent nonlinear propagation
inside the channel, the pulse reaches a minimum duration of 16.4 fs at z = 2.5 m.
Further increasing the pressure to p = 120 kPa, pulses with a minimum duration
of 10.9 fs emerge after the second focus. This nearly twelvefold compression chiefly
goes back to the two split-isolation cycles. Such a strong compression effect has
neither been observed in previous experimental[17, 15, 16] nor theoretical studies[18,
19]. The emergence of the refocusing event must not be confused with focusing-
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defocusing cycles [25] that occur on significantly shorter length scales of ≈ 20 cm
whereas repetition of the split-isolation cycle is only observed with a distance >
50 cm between the events. Also focusing-defocusing cycles have been discussed to
provide a less drastic effect on the pulse shape.

Despite the apparently identical effect on pulse duration, collapse saturation in the
two foci is accomplished by different physical effects. In the first nonlinear focus
(z = 1.5 m), plasma defocusing and related dissipative terms clamp the intensity
whereas temporal effects, in particular dispersion, take over this role in the second
focus (z = 2m). Indeed, neglecting the plasma response for z > 1.75m in the
simulation at p = 107 kPa [Fig. 1(c), blue line] leads to a nearly unchanged dy-
namical behavior for the second compression stage. Similar plasmaless refocusing
events have been discussed in Refs. [26, 27]. With increasing pressure (p ≥ 1.09 bar),
however, plasma becomes again essential for preventing spatial wave collapse, while
dispersion dominates temporal dynamics by exchanging power between different
pulse time slices. The generation of dispersive shock waves in the trailing edge of
the pulse [Fig. 1(b), inset] during the second splitting event further underlines the
strong impact of dispersion and self-steepening.

We have investigated experimental prerequisites for observation of the cascaded
scenario and found that a more than tenfold total compression factor strongly relies
on the availability of optical pulses with several millijoule energy and 120 fs pulse
duration. We find that these conditions are currently difficult to meet with available
laser sources, which is more a consequence of the rather long pulse duration than
that of a narrowed input parameter range (see discussion below). We therefore
looked for other evidence of the pulse shaping action in the second focus. For
this purpose, we computed XFROG spectrograms from the simulated on-axis data,
see Fig. 2. In the single self-compression regime, these representations exhibit a
characteristic shape that are most suitably described as the mirror image of the
Greek letter Γ [Fig. 2(a)], as has already been discussed in [18]. A short pulse
duration is intimately connected to a vanishing slant of the vertical bar of the Γ. The
extension of this section towards the blue is a measure of the asymmetric nonlinear
spectral broadening effects, mainly caused by self-steepening [28]. The appearance
of pronounced horizontal structures along the cap section of the Γ, in contrast,
is connected to the suppression of the leading pulse in the split-isolation cycle,
i.e., pulse contrast. If a second split-isolation cycle appears, the spectro-temporal
pattern of the pulses changes in a characteristic way, see Fig. 2(b). Remnants
of the suppressed pulse after the second split-isolation cycle now appear as a blue
trailing pedestal of the spectrogram, i.e., point symmetric to the red leading pedestal
appearing after the first cycle, with a shape that we will refer to as Q-shape in the
following. The broadening effect appears as a spectral red-shift along the vertical
axis in Fig. 2(b).

Figure 3(a) shows a more detailed view of the transition from inverse Γ to Q-shape,
with a zoomed-in set of spectrograms computed in the range from z = 195 to 245 cm.
In the initial spectrograms in this sequence, the typical Γ shape appears with the
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Figure 2: On-axis XFROG spectrograms (a) of the optical field emerging from the
sub-diffractive channel regime of Fig 1(a), z = 2.5m, p = 106 kPa and (b) after the
second pulse breaking at z = 2.45m, p = 109 kPa, two-foci regime. (c) XFROG
spectrogram retrieved from experimental SPIDER interferogram in air after double
self-compression. (d) Corresponding on-axis temporal intensity profiles.

vertical bar extending into the blue spectral range. During the approach towards
the second focus, however, the spectral extension into the blue reduces, with a red-
shift appearing shortly afterward. Emergence of the red-shift comes along with
formation of a blue pedestal, which is ultimately a remnant of the blue wing of the
inverse Γ shape. Figure 3(b) additionally shows a view of angularly resolved spectra
[24] during this transition phase. These structures exhibit a markedly different
behavior in the blue and the red wing of the pulse. This behavior is related to
the strong influence of self-steepening, which causes the blueshift in the trailing
part of the pulse. In fact, the modulational instability occurring in self-focusing
media with normal group velocity dispersion reshapes this part of the pulse into a
characteristic X-shaped spatio-spectral pattern [29]. In the spatio-temporal domain,
this instability has also been shown to be responsible for the observed temporal
splitting and the emergence of hyperbolic shock waves [30, 31]. Remarkably, those
dispersion dominated dynamics are still observable in the pressure regime above
109 kPa, where plasma defocusing is already essential for wave-collapse arrest. The
apparent red-shift of the spectra of the optical fields emerging from the 2-foci regime
can thus be ascribed to both, self-phase modulation in the leading edge of the pulse
during the refocusing stage and to angular dispersion of the blue spectral content
of the pulse into a spatial reservoir due to the generation of the shock wave.

For experimental verification of the double self-compression, we employed a 45 fs
regenerative Ti:sapphire amplifier system with a pulse energy of 5mJ to produce
femtosecond filaments in air. The laser pulse energy has been carefully attenuated
by means of an adjustable diaphragm until a single filament with two clearly sepa-

5



θ 
(m

ra
d)

Frequency (THz)

 

 

200 400 600 800 1000

−2

0

2

θ 
(m

ra
d)

−2

0

2

θ 
(m

ra
d)

−2

0

2

80
70

60

350
400

450
500

195

200

205

210

215

220

225

230

235

240

245

z 
(c

m
)

Delay (fs)
ν (THz)

−80

−70

−60

−50

−40

−30

−20

−10

0(a)
(b)

z=2.05mz=2.05m

z=1.95m

z=2.45m I/I
max

 (dB)

Figure 3: (a) Evolution of XFROG spectogram along z during propagation through
the second focus. (b) Corresponding angularly resolved far-field spectra.

rated strongly ionized zones appeared that were separated by about 30-40 cm. With
these short input pulses, our simulations indicate that we can at best expect four-
fold compression. For a check on the spectro-temporal structure of the pulses, the
filament output has been characterized with the SPIDER method [32] in amplitude
and phase, see Fig. 2(d). For comparison, we computed XFROG spectrograms from
the data, see Fig. 2(c). This spectrogram shows features previously discussed for the
single-focus and the double-focus regime, cf. Fig. 2(a) and (b), respectively. From
the former, a temporally stretched leading pedestal is discernible, which is generally
quite typical for self-compression [18]. In addition to previous experimental find-
ings, however, a clearly visible trailing blue pedestal appears. To the best of our
knowledge, such a structure has not been reported in literature yet. It is striking
that this feature appears temporally less stretched than the leading red pedestal
from the first split-isolation cycle, which corroborates less exposure to linear and
nonlinear pulse shaping effects. Therefore the experimental findings appear to be
highly compatible with the causal sequence of events predicted by numerical simula-
tion. This finding also suggests that the second split-isolation cycle is being caused
by a different mechanism as the first one, causing pedestal formation at opposing
spectral and temporal edges of the main pulse.

The cascaded compression scenario is not an isolated phenomenon, but can be ob-
tained for a range of input pulse parameters and gas species, which sets it apart
from a highly optimized single-compression scenario. Assuming krypton as the non-
linear medium [20, 21], for a demonstration of the universality of this mechanism
we have scanned the parameter range of input pulse energy and peak power in nu-
merical simulations for appearance of this phenomenon. Beam waist and temporal
duration were fixed at w0 = 5mm and tFWHM = 120 fs, respectively. The observed
pulse shortening as a function of input energy and system nonlinearity (peak power
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normalized to Pcr) is depicted in Fig. 4, with iso-pressure lines shown in white. The
dashed line, roughly collinear with the 100 kPa pressure line, marks the lower limit
of double self-compression. From this picture, the capability of the cascaded self-
compression becomes immediately clear, giving rise to up to twelvefold compression.
Compression ratios above 10 are localized in the region of double self-compression
and can already be observed at powers exceeding the critical power by a factor of only
three. Our scan also reveals examples for threefold cascading of the split-isolation
cycle, yet with imperfect isolation in the last cycle. Generally, for pressures exceed-
ing 160 kPa we observe an increased tendency for such undesired multiple temporal
splits. Importantly, cascaded self-compression fills a considerable fraction of the
parameter space mapped out in Fig. 4. This sets it apart from sparsely represented
rogue-wave-like events [13].

Our numerical investigations and experimental studies pinpoint an alternative ap-
proach toward efficient exploitation and control of highly nonlinear wave shaping
mechanisms. Rather than trying to confine input parameters in an increasingly nar-
row range, it appears much more promising to relax these constraints in order to
avoid that input noise strongly affects the output waveform. We demonstrated that
physical systems exist that allow for cascaded application of the waveform shaping
effect, e.g., in order to compress optical pulses or to concentrate energy. While this
effect certainly also narrows the input parameter space, this effect is minor as com-
pared to immediate rogue wave control that exhibits a rapidly imploding parameter
space with increasing amplitude [12]. Our cascaded compression method therefore
opens a perspective not only for optical pulse compression but for exploitation of
waveform control in a wide range of similar highly nonlinear physical scenarios.
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[30] L. Bergé et al., J. Opt. Soc. Am. B 13, 1879 (1996).
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