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Abstract

The paper presents a general classification scheme of necessary and suf-
ficient criteria for the error bound property incorporating the existing con-
ditions. Several derivative-like objects both from the primal as well as from
the dual space are used to characterize the error bound property of extended-
real-valued functions on a Banach space.

1 Introduction

Since the fundamental works of Hoffman [21] and Lojasiewicz [37], the notion of
(local) error bound plays a key role in variational analysis. Having a closed set A
and a function f with the property that A = {x|f(x) ≤ 0}, the principal question
reads as follows: For a given x̄ ∈ A, does there exist a neighborhood U of x̄ and
positive constants c, β such that

d(x, A) ≤ c([f(x)]+)β for all x ∈ U? (1)

Particularly significant is the case β = 1, when we say that f has a (local) error
bound of A of order 1 at x̄ or, simply, that f satisfies the error bound property at
x̄. Property (1) then turns out to be of great importance not only in consistence or
optimization problems, but has a deep relationship to subdifferential calculus, opti-
mality conditions, stability and sensitivity issues, convergence of numerical methods,
etc. Let us mention several notions of variational analysis closely related to the error
bound property.

Metric subregularity was introduced by Ioffe in [22] (under a different name) as a
constraint qualification related to equality constraints in nonsmooth mathematical
programs. Later it was generalized in [16] to constraints of the form

y ∈ F (x), (2)

where F is a multifunction and y is fixed. We say that F is metrically subregular
at a point (x̄, ȳ) from the graph of F , provided there is a neighborhood U of x̄ and
a positive constant c such that

d(x, F−1(ȳ)) ≤ cd(ȳ, F (x)) for all x ∈ U .

This means that d(ȳ, F (·)) satisfies the error bound property at x̄.
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Ye and Ye introduced in [53] another important property of multifunctions for which
later the term calmness was coined in [49]. A multifunction M : Y ⇒ X is called
calm at a point (ȳ, x̄) from its graph, provided there is a positive constant k such
that for any (y, x) sufficiently close to (ȳ, x̄) and such that x ∈ M(y) one has

d(x, M(ȳ)) ≤ kd(y, ȳ). (3)

It can easily be verified that F is metrically subregular at (x̄, ȳ) if and only if
M = F−1 is calm at (ȳ, x̄) with the same constant. Both these properties play a
central role in subdifferential calculus and so, a fortiori, in optimality conditions and
various stability issues.

The notions of subregularity and calmness are closely related to the so-called calm-
ness of Clarke [10] and another calmness notion defined in [6]. Both latter properties
concern mathematical programs with perturbed constraint sets and depend thus also
on the respective objectives. As observed in [20], however, in the case of a Lipschitz
objective, the Clarke’s calmness boils down to the calmness of the canonically per-
turbed constraint set in the sense of inequality (3). So, in such a case the relationship
to the error bound property can easily be established.

The concept of weak sharp minima [7, 8, 9, 47, 50], very important in numerics, can
be considered as another interpretation of the error bound property. In the context
of an optimization problem

minimize f(x) subject to x ∈ C,

calmness of the multifunction y 7→ {x ∈ C | f(x) ≤ y} at local solutions (or
equivalently, metric subregularity of the inverse multifunction) amounts to these
solutions being weak sharp local minimizers (see, e.g., [7, 50]).

A huge literature deals with the error bound property either of general functions or
of functions related to sets of particular structure. These sets range from standard
feasible sets in mathematical programming given by equalities and inequalities up
to general structures of the form A := C ∩ F−1(y), where C is a closed set and F
is a multifunction. We refer the interested reader to the surveys by Azé [1], Lewis
and Pang [36], and Pang [45].

Numerous attempts have been made to provide characterizations and criteria for the
error bound property in terms of various derivative-like objects which live either in
the primal space (directional derivatives, slopes, etc.) or in the dual space (subdiffer-
entials, normal cones) [4, 23, 50, 25, 46, 40, 41, 43, 44, 15, 45, 19, 18, 20, 5, 51, 12, 52].
As to our knowledge, one of the first papers of this kind was [23] in which sufficient
conditions for the metric subregularity of a constraint system were stated in terms
of the Clarke subdifferential. Its main idea has been used several times in various
contexts (e.g. [50, 25, 46]) with various subdifferentials (Fréchet, limiting, outer).
A different subdifferential criterion was obtained in [19, 18] as a by-product in the
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investigation of calmness of a standard constraint system in the sense of [49]. An-
other criterion was worked out in [20] on the basis of a primal-type estimate; further
important results of this nature can be found in [13, 46, 43, 44].

This paper goes in the same direction by employing several groups of derivative-
like objects both from the primal as well as from the dual space. Our conditions
concern mainly the case when f is an extended-real-valued lower semicontinuous
function defined on a Banach space X although the majority of the primal space
estimates are valid in (not necessarily complete) metric spaces. We provide also
specialized results tailored to less general situations. Another aim is to present
a general classification scheme of necessary and sufficient conditions for the error
bound property incorporating the existing conditions, cf. Fig. 3 – 6.

Naturally, throughout the whole study we make extensive use of the notions and
tools of modern variational analysis, cf. [39, 49]. We also introduce some new
derivative-like objects including “uniform” subdifferentials and slopes, convenient
for providing natural characterizations of the error bound property.

The plan of the paper is as follows. In Section 2 we establish lower and upper
estimates for the error bound modulus in terms of uniform strict slopes. Some
other primal space slopes are introduced and investigated in Section 3. They are
used for formulating several sufficient criteria for the verification of the error bound
property in general Banach spaces. Section 4 is devoted to dual criteria in terms of
subdifferential slopes. The main results are formulated in the Asplund space setting.
In Sections 5 and 6 we consider finite dimensional and convex cases respectively.

Our basic notation is standard. The closed unit balls in the normed space X and
its dual are denoted B and B∗ respectively. Bρ(x) = x + ρB denotes the closed ball
with radius ρ and center x. d(x, A) = infa∈A ‖x − a‖ is the point-to-set distance.
The lower α-level set {x ∈ X : f(x) ≤ α} of an extended-real-valued function f is
denoted [f ≤ α]. We also use the denotation α+ = max(α, 0).

2 Error Bounds: Necessary and Sufficient Condi-

tions

In this paper f is an extended-real-valued function on a normed linear space X,
|f(x̄)| < ∞. We are looking for characterizations of the error bound property.

Definition 2.1. f satisfies the error bound property at x̄ if there exists a c > 0 such
that

d(x, [f ≤ f(x̄)]) ≤ c(f(x)− f(x̄))+ for all x near x̄. (4)

Obviously this property can be equivalently defined in terms of the error bound
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modulus (also known as conditioning rate [46]):

Er f(x̄) := lim inf
x→x̄

f(x)>f(x̄)

f(x)− f(x̄)

d(x, [f ≤ f(x̄)])
. (5)

namely, the error bound property holds for f at x̄ if and only if Er f(x̄) > 0.

To formulate criteria for the error bound property we are going to use the following
(possibly infinite) nonnegative constants

−|∇f |�(x̄) := lim inf
x→x̄, f(x)↓f(x̄)

sup
0<‖u−x‖<d(x,[f≤f(x̄)])

(f(x)− f(u))+

‖u− x‖
, (6)

+|∇f |�(x̄) := lim inf
x→x̄, f(x)↓f(x̄)
α↓d(x,[f≤f(x̄)])

sup
0<‖u−x‖<α

(f(x)− f(u))+

‖u− x‖
, (7)

◦|∇f |�(x̄) := lim inf
x→x̄, f(x)↓f(x̄)

sup
u 6=x, f(u)≥f(x̄)

(f(x)− f(u))+

‖u− x‖
, (8)

which, each in its own way, characterize quantitatively the descent rate of the func-
tion f near x̄. Note that only points x /∈ [f ≤ f(x̄)], that is with f(x) > f(x̄),
are taken into account when computing (6) – (8). These constants provide uniform
(for all x /∈ [f ≤ f(x̄)] in a neighborhood of x̄) lower estimates of the corresponding
descent rates.

By analogy with the (strong) slope [14] (see also [24, 2]),

|∇f |(x̄) = lim sup
x→x̄

(f(x̄)− f(x))+

‖x− x̄‖
, (9)

we are going to call constants (6) – (8) the lower, upper and middle uniform strict
slopes of f at x̄ respectively. The term “strict” in the names of these (and some
subsequent) constants reflects the fact that (6) – (8), being in a sense derivative-like
objects, accumulate information about “differential” properties of the function in a
neighborhood of the given point and thus can be considered analogs of the strict
derivative. The relationships between the constants are given by the next theorem.

Theorem 2.1. (i). −|∇f |�(x̄) ≤ ◦|∇f |�(x̄) ≤ +|∇f |�(x̄).

(ii). If f is Lipschitz continuous near x̄ then −|∇f |�(x̄) = ◦|∇f |�(x̄) = +|∇f |�(x̄).

Proof. (i) The first inequality follows from definitions (6) and (8): it is sufficient to
notice that inequality ‖u−x‖ < d(x, [f ≤ f(x̄)]) implies f(u) > f(x̄). We only need
to prove the second inequality. Let f(x) > f(x̄), α > d(x, [f ≤ f(x̄)]), f(u) ≥ f(x̄),
and u 6= x. If ‖u− x‖ < d(x, [f ≤ f(x̄)]) then

(f(x)− f(u))+

‖u− x‖
≤ sup

0<‖w−x‖<α

(f(x)− f(w))+

‖w − x‖
. (10)
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Let ‖u − x‖ ≥ d(x, [f ≤ f(x̄)]). For any β ∈ (d(x, [f ≤ f(x̄)]), α) there is a
w ∈ [f ≤ f(x̄)] such that ‖w − x‖ ≤ β. It follows that f(x) > f(w), f(u) ≥ f(w),
and

(f(x)− f(u))+

‖u− x‖
≤ f(x)− f(w)

d(x, [f ≤ f(x̄)])
≤ β

d(x, [f ≤ f(x̄)])
sup

0<‖w−x‖<α

f(x)− f(w)

‖w − x‖
.

Passing to the limit as β ↓ d(x, [f ≤ f(x̄)]) in the last inequality, we arrive at the
same estimate (10). The conclusion follows from definitions (7) and (8).

(ii) Thanks to (i) we need only prove the inequality +|∇f |�(x̄) ≤ −|∇f |�(x̄). If
+|∇f |�(x̄) = 0 the assertion holds trivially. Let 0 < γ < +|∇f |�(x̄). We are going
to show that −|∇f |�(x̄) > γ. Chose a γ′ ∈ (γ, +|∇f |�(x̄)). By definition (7), there
exists a δ > 0 such that for any x ∈ X satisfying ‖x−x̄‖ < δ and 0 < f(x)−f(x̄) < δ
there exists a sequence {xk} ⊂ X such that 0 < ‖xk − x‖ < d(x, [f ≤ f(x̄)]) + 1/k
and f(x)− f(xk) > γ′‖xk −x‖, k = 1, 2, . . .. If ‖xk −x‖ < d(x, [f ≤ f(x̄)]) for some
k then

sup
0<‖u−x‖<d(x,[f≤f(x̄)])

(f(x)− f(u))+

‖u− x‖
> γ, (11)

and, by definition (6), −|∇f |�(x̄) > γ. Suppose that ‖xk − x‖ ≥ d(x, [f ≤ f(x̄)]),
k = 1, 2, . . ..

Without loss of generality we can assume that f is Lipschitz continuous on B2δ(x̄)
with modulus l. For any k, consider a point

x̂k = xk +
x− xk

k‖xk − x‖
.

It holds

‖x̂k − x‖ =
∣∣‖xk − x‖ − 1/k

∣∣, ‖x̂k − xk‖ = 1/k.

Let k > d(x, [f ≤ f(x̄)])−1. Then ‖xk − x‖ > 1/k, and it follows from the first of
the above equalities that

‖x̂k − x‖ = ‖xk − x‖ − 1/k < d(x, [f ≤ f(x̄)]).

At the same time, for large k we have xk, x̂k ∈ B2δ(x̄), and consequently,

f(x)− f(x̂k)

‖x̂k − x‖
≥ f(x)− f(xk)− l‖x̂k − xk‖

‖x̂k − x‖
>

γ′‖xk − x‖ − l/k

‖xk − x‖ − 1/k

= γ′ − l − γ′

k‖xk − x‖ − 1
> γ

if k is large enough. Hence, (11) holds true and consequently, −|∇f |�(x̄) > γ.
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The inequalities in Theorem 2.1 (i) can be strict.

Example 2.1. Let f : R → R be defined as follows:

f(x) =

{
−1, if x < 0,
x, if x ≥ 0.

Clearly, −|∇f |�(0) = ◦|∇f |�(0) = 1 while +|∇f |�(0) = ∞.

The function in the above example is discontinuous at 0 and the upper slope is
infinite. In the next example the function is continuous at 0, the upper slope is
finite, and nevertheless it still differs from the lower one.

Example 2.2. Let f : R2 → R be defined as follows:

f(x1, x2) =


min(x1, x2), if x1 ≥ 0, x2 ≥ 0,
−x1, if x1 > 0, x2 < 0,
−x2, if x1 < 0, x2 > 0,
max(x1, x2), if x1 ≤ 0, x2 ≤ 0,

and let R2 be equipped with the Euclidean norm. The function is discontinuous on
the set {(t, 0) ∈ R2 : t > 0} ∪ {(0, t) ∈ R2 : t > 0}. Then −|∇f |�(0) = ◦|∇f |�(0) = 1
while +|∇f |�(0) = 2.

Indeed, let x = (x1, x2) with x1 ≥ x2 > 0. Then f(x) = x2 and d(x, [f ≤ 0]) = x2.
Obviously,

sup
0<‖u−x‖<d(x,[f≤0])

(f(x)− f(u))+

‖u− x‖
= sup

u 6=x, f(u)≥0

(f(x)− f(u))+

‖u− x‖
=

x2

x2

= 1,

lim
α↓d(x,[f≤0])

sup
0<‖u−x‖<α

(f(x)− f(u))+

‖u− x‖
=

x1 + x2

x2

.

The last expression attains its minimum value 2 when x1 = x2. The definition of
the function is symmetrical and, consequently, the same conclusion is valid for the
case x2 ≥ x1 > 0. It follows that −|∇f |�(0) = ◦|∇f |�(0) = 1, +|∇f |�(0) = 2.

In the next example, the lower slope differs from the middle one.

Example 2.3. Let f : R2 → R be defined as follows:

f(x1, x2) =

{
x1 + x2, if x1 > 0, x2 > 0,
0, otherwise,

and let R2 be equipped with the Euclidean norm. The function is discontinuous on
the set {(t, 0) ∈ R2 : t > 0} ∪ {(0, t) ∈ R2 : t > 0}. Then −|∇f |�(0) =

√
2 while

◦|∇f |�(0) = +|∇f |�(0) = 2.
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Indeed, let x = (x1, x2) with x1 > 0 and x2 > 0. Then d(x, [f ≤ 0]) = min(x1, x2).
Obviously,

sup
0<‖u−x‖<d(x,[f≤0])

(f(x)− f(u))+

‖u− x‖
= sup

‖(v1,v2)‖=1

(v1 + v2) =
√

2,

sup
u 6=x, f(u)≥0

(f(x)− f(u))+

‖u− x‖
= lim

α↓d(x,[f≤0])
sup

0<‖u−x‖<α

(f(x)− f(u))+

‖u− x‖
=

x1 + x2

min(x1, x2)
.

The last expression attains its minimum value 2 when x1 = x2. It follows that
−|∇f |�(0) =

√
2, ◦|∇f |�(0) = +|∇f |�(0) = 2.

The assertion of Theorem 2.1 (ii) is true also when either dim X < ∞ and f is
continuous near x̄ or f is convex (see Propositions 5.1 and 6.1).

The next theorem positions the error bound modulus (5) in between upper and
middle uniform strict slopes (7) and (8), providing double-sided estimates for the
error bound modulus and hence necessary and sufficient criteria for the error bound
property.

Theorem 2.2. (i). Er f(x̄) ≤ +|∇f |�(x̄).

(ii). If X is Banach and f is lower semicontinuous near x̄ then Er f(x̄) ≥ ◦|∇f |�(x̄).

Proof. (i) If Er f(x̄) = 0 or +|∇f |�(x̄) = ∞ the conclusion is trivial. Let 0 < γ <
Er f(x̄) and +|∇f |�(x̄) < ∞. We are going to show that +|∇f |�(x̄) ≥ γ. By (5),
there is a δ > 0 such that

f(x)− f(x̄)

d(x, [f ≤ f(x̄)])
> γ. (12)

for any x ∈ Bδ(x̄) with f(x) > f(x̄). Take any x ∈ Bδ(x̄) with f(x̄) < f(x) ≤
f(x̄) + δ (The set of such x is nonempty since +|∇f |�(x̄) < ∞.) and then any
β > d(x, [f ≤ f(x̄)]). By (12), one can find a w ∈ [f ≤ f(x̄)] ∩Bβ(x) such that

f(x)− f(w)

‖x− w‖
> γ.

It follows that +|∇f |�(x̄) ≥ γ.

(ii) If Er f(x̄) = ∞ the conclusion is trivial. Let Er f(x̄) < γ < ∞. Then for any
δ > 0 there is an x ∈ Bδ min(1/2,γ−1)(x̄) such that

0 < f(x)− f(x̄) < γd(x, [f ≤ f(x̄)]).

Without loss of generality we can assume that f is lower semicontinuous on Bδ(x̄).
Put ε = f(x)− f(x̄), g(u) = (f(u)− f(x̄))+ if u ∈ Bδ(x̄) and g(u) = ∞ otherwise.
Then g is lower semicontinuous and g(x) ≤ inf g + ε. Applying to g the Ekeland
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variational principle with an arbitrary λ ∈ (γ−1ε, d(x, [f ≤ f(x̄)]), one can find a w
such that f(w) ≤ f(x), ‖w − x‖ ≤ λ and

g(u) + (ε/λ)‖u− w‖ ≥ g(w), ∀u ∈ X. (13)

Obviously,

‖w − x‖ < d(x, [f ≤ f(x̄)]) ≤ ‖x− x̄‖, (14)

‖w − x̄‖ ≤ ‖w − x‖+ ‖x− x̄‖ < 2‖x− x̄‖ ≤ δ,

f(w) ≤ f(x) < f(x̄) + γ‖x− x̄‖ ≤ f(x̄) + δ.

Besides, f(w) > f(x̄) due to the first inequality in (14), and consequently g(w) =
f(w)− f(x̄). It follows from (13) that

f(u) + (ε/λ)‖u− w‖ ≥ f(w)

for all u ∈ X such that f(u) ≥ f(x̄). Thus,

sup
u 6=w, f(u)≥f(x̄)

f(w)− f(u)

‖u− w‖
≤ ε/λ < γ.

This implies the inequality ◦|∇f |�(x̄) ≤ Er f(x̄).

Remark 2.1. The proof of Theorem 2.2 (ii) refines the one of inclusion (c)⇒(a)
in [25, Theorem 2.1].

Without lower semicontinuity the inequality in Theorem 2.2 (ii) can fail.

Example 2.4. Let f : R → R be defined as follows (Fig. 1):

f(x) =


−3x, if x ≤ 0,

3x− 1

2i
, if

1

2i+1
< x ≤ 1

2i
, i = 0, 1, . . . ,

2x, if x > 1.

Obviously, Er f(0) = 1 while ◦|∇f |�(0) = 3.

Corollary 2.1. If X is Banach and f is lower semicontinuous near x̄ then

◦|∇f |�(x̄) ≤ Er f(x̄) ≤ +|∇f |�(x̄).

If, additionally, f is Lipschitz continuous near x̄ then all three constants coincide.

The inequalities in Corollary 2.1 can be strict.
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Example 2.4

Figure 1:

Example 2.5. Let f : R2 → R be defined as follows:

f(x1, x2) =


x1 + x2, if x1 > 0, x2 > 0,
−x1, if x1 > 0, x2 ≤ 0,
−x2, if x2 > 0, x1 ≤ 0,
0, otherwise,

and let R2 be equipped with the Euclidean norm. The function is discontinuous on
the set {(t, 0) ∈ R2 : t > 0} ∪ {(0, t) ∈ R2 : t > 0}. Then ◦|∇f |�(0) =

√
2,

Er f(0) = 2, and +|∇f |�(0) = 3.

Indeed, let x = (x1, x2) with x1 ≥ x2 > 0. Then d(x, [f ≤ 0]) = x2. Obviously,

sup
u 6=x, f(u)≥0

(f(x)− f(u))+

‖u− x‖
= sup

‖(v1,v2)‖=1

(v1 + v2) =
√

2,

f(x)− f(x̄)

d(x, [f ≤ f(x̄)])
=

x1 + x2

x2

, (15)

lim
α↓d(x,[f≤0])

sup
0<‖u−x‖<α

(f(x)− f(u))+

‖u− x‖
=

2x1 + x2

x2

. (16)

Expressions (15) and (16) attain their minimum values 2 and 3 respectively when
x1 = x2. The definition of the function is symmetrical and, consequently, the same
conclusion is valid for the case x2 ≥ x1 > 0. It follows that ◦|∇f |�(0) =

√
2,

Er f(0) = 2, +|∇f |�(0) = 3.

Due to Theorems 2.1 and 2.2, we can formulate the following necessary (NC) and
sufficient (C) criteria for the error bound property:

NC1. +|∇f |�(x̄) > 0.

C1. ◦|∇f |�(x̄) > 0.
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C2. −|∇f |�(x̄) > 0.

It holds C2 ⇒ C1 ⇒ NC1. These criteria will be further discussed in the next
sections. Note that, in accordance with Theorem 2.2, conditions C1 and C2 as
well as the other criteria formulated in the next sections are sufficient under the
assumption that X is a Banach space and f is lower semicontinuous near x̄.

3 Primal Space Sufficient Criteria

This and subsequent sections contain a list of sufficient conditions for the verification
of the local error bound property following from Theorem 2.2 and Corollary 2.1.
Some conditions are new while the others recapture known ones. Wherever possible
we provide references to these and similar criteria in the literature.

For specific functions the choice depends on several circumstances as the type of the
underlying space, the structure of the function and the importance of the verification
(simple criteria are sometimes far from necessity whereas using finer conditions usu-
ally requires a non-negligible effort). We give interrelations among some conditions
and provide recommendations about areas of applicability.

For a lower semicontinuous function, conditions C1 and C2 provide tight sufficient
criteria for the error bound property. In their turn, they are implied by stronger
conditions formulated in terms of more conventional primal space derivative-like
objects defined on the basis of slopes (9):

|∇f |(x̄) = lim inf
(x,f(x))→(x̄,f(x̄))

|∇f |(x), (17)

|∇f |>(x̄) = lim inf
x→x̄, f(x)↓f(x̄)

|∇f |(x). (18)

Constants (17) and (18) are called the strict slope and the strict outer slope of f at
x̄ respectively. In the definition of the last one, the slopes |∇f |(x) are computed at
points x outside the set [f ≤ f(x̄)].

Proposition 3.1. |∇f |(x̄) ≤ |∇f |>(x̄) ≤ −|∇f |�(x̄).

Proof. The inequalities follow directly from definitions (6), (9), (17), and (18).

The inequalities in Proposition 3.1 can be strict. The first one can be strict even
for convex functions.

Example 3.1. Let f : R → R be defined as follows:

f(x) =

{
0, if x < 0,
x if x ≥ 0.

10



The function is convex. Obviously |∇f |(0) = |∇f |(0) = 0. At the same time,
|∇f |>(0) = −|∇f |�(0) = 1.

See also [46, Example 4.10]. The next example is a modification of the corresponding
one in [25].

Example 3.2. Let f : R → R be defined as follows (Fig. 2 a):

f(x) =


−x, if x ≤ 0,
1

i
, if

1

i + 1
< x ≤ 1

i
, i = 1, 2, . . . ,

x, if x > 1.

Obviously |∇f |(x) = 0 for any x ∈ (0, 1), and consequently |∇f |>(0) = 0. At the
same time, [f ≤ f(0)] = {0}, d(x, [f ≤ f(0)]) = |x|, and

sup
0<|u−x|<|x|

(f(x)− f(u))+

|u− x|
=

{ 1

xi
, if

1

i + 1
< x ≤ 1

i
, i = 1, 2, . . . ,

1, if x < 0 or x ≥ 1.

It follows from (6) that −|∇f |�(0) = 1.

0 x

y

a. Example 3.2
0 x

y

b. Example 3.3

Figure 2:

The function in the above example is discontinuous. However, the second inequality
in Proposition 3.1 can be strict for continuous and even Lipschitz continuous func-
tions. The function in the next example is piecewise linear and Clarke regular at 0
(that is, directionally differentiable, and its Clarke generalized directional derivative
coincides with the usual one).

Example 3.3. Let f : R → R be defined as follows (Fig. 2 b):

f(x) =



−x, if x ≤ 0,

x

(
1 +

1

i

)
− 1

i(i + 1)
, if

1

i + 1
< x ≤ 1

i + 1
+

1

(i + 1)2
, i = 1, 2, . . . ,

1

i
, if

1

i + 1
+

1

(i + 1)2
< x ≤ 1

i
, i = 1, 2, . . . ,

x, if x > 1.
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The function f is everywhere Fréchet differentiable except for a countable number
of points. One can find a point x > 0 arbitrarily close to 0 with |∇f |(x) = 0 (on
a horizontal part of the graph). The slopes of non-horizontal parts of the graph
decrease monotonously to 1 as x → 0. It is not difficult to check that |∇f |>(0) = 0
while −|∇f |�(0) = 1.

If f is convex then the second inequality in Proposition 3.1 holds as equality (see
Theorem 6.1).

For the function f in Example 3.1, it holds |∇f |(0) < |∇f |>(0). In the nonconvex
case one can also have the opposite inequality.

Example 3.4. Let f : R → R be defined as follows:

f(x) =

{
x, if x < 0,
x2 if x ≥ 0.

Obviously |∇f |(0) = 1 while |∇f |>(0) = 0. Note that despite the slope |∇f |(0) being
positive, the function in this example does not satisfy the error bound property at
0. Hence, condition |∇f |(x̄) > 0 is not in general sufficient for the error bound
property to hold at x̄.

One more constant can be used for providing a lower estimate of the error bound
modulus (5):

|∇f |0(x̄) = lim inf
x→x̄

f(x)− f(x̄)

‖x− x̄‖
. (19)

Unlike all the other constants considered so far, this one can be negative. In this
case it provides a lower estimate of the descent rate of f at x̄. More importantly for
our purposes, when positive it guarantees that x̄ is a point of strict local minimum
and provides a lower estimate of the ascent rate of f at x̄. Obviously, constant (19)
is closely related to (9):

|∇f |(x̄) = (−|∇f |0(x̄))+. (20)

Proposition 3.2. (i). |∇f |0(x̄) ≤ ◦|∇f |�(x̄).

(ii). If |∇f |0(x̄) > 0 then |∇f |0(x̄) = Er f(x̄).

Proof. If |∇f |0(x̄) ≤ 0 assertion (i) holds trivially. Let |∇f |0(x̄) > γ > 0. Then
by definition (19) there exists a δ > 0 such that f(x) − f(x̄) > γ‖x − x̄‖ for all
x ∈ Bδ(x̄) \ {x̄}. Hence,

inf
x∈Bδ(x̄) f(x)>f(x̄)

sup
u 6=x, f(u)≥f(x̄)

(f(x)− f(u))+

‖u− x‖
> γ,

and consequently ◦|∇f |�(x̄) ≥ γ. Hence, ◦|∇f |�(x̄) ≥ |∇f |0(x̄).

12



At the same time, [f ≤ f(x̄)] = {x̄} and consequently d(x, [f ≤ f(x̄)]) = ‖x − x̄‖
for any x ∈ X. The equality in assertion (ii) follows from comparing definitions (5)
and (19).

The inequality in Proposition 3.2 (i) is strict, for instance, when |∇f |0(x̄) < 0 (see
Examples 2.1, 2.2, and 2.5). In this case, |∇f |0(x̄) is obviously smaller than all the
other constants. The inequality is also strict for the functions in Examples 2.3 and
3.1 where |∇f |0(0) = 0 and for the function in Example 2.4 where |∇f |0(0) > 0.

For the functions in Examples 2.3, 3.1, and 2.4 one has |∇f |>(0) > |∇f |0(0). On the
other hand, for the functions in Examples 3.2 and 3.3 it holds |∇f |0(0) > |∇f |>(0) =
|∇f |(0) = 0. Note also that (20) yields the following implications:

|∇f |0(x̄) > 0 ⇒ |∇f |(x̄) = 0, |∇f |(x̄) > 0 ⇒ |∇f |0(x̄) < 0.

Hence, |∇f |(x̄) and |∇f |0(x̄) cannot be positive simultaneously.

Due to Propositions 3.1 and 3.2 and conditions C1 and C2, we can continue the list
of sufficient criteria for the error bound property of a lower semicontinuous function
on a Banach space:

C3. |∇f |(x̄) > 0.

C4. |∇f |>(x̄) > 0.

C5. |∇f |0(x̄) > 0.

An analog of criterion C4 can be found in [43, Corollary 2.3], [46, Theorem 2.10].
Some similar considerations (in terms of multifunctions) can also be found in [29, 30].

It holds C3 ⇒ C4 ⇒ C2 and C5 ⇒ C1. Criterion C5 is independent of C4 and C3.
It can make sense considering the “combined” sufficient criteria

max(|∇f |(x̄), |∇f |0(x̄)) > 0, max(|∇f |>(x̄), |∇f |0(x̄)) > 0.

The relationships among the primal space error bound criteria for a lower semicon-
tinuous function on a Banach space are illustrated in Fig. 3.

4 Subdifferential Criteria

In this section we discuss subdifferential error bounds criteria corresponding to the
conditions formulated in the preceding sections in terms of different kinds of (primal
space) slopes.

We start with recalling the well known notion of the Fréchet subdifferential of f at
x̄ (see for instance [34, 39]):

∂f(x̄) =

{
x∗ ∈ X∗ : lim inf

x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0

}
. (21)

13



�� ��
�� ��C3 |∇f |(x̄) > 0

���� ��
�� ��C4 |∇f |>(x̄) > 0

��

�� ���� ��C5 |∇f |0(x̄) > 0

zztttttttttttttttttttttttttt

�� ��
�� ��C2 −|∇f |�(x̄) > 0

���� ��
�� ��C1 ◦|∇f |�(x̄) > 0

��

f is Lipschitz

OO�
�
�

Er f(x̄) > 0 //

f is Lipschitz

OO�
�
� �� ��

�� ��NC1 +|∇f |�(x̄) > 0
f is Lipschitz
oo_ _ _ _ _

Figure 3: Primal space criteria

It is a convex subset of X∗. If f is convex, (21) coincides with the subdifferential in
the sense of convex analysis.

Based on (21) one can define the subdifferential slope of f at x̄:

|∂f |(x̄) = inf{‖x∗‖ : x∗ ∈ ∂f(x̄)}. (22)

It represents the subdifferential counterpart of the slope (9) and can be interpreted
as an example of a decrease index [46]. The relationship between the two constants
is straightforward.

Proposition 4.1. |∇f |(x̄) ≤ |∂f |(x̄).

Proposition 4.1 is well known – see [2, Proposition 2.5], [4, Remark 5.3], [24, Propo-
sition 3.2]).

The inequality in Proposition 4.1 can be strict rather often (for example, if ∂f(x̄) =
∅). If f is convex then the two constants coincide (see Theorem 6.1).

4.1 Strict subdifferential slopes

The subdifferential counterparts of (17) and (18) can be defined in the following
way:

|∂f |(x̄) = lim inf
(x,f(x))→(x̄,f(x̄))

|∂f |(x), (23)

|∂f |>(x̄) = lim inf
x→x̄, f(x)↓f(x̄)

|∂f |(x). (24)
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They are called strict subdifferential slope and strict outer subdifferential slope of
f at x̄ respectively. Constant (23) was used for characterizing the error bound
property in [2, 4, 44].

Proposition 4.2. |∂f |(x̄) ≤ |∂f |>(x̄).

The inequality follows directly from definitions (23) and (24). It can be strict even
for convex functions, see the function in Example 3.1.

Proposition 4.3. (i). |∇f |(x̄) ≤ |∂f |(x̄) ≤ |∂f |(x̄), |∇f |>(x̄) ≤ |∂f |>(x̄).

(ii). If X is Asplund and f is lower semicontinuous near x̄ then |∇f |(x̄) = |∂f |(x̄),
|∇f |>(x̄) = |∂f |>(x̄).

Proof. (i) The inequalities follow from Proposition 4.1 and definitions (17), (18),
(23), and (24).

(ii) Taking into account (i) we only need to prove the opposite inequalities. Let
us show that |∇f |(x̄) ≥ |∂f |(x̄). If |∇f |(x̄) = ∞ the assertion is trivial. Take
any γ > |∇f |(x̄). We are going to show that |∂f |(x̄) ≤ γ. By definition (17), for
any β ∈ (|∇f |(x̄), γ) and any δ > 0 there is an x ∈ Bδ/2(x̄) such that |f(x) −
f(x̄)| ≤ δ/2 and |∇f |(x) < β. By definition (9), x is a local minimum point of the
function u 7→ g(u) = f(u) + β‖u − x‖, and consequently 0 ∈ ∂g(x). By the fuzzy
(semi-Lipschitzian) sum rule (see for example [39, Theorem 2.33]), this implies the
existence of a point w ∈ Bδ/2(x) with |f(w)−f(x)| ≤ δ/2 and an element x∗ ∈ ∂f(w)

with ‖x∗‖ < γ. The inequality |∂f |(x̄) ≤ γ follows from definition (23).

The proof of the other inequality |∇f |>(x̄) ≥ |∂f |>(x̄) can be done along the same
lines with the obvious replacement of the references to definitions (17) and (23) by
those to definitions (18) and (24), and inequality |f(x)−f(x̄)| ≤ δ/2 by the following
ones: 0 < f(x)− f(x̄) ≤ δ/2.

Remark 4.1. Equality |∇f |(x̄) = |∂f |(x̄) in Proposition 4.3 (ii) strengthens the
inequality

|∇f |(x̄) ≥ lim inf
(x,f(x))→(x̄,f(x̄))

d(0, ∂f(x))

in [2, Proposition 2.3], [4, Proposition 4.1].

In the proof of Proposition 4.3 (ii), three basic properties of Fréchet subdifferentials
were used:

1) if x is a local minimum point of f then 0 ∈ ∂f(x);

2) if f is convex then ∂f(x) coincides with the subdifferential in the sense of convex
analysis;
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3) the semi-Lipschitzian sum rule (one function is locally Lipschitz and the other
one – lower semicontinuous).

The last property is precisely the place where Asplundity of the space comes into
play. Instead of Fréchet subdifferentials, any other subdifferentials possessing the
formulated above three properties can be used along the same lines. For example,
one can consider Clarke subdifferentials ∂Cf(x) [11, 10], for which the (exact) semi-
Lipschitzian sum rule holds in arbitrary normed spaces [48, Corollary 2.2]. Replacing
Fréchet subdifferentials ∂f(x) in the proof of Proposition 4.3 (ii) by Clarke ones
∂Cf(x), we arrive at the following assertion.

Proposition 4.4. Let f is lower semicontinuous near x̄. Then

|∇f |(x̄) ≥ lim inf
(x,f(x))→(x̄,f(x̄))

inf{‖x∗‖ : x∗ ∈ ∂Cf(x)},

|∇f |>(x̄) ≥ lim inf
x→x̄, f(x)↓f(x̄)

inf{‖x∗‖ : x∗ ∈ ∂Cf(x)}.

It is well known (see [31, 39]) that ∂Cf(x) is rather often much larger than ∂f(x) (as
well as corresponding to it limiting subdifferential), and consequently the inequalities
in Proposition 4.4 are often strict. In Asplund spaces it obviously provides weaker
conditions compared to Proposition 4.3 (ii).

Remark 4.2. The first inequality in Proposition 4.4 is well known – see [2, Proposi-
tion 2.3], [4, Proposition 4.1] (where it was formulated for an abstract subdifferential
satisfying conditions similar to properties 1) – 3) above).

Thanks to Proposition 4.3 (ii), the following sufficient subdifferential criteria can be
used for characterizing the error bound property of lower semicontinuous functions
in Asplund spaces, replacing criteria C4 and C3.

C6. |∂f |(x̄) > 0.

C7. |∂f |>(x̄) > 0.

Criterion C7 was used in [44, Corollary 2(ii)], [46, Theorem 4.12], [51, Theorem 3.1].
See also [26, Theorem 2.5].

4.2 Internal subdifferential slope

Another subdifferential slope based on the Fréchet subdifferential can be of interest.

A subset G ⊂ ∂f(x̄) is called a regular set of subgradients of f at x̄ if for any ε > 0
there exists a δ > 0 such that

f(x)− f(x̄)− sup
x∗∈G

〈x∗, x− x̄〉+ ε‖x− x̄‖ ≥ 0, ∀x ∈ Bδ(x̄).

The set ∂f(x̄) itself does not have to be a regular set of subgradients.
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Example 4.1. Let f : R → R be defined as follows:

f(x) =

{
0, if x < 0,√

x, if x ≥ 0.

Obviously ∂f(0) = [0,∞), and this set is not a regular set of subgradients. Indeed,
take ε = 1, xk = 1/k, x∗k = k +

√
k + 1, k = 1, 2, . . .. Then f(xk)− f(0)−〈x∗k, xk〉+

ε|xk| = −1.

Remark 4.3. The requirement that ∂f(x̄) is a regular set of subgradients seems to
be a useful regularity property of a real-valued function f at x̄. It holds, for instance,
for convex functions, see Proposition 6.1 (i). Compare with a close concept of weak
regularity introduced in [27]. Note that the last concept is in general weaker than
the one mentioned above, see Example 4.1 and [27, Example 1].

The set G is defined not uniquely. For instance, any finite subset of ∂f(x̄) is a
regular set of subgradients of f at x̄ and a subset of a regular set of subgradients
is also a regular set of subgradients. Another example is given in the next obvious
statement.

Proposition 4.5. For any δ > 0 the set of all x∗ ∈ X∗ such that

f(x)− f(x̄) ≥ 〈x∗, x− x̄〉, ∀x ∈ Bδ(x̄)

is a regular set of subgradients of f at x̄.

The next constant, the internal subdifferential slope of f at x̄, defined by the equality

|∂f |0(x̄) = sup{r ≥ 0 : rB∗ is a regular set of subgradients of f at x̄}, (25)

can be considered as a subdifferential counterpart of the slope defined by (19).

Proposition 4.6. |∂f |0(x̄) = (|∇f |0(x̄))+. 1

Proof. By definition (25), |∂f |0(x̄) is the exact upper bound of all numbers r ≥ 0
such that for any ε > 0 there exists a δ > 0 such that

f(x)− f(x̄) ≥ (r − ε)‖x− x̄‖, ∀x ∈ Bδ(x̄).

In other words,

|∂f |0(x̄) = sup{r ≥ 0 : r ≤ |∇f |0(x̄)} = (|∇f |0(x̄))+.

Proposition 4.7. |∂f |0(x̄) ≤ sup{r ≥ 0 : rB∗ ⊂ ∂f(x̄)}.
1The equality was established by the reviewer.
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This property follows immediately from definition (25). In particular, the inequality
|∂f |0(x̄) > 0 obviously implies the inclusion 0 ∈ int ∂f(x̄).

Thanks to Proposition 4.6 and condition C5, we can formulate another sufficient
subdifferential criteria for the error bound property of lower semicontinuous func-
tions:

C8. |∂f |0(x̄) > 0.

This criterion is equivalent to C5 and independent of C7 and C6. It can make sense
considering the “combined” sufficient criteria

max(|∂f |(x̄), |∂f |0(x̄)) > 0, max(|∂f |>(x̄), |∂f |0(x̄)) > 0.

It follows from the next theorem that in infinite dimensions the inequality in Propo-
sition 4.7 can be strict.

Theorem 4.1. In any infinite-dimensional Banach space (X, ‖·‖) with a monotone
Schauder basis there exists a 1−Lipschitzian function f : X → [0,∞) such that
f(0) = 0, f is directionally differentiable at 0 with f ′(0; z) = ‖z‖ for every z ∈ X,
and |∇f |0(x̄) = Er f(0) = 0.

Recall [17, Definition 6.1] that a sequence e1, e2, . . . in a normed linear space X
is called a Schauder basis of X if for every x ∈ X there is a unique sequence
a1, a2, . . . ∈ R, called coordinates of x, such that ‖

∑n
i=1 aiei − x‖ → 0 as n → ∞.

For n ∈ N, the linear mappings Pn : X → X defined as Pnx =
∑n

i=1 aiei are called
canonical projections. If X is complete then canonical projections are bounded,
and one can define an equivalent norm on X by |‖x‖| = supn∈N ‖

∑n
i=1 aiei‖ [17,

Lemma 6.4]. With this norm, the Schauder basis becomes monotone, that is satisfies
|‖Pn‖| = 1 for every n ∈ N. It can also be convenient to make the monotone
Schauder basis normalized, that is satisfying |‖ei‖| = 1 for every i ∈ N. In this
case, for an x∗n ∈ X∗ defined by 〈x∗n, x〉 = an one has |‖x∗n‖| = ‖|Pn − Pn−1‖| ≤ 2,
n = 2, 3, . . . Obviously ‖|x∗1‖| = 1.

It should be noted that there are only few known examples of separable Banach
spaces without a Schauder basis.

Proof. Let e1, e2, . . . ∈ X be a normalized monotone Schauder basis in (X, ‖ · ‖).
Define

f(x) = min

(
‖x‖, inf

i∈N

{
d(x, Rei) +

1

i2

})
, x ∈ X. (26)

Then f(0) = 0, and f(x) > 0 if x 6= 0. This function is 1−Lipschitzian as a
pointwise infimum of a family of nonnegative 1−Lipschitzian functions. We are
going to compute its one-sided directional derivatives at 0. First take z in the linear
span of {e1, e2, . . .} and denote by jz an index such that z is a linear combination of
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{e1, e2, . . . , ejz}. If j > jz then the monotonicity of the basis yields that d(z, Rej) =
‖z‖, and consequently

d(tz, Rej) +
1

j2
> t‖z‖

for all t > 0. If j ≤ jz then for sufficiently small t > 0 we have

d(tz, Rej) +
1

j2
≥ 1

j2
z

> t‖z‖.

It follows from (26) that f(tz) = t‖z‖ for all sufficiently small t > 0. Therefore
f ′(0; z) = ‖z‖. Since the linear span of {e1, e2, . . .} is dense in X and f is Lips-
chitzian, we conclude that f ′(0; z) exists for every z ∈ X and f ′(0; z) = ‖z‖.
Consider the sequence xi = ei/i, i ∈ N. Obviously ‖xi‖ = 1/i. Let j ∈ N be
different from i. We are going to show that d

(
xi, Rej

)
≥ 1/(3i). Indeed, take any

t ∈ R. If |t| < 2/(3i), then ∥∥xi − tej

∥∥ ≥ 1

i
− |t| > 1

3i
.

If |t| ≥ 2/(3i) then ∥∥xi − tej

∥∥ ≥ 1

2

∣∣∣〈x∗j ,
1

i
ei − tej

〉∣∣∣ =
1

2
|t| ≥ 1

3i
.

Having this, we can estimate for i ≥ 3:

d
(
xi, Rej

)
+

1

j2
>

1

3i
≥ 1

i2
= d

(
xi, Rei

)
+

1

i2
.

Hence by (26), f
(
xi

)
= min(‖xi‖, 1/i2) = 1/i2. It follows that f

(
xi

)
/‖xi‖ = 1/i → 0

as i →∞. Hence, |∇f |0(x̄) = Er f(0) = 0.

Corollary 4.1. In any infinite-dimensional Banach space X with a monotone Scha-
uder basis there exists a function f : X → R such that ∂Cf(0) = ∂f(0) = B∗ and
|∂f |0(0) = |∇f |0(x̄) = 0.

Proof. The function the existence of which is guaranteed by Proposition 4.1 satisfies
the conclusions of Corollary 4.1. Indeed, since f is 1−Lipschitzian, its Clarke direc-
tional derivative at 0 satisfies f ◦(0; z) ≤ ‖z‖ for all z ∈ X. Thus, ‖z‖ = f ′(0; z) ≤
f ◦(0; z) ≤ ‖z‖. It follows that f is Clarke regular at 0 and ∂f(0) = B∗. The
conclusion follows from Proposition 4.6.

Example 4.2. Let f : l2 → R be defined as follows:

f(x) = min

(
‖x‖, inf

i∈N

{
‖Pix‖+

1

i2

})
,

where Pix = (x1, . . . , xi−1, 0, xi+1, . . .). Then f(0) = 0, [f ≤ 0] = {0}, ∂f(0) = B,
and |∂f |0(0) = |∇f |0(x̄) = 0.
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4.3 Uniform strict subdifferential slope

The following nonlocal modification of the Fréchet subdifferential (21), depending
on two parameters α ≥ 0 and ε ≥ 0, can be of interest:

∂�ε,αf(x̄) =

{
x∗ ∈ X∗ : sup

β>α
inf

0<‖x−x̄‖≤β

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ −ε

}
. (27)

We are going to call (27) the uniform (ε, α)-subdifferential of f at x̄. Obviously it is
a convex set in X∗. When α = 0 it coincides with the ε-subdifferential [32, 33, 34]
of f at x̄, and

∂f(x̄) =
⋂
ε>0

∂�ε,0f(x̄).

Using uniform (ε, α)-subdifferentials (27) one can define the uniform strict subdif-
ferential slope of f at x̄ – a subdifferential counterpart of the upper uniform strict
slope (7):

|∂f |�(x̄) = lim inf
x→x̄, f(x)↓f(x̄), ε↓0

inf{‖x∗‖ : x∗ ∈ ∂�ε,d(x,[f≤f(x̄)])f(x)}. (28)

Note that in the definition (28) of the uniform strict subdifferential slope, the uniform
(ε, α)-subdifferentials are taken with α depending on x, namely α = d(x, [f ≤ f(x̄)]).
This number is the same for all points x with the same distance from the set [f ≤
f(x̄)] and goes to zero as x approaches x̄.

Proposition 4.8. (i). +|∇f |�(x̄) ≤ |∂f |�(x̄).

(ii). Suppose that the following uniformity condition holds true for f :

(UC) There is a δ > 0 and a function o : R+ → R such that limt↓0 o(t)/t = 0
and for any x ∈ Bδ(x̄) with 0 < f(x) − f(x̄) ≤ δ and any x∗ ∈ ∂f(x) it
holds

f(u)− f(x)− 〈x∗, u− x〉+ o(‖u− x‖) ≥ 0, ∀u ∈ X. (29)

Then |∂f |�(x̄) ≤ |∂f |>(x̄).

(iii). If X is Banach and f is lower semicontinuous near x̄ and satisfies the unifor-
mity condition (UC) then

Er f(x̄) = |∂f |>(x̄) = |∇f |>(x̄) = −|∇f |�(x̄) = ◦|∇f |�(x̄) = +|∇f |�(x̄)

= |∂f |�(x̄) ≥ |∂f |0(x̄).

Proof. (i) The inequality follows from the definitions.

(ii) If |∂f |>(x̄) = ∞ the inequality holds true trivially. Let |∂f |>(x̄) < γ < ∞ and
ε > 0. By definition (24), for any δ > 0 there is an x ∈ Bδ(x̄) with 0 < f(x)−f(x̄) ≤
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δ and an x∗ ∈ ∂f(x) with ‖x∗‖ < γ. Without loss of generality we can take δ > 0
small enough such that (29) holds true and o(t)/t ≤ ε if 0 < t < 2δ. Then

sup
β>α

inf
0<‖u−x‖≤β

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖

≥ −ε,

where α := d(x, [f ≤ f(x̄)]) ≤ ‖x− x̄‖ ≤ δ. Thus, x∗ ∈ ∂�ε,αf(x), and consequently

|∂f |�(x̄) < γ.

(iii) follows from (i) and (ii), Propositions 3.1, 4.3 (ii), and 4.6, Theorem 2.1 (i) and
Corollary 2.1.

Note that in finite dimensions inequality |∂f |0(x̄) ≤ |∂f |>(x̄) in Proposition 4.8 (iii)
holds true also for semismooth functions (Proposition 5.4 (iii)).

Taking into account condition NC1, Proposition 4.8 (i) allows us to formulate an-
other necessary condition for the error bound property.

NC2. |∂f |�(x̄) > 0.

The relationships among the subdifferential error bound criteria for a lower semi-
continuous function on an Asplund space are illustrated in Fig. 4.

�� ��
�� ��C6 |∂f |(x̄) > 0

���� ��
�� ��C7 |∂f |>(x̄) > 0

��

�� ���� ��C8 |∂f |0(x̄) > 0

uujjjjjjjjjjjjjjjj

Er f(x̄) > 0 //
�� ��
�� ��NC2 |∂f |�(x̄) > 0

Figure 4: Subdifferential criteria

Note that sufficient criterion C8 and necessary criterion NC2 are applicable in gen-
eral Banach spaces. Conditions C6 and C7 can be replaced by the corresponding
criteria in terms of Clarke subdifferentials (Proposition 4.4) which are also valid in
general Banach spaces.

5 Finite Dimensional Case

In this section dim X < ∞ and f is lower semicontinuous.

The assertion of Theorem 2.1 (ii) can be strengthened: there is no need to assume
f Lipschitz continuous; in finite dimensions just continuity is sufficient.
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Proposition 5.1. If f is continuous near x̄ then

−|∇f |�(x̄) = ◦|∇f |�(x̄) = +|∇f |�(x̄) = Er f(x̄).

Proof. The proof of the first two equalities is similar to that of Theorem 2.1 (ii).
Thanks to Theorem 2.1 (i) we need only prove the inequality +|∇f |�(x̄) ≤ −|∇f |�(x̄).
If +|∇f |�(x̄) = 0 the assertion holds trivially. Let 0 < γ < +|∇f |�(x̄). We are going
to show that −|∇f |�(x̄) > γ. Chose a γ′ ∈ (γ, +|∇f |�(x̄)). By definition (7), there
exists a δ > 0 such that for any x ∈ X satisfying ‖x−x̄‖ < δ and 0 < f(x)−f(x̄) < δ
there exists a sequence {xk} ⊂ X such that 0 < ‖xk − x‖ < d(x, [f ≤ f(x̄)]) + 1/k
and f(x) − f(xk) > γ′‖xk − x‖, k = 1, 2, . . .. If ‖xk − x‖ < d(x, [f ≤ f(x̄)]) for
some k then (11) holds true and, by definition (6), −|∇f |�(x̄) > γ. Suppose that
‖xk − x‖ ≥ d(x, [f ≤ f(x̄)]), k = 1, 2, . . ..

Without loss of generality we can assume that f is continuous on B2δ(x̄). The
sequence {xk} has an accumulation point x̂ satisfying ‖x̂ − x‖ = d(x, [f ≤ f(x̄)]),
‖x̂− x̄‖ < 2δ, and f(x)− f(x̂) ≥ γ′‖x̂− x‖. Due to continuity of f , it is possible to
find a point u ∈ X sufficiently close to x̂ and satisfying ‖u−x‖ < d(x, [f ≤ f(x̄)]) and
f(x)− f(u) > γ‖u− x‖. Hence, (11) is satisfied, and consequently, −|∇f |�(x̄) > γ.

The last equality follows from Theorem 2.2.

The strict subdifferential slopes (23), (24), and (28) can be defined equivalently in
terms of the following limiting subdifferentials:

∂f(x̄) = Lim sup
(x,f(x))→(x̄,f(x̄))

∂f(x), (30)

∂>f(x̄) = Lim sup
x→x̄, f(x)↓f(x̄)

∂f(x), (31)

∂�f(x̄) = Lim sup
x→x̄, f(x)↓f(x̄), ε↓0

∂�ε,d(x,[f≤f(x̄)])f(x). (32)

In the above definitions, Lim sup denotes the outer limit [49] operation for sets: each
of the sets (30) – (32) is the set of all limits of elements of appropriate subdifferentials.

Sets (30) – (32) are called the limiting (Mordukhovich) subdifferential [39, 49], lim-
iting outer subdifferential [25], and uniform limiting subdifferential of f at x̄ respec-
tively. See [46] for an infinite-dimensional generalization of (31) and [39, Definition
1.100] for a closely related definition of the “right-sided” subdifferential.

Proposition 5.2. (i). |∂f |(x̄) = inf{‖x∗‖ : x∗ ∈ ∂f(x̄)}.

(ii). |∂f |>(x̄) = inf{‖x∗‖ : x∗ ∈ ∂>f(x̄)}.

(iii). |∂f |�(x̄) = inf{‖x∗‖ : x∗ ∈ ∂�f(x̄)}.

(iv). |∂f |(x̄) > 0 if and only if 0 /∈ ∂f(x̄).
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(v). |∂f |>(x̄) > 0 if and only if 0 /∈ ∂>f(x̄).

(vi). |∂f |�(x̄) > 0 if and only if 0 /∈ ∂�f(x̄).

Proof. Assertions (i) – (iii) follow from definitions (22) – (24), (28) – (32), while (iv)
– (vi) are consequences of (i) – (iii) due to the closedness of the sets ∂f(x̄), ∂>f(x̄),
and |∂f |�(x̄).

The next proposition provides an important example of a regular set of subgradients
and a simplified representation of the internal subdifferential slope (25) strengthen-
ing Proposition 4.7.

Proposition 5.3. (i). Every bounded subset of ∂f(x̄) is a regular set of subgradi-
ents of f at x̄.

(ii). |∂f |0(x̄) = sup{r ≥ 0 : rB∗ ∈ ∂f(x̄)}.

(iii). |∂f |0(x̄) > 0 if and only if 0 ∈ int ∂f(x̄).

Proof. (i) Let G be a bounded subset of ∂f(x̄) which is not a regular set of subgra-
dients of f at x̄. By definition, there exists an ε > 0 and sequences xk → x̄ and
{x∗k} ⊂ G such that

f(xk)− f(x̄)− 〈x∗k, xk − x̄〉+ 2ε‖xk − x̄‖ < 0.

Without loss of generality x∗k converges to some x∗ which must belong to ∂f(x̄) since
the latter set is closed. On the other hand, ‖x∗k − x∗‖ < ε for all sufficiently large k,
and it follows from the last inequality that

f(xk)− f(x̄)− 〈x∗, xk − x̄〉+ ε‖xk − x̄‖ < 0,

and consequently x∗ 6∈ ∂f(x̄). This contradiction completes the proof.

(ii) follows from (i) and definition (25).

(iii) follows from (ii).

Thanks to Proposition 5.2 (iv)–(vi) and Proposition 5.3 (iii) we can formulate the
finite dimensional versions of criteria C7, C4, C10, and NC2.

C9. 0 /∈ ∂f(x̄).

C10. 0 /∈ ∂>f(x̄).

C11. 0 ∈ int ∂f(x̄).

NC3. 0 /∈ ∂�f(x̄).
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Criterion C11 is in general independent of C10 and C9. The “combined” sufficient
criteria

0 /∈ ∂f(x̄) \ int ∂f(x̄), 0 /∈ ∂>f(x̄) \ int ∂f(x̄)

can be of interest. The first one can be rewritten as

C12. 0 6∈ bd ∂f(x̄),

if f is lower regular [39, Definition 1.91] at x̄, that is, if ∂f(x̄) = ∂f(x̄).

Criterion C12 was used in [18, Corollary 3.4] and [19, Theorem 4.2].

The implication C11⇒ C10 (and consequently C10⇒ C4) holds true for semismooth
functions. We recall from [38] that a function f on a finite dimensional space X
is semismooth at x̄ if it is Lipschitz continuous around x̄ and for any sequences
zi → z ∈ X, ti ↓ 0, x∗i ∈ ∂Cf(x̄ + tizi) (Clarke subdifferential of f at x̄ + tizi) one
has 〈x∗i , z〉 → f ′(x̄; z) (the derivative of f at x̄ in the direction z). As proved in [28],
each subanalytic function, Lipschitz around x̄, is semismooth at x̄.

Proposition 5.4. Let f : X → R be semismooth at x̄. Then

(i). int ∂f(x̄) ∩ ∂>f(x̄) = ∅;

(ii). if 0 ∈ int ∂f(x̄) then 0 /∈ ∂>f(x̄);

(iii). |∂f |0(x̄) ≤ |∂f |>(x̄).

Proof. Let x∗ ∈ ∂>f(x̄). By definition (31), there exist sequences xi → x̄ with
f(xi) ↓ f(x̄) and x∗i → x∗ with x∗i ∈ ∂f(xi). Denote ti = ‖xi − x̄‖, zi = (xi − x̄)/ti.
Then ti ↓ 0 and without loss of generality we can assume that zi converges to some
z ∈ X, ‖z‖ = 1. By the semismoothness of f , 〈x∗i , z〉 → f ′(x̄; z), and consequently
f ′(x̄; z) = 〈x∗, z〉. On the other hand, due to the Lipschitz continuity of f , f ′(x̄; z) ≥
〈v∗, z〉 for any v∗ ∈ ∂f(x̄). This means that x∗ 6∈ int ∂f(x̄). The proof of the first
assertion is completed. The other two assertions are obvious corollaries of the first
one.

The relationships among the error bound criteria for a lower semicontinuous function
on a finite dimensional space are illustrated in Fig. 5.

The efficiency of criterion C10 depends on the ability to compute a tight upper esti-
mate of ∂>f(x̄). This is possible, for instance, in the following important situation.

Let C ⊂ Rm be closed and ϕ : Rm → R+ be locally Lipschitz continuous and satisfy
the condition

ϕ(y) = 0 ⇔ y ∈ C.

Assume that F : Rn → Rm is continuously differentiable and define the composition
f : Rn → R+ by f(x) = ϕ(F (x)).
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�� ���� ��C9 0 /∈ ∂f(x̄)

�� ,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

�� ���� ��C10 0 /∈ ∂>f(x̄)

��

�� ���� ��C11 0 ∈ int ∂f(x̄) //

yyttttttttttttttttttttttttttf is

semismooth at x̄

oo_ _ _ _ �� ���� ��C12 0 6∈ bd ∂f(x̄)

f is lower regular at x̄

ttj j j j j j j j j j j j j j j j j j j j j j j

�� ��
�� ��C2 −|∇f |�(x̄) > 0

���� ��
�� ��C1 ◦|∇f |�(x̄) > 0

��

f is continuous

OO�
�
�

Er f(x̄) > 0 //

f is continuous

OO�
�
� �� ��

�� ��NC1 +|∇f |�(x̄) > 0
f is

continuous

oo_ _ _ _ _ //
�� ���� ��NC3 0 /∈ ∂�f(x̄)

Figure 5: Finite dimensional case

Theorem 5.1. Let x̄ ∈ Rn and ȳ = F (x̄) ∈ C. Then

∂>f(x̄) ⊂ (∇F (x̄))∗ Lim sup
x→x̄, F (x)/∈C

∂ϕ(F (x)). (33)

Inclusion (33) becomes equality, provided one of the following conditions holds true:

(a) ∇F (x̄) is surjective;

(b) ϕ is lower regular on a neighborhood of ȳ, that is, ∂ϕ(y) = ∂ϕ(y) for all y near
ȳ.

In case (b) one has

∂>f(x̄) = (∇F (x̄))∗ Lim sup
x→x̄, F (x)/∈C

∂ϕ(F (x)).

Proof. By definition (31),

∂>f(x̄) = Lim sup
x→x̄, F (x)/∈C

∂f(x).

Since F is Lipschitz near x̄ and ϕ is Lipschitz near ȳ, it holds by virtue of [49,
Theorem 10.49] that

∂f(x) ⊂ (∇F (x))∗∂ϕ(F (x)).

Moreover, due to the uniform boundedness of ∂ϕ,

∂>f(x̄) ⊂ Lim sup
x→x̄, F (x)/∈C

(∇F (x))∗∂ϕ(F (x)) = (∇F (x̄))∗ Lim sup
x→x̄, F (x)/∈C

∂ϕ(F (x)).
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To prove that (33) becomes equality under (a), we recall from [49, Theorem 10.49]
the estimate

∂f(x) ⊃ (∇F (x))∗∂ϕ(F (x)).

This implies, by the uniform boundedness of ∂ϕ, that

∂>f(x̄) ⊃ Lim sup
x→x̄, F (x)/∈C

(∇F (x))∗∂ϕ(F (x)) = (∇F (x̄))∗ Lim sup
x→x̄, F (x)/∈C

∂ϕ(F (x)). (34)

We show that the sets in the right-hand sides of (33) and (34) are the same. To this
end, consider a vector ξ ∈ Lim sup

x→x̄, F (x)/∈C

∂ϕ(F (x)) given by

ξ = lim
i→∞

ξi with ξi ∈ ∂ϕ(F (xi)), xi → x̄, F (xi) /∈ C.

By the definition of the limiting subdifferential and by the closedness of C, for each
i there are sequences zij → F (xi), %ij → ξi such that zij /∈ C and %ij ∈ ∂ϕ(zij). Due
to the surjectivity of ∇F (x̄), for sufficiently large i, j one has that zij = F (xij) for
some xij → xi. By considering “diagonal” sequences x̃i = xii, ηi = %ii we now easily
conclude that ξ ∈ Lim sup

x→x̄, F (x)/∈C

∂ϕ(F (x)) and we are done.

Under (b) the result follows immediately from inclusions (33) and (34).

In concrete situations we may sometimes also use the evident estimates

∂>f(x̄) ⊂ (∇F (x̄))∗ Lim sup
y∈ImF\C

∂ϕ(y) ⊂ (∇F (x̄))∗∂>ϕ(ȳ).

In finite dimensions Proposition 5.1 improves the sufficient condition given in [46,
Corollary 5.4]. Such an improvement can be important as shown in the next example.

Example 5.1. Let C = R2
+ and a mapping F : R → R2 be defined as F (y) =

(−y, y)T . Consider the composition f = dC ◦ F , where dC is the Euclidean distance
to the set C. By Theorem 5.1,

∂>f(0) = (−1, 1) ·
{

(0,−1)T , (−1, 0)T
}

,

and consequently Er f(0) ≥ |∂f |>l (0) > 0.

On the other hand, ∂>dC(0) = {x ∈ R2
− : ‖x‖ = 1}, and we observe that 0 ∈

(−1, 1) · ∂>dC(0). Consequently, the estimate in [46, Corollary 5.4] does not enable
us to detect that Er f(0) > 0.

6 Convex Case

In this section X is a general Banach space and f is convex lower semicontinuous.

In the convex case many constants considered in the preceding sections coincide.
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Theorem 6.1. (i). |∇f |(x̄) = |∂f |(x̄) = |∇f |(x̄) = |∂f |(x̄).

(ii). Er f(x̄) = −|∇f |�(x̄) = ◦|∇f |�(x̄) = +|∇f |�(x̄) = |∇f |>(x̄) = |∂f |>(x̄) =
|∂f |�(x̄).

(iii). |∂f |(x̄) > 0 if and only if 0 /∈ ∂f(x̄).

Proof. (i) Thanks to Propositions 4.1 and 4.3 (i), it holds

|∇f |(x̄) ≤ |∂f |(x̄) and |∇f |(x̄) ≤ |∂f |(x̄) ≤ |∂f |(x̄).

We are going to show that

|∂f |(x̄) ≤ |∇f |(x̄) ≤ |∇f |(x̄).

To prove the first inequality we only need to show that inequality |∇f |(x̄) < γ
implies the existence of an x∗ ∈ ∂f(x̄) with ‖x∗‖ ≤ γ. If |∇f |(x̄) < γ then by (9),
x̄ is a point of local minimum of the function x 7→ g(x) = f(x) + γ‖x − x̄‖, and
consequently 0 ∈ ∂g(x̄). Observing that g is a sum of two convex functions one of
which is continuous and applying the convex sum rule, we conclude that there exists
an x∗ ∈ ∂f(x̄) with ‖x∗‖ ≤ γ.

The second inequality holds trivially if |∇f |(x̄) = ∞. Let |∇f |(x̄) < γ < ∞. Then
by definition (17), there is a sequence xk → x̄ such that f(xk) → f(x̄) and

f(x)− f(xk) + γ‖x− xk‖ ≥ 0

for all x near xk. Due to convexity of f the last inequality holds true for all x ∈ X.
Passing to the limit as k → ∞ and recalling the definition (9) of the slope, we
conclude that |∇f |(x̄) ≤ γ, and consequently |∇f |(x̄) ≤ |∇f |(x̄).

(ii) For any x ∈ X with f(x) > f(x̄) and any α > 0 it holds

sup
0<‖u−x‖<d(x,[f≤f(x̄)])

(f(x)− f(u))+

‖u− x‖
= sup

0<‖u−x‖<α

(f(x)− f(u))+

‖u− x‖

= sup
u 6=x, f(u)≥f(x̄)

(f(x)− f(u))+

‖u− x‖
= lim sup

u→x

(f(x)− f(u))+

‖u− x‖
.

Equalities −|∇f |�(x̄) = ◦|∇f |�(x̄) = +|∇f |�(x̄) = |∇f |>(x̄) follow now from defini-
tions (6) – (8) and (18).

By virtue of (i), we have |∇f |(x) = |∂f |(x) for all x ∈ X. Equality |∇f |>(x̄) =
|∂f |>(x̄) follows from comparing definitions (18) and (24).

It is not difficult to see that ∂�ε,αf(x̄) does not depend on α and equals ∂f(x̄) + εB∗.

This observation yields equality |∂f |�(x̄) = |∂f |>(x̄).

Equality Er f(x̄) = −|∇f |�(x̄) is a consequence of Theorem 2.2.

(iii) is a consequence of (i) due to the closedness of the set ∂f(x̄).
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Equality |∇f |(x̄) = |∂f |(x̄) in Theorem 6.1 (i) is well known – see [2, Remark 2.1],
[3, Proposition 2.5], [4, Proposition 3.1], [13, Proposition 5.2].

Due to Theorem 6.1, a number of sufficient criteria formulated in the preceding
sections reduce in the convex case to two conditions: criterion C4 and the following
one:

C13. 0 /∈ ∂f(x̄).

Criterion C4 is also necessary and can be strictly weaker than C13, see the function
in Example 3.1.

The next assertion follows from Proposition 4.5 and definition (25).

Proposition 6.1. (i). ∂f(x̄) is a regular set of subgradients of f at x̄.

(ii). |∂f |0(x̄) = sup{r ≥ 0 : rB∗ ∈ ∂f(x̄)}.

(iii). |∂f |0(x̄) > 0 if and only if 0 ∈ int ∂f(x̄).

Thanks to Proposition 6.1, the finite dimensional sufficient criterion C11 is applicable
to convex functions in infinite dimensions.

Conditions C11 and C13 are mutually exclusive and can be replaced by a single
criterion C12, which is still in general stronger than C4.

The relationships among the error bound criteria for a lower semicontinuous convex
function on a Banach space are illustrated in Fig. 6.

�� ���� ��C13 0 /∈ ∂f(x̄)

��

�� ���� ��C11 0 ∈ int ∂f(x̄)

ttiiiiiiiiiiiiiiii

�� ���� ��C12 0 /∈ bd ∂f(x̄)

���� ��
�� ��C4 |∂f |>(x̄) > 0

��

//____
�� ���� ��C10 0 /∈ ∂>f(x̄)

dim X < ∞

oo_ _ _ _

Er f(x̄) > 0

OO

Figure 6: Convex case

Criterion C4 was used in [25, Theorem 2.1(c)], [44, Corollary 2(ii)], [46, Theorem
4.12], [51, Theorem 3.1]. Criterion C12 was used in [18, Corollary 3.4], [19, Theorem
4.2]. The equality Er f(x̄) = |∂f |>(x̄) seems to be well known as well.

Being stronger than C4, criterion C12 characterizes a stronger property than just
the existence of a local error bound for f at x̄, namely, it guaranties the local error
bound property for a family of functions being small perturbations of f , see [35, 42].
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