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Abstract

Based on a thermodynamically consistent model for precipitation in gal-
lium arsenide crystals including surface tension and bulk stresses by Dreyer
and Duderstadt, we propose different mathematical models to describe the
size evolution of liquid droplets in a crystalline solid. The first class of models
treats the diffusion-controlled regime of interface motion, while the second
class is concerned with the interface-controlled regime of interface motion.
Our models take care of conservation of mass and substance. We consider ho-
mogenised models, where different length scales of the experimental situation
have been exploited in order to simplify the equations. These homogenised
models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald
ripening. Mean field models capture the main properties of our system and
are well adapted for numerics and further analysis. Numerical evidence sug-
gests in which case which one of the two regimes might be appropriate to the
experimental situation.

Industrial problem and modeling

Semi-insulating gallium arsenide has a broad range of applications in micro- and
opto-electronic devices. The industrial production process of semi-insulating gal-
lium arsenide (GaAs) as done by Freiberger Compound Materials requires at the
end some additional final heat treatment at high temperatures (∼ 1000 K – 1200
K) in order to improve the quality of the semi-insulator. During this treatment
undesirable liquid droplets precipitate in the solid phase due to supersaturation.
The precipitation process is accompanied by surface tension and mechanical bulk
stresses due to misfits. Droplets negatively influence mechanical and semi-insulating
properties of the crystal. Their elimination, if possible, is a crucial point for the pro-
duction of semi-insulators.
One of the challenges is the necessity to guarantee a mean mole fraction of As in
the wafer of X0 = 0.500082, which is specified to an accuracy of O(10−6), in order
to have the desired semi-insulating behaviour. Since experiments have to be carried
out at high temperatures and high pressure, mathematical modelling is important
in this situation in order to understand well the evolution of a large number of
precipitates. The goal of a mathematical model that describes the nucleation and
evolution of the precipitates is to look for regimes, where for large times either only
a few relatively big droplets survive or where a homogeneous spatial distribution of
relatively small droplets results.
A GaAs crystal has a fcc-lattice structure with three sublattices. We work with the
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so-called reduced Freiberg model [8], [17], [6] in which Ga atoms only appear on one
sublattice, while As atoms and Va (Vacancies) can occupy lattice sites in all three
sublattices. In the reduced Freiberg model the doping by B, Si and O atoms and
the free charges e, h are neglected.
For the modelling of phase transitions various types of models are suggested. Sharp-
interface models e.g. as the Mullins-Sekerka model [13] and phase-field models e.g.
the Cahn-Hilliard equation [3] capture the spatial structure of a phase transition,
while Lifshitz-Slyozov-Wagner models (LSW) [12], [18] and Becker-Döring models
[2], [9] do not. The first three of these models are diffusion models which consider a
continuum, while the Becker-Döring model is a discrete model, which considers the
droplets as clusters of a certain number of atoms, which shrink or grow by gaining
or loosing a single atom.
Phase-transitions in solids are in general strongly influenced by surface tension and
bulk stresses, which is not reflected by the above-mentioned classical models. Fur-
thermore in the situation of a phase transition within a solid crystal, the microstruc-
ture of the crystal cannot be neglected. For crystalline GaAs a thermodynamically
consistent sharp-interface model for precipitation of liquid droplets including surface
tension, bulk stresses and the crystal microstructure has been derived by Dreyer and
Duderstadt [6]. They assume constant temperature T and constant outer pressure
p0. They proposed a thermodynamically consistent Becker-Döring model (BD) in
the same situation, too [5]. In particular they derive a BD-model with a thermo-
dynamically consistent choice of the condensation and evaporation rates, which is
different to the Becker-Döring models usually considered by mathematicians [1]. For
rigorous mathematical results for the Dreyer-Duderstadt-Becker-Döring model we
refer to Herrmann et al. [10]. However, comparison with experimental results, shows
that the time scales of the Becker-Döring regime are too large in case of crystalline
GaAs.
In the diffusion model of Dreyer and Duderstadt there a two possible regimes,
a diffusion-controlled regime of interface motion (DC) vs. an interace-controlled
regime (IC). In the DC-regime we can have the situation of a constant diffusion con-
stant D or of a constant bulk mobility BD. Since from experiments it is a priori not
clear which of the regimes might be appropriate, we consider the regimes separately
in our study.
The main assumptions in the diffusion models are, that we can deal in good approx-
imation with N spherical liquid droplets with fixed droplet centers Xi, 1 ≤ i ≤ N .
We neglect nucleation of new droplets. We concentrate on arsenic-rich liquid droplets
in a GaAs crystal. The wafer is considered as a body, represented by an open
bounded domain Ω in three dimensions, which is time-dependent. Droplets can
shrink or grow with time. The free boundary of the phase interface of a droplet i
is parametrised by its radius ri. There is a certain minimal radius, below which a
liquid droplet does not behave like a droplet any more. We model this by taking the
droplet out and incorporating the As and Ga atoms of the droplet into the solid. For
the modelling of this subtle point, see [11], Subsect. 2.6.7. The liquid droplets are
describes as spherical balls Bri

(Xi) with radius ri and center Xi. The solid phase
is represeted by a simply connected open domain ΩS := Ω \ ∪iBri

(Xi). For our
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notation of the geometric quantities, see also Fig. 1. In this study we ignore mis-
fits of the crystal due to dislocations in the crystal structure and the corresponding
mechanical eigenstresses.

If one neglects surface tension and bulk stresses the system is well-understood,
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r1

Ω2
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Σ2 D

L ΩS

Ω

1

Figure 1: Many droplet problem with arbitrary convex shape. Dashed radii Ri
ext

model the local influence of a droplet in a monopole approximation in a spherical
shell Σi.

that can be realized by a solid cube of GaAs crystal in a liquid GaAs bath where
the external pressure acts by means of a gas of As2 and As4 on the system (see [6],
Fig. 2) such that the crystal is under hydrostatic pressure in 3-phase equilibrium.
This is called the reference standard system and we consider actual values as devi-
ations from the values of 3-phase equilibrium, which we indicate by an index R e.g.
the vapour pressure under which three phase equilibrium may be established is the
vapour pressure pR(T ), while the real presure is p. We work in approximation of
small displacement gradients in this study.
The differential equations derived by Dreyer and Duderstadt have been modified by
Kimmerle ([11], Sect. 2) in a way, which is appropriate for mathematical analysis.
The unknowns are the chemical potential µ, the mechanical displacement field u
in Eulerian coordianates, the radii of the droplets ri, and the free outer boundary
∂Ω. By comparison of this modified differential equations with the Mullins-Sekerka
model, we see that the inclusion of mechanical stresses and the microstructure yields
in the solid crystal a quasi-linear parabolic diffusion equation with a drift term, which
is coupled to a mechanical elliptic linear system by the barycentric velocity v = ∂tu.
In the evolution equation for the free boundary, the so-called Stefan condition, the
mechanical phenomena enters, too. Contrary to classical models the outer boundary
of solid crystal is a free boundary too, which evolves with the barycentric velocity
v. The classical Gibbs-Thomsn law, which states that the chemical potential on the
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phase interfaces is given by surface tension σ times mean curvature, has to be re-
placed by a general strictly monotone decreasing, nonnegative and smooth function
µI(ri), which reflects the appearence of non-zero deviatoric stresses at the interfaces.
In the liquid droplet i the chemical potential µL and the mechanical displacement
in the liquid uL are determined as a formula dependent on ri and on the boundary
displacement u|Ii

on the interface Ii.
Due to different scales for typical distances between droplets and typical radii
of liquid droplets (see Fig. 1) we expect that the chemical potential µ behaves
far away from droplets approximately like an only time-dependent mean-field µ,
while in the neighbourhood of a droplet with radius ri then µ is dominated by
(µ(t) − µI(ri))r

−1
i . The vector field of the displacement gradient ∇u is expected

to behave like (pR − p0)/(3kS) = const, where kS(T ) is the bulk modulus of crys-
talline GaAs. Close to droplets we find ∇u ≈ a + b(ri) with b(r)(4GS + 3kL) =
3(kS − kL)a − 2σ/r + δ + h∗L(r) − 3kS(4GS + 3kL)/(4GS + 3kS)h∗(r). δ(T ) is the
misfit parameter and h∗, h∗L model the contribution due to inelastic deformations
from change of concentrations in the solid and liquid, resp. GS(T ) is the shear
modulus in the solid and kL(T ) is the bulk modulus in the liquid. Furthermore the
lattice occupancy Y R of As atoms on the interstitial lattice in the reference system
is small, so the material-derivative of the chemical potential and the coupling to the
velocity enter in higher order in the diffusion equation.
We want to exploit the different scales in order to simplify our generalised Mullins-
Sekerka model. Let D the typical distance of a droplet to the next neighbour droplet
or to the ouer boundary ∂Ω and L the diameter of a homogeneous precipitation do-
main Ω, that is much larger than D. We introduce the scaling parameter ε = D/L.
This yields directly that the number of precipitates scales with ε−3. ε0 = 10−1 is the
value of the scaling parameter, which fits to the experiment. We give an overview of
most of the used unscaled quantities and their scaling behaviour in Table 1. Math-
ematically the scaling behaviour corresponds to a dilute scaling regime i.e. radii are
scaled with ε4. Numerics yield the guess, that the dilute regime might fit to the
experimental situation. Similarly as the LSW-model is derived as a homogenization
limit of the Mullins-Sekerka model in the regime of small volume fraction, see [15],
[16], we exploit the different length scales and derive from our thermodynamically
consistent generalization of the Mullins-Sekerka model, a generalized LSW-model for
precipitation in crystalline GaAs including mechanical stresses and the microstruc-
ture.
Mathematical results for both genealized models and the derivation of them are
presented in [11]. For a model in the diffusion-controlled regime we prove the limit
of small volume fraction in the critical scaling by homogenisation techniques under
plausible assumptions in [11], Ch. 5.
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Quantity Experimental Scaling Scaled
value value

Scaling parameter ε0 = 10−1 ε ε0

Diameter of domain L 10−5m L 1
Typ. droplet dist. D 10−6m ε1L 1
Typ. initial radii R 10−9m L = ε4L 1

Typical times (DC) τD 10−6s T = τD 1
Typical times (IC) τ I 10−12s T = τ I 1

Typical masses M MAs M/mol = ε4MAs 1
= 7.492 · 10−2kg mol−1

Initial # of droplets N 0 4.2 · 103 (LD )3 = ε−3 4.2 · 103

Initial # of atoms N0 1.01 · 10−10mol N = ε12 1mol 1.01 · 10−10

≈ (3− Y R
V )nR

GL3

Ref. density of lattice sites nR
G 3.7 · 104mol m−3 ε0 1mol m−3 3.7 · 104

Ref. density of atoms in the lq. nR
L 3.7 · 104mol m−3 ε0 1mol m−3 7.0 · 104

Init. density of droplets NR
0 = N0

N 0 2.4 · 10−14mol N = ε15 1mol 2.4 · 10−14

Ref. concentr. of Asγ Y R 10−4 ε9 10−4

Mobility (DC) BD 3.7 · 10−14 mol
m s

N
LT ∝ ε8 3.7 · 10−23

Mobility (IC) BI 9.8 · 106 mol
m2 s

N
L2T ∝ ε4 9.8 · 10−24

Diffusion coefficient (DC) D 10−12 m2

s
L2

T ∝ ε8 1

Typ. stresses e.g. kSkL, GS 107 N
m2

M
LT2 ∝ ε0 107

Surface tension σ 7.5 · 10−2 N
m

M
T2 ∝ ε4 0.075

Typ chem. pot. u RT = 9.14 · 103J mol−1 ML2

NT2 ∝ 1 9.14 · 103

Table 1: Overview of typical quantities for the experiment, the scaling and the scaled
values for DC or IC.

Mean field models

From this generalized LSW-model, consisting of a kinetic equation and an integro-
differential equation for the mean field µ, we get a mean field model by considering
an initial measure, which consists of a finite number N 0 of initially existing droplets
with initial radii r0

i . In order to guarantee conservation of mass and substance we
consider in the mean field models |ΩS(t)| instead of |Ω(0)| as a formal next-order
corrector and evaluate ε for the corresponding scale of a typical experimental system.
We consider as well the regime DC as well the regime IC. Our mean field problems
are the following coupled nonlinear ODE systems for µ and ri

ṙi(t) = G(ri(t), µ(t)) ∀i ∈ {1, .....,N (t)}, µ̇(t) = H({ri(t)}1≤i≤N , µ(t)), (1)
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where in the regime DC in case of constant diffusion coefficient

G := D
µ(t)− µI(ri)

riX(ri)
, H := −4πD

1

N 0

∑
i∈N ri(µ(t)− µI(ri))

Y RX|ΩS({ri(t)}, µ)|
, (2)

while in the regime IC

G :=
BI

RTnR
G

µ(t)− µL(µ, ri)

Z(µ, ri)
,

H := −4π
BI

RTnR
G

1

N 0

∑
i∈N r2

i (µ(t)− µL(µ, ri))Y(ri, µ)

Y RX|ΩS({ri(t)}, µ)|
,

(3)

together with initial conditions on ri and µ. X or Z model the contribution of the
barycentric velocity in the solid or liquid at the phase boundary, which are elim-
inated in the Stefan condition for regime DC or IC. By these two functions the
mechanical bulk stresses at the interface enter into the equations. X represents the
derivative of the concentration of the As concentration in the solid w.r.t. µ and
gives the influence of the microstructure in the equations. The functions X, Z, Y
and X are of order 1. The outer boundary ∂Ω and the size of the solid domain |ΩS|
are determined by conservation of mass and substance. The change of the outer
boundary is small compared to the change of radii.
Furthermore it can be checked formally, that the available free energy corresponding
to the mean field model is non-increasing with time, see [11]. In this sense the mean
field model is thermodynamically consistent.
Mean field models as (1) – (3) are more suitable for simulations and stability analysis
than the original coupled PDEs and ODEs of a generalized Mullins-Sekerka model.
We recall that the boundary condition on the interfaces of the droplets, µI(ri), is a
strictly monotone decreasing and nonnegative smooth function of ri. This suggests
to replace equivalently the mean field µ by a mean field radius r = µ−1

I (µ). This
is similar as in the situation of the classical LSW-model where µI(ri) = 1/ri and
r = 1/µ. r turns again out to be the critical radius. That means, that droplets with
radii below r shrink, while radii beyond grow.
Mean field models now consist of N 0 nonlinear ODEs for the evolution of the radii
ri, 1 ≤ i ≤ N 0, and one ODE for the mean field radius r, closed with initial con-
ditions r0

i , 1 ≤ i ≤ N 0, and r0. W.l.o.g. r1 > r2 > ... > rN 0 . The dissolution
of droplets with time is modelled as follows. Let N (t) be the number of existing
droplets at time t. If rN ≤ rmin for a given value rmin, which is motivated from
physics, at time τN , then N − 1 droplets remain and the mean field model has after
τN hence N − 1 equations for the radii and one for the mean field, with new initial
data, which is given from the values at time τN .
Furthermore the initial condition r(0) = r0 can be replaced by prescribing N0 =
N 0NR

0 , where NR
0 is the typical number of atoms in a box with side length D0 ≈

10−6m around the droplet center, where the atoms in the droplet are also included
in NR

0 .
The change of radii depends on the sign of ri − r. Radii grow, if this difference is
positive, radii shrink, if ri < r or remain stationary if the difference is zero.
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Stationary solutions of mean field models

We determine possible stationary solutions i.e. where all time-derivatives in the
ODE system vanish, and in the case of 1 ≤ N (t) ≤ N 0 we see that this is only
possible iff ri = r, for all droplets 1 ≤ i ≤ N . In case of N = 0 the mean chemical
potential µ remains clearly stationary.
These stationary solutions for the radii (or denoted as “equilibria” in [11]) can
be determined for any number of remaining droplets N . For typical experimental
situations two different stationary radii are possible, rNcrit, which turn out to be
instable, or rNms, which turn out to be instable for N > 1, but is asymptotically
stable if N = 1. The system is stable in the sense of Lyapunov, see e.g. [19], for
N = 0. The stability of the stationary solutions of the ODE system is here examined
by means of linearisation around stationary solutions and explicit computation of the
corresponding eigenvalues of the linearised system (Theorem of Poincaré-Lyapunov),
see [11], Sect. 6.3.
Analoguesly the homogenised model can be put into the original formula for the
availabile free energy and we can analyse this availabile free energy A in case of the
mean field model. The stationary solutions correspond to extrema of the formally
homogenised availabile free energy. rNcrit corresponds to maxima of the availabile
free energy of the mean field model, while rNms corresponds to a saddle point i.e. a
metastable state for N > 1 and to a minima, which is stable, if N = 1 or 0. In case
of two droplets this is illustrated in Fig. 2.

Figure 2: Availabile free energy [in 10−27 N m] versus radii [in 10−9 m] for the mean
field model of a system with N 0 = 2 and here NR

0 = 2.39 ·10−14mol, p0 = 105 Nm−2.
The equilibrium (r1 = r2

crit, r2 = r2
crit) is unstable, (r1 = r1

crit, r2 = 0), (r1 = 0, r2 =
r1
crit) and (r1 = r2

stab, r2 = r2
stab) are metastable saddle points and (r1 = r1

stab, r2 = 0),
(r1 = 0, r2 = r2

stab) are stable equilibria.
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Numerical solutions of the mean field models

We see in simulations the following typical behaviour, which is expected due to
the analysis of stationary solutions. The mean field radius runs with time close to
a quasi-stationary equilibrium, which is unstable (i.e. a “saddle”) (see [11], Fig.
6.13). The smallest droplet vanishes, then the next saddle is approached, and so on,
unless only one droplet remains, and the mean field approaches the radius r1 of the
remaining droplet and this situation is stable.
For typical situations the change of the mean field is faster than the change of radii
and the mean field radius approaches a meta-stable value r ≈ 1

N 0

∑
1≤i≤N ri.

We remark, that our mean field model can be interpreted in the sense, that the
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Figure 3: Simulations of mean field models: on the l.h.s. regime DC with D =
10−12m2s−1, on the r.h.s. regime IC with BI = 10−5mol m−2s−1. In both cases
1 droplet (darkgreen) remains and mean field radius (darkblue) is plotted for all
times, all other droplets dissolve. Both simulations with identical initial data: 20
radii uniformly distributed between 320-400 nm, NR

0 = 3.8 · 10−14 mol, T = 1100K
and the data from Table 1.

“information” about the position of the initial radii gets lost, when the dynamical
system runs for the first time close to a saddle.
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Except for special initial data e.g. if all initial droplets are below the mean field
radius r and sufficiently small enough so that they vanish before the mean field runs
into a quasi-stationary equilibrium,we end up with one droplet.
We summarise. If we start with a fixed number of N 0 droplets, we could theo-
retically end up with no droplet, 1 droplet or 2 ≤ N ≤ N 0 droplets. More than
one droplet is only possible for very pathological cases, where the initial data is a
critical point or saddle or leads perfectly into a saddle and that cannot be realised
practically. Simulations show, that for realistic initial data it can be expected, that
1 droplet remains as t →∞.

We consider the life time τi of droplet i. The time τN until the first droplet disappears
which can be read off from plots, can be compared with times from experiments.
This offers a possibility to decide which model might be appropriate for the experi-
mental situation.
Numerical evidence suggests in which case which one of the two regimes might be ap-
propriate to the experimental situation: The IC regime with BI = 10−5mol m−2s−1,
which is an artificially large chosen value, already yields times τ1 and τN 0 , which seem
to be too large. The DC regime, where B = 3.7 · 10−8mol m−1s−1 is kept constant
and not D, yields too short times. The DC regime with D = const = 10−12m2s−1

might be the most appropriate. Furthermore note, that the mean field radius ex-
hibits a qualitatively different behaviour for regimes DC and IC before and after a
droplet dissolves.
The simulations still depend sensitively on values for the diffusion constant or mo-
bilities and surface tension.
As a further result, which has not been included in the PhD thesis of Kimmerle
[11], the dependence of the droplet evolution of parameters can be characterised
approximately as follows. τ1 ∼ 1√

σD
for DC and given constant diffusion coefficient

D, while τ1 ∼ 1
σBI for regime IC. Simulations suggest, that the more droplets we

consider, the smaller the life times τN . The shape of the initial radii data and NR
0

have influence on how fast a quasi-stationary equilibrium is reached and where a
quasi-stationary radius (the radius corresponding to a saddle of the availabile free
energy) is exactly. The more concentrated the initial data is around a point, the
larger we expect τ1 and τN .
The effect of the external pressure p0 is not significant for simulations as can be
expected from the analysis. The most significant effect of the temperature seems to
be the dependence of Y R(T ): the smaller Y R, the faster the change of mean field
radius compared to change of droplet radii.
Numerical results suggest the existence of self-similar solutions for our mean field
models, see Fig. 4. For classical LSW models the existence of self-similar solutions
is possible and is well-understood, depending on the initial data. This is a priori
not clear for our generalized LSW models, since we have a further dependence on
the radii in the functions X for DC or Y and Z for IC.
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Figure 4: Regime DC, 100 droplets, Simulation (r.h.s.) and N vs. time t on a
log-log-scale (l.h.s.)

Conclusion

Finally we compare our model with other models, like the Becker-Döring model [5],
[10] or models for grow and shrinkage of rubber balloons or storage processes in
rechargeable lithium batteries (see e.g. [7]).
In case of BD-model the time scales for dissolving droplets are too large compared
to experiments. The availabile free energy, which is used as starting point in our
model has no mixing entropy term, contrary to the availabile free energy for the
Becker-Döring system.
We point out, that in our case µI is strictly monotone, and the mean field is uniquely
determined by an ODE (our equivalently by a monotone nonlinear equation for µ).
In the models for rubber balloons and lithium batteries hysteresis can occur since
µ has two distinct values (depending on the scaling a bifurcation occurs or not),
which are selected depending on the history of the system and/or by an external
control. Another question is, how a homogenised model might look like for these
more complicated models exhibiting hysteresis and non-monotonic behaviour.
A further goal for the near future is the better understanding and simulation of
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the model including the full kinetic equation, which allows to understand the case
of many droplets, since simulations of mean field models seem to be feasible only
for a relatively small number of droplets (up to 100 – 500 droplets). A numerical
approach for the classical LSW model has been first given by Carillo and Goudon
[4]. Our aim is to follow an ansatz of Peschka et al. [14], which consider a thin film
equation of LSW type. As in this case we have to carefully dissolve the maximal
radius in our numerics.

Acknowledgement

The authors would like to thank Stefan Eichler and Manfred Jurisch for many fruitful
discussions and for their valuable comments and remarks. S.-J. Kimmerle acknowl-
edges gratefully support through the DFG research center Matheon.

References

[1] J. Ball, J. Carr, and O. Penrose. The Becker-Döring cluster equations: Ba-
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