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Abstract

We show that usual second order operators in divergence form satisfy coercivity

on Lipschitz domains if they are either complemented with homogeneous Dirichlet

boundary conditions on a set of non-zero boundary measure or if a suitable Robin

boundary condition is posed. Moreover, we prove the positivity of solutions in a

general, abstract setting, provided that the right hand side is a positive functional.

Finally, positive elements from W
−1,2 are identified as positive measures.

1 Introduction

The aim of this paper is to show the following two theorems:

Theorem 1.1. Let Ω ⊂ R
d be a bounded Lipschitz domain and D be a closed subset of

∂Ω. Furthermore, ε is a bounded, nonnegative function on ∂Ω \ D that is measurable
with respect to the boundary measure σ on ∂Ω. Suppose that µ is a bounded, Lebesgue
measurable function on Ω taking its values in the set of real, symmetric d×d matrices and
that is elliptic. Let the sesquilinear form t : W 1,2

D (Ω) ×W
1,2
D (Ω) → R be defined by

t(ψ, ϕ) :=

∫

Ω

µ∇ψ · ∇ϕ dx +

∫

∂Ω\D

εψϕ dσ. (1.1)

Then t is continuous.

If, additionally either

1. D is of positive boundary measure or

2. D = ∅ and
∫

∂Ω
ε dσ > 0,

then the form t is coercive.

Theorem 1.2. Let tR be the restriction of t to the real part W̌ 1,2
D (Ω) of W 1,2

D (Ω) and define
−∇ · µ∇ : W̌ 1,2

D (Ω) → W̌
−1,2
D (Ω) by 〈−∇ · µ∇ψ, ϕ〉 = tR(ψ, ϕ). If f ∈ W̌

−1,2
D (Ω) takes

nonnegative values on all elements of W̌ 1,2
D (Ω), which are nonnegative almost everywhere

on Ω, then the solution ψ of −∇ · µ∇ψ = f is nonnegative almost everywhere on Ω.
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All notation used here will be properly defined in the next section, and the boundary
measure σ in Section 3.1

It has been known since long that coercivity is required in many contexts. It is well
established when the underlying domain is a strong Lipschitz domain (see [12, Ch. 1.1.9] for
the definition), cf. [14, Ch. 3.4] and references therein. However, in recent years it turned
out that for applied problems the more general class of Lipschitz domains often provides
the adequate frame. This class is, on one hand, general enough to include geometrical
objects as the two crossing beams – which is not a strong Lipschitz domain. On the
other hand, Lipschitz domains admit required functional analytic properties – such as
the extension property for suitable functions spaces – which are essential e.g. for the
proof of Poincaré’s inequality (see [20, Ch. 4]) or for Gaussian estimates of the induced
semigroup (see [16, Ch. 6/7] and references therein). Since there seems to be no reference,
concerning coercivity on Lipschitz domains, we give a comprehensive proof here. It rests
on some nontrivial facts on boundary measures (see Section 3.2) and embedding in case of
Lipschitz domains, mostly quoted in the appendix in Section 5.

The point is that the consideration of such geometries is by far not only academic, but
relevant in many real world applications: the reader may think e.g. of the combination
of railroad track and the underlying railroad tie in view of a corresponding heat conduc-
tion problem. Moreover, some years ago, highly promising photonic crystals have been
developed which have a so-called woodpile structure, see ([3], [11], [8, p. 102]).

Concerning Theorem 1.2, it is our aim to show that it can be deduced from purely algebraic
properties of the determining bilinear form alone, see the abstract criterion in Theorem 4.2.
It turns out that besides the strict positivity of the form of type (1.1), one only needs to
show a specific orthogonality relation (see (4.1)) that is then easily verified.

Finally, in Subsection 4.3 we show that continuous, positive functionals on the space W 1,2
D

may be identified as measures. On one hand this is interesting in itself, since this property
is false in general if the positivity assumption is dropped. On the other hand this can help
to overcome the following conflict that appears in several contexts: A conservation law
demands the total mass of a quantity to be fixed as a given number N , while the adequate
instrument for treating the problem are monotonicity arguments in the W 1,2

D ↔ W
−1,2
D

context. In particular, this is the case in the mathematical treatment of the Schrödinger-
Poisson system, see [10], in particular Remark 2.19 therein.

It turns out that both views may be combined in the setting of positive elements from
W

−1,2
D (Ω). If one has the a priori information that the positive functional attains a pre-

scribed value N on the function which is identically 1 on Ω, then we show that the corre-
sponding measure is bounded, cf. Theorem 4.4.
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2 Notation

We will always suppose that Ω ⊂ R
d is a bounded Lipschitz domain in the spirit of [6], (see

also [12, Ch. 1.1.9]). This means that for every x ∈ ∂Ω there is an open neighbourhood
Υx ∋ x and a bi-Lipschitz mapping φx : Υx → R

d, such that Υx ∩ Ω is mapped onto the
open half unit cube and Υx ∩ ∂Ω onto the equatorial plate P of the unit cube, i.e.

φx(Υx ∩ Ω) = {x ∈ R
d : −1 < xj < 1 for j = 1, . . . , d− 1, 0 < xd < 1}, (2.1)

φx(Υx ∩ ∂Ω) = {x ∈ R
d : −1 < xj < 1 for j = 1, . . . , d− 1, xd = 0} =: P, and (2.2)

φx(x) = 0 ∈ R
d.

If Π ⊂ R
d is a set and κ a positive measure on Π, then we denote by Lp(Π; κ) the usual

space of real-valued, p-integrable (equivalence classes of) functions on Π. If ϑ : Π → R is a
bounded, κ-measurable function, then we denote the measure f 7→

∫

Π
fϑ dκ by ϑκ. When

κ is the d-dimensional Lebesgue measure, we write Lp(Ω) instead of Lp(Ω; κ).

For a closed set D ⊂ ∂Ω, we denote by W
1,p
D (Ω) the closure of the set {ψ|Ω : ψ ∈

C∞(Rd), supp(ψ) ∩ D = ∅} in W 1,p(Ω). The symbol W−1,p
D (Ω) stands for the space of

continuous antilinear forms on W
1,p′

D (Ω). Finally, 〈·, ·〉 indicates the sesquilinear pairing
between a Banach space and its anti-dual.

3 Proof of Theorem 1.1

3.1 Boundary measure and traces

Let us first introduce a boundary measure on ∂Ω and point out some of its basic properties.
Note that this is not canonic, because in our context Ω is not necessarily a strong Lipschitz
domain (compare [14, Ch. 3.1.2]). Let, according to the definition of a Lipschitz domain, for
every point x ∈ ∂Ω an open neighborhood Υx of x and a bi-Lipschitz function φx : Υx → R

d

be given, which satisfy (2.1)/(2.2). Let Υx1
, . . . ,Υxl

be a finite subcovering of ∂Ω and
η1, . . . , ηl be a continuous partition of unity over ∂Ω, subordinated to this subcovering. We
denote the inverse of φxj

restricted to P by ζj and define

Jj :=
(

d−1
∑

k=1

Det
(∂(ζ1

j , . . . , ζ
k−1
j , ζk+1

j , . . . , ζd
j )

∂(x1, . . . , xd−1)

)2)1/2

as the Jacobian of ζj = (ζ1
j , . . . , ζ

d
j ) : P → R

d. In this notation, we define the measure σ
on ∂Ω by

∫

∂Ω

f dσ :=

l
∑

j=1

∫

P

(ηjf) ◦ ζj Jj dx, f ∈ C(∂Ω), (3.1)
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where the integration on the right hand side is performed with respect to the (d − 1)-
dimensional Lebesgue measure on P = φxj

(∂Ω ∩ Υxj
). Note that ζj is Lipschitzian on P;

hence the partial derivatives are essentially bounded, and the integral on the right hand
side of (3.1) exists for all continuous functions f .

Remark 3.1. i) In case of a smooth domain the thus defined measure σ is identical
with the classical surface measure – which does not depend on the parametrization
of ∂Ω. The latter carries over to the case of only Lipschitzian mappings due to the
rule for differentiation of the composition of Lipschitzian functions.

ii) In fact, one can show that the measure σ is nothing else but the restriction of the (d−
1)-dimensional Hausdorff measure Hd−1, restricted to ∂Ω, compare [2, Ch. 3.3.4 C].

iii) In case of a strong Lipschitz domain the measure is locally defined by

f 7→

∫

Rd−1

f
√

1 + |∇g|2 dx,

when the domain Ω lies locally under the graph of the Lipschitz function R
d−1 ∋ x 7→

g(x) and f is a continuous function with suitable support (see [2, Ch. 3.3] for more
information).

Lemma 3.2. σ is a bounded, positive Radon measure on Ω, which additionally satisfies

sup
x∈Rd

sup
r∈]0,1[

σ(B(x, r) ∩ Ω)r1−d <∞, (3.2)

where, here and in the sequel, B(x, r) denotes the ball centered at x with radius r.

Proof. Since ζj is Lipschitzian on P, the Jacobian Jj is essentially bounded with respect
to the (d−1)-dimensional Lebesgue measure on P, see [2, Ch. 4.2.3]. Additionally, we have
|ηj ◦ ζj| ≤ 1. Hence, it suffices to prove (3.2), if σ is there replaced by any of the measures

σj : C(∂Ω) ∋ f 7→

∫

P

f ◦ ζj dx.

The bi-Lipschitz property of ζj allows to estimate the distance between points and the
distance of their images mutually from above and below by constants; thus, the proof of
the assertion reduces to a proof for the (d − 1)-dimensional Lebesgue measure on P. For
this the assertion is straightforward to check.

Theorem 3.3. There exists a trace operator Tr that maps any space W 1,p(Ω) continuously
into Lp(∂Ω; dσ), p ∈ ]1,∞[.

Proof. The proof follows immediately from Lemma 3.2 and Proposition 5.3, since the set
{ψ|Ω : ψ ∈ C∞(Rd)} is by definition dense in W 1,p(Ω).

4



Corollary 3.4. If Π ⊂ ∂Ω is measurable with respect to σ, then the measure C(∂Ω) ∋
ψ 7→

∫

Π
ψ dσ extends to a continuous linear form on W 1,p(Ω) for any p > 1.

Proof. One has for ψ ∈W 1,p(Ω)

∣

∣

∣

∫

Π

Trψ dσ
∣

∣

∣
≤

∫

∂Ω

|Trψ| dσ ≤
(

σ(∂Ω)
)

p−1

p ‖Trψ‖Lp(∂Ω;σ) ≤ c‖ψ‖W 1,p(Ω).

Let here and in the sequel (as usual) p∗ := dp
d−p

for 1 ≤ p < d and p∗ = ∞ for p ≥ d denote
the Sobolev conjugated index for p.

Theorem 3.5 (Poincaré’s inequality). Let Ω be a Lipschitz domain and M ⊂ ∂Ω a σ-
measurable set which is not σ-negligible. Then, for every p ∈ ]1,∞[, there are constants
c0(p), c1(p) such that

‖ψ‖Lp(Ω) ≤ c0(p)‖∇ψ‖Lp(Ω) and ‖ψ‖Lp∗(Ω) ≤ c1(p)‖∇ψ‖Lp(Ω) (3.3)

for all ψ ∈ W 1,p(Ω) which satisfy
∫

M
ψ dσ = 0.

Proof. Due to Proposition 5.1, Ω – as a Lipschitz domain – is an extension domain. Thus,
the proof results from Proposition 5.4 and Corollary 3.4.

3.2 The proof

The continuity of t follows from the continuity of the trace Tr : W 1,2(Ω) →֒ L2(∂Ω; σ) and
the boundedness of ε.

Concerning the coercivity, we consider the cases 1. and 2. in the supposition separately.
Concerning the first, we focus on the case ε ≡ 0, which then implies the result for ε 6= 0
thanks to ε ≥ 0. We put κ := χDσ, where χD is the indicator function of D. Then for
every ψ ∈ W

1,2
D (Ω) we have

∫

Ω
ψ dκ = 0. Hence, according to Theorem 3.5, one obtains

‖ψ‖L2(Ω) ≤ c‖∇ψ‖L2(Ω) for all ψ ∈ W
1,2
D (Ω), where c is independent from ψ. This yields

the estimate

t(ψ, ψ) ≥ m‖∇ψ‖2
L2(Ω) ≥

m

2
‖∇ψ‖2

L2(Ω) +
m

2c2
‖ψ‖2

L2(Ω) ≥ ĉ‖ψ‖2
W 1,2

D
(Ω)
,

where m is the ellipticity constant of µ.

Concerning the case 2, it suffices to show that the identity on W 1,2(Ω), this space equipped
once with the norm ψ 7→

√

t(ψ, ψ) and once equipped with the usual norm, is continuous.
Let in this spirit {ψn}n ⊂ W 1,2(Ω) be a sequence with limn→∞ t(ψn, ψn) = 0. Since
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both integrals in t(ψn, ψn) are non-negative, we obtain that {Tr(ψn)}n approaches 0 in
L2(∂Ω; εσ) and {|∇ψn|}n goes to 0 in L2(Ω). Clearly, one has

∇ψn = ∇
(

ψn −
1

|Ω|

∫

Ω

ψn dx
)

and

∫

Ω

(

ψn −
1

|Ω|

∫

Ω

ψn dx
)

dy = 0. (3.4)

Thus, taking κ as the Lebesgue measure on Ω in Proposition 5.4, we get that {ψn −
1
|Ω|

∫

Ω
ψn dx}n goes to 0 in L2(Ω). Hence, this sequence converges to 0 in W 1,2(Ω) equipped

with the usual norm.

On the other hand this implies that, due to Theorem 3.3, the sequence {Tr(ψn−
1
|Ω|

∫

Ω
ψn dx)}n

converges to 0 in L2(∂Ω; σ) →֒ L2(∂Ω; εσ). Since {Tr(ψn)}n also converges to 0 in
L2(∂Ω; εσ), the sequence { 1

|Ω|

∫

Ω
ψn dx}n – viewed as elements from L2(∂Ω; εσ) – converges

in L2(∂Ω; εσ) to 0. But this is nothing else than the convergence of the number sequence
{ 1
|Ω|

∫

Ω
ψn dx}n, as

∫

∂Ω
ε dσ > 0. This implies the convergence to 0 of the sequence {ψn}n

in W 1,2(Ω) and we are done.

4 Proof of Theorem 1.2

4.1 Positivity in an abstract setting

Let H be a real Hilbert space. We assume the existence of a cone K ⊂ H, such that
any element ψ ∈ H admits a unique representation ψ = ψ+ − ψ− with ψ+, ψ− ∈ K. Let
r be a continuous, symmetric bilinear form on H which, additionally, is strictly positive.
This means that r(ψ, ψ) > 0, whenever ψ 6= 0. We define a linear, continuous operator
A : H → H∗ by 〈Aψ, ϕ〉 := r(ψ, ϕ) for all ϕ ∈ H.

Definition 4.1. We call an element f from H∗ positive, if 〈f, ψ〉 ≥ 0 for every ψ ∈ K.

Now we state the positivity result in the abstract setting of forms:

Theorem 4.2. Let ψ ∈ H with the decomposition ψ = ψ+ − ψ− as above be given. If

r(ψ+, ψ−) = 0 (4.1)

and Aψ ∈ H∗ is positive, then ψ ∈ K.

For the proof of Theorem 4.2 we need the following

Lemma 4.3. An element ψ ∈ H satisfies Aψ = f , iff it minimizes the functional F : H →
R given by

F (ξ) =
1

2
r(ξ, ξ)− 〈f, ξ〉. (4.2)
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Proof. If ψ minimizes F , then for every ϕ ∈ H the function

gϕ : R ∋ s 7→ F (ψ + sϕ) = F (ψ) +
s2

2
r(ϕ, ϕ) + s

[

r(ψ, ϕ) − 〈f, ϕ〉
]

has to take its minimum in s = 0. It is clear that this can only happen, if r(ψ, ϕ)−〈f, ϕ〉 =
〈Aψ, ϕ〉 − 〈f, ϕ〉 = 0.

Conversely, assume Aψ = f . Then, by definition, r(ψ, ϕ)− 〈f, ϕ〉 = 0 for all ϕ ∈ H. Thus,
writing

F (ψ + ϕ) = F (ψ) +
1

2
r(ϕ, ϕ) + r(ψ, ϕ) − 〈f, ϕ〉 = F (ψ) +

1

2
r(ϕ, ϕ),

this attains its minimum with respect to ϕ, if r(ϕ, ϕ) = 0. This implies ϕ = 0 by the strict
positivity of r.

Proof of Theorem 4.2. Assume Aψ = A(ψ+ − ψ−) = f . We consider the function

θ(s) := F (sψ + (1 − s)ψ+) = F (ψ+ − sψ−),

which has to take its minimum in s = 1, according to Lemma 4.3. In view of (4.1) one
easily calculates

θ(s) = F (ψ+) − sr(ψ+, ψ−) +
s2

2
r(ψ−, ψ−) + s〈f, ψ−〉 = F (ψ+) +

s2

2
r(ψ−, ψ−) + s〈f, ψ−〉.

Since f ∈ H∗ is positive, we have 〈f, ψ−〉 ≥ 0. Assume 〈f, ψ−〉 > 0. Then for negative
s with sufficiently small absolute value 1

2
s2r(ψ−, ψ−) + s〈f, ψ−〉 becomes strictly negative.

This, however, contradicts the minimum property for s = 1. Hence, 〈f, ψ−〉 = 0. But then
the minimum can be attained in s = 1 only if r(ψ−, ψ−) also vanishes, what implies ψ− = 0
by the strict positivity of r.

4.2 The proof

In order to apply Theorem 4.2 for the proof of Theorem 1.2, one must first define the
cone K in H := W̌

1,2
D and afterwards show that the form tR fulfils Condition (4.1). In the

notation of Proposition 5.5 we define K = {ψ : ψ = ψ+}. Using (5.4), one gets that the
function µ∇ψ+ · ∇ψ− is Lebesgue-negligible on Ω, and, hence,

∫

Ω
µ∇ψ+ · ∇ψ− dx = 0 for

every ψ ∈ W̌
1,2
D (Ω). Moreover, the product ψ+ψ− vanishes Lebesgue-almost everywhere on

Ω. On the other hand, this product belongs to W̌ 1, d
d−1 (Ω) by Proposition 5.6. Hence, it

represents 0 in the space W̌ 1, d
d−1 (Ω). Consequently, according to Theorem 3.3, the trace

of ψ+ψ− vanishes σ-almost everywhere on ∂Ω, what implies
∫

∂Ω
εψ+ψ− dσ = 0 and, so

tR(ψ+, ψ−) = 0. Since Theorem 4.2 then yields ψ− = 0, the proof is finished.
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4.3 Identification of positive functionals as measures

Our final aim is to show that every positive element of W̌−1,2
D (Ω) may be identified as a

positive Radon measure on Ω ∪ (∂Ω \D) and that this measure is bounded, whenever the
positive functional attains a finite value on the function that is identically 1 on Ω.

In this spirit, we denote the dual space to W̌
1,2
D (Ω) ⊕ 1 by W̃

−1,2
D (Ω) and formulate our

next result.

Theorem 4.4. Assume that D is a closed subset of ∂Ω with positive boundary measure or
D = ∅.

i) Then every positive element w from W̃
−1,2
D (Ω) may be represented by a positive Radon

measure ̟ on Ω ∪ (∂Ω \D) in the sense of

〈w, ψ〉 =

∫

Ω∪(∂Ω\D)

ψ d̟. (4.3)

ii) If w is a positive element from W̃
−1,2
D (Ω), then the total mass of the associated Radon

measure ̟ (cf. i)) is finite and there exists a positive Radon measure ω on Ω that
coincides with ̟ on W̌

1,2
D (Ω) and satisfies

∫

Ω
1dω = 〈w, 1〉.

Proof. It is clear that Ω∪(∂Ω\D) is a locally compact space (recall thatD is a closed subset
of ∂Ω). Let for all what follows K be an arbitrary compact subset of Ω∪ (∂Ω\D). Assume
η ∈ C∞(Rd) to be a nonnegative function which equals 1 on K and 0 on a neighbourhood
of D. Then one gets for every

ψ ∈ XK := {ϕ|Ω : ϕ ∈ C∞(Rd), ϕ ≡ 0 on Ω \K} ⊂ W̌
1,2
D

the estimate
− sup

x∈K
|ψ(x)| η ≤ ψ ≤ sup

x∈K
|ψ(x)| η.

Thus, the positivity of w implies |〈w, ψ〉| ≤ supx∈K |ψ(x)|〈w, η〉. This means, that w is
continuous on XK , when this space is equipped with the sup norm. Let YK be the space
of continuous functions on Ω ∪ (∂Ω \ D) having their support in K. We will show that
XK is dense in YK . Let ψ ∈ C(Ω ∪ (∂Ω \ D)) with support in K and ǫ > 0 be given.
Since K is compact, it must also be a closed subset of R

d. Hence, ψ possesses a continuous
extenxion ψ̂ to the whole R

d, which, additionally, has compact support. Smoothing ψ̂ with
a suitable convolution kernel, one obtains a compactly supported function ψ̃ ∈ C∞(Rd)
which satisfies

sup
x∈Ω∪(∂Ω\D)

|ψ(x) − ψ̃(x)| ≤ sup
x∈Rd

|ψ̂(x) − ψ̃(x)| ≤ ǫ. (4.4)

Of course, ψ̃|Ω∪(∂Ω\D) need not belong to XK , since the support property of ψ is not

maintained under convolution. In the following step we modify ψ̃ in a manner that this
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will hold true for the resulting function. For this, let ∂K denote the boundary of K
within the set Ω ∪ (∂Ω \ D). It is not hard to see that ∂K is closed in R

d. Note that,
according to (4.4), |ψ̃| ≤ ǫ on ∂K . Let U be a neighbourhood of ∂K in R

d such that
|ψ̃| ≤ 2ǫ on U . Furthermore, let ̺ : R

d → [0,∞[ be a regularizing distance function for
∂K (see [19, Ch. VI.2]) and δ a positive number, such that {x : ̺(x) ≤ δ} ⊂ U . Next, we
introduce a monotonously increasing function ς ∈ C∞(R) that is identically 0 on ]−∞, δ

2
]

and identically 1 on [δ,∞[. Finally, we define ˆ̺ as the composition of ̺ and ς and put
ψ̌ := ˆ̺ψ̃ on K and 0 elsewhere on Ω ∪ (∂Ω \D).

Obviously, then ψ̌|Ω ∈ XK . Moreover, ψ̌ differs on K from ψ by construction not more
than 3ǫ in the sup norm. Hence, any function from YK may be approximated in the sup
norm arbitrarily good by functions from XK . This means, that the linear form w extends
uniquely to a continuous linear form on YK . Since this is true for all compact subsets K,
w induces a – also uniquely determined – positive Radon measure ̟ on Ω ∪ (∂Ω \ D).
One easily verifies from the definitions that

⋃

K XK is dense in W̌ 1,2
D (Ω), thus w acts as the

positive Radon measure ̟ on the whole of W̌ 1,2
D (Ω). This proves i).

If D = ∅, then 1 ∈ W̌
1,2
D (Ω), and ii) is also proved. Assume now σ(D) 6= 0. Let {Kn}n be

an increasing sequence of compact subsets of Ω ∪ (∂Ω \D) which exhausts Ω ∪ (∂Ω \D),
i.e.

⋃

nKn = Ω ∪ (∂Ω \D). If ψn is a C∞ function which satisfies 0 ≤ ψn ≤ 1 and which
equals 1 on Kn and 0 on D, then one can estimate, due to the positivity of w,

〈w, 1〉 ≥ 〈w, ψn〉 =

∫

ψn d̟ ≥ ̟(Kn).

Taking the limit for n → ∞, one obtains ̟(Ω ∪ (∂Ω \ D)) = limn→∞̟(Kn) ≤ 〈w, 1〉.
If σ is again the boundary measure on ∂Ω, we define the measure ωD on Ω by ωD :=
〈w,1〉−̟(Ω∪(∂Ω\D))

σ(D)
χDσ, where χD is the indicator function of the set D. ωD annihilates the

space W̌ 1,2
D (Ω), thus ̟ and ω := ̟ + ωD coincide on this space. Moreover, the measure ω

attains on the function which is constantly 1 the prescribed value 〈w, 1〉.

Remark 4.5. The above considerations show the following: Two measures ω and ω̃ on Ω
represent the same positive linear form, iff they coincide on the set Ω\D and, additionally,
satisfy ω(D) = ω̃(D).

An intrinsic characterization of Radon measures which define continuous linear forms on
W 1,2 is given in [20, Ch. 4].

Corollary 4.6. Any set of positive functionals on W̌
1,2
D (Ω) ⊕ 1, whose elements w satisfy

the norming condition 〈w, 1〉 = N , forms a bounded set in any space (W̌ 1,q
D (Ω) ⊕ 1)′, if

q ∈ [1, d
d−1

[.

Proof. To every such w corresponds a positive Radon measure on Ω with total mass N . By
the embedding W̌ 1,q(Ω) →֒ C(Ω) for all q > d and duality one obtains the assertion.

Remark 4.7. For every ϕ ∈ W̌
1,2
D (Ω), the element |ϕ| also belongs to W̌

1,2
D (Ω). Thus,

for every element ϕ ∈ W̌
1,2
D (Ω) and ψ := |ϕ|, (4.3) holds true. This means that every
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ϕ ∈ W̌
1,2
D (Ω) in fact belongs to L1(Ω∪ (∂Ω\D); d̟), and the integral in (4.3) is a classical

Lebesgue integral (including all rules of this calculus).

5 Appendix

In this section we will recall some results needed in our above considerations.

Proposition 5.1 ([4, Thm. 7.25], see also [5, Thm. 3.10]). If Ω is a Lipschitz domain,
then it is an extension domain for all spaces W 1,p(Ω) (p ∈ ]1,∞[), that means; there exists
a linear, continuous operator Ep : W 1,p(Ω) → W 1,p(Rd), such that the composition of Ep

with the restriction operator gives the identity on W 1,p(Ω). Moreover, if p < q, then the
restriction of Ep to W 1,q(Ω) equals Eq.

Remark 5.2. Inspecting the construction of the extension operator it becomes clear that
it also acts as a continuous extension operator from Lp(Ω) into Lp(Rd), p ∈ [1,∞].

Proposition 5.3 ([12, Ch. 1.4.7]). If ρ is a finite measure on Ω which satisfies

sup
x∈Rd

sup
r∈]0,1[

ρ(B(x, r) ∩ Ω)r1−d <∞, (5.1)

then for every p ∈ ]1,∞[ there is a constant c = c(p), such that

‖ψ|Ω‖Lp(Ω,ρ) ≤ c‖ψ|Ω‖W 1,p(Ω) for every ψ ∈ C∞(Rd). (5.2)

Proposition 5.4 ([20, Thm. 4.8.1]). Assume p ∈ ]1,∞[. Let Ω be a bounded extension
domain. Let κ 6= 0 be a non-negative measure on Ω which defines a continuous linear form
on W 1,p(Ω). Then there are constants c0(p), c1(p) such that

‖ψ‖Lp(Ω) ≤ c0(p)‖∇ψ‖Lp(Ω) and ‖ψ‖Lp∗(Ω) ≤ c1(p)‖∇ψ‖Lp(Ω) (5.3)

holds for all ψ ∈W 1,p(Ω) with
∫

Ω
ψ dκ = 0.

Proposition 5.5 ([4, Ch. 7.4]). For every ψ ∈ W 1,2(Ω) the elements ψ+ := max(0, ψ),
ψ− := −min(0, ψ) also belong to W 1,2(Ω) and satisfy ψ = ψ+ − ψ−. Moreover, one has

∇ψ+ =

{

∇ψ, if ψ > 0

0, if ψ ≤ 0,
∇ψ− =

{

0, if ψ ≥ 0

−∇ψ, if ψ < 0.
(5.4)

Proposition 5.6 ([6, Thm. 1.4.4.2]). Forming the product of two functions maps the space

W 1,2(Ω) ×W 1,2(Ω) continuously into the space W 1, d
d−1 (Ω).

Remark 5.7. Proposition 5.6 is formulated in [6] only for the case Ω = R
d. But it is clear

that it also holds, if Ω is an extension domain, cf. Proposition 5.1.
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6 Concluding remarks

• The operator −∇ · µ∇, restricted to any space Lp(Ω) (p ∈ ]1,∞[) is complemented
by the following boundary conditions:

ψ|D = 0 and ν · µ∇ψ = εψ on ∂Ω \D for ψ ∈ domLp(Ω)(−∇ · µ∇), (6.1)

where ν is the outer unit normal, and the second condition in (6.1) is to be understood
in the distributional sense.

• An explicit construction of the mappings φx which flatten the two crossing beams
near the four critical crossing points is presented in [7, Ch. 7.3].

• It is known (see [2, Ch. 5.8]) that the measure σ is the adequate one to formulate
the Gauss-Green theorem on general sets (recall Remark 3.1), compare also [15] and
[1] for recent results.

• It has been known since long that the additional property for a linear form onW 1,2(Ω)
of being positive implies things that are false for general linear forms, see the classical
paper of Murat [13].

• A systematic approach to function spaces on subsets of R
d is contained in [9], compare

in particular Example 1 in Ch. II.1 there.
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