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Abstract

A common setting for novelty detection assumes that labeled examples from the
nominal class are available, but that labeled examples of novelties are unavailable.
The standard (inductive) approach is to declare novelties where the nominal density
is low, which reduces the problem to density level set estimation. In this paper, we
consider the setting where an unlabeled and possibly contaminated sample is also
available at learning time. We argue that novelty detection in this semi-supervised
setting is naturally solved by a general reduction to a binary classification problem.
In particular, a detector with a desired false positive rate can be achievedthrough a
reduction to Neyman-Pearson classification. Unlike the inductive approach, semi-
supervised novelty detection (SSND) yields detectors that are optimal (e.g.,statis-
tically consistent) regardless of the distribution on novelties. Therefore, innovelty
detection, unlabeled data have a substantial impact on the theoretical properties of
the decision rule. We validate the practical utility of SSND with an extensive exper-
imental study.

We also show that SSND provides distribution-free, learning-theoretic solutions
to two well known problems in hypothesis testing. First, our results provide a gen-
eral solution to the general two-sample problem, that is, the problem of determining
whether two random samples arise from the same distribution. Second, a special-
ization of SSND coincides with the standardp-value approach to multiple testing
under the so-called random effects model. Unlike standard rejection regions based
on thresholdedp-values, the general SSND framework allows for adaptation to arbi-
trary alternative distributions.

1 Introduction

Several recent works in the machine learning literature have addressed the issue of nov-
elty detection. The basic task is to build a decision rule that distinguishesnominalfrom
novelpatterns. The learner is given a random samplex1, . . . ,xm ∈ X of nominal patterns,
obtained, for example, from a controlled experiment or an expert. Labeled examples
of novelties, however, are not available. The standard approach has been to estimate a
level set of the nominal density [Schölkopf et al., 2001, Steinwart et al., 2005, Scott and
Nowak, 2006, Vert and Vert, 2006, El-Yaniv and Nisenson, 2007, Hero, 2007], and to de-
clare test points outside the estimated level set to be novelties. We refer to this approach
asinductivenovelty detection.

In this paper we incorporate unlabeled data into novelty detection, and argue that this
framework offers substantial advantages over the inductive approach. In particular, we
assume that in addition to the nominal data, we also have access to anunlabeledsample
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xm+1, . . . ,xm+n consisting potentially of both nominal and novel data. We assume that
eachxi, i = m+1, . . . ,m+n is paired with an unobserved labelyi ∈ {0,1} indicating its
status as nominal (yi = 0) or novel (yi = 1), and that(xm+1,ym+1), . . . ,(xn,yn) are realiza-
tions of the random pair(X,Y) with joint distributionPXY. The marginal distribution of
an unlabeled patternX is the contamination model

X ∼ PX = (1−π)P0 +πP1,

wherePy, y = 0,1, is the conditional distribution ofX|Y = y, andπ = PXY(Y = 1) is the a
priori probability of a novelty. Similarly, we assumex1, . . . ,xm are realizations ofP0. We
assume no knowledge ofPX, P0, P1, orπ, although in Section 6 (where we want to estimate
the proportionπ) we do impose a natural condition onP1 which ensures identifiability of
π .

We take as our objective to build a decision rule with a small false negative rate subject
to a fixed constraintα on the false positive rate. Our emphasis here is onsemi-supervised
novelty detection (SSND), where the goal is to construct a general detector that could
classify an arbitrary test point. This general detector canof course be applied in the
transductivesetting, where the goal is to predict the labelsym+1, . . . ,ym+n associated with
the unlabeled data. Our results extend in a natural way to this setting.

Our basic contribution is to develop a general solution to SSND by reducing it to Neyman-
Pearson (NP) classification, which is the problem of binary classification subject to a user-
specified constraint on the false positive rate. In particular, we argue that SSND can be
addressed by applying a NP classification algorithm, treating the nominal and unlabeled
samples as the two classes. We argue that our approach can effectively adapt to any nov-
elty distributionP1, in contrast to the inductive approach which is only optimalin certain
extremely unlikely scenarios. Our learning reduction allows us to import existing sta-
tistical performance guarantees for Neyman-Pearson classification [Cannon et al., 2002,
Scott and Nowak, 2005] and thereby deduce generalization error bounds, consistency, and
rates of convergence for novelty detection. In addition to these theoretical properties, the
reduction to NP classification has practical advantages, inthat it allows essentially any
algorithm for NP classification to be applied to SSND.

SSND is particularly suited to situations where the novelties occupy regions where the
nominal density is high. If a single novelty lies in a region of high nominal density, it
will appear nominal. However, if many such novelties are present, the unlabeled data will
be more concentrated than one would expect from just the nominal component, and the
presence of novelties can be detected. SSND may also be thought of as semi-supervised
classification in the setting where labels from one class aredifficult to obtain (see discus-
sion of LPUE below). We emphasize that we do not assume that novelties are rare, i.e.,
thatπ is very small, as in anomaly detection. However, SSND is applicable to anomaly
detection providedn is sufficiently large.

We also discuss estimation ofπ and the special case ofπ = 0, which is not treated in
our initial analysis. We present a hybrid approach that automatically reverts to the in-
ductive approach whenπ = 0, while preserving the benefits of the NP reduction when
π > 0. In addition, we describe a distribution-free one-sided confidence interval forπ,
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consistent estimation ofπ, and testing forπ = 0, which amounts to a general version of
the two-sample problem in statistics. We also discuss connections to multiple testing,
where we show that SSND generalizes a standard approach to multiple testing, based on
thresholdingp-values, under the common “random effects” model. Whereas the p-value
approach is optimal only under strong assumptions on the alternative distribution, SSND
can optimally adapt to arbitrary alternatives.

The paper is structured as follows. After reviewing relatedwork in the next section, we
present the general learning reduction to NP classificationin Section 3, and apply this
reduction in Section 4 to deduce statistical performance guarantees for SSND. Section 5
presents our hybrid approach, while Section 6 applies learning-theoretic principles to the
estimation ofπ. Connections to multiple testing are developed in Section 7.Experiments
are presented in Section 8, while conclusions are discussedin the final section. Shorter
proofs are presented in the main text, and longer proofs appear in the first appendix.

2 Related work

Inductive novelty detection: Described in the introduction, this problem is also known as
one-class classification [Schölkopf et al., 2001] or learning for only positive (or only neg-
ative) examples. The standard approach has been to assume that novelties are outliers with
respect to the nominal distribution, and to build a novelty detector by estimating a level set
of the nominal density [Scott and Nowak, 2006, Vert and Vert,2006, El-Yaniv and Nisen-
son, 2007, Hero, 2007]. As we discuss below, density level set estimation is equivalent to
assuming that novelties are uniformly distributed. Therefore these methods can perform
arbitrarily poorly (whenP1 is far from uniform, and still has significant overlap withP0).
In Steinwart et al. [2005], inductive novelty detection is reduced to classification ofP0

againstP1 , whereinP1 can be arbitrary. However an i.i.d. sample fromP1 is assumed to
be available in addition to the nominal data. In contrast, the semi-supervised approach
optimally adapts toP1, where only an unlabeled contaminated sample is available besides
the nominal data. In addition, we address estimation and testing of the proportion of
novelties.

Classification with unlabeled data: In transductive and semi-supervised classification, la-
beled training data{(xi,yi)}

m
i=1 from bothclasses are given. The setting proposed here is a

special case where training data from only one class are available. In two-class problems,
unlabeled data typically have at best a slight affect on constants, finite sample bounds,
and rates [Rigollet, 2007, Lafferty and Wasserman, 2008, Ben-David et al., 2008, Singh
et al., 2009], and are not needed for consistency. In contrast, we argue that for novelty
detection, unlabeled data are essential for these desirable theoretical properties to hold.

Learning from positive and unlabeled examples: Classification of an unlabeled sample
given data from one class has been addressed previously, butwith certain key differences
from our work. This body of work is often termed learning from“positive” and unla-
beled examples (LPUE), although in our context we tend to think of nominal examples as
negative. Terminology aside, a number of algorithms have been developed which proceed
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roughly as follows: First, identify a reliable set of negative examples in the unlabeled data.
Second, iteratively apply a classification algorithm to theunlabeled data until a stable la-
beling is reached. Several such algorithms are reviewed in Zhang and Lee [2005], but
they tend to be heuristic in nature and sensitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by Denis [1998], Denis et al. [2005] from
the point of view of computer-theoretic PAC learnable classes in polynomial time. While
some ideas are common with the present work (such as classifying the nominal sample
against the contaminated sample as a proxy for the ultimate goal), our point of view is
relatively different and based on statistical learning theory. In particular, our input space
can be non-discrete and we assume the distributionsP0 andP1 can overlap, which leads
us to use the NP classification setting and study universal consistency properties.

We highlight here one strand of LPUE research having particular relevance to our own.
The idea of reducing LPUE to a binary classification problem,by viewing the positive
data as one class and the unlabeled data as the other, has beentreated by Zhang and Lee
[2005], Liu et al. [2002], Lee and Liu [2003], Liu et al. [2003]. Most notably, Liu et al.
[2002] provide sample complexity bounds for VC classes for the learning rule that mini-
mizes the number of false negatives while controlling the proportion of false positives at
a certain level. Our approach extends theirs in several respects. First, Liu et al. [2002]
does not consider approximation error or consistency, nor do the bounds established there
imply consistency. In contrast, we present a general reduction that is not specific to any
particular learning algorithm, and can be used to deduce consistency or rates of conver-
gence. Our work also makes several contributions not addressed previously in the LPUE
literature, including our results relating to the caseπ = 0, to the estimation ofπ, and to
multiple testing.

We also note recent work by A. Smola [2009] described asrelative novelty detection. This
work is presented as an extension of standard one-class classification to a setting where a
reference measure (indicating regions where novelties aremore likely) is known through
a sample. In practice, the authors take this sample to be a contaminated sample consisting
of both nominal and novel measurements, so the setting is thesame as ours. The emphasis
in this work is primarily on a new kernel method, whereas our work features a general
learning reduction and learning theoretic analysis.

Multiple testing: The multiple testing problem is also concerned with the simultaneous
detection of many potentially abnormal measurements (viewed as rejected null hypothe-
ses). In Section 7, we discuss in detail the relation of our contamination model to the
random effects model, a standard model in multiple testing. We show how SSND is, in
several respects, a generalization of that model, and in particular includes directly several
different extensions proposed in the recent multiple testing literature. The SSND model,
and the results presented in this paper, are thus of particular relevance for multiple testing
as well, and suggest an interesting point of view to this domain. In particular, through a
reduction to classification, we introduce broad connections to statistical learning theory.
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3 The fundamental reduction

To begin, we first consider the population version of the problem, where the distributions
are known completely. Recall thatPX = (1−π)P0 + πP1 is the distribution of unlabeled
test points. Adopting a hypothesis testing perspective, weargue that the optimal tests
for H0 : X ∼ P0 vs. H1 : X ∼ P1 are identical to the optimal tests forH0 : X ∼ P0 vs.
HX : X ∼ PX. The former are the tests we would like to have, and the latterare tests we
can estimate by treating the nominal and unlabeled samples as labeled training data for a
binary classification problem.

To offer some intuition, we first assume thatPy has densityhy, y = 0,1. According to the
Neyman-Pearson lemma [Lehmann, 1986], the optimal test with size (false positive rate)
α for H0 : X ∼ P0 vs. H1 : X ∼ P1 is given by thresholding the likelihood ratioh1(x)/h0(x)
at an appropriate value. Similarly, lettinghX = (1−π)h0 +πh1 denote the density ofPX,
the optimal tests forH0 : X ∼ P0 vs. HX : X ∼ PX are given by thresholdinghX(x)/h0(x).
Now notice

hX(x)
h0(x)

= (1−π)+π
h1(x)
h0(x)

.

Thus, the likelihood ratios are related by a simple monotonetransformation, provided
π > 0. Furthermore, the two problems have the same null hypothesis. Therefore, by the
theory of uniformly most powerful tests [Lehmann, 1986], the optimal test of sizeα for
one problem is also optimal,with the same sizeα, for the other problem. In other words,
we can discriminateP0 from P1 by discriminating between the nominal and unlabeled
distributions. Note the above argument does not require knowledge ofπ other thanπ > 0.

The hypothesis testing perspective also sheds light on the inductive approach. In particu-
lar, estimating the nominal level set{x : h0(x) ≥ λ} is equivalent to thresholding 1/h0(x)
at 1/λ. Thus, the density level set is an optimal decision rule providedh1 is constant on
the support ofh0. This assumption thatP1 is uniform on the support ofP0 is therefore
implicitly adopted by a majority of works on novelty detection.

We now drop the requirement thatP0 andP1 have densities. Letf : R
d →{0,1} denote a

classifier. Fory = 0,1, let
Ry( f ) := Py( f (X) 6= y)

denote the false positive rate (FPR) and false negative rate (FNR) of f , respectively. For
greater generality, suppose we restrict our attention to some fixed set of classifiersF
(possibly the set of all classifiers). The optimal FNR for a classifier of the classF with
FPR≤ α, 0≤ α ≤ 1, is

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f ) ≤ α .

Similarly, introduce

RX( f ) := PX( f (X) = 0)

= πR1( f )+(1−π)(1−R0( f ))
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and let

R∗
X,α(F ) := inf

f∈F
RX( f ) (2)

s.t. R0( f ) ≤ α.

In this paper we will always assume the following property (involvingF ,P0 andP1) holds:

(A) For anyα ∈ (0,1) , there existsf ∗ ∈ F such thatR0( f ∗) = α andR1( f ∗) = R∗
1,α(F ) .

It is possible to ensure that this assumption is satisfied if one extends the classF to a larger
class containing randomized classifiers obtained by convexcombination of classifiers of
the original class. This construction is standard in the receiver operating characteristic
(ROC) literature. Some basic results on this topic are recalled in Appendix B in relation
to the above assumption.

By the following result, the optimal classifiers for problems(1) and (2) are the same.
Furthermore, one direction of this equivalence also holds in an approximate sense. In
particular, approximate solutions toX ∼ P0 vs. X ∼ PX translate to approximate solutions
for X ∼ P0 vs. X ∼ P1. The following theorem constitutes our mainlearning reductionin
the sense of Beygelzimer et al. [2005]:

Theorem 1 Assume property(A) is satisfied. Consider anyα, 0≤α≤1 , and assumeπ >
0 . If R1( f ) = R∗

1,α(F ) and R0( f ) = α, then RX( f ) = R∗
X,α(F ). Conversely, if RX( f ) =

R∗
X,α(F ), and R0( f ) ≤ α then R1( f ) = R∗

1,α(F ) and R0( f ) = α.

More generally, let L1,α( f ,F ) = R1( f )−R∗
1,α(F ) and LX,α( f ,F ) = RX( f )−R∗

X,α(F )
denote the excess losses (regrets) for the two problems, and assumeπ > 0. If R0( f ) ≤
α+ ε, then

L1,α( f ,F ) ≤ π−1(LX,α( f ,F )+(1−π)ε) .

Proof . For any classifierf , we have the relationRX( f ) = (1−π)(1−R0( f ))+πR1( f ) .
First considerf ∈ F such thatR1( f ) = R∗

1,α(F ) andR0( f ) = α , but assumeRX( f ) >

R∗
X(F ) . Let f ′ ∈ F such thatRX( f ′) < RX( f ) andR0( f ′) ≤ α . Then sinceπ > 0 ,

R1( f ′) = π−1(
RX( f ′)− (1−π)(1−R0( f ′))

)

< π−1(RX( f )− (1−π)(1−α))

= R1( f ) ,

contradicting minimality ofR1( f ) .

Conversely, letf ∈ F be such thatRX( f ) = R∗
X,α(F ) andR0( f )≤α , but assumeR1( f ) >

R∗
1,α(F ) or R0( f ) < α . Let f ′ be such thatR0( f ′) = α and R1( f ′) = R∗

1(F ) (whose
existence is ensured by assumption(A)). Then

RX( f ′) = (1−π)(1−α)+πR1( f ′)

< (1−π)(1−R0( f ))+πR1( f )

= RX( f )

= R∗
X,α(F )
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contradicting minimality ofRX( f ). To prove the final statement, first note that we es-
tablishedR∗

X,α(F ) = πR∗
1,α(F ) + (1− π)(1−α), by the first part of the theorem. By

subtraction we have

L1,α( f ,F ) = π−1(LX,α( f ,F )+(1−π)(R0( f )−α))

≤ π−1(LX,α( f ,F )+(1−π)ε).

4 Statistical performance guarantees

Theorem 1 suggests that we may estimate the solution to (1) bysolving an “artificial”
binary classification problem, treatingx1, . . . ,xm as one class andxm+1, . . . ,xm+n as the
other. If a learning rule is consistent or achieves certain rates of convergence for the
Neyman-Pearson classification problemX ∼ P0 vs. X ∼ PX [Cannon et al., 2002, Scott
and Nowak, 2005], then those properties will hold for the same learning rule viewed as a
solution toX ∼ P0 vs. X ∼ P1. In other words, ifLX,α,ε → 0, thenL1,α → 0 at the same
rate. Althoughπ will not affect the rate of convergence, Theorem 1 suggests that smallπ
makes the problem harder in practice, a difficulty which cannot be avoided.

As an illustrative example, we consider the case of a fixed setof classifiersF having finite
VC-dimension [Vapnik, 1998] and consider

f̂τ = arg min
f∈F

R̂X( f )

s.t. R̂0( f ) ≤ α+ τ ,

whereR̂ is the empirical version of the corresponding error quantity. Define the precision
of a classifierf for classi asQi( f ) = PXY(Y = i| f (X) = i) (the higher the precision, the
better the performance). Then we have the following result bounding the difference of the
quantitiesRi andQi to their optimal values overF :

Theorem 2 Assume the nominal and unlabeled data are i.i.d. realizations of their re-
spective distributions, and that the two samples are independent of each other. LetF be
a set of classifiers of VC-dimension V . Assume property(A) is satisfied and denote by
f ∗ the optimal classifier inF with respect to the criterion in(1). Fixing δ > 0, define

εk =
√

V logk−logδ
k . There exist absolute constants c,c′ such that, if we chooseτ = cεn ,

the following bounds hold with probability1−δ :

R0( f̂τ)−α ≤ c′εn ; (3)

R1( f̂τ)−R1( f ∗) ≤ c′π−1(εn + εm) (4)

Qi( f ∗)−Qi( f̂τ) ≤
c′

P( f ∗(X) = i)
(εn + εm) , i = 0,1. (5)
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The proof is given in Appendix A. The primary technical ingredients in the proof are
Theorem 3 of Scott and Nowak [2005] and the learning reduction of Theorem 1 above.
The above theorem shows that the procedure is consistent inside the classF for all criteria
considered, i.e., these quantities decrease (resp. increase) asymptotically to their value at
f ∗ . This is in contrast to the statistical learning bounds previously obtained [Liu et al.,
2002, Thm. 2], which do not imply consistency.

Following Scott and Nowak [2005], by extending suitably theargument and the method in
the spirit of structural risk minimization over a sequence of classesFk having the universal
approximation property, we can conclude that this method isuniversally consistent (i.e.
relevant quantities converge to their value atf ∗ , where f ∗ is the solution of (1) over the
set of all possible classifiers). Therefore, although technically simple, the reduction result
of Theorem 1 allows us to deduce stronger results than the existing ones concerning this
problem. This can be paralleled with the result that inductive novelty detection can be
reduced to classification against uniform data [Steinwart et al., 2005], which made the
statistical learning study of that problem significantly simpler.

It is interesting to note that the multiplicative constant in front of the rate of convergence of
the precision criteria isPX( f ∗(X) = i)−1 rather thanπ−1 for R1 . In particularPX( f ∗(X) =
0) ≥ (1−π)(1−α) , so that the convergence rate for class 0 precision is not significantly
affected asπ → 0 . SimilarlyPX( f ∗(X) = 1)≥ (1−π)α , so the convergence rate for class
1 precision depends more crucially on the (known)α than onπ .

Under an additional minor condition it is possible to show (the details are given at the end
of Appendix B) that under the constraintR0( f )≤α , the best attainable precision for class
0 in the setF is attained byf = f ∗ . Therefore, in (5) (i = 0), we are really comparing the
precision off̂τ against the best possible class 0 precision given the FPR constraint. On the
other hand, it does not make sense to consider the best attainable class 1 precision under
an upper constraint onR0 , since we can have bothR0 → 0 andQ1 → 1 by only rejecting
a vanishingly small proportion of very sure novelties. But itcan easily be seen thatf ∗

realizes the best attainable class 1 precision under theequalityconstraintR0( f ) = α .

We emphasize that the above result is but one of many possibletheorems that could be
deduced from the learning reduction; other results from Neyman-Pearson classification
could also be applied. We also remark that, although the previous theorem corresponds to
the semi-supervised setting, an analogous transductive result is easily obtained by incor-
porating an additional uniform deviation bound relating the empirical error rates on the
unlabeled data to the true error rates.

5 The caseπ = 0 and a hybrid method

The preceding analysis only applies whenπ > 0. Whenπ = 0, the learning reduction
is trying to classify between two identical distributions,and the resulting decision rule
could be arbitrarily poor. In this situation, perhaps the best we can expect is to perform as
well as an inductive method. Therefore we ask the following question: Can we devise a
method which, having no knowledge ofπ, shares the properties of the learning reduction
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above whenπ > 0, and reduces to the inductive approach otherwise? Our answer to the
question is “yes” under fairly general conditions.

The intuition behind our approach is the following: As notedearlier, the inductive ap-
proach essentially performs density level set estimation.Therefore, level set estimation
can be achieved by generating an artificial uniform sample and performing weighted bi-
nary classification against the nominal data. Thus, our approach is to sprinkle a vanish-
ingly small proportion of uniformly distributed data amongthe unlabeled data. When
π = 0, the uniform points will influence the final decision rule, but whenπ > 0, they will
be swamped by the actual novelties.

To formalize this approach, let 0< pn < 1 be a sequence tending to zero. Assume thatSis
a set which is known to contain the support ofP0 (obtained, e.g., through support estima-
tion), and letP2 be the uniform distribution onS. Consider the following procedure: Let
k ∼ binom(n, pn). Drawk independent realizations fromP2, and redefinexm+1, . . . ,xm+k

to be these values. (In practice, the uniform data would simply be appended to the unla-
beled data, so that information is not erased. The present procedure, however, is slightly
simpler to analyze.)

The idea now is to apply the SSND learning reduction from before to this modified un-
labeled data. Toward this end, we introduce the following notations. For simplicity, we
do not explicitly indicate the underlying classF . We refer to any data point that was
drawn from eitherP1 or P2 as anoperativenovelty. The proportion of operative novelties
in the modified unlabeled sample isπ̃ := π(1− pn) + pn. The distribution of operative
novelties isP̃1 := π(1−pn)

π̃ P1+ pn
π̃ P2, and the overall distribution of the modified unlabeled

data isP̃X := π̃P̃1 + (1− π̃)P0. Let R2,R∗
2,α, R̃1, R̃∗

1,α, R̃X, andR̃∗
X,α be defined in terms

of P2, P̃1, andP̃X, respectively, in analogy to the definitions in Section 3. Also denote
L2,α( f ) = R2( f )−R∗

2,α, L̃1,α( f ) = R̃1( f )− R̃∗
1,α, andL̃X,α = R̃X( f )− R̃∗

X,α.

By applying Theorem 1 to the modified data, we immediately conclude that ifR0( f ) ≤
α+ ε, then

L̃1,α( f ) ≤
1
π̃
(L̃X,α( f )+(1− π̃)ε) =

1
π̃
(L̃X,α( f )+(1−π)(1− pn)ε). (6)

By previously cited results on Neyman-Pearson classification, the quantities on the right-
hand side can be made arbitrarily small asm andn grow. The following result translates
this bound to the kind of guarantee we are seeking.

Theorem 3 Assume(A) holds. Let f be a classifier with R0( f ) ≤ α+ ε. If π = 0, then

L2,α( f ) ≤ p−1
n (L̃X,α( f )+(1− pn)ε).

If π > 0, then

L1,α( f ) ≤
1

π(1− pn)
(L̃X,α( f )+(1−π)(1− pn)ε+ pn).

To interpret the first statement, note thatL2,α( f ) is the inductive regret. The bound implies
thatL2,α( f ) → 0 as long as bothε = R0( f )−α andL̃X,α( f ) tend to zerofaster than pn.
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This suggests takingpn to be a sequence tending to zero slowly. The second statementis
similar to the earlier result in Theorem 1, but with additional factors ofpn. These factors
suggest choosingpn tending to zero rapidly, in contrast to the first statement, so in practice
some balance should be struck.

Proof If π = 0, thenL̃1,α = L2,α and the first statement follows trivially from (6). To

prove the second statement, denoteβn := π(1−pn)
π̃ , and observe that

R̃∗
1,α = inf

R0( f )≤α
R̃1( f )

= inf
R0( f )≤α

[βnR1( f )+(1−βn)R2( f )]

≤ βnR∗
1,α +(1−βn).

Therefore

L̃1,α( f ) = R̃1( f )− R̃∗
1,α

≥ βnR1( f )+(1−βn)R2( f )−βnR∗
1,α − (1−βn)

≥ βn(R1( f )−R∗
1,α)− (1−βn)

= βnL1,α( f )+(1−βn)

and we conclude

L1,α( f ) ≤
1
βn

L̃1,α +
1−βn

βn

≤
1

π(1− pn)
(L̃X,α( f )+(1−π)(1− pn)ε+ pn).

We remark that this hybrid procedure could be applied with any prior distribution on nov-
elties besides uniform. In addition, the hybrid approach could also be practically useful
whenn is small, assuming the artificial points are appended to the unlabeled sample.

6 Estimating π and testing for π = 0

We now turn to estimating the proportionπ of novelties in the contaminated distribution
PX . For this purpose it should first be noted at this point that without additional assump-
tions,π is not an identifiable parameter in our model. To see this, consider the idealized
case where we have an infinite amount of nominal and contaminated data, so that we have
perfect knowledge ofP0 and PX . Assuming the decompositionPX = (1− π)P0 + πP1

holds, note that any alternate decomposition of the formPX = (1−π− γ)P0 +(π+ γ)P′
1 ,

with P′
1 = (π+γ)−1(πP1+γP0) , andγ ∈ [0,1−π] , is equally valid. Because the most im-

portant feature of the model is that we have no direct knowledge ofP1 , we cannot decide
which representation is the “correct” one; we could not evenexcludea priori the case
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whereπ = 1 andP1 = PX . The previous results established in Theorems 1-3 are valid
for whatever underlying representation is assumed to be correct. For the estimation of
the proportion of novelties however, it makes sense to defineπ as theminimalproportion
of novelties that can explain the difference betweenP0 andPX . First we introduce the
following definition:

Definition 4 Assume P0 P1 are probability distribution functions on the spaceX . We call
P1 a proper novelty distributionwith respect to P0 if there exists no decomposition of the
form P1 = (1− γ)Q+ γP0 where Q is some probability distribution andγ > 0 .

This defines a proper novelty distributionP1 as one that cannot be confounded withP0 –
it cannot be represented as a (nontrivial) mixture ofP0 with another distribution.

The next result establishes a canonical decomposition of the contaminated distribution
into a mixture of nominal data and proper novelties. As a consequence the proportion
π∗ of proper novelties, and therefore the proper novelty distribution P1 itself, are well-
defined (i.e. identifiable) given the knowledge of the (arbitrary) nominal and contaminated
distributions.

Proposition 5 Assume P0 , PX are probability distributions on the spaceX . Then there
is a uniqueπ∗ ∈ [0,1] and P1 such that the decomposition PX = (1−π∗)P0 +π∗P1 holds,
and that P1 is a proper novelty distribution wrt. P0 ; moreover

π∗ := min{α ∈ [0,1] : ∃Q probability distribution: PX = (1−α)P0 +αQ} .

The proof is given in Appendix A. From now on we assume thatπ andP1 are the propor-
tion and distribution of proper novelties ofPX with respect toP0 .

6.1 Population case

We now want to relate the estimation ofπ to quantities previously introduced and problem
(1). We first treat the population case and optimal novelty detection over the set of all
possible classifiers.

Theorem 6 For any classifier f , we have the inequality

π ≥ 1−
RX( f )

1−R0( f )
. (7)

Optimizing this bound over a set of classifiersF under the FPR constraint R0( f ) ≤ α
yields for anyα > 0:

π ≥ 1−
R∗

X,α(F )

1−α
.

Furthermore, ifF is a set of possibly randomized classifiers containing all deterministic
classifiers,

π = 1− inf
α∈[0,1)

R∗
X,α(F )

1−α
. (8)
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Proof For the first part, just write for any classifierf

1−RX( f ) = PX( f (X) = 1)

= (1−π)P0( f (X) = 1)+πP1( f (X) = 1)

≤ (1−π)R0( f )+π ,

resulting in the first inequality in the theorem. Under the constraintR0( f ) ≤ α , this
inequality then yields

π ≥ 1−
RX( f )

1−R0( f )
≥ 1−

RX( f )
1−α

;

optimizing the bound under the constraint yields the secondinequality.

We establish in Lemma 13 in Appendix A that for anyε > 0 there exists a deterministic
classifier f such thatR0( f ) < 1 andR1( f )/(1−R0( f )) ≤ ε . Putα = R0( f ) ; we then
have

R∗
X,α(F ) ≤ RX( f ) = (1−π)(1−α)+πR1( f ) ,

implying

π ≥ 1−
R∗

X,α(F )

1−α
≥ π

(
1−

R1( f )
1−R0( f )

)
≥ π(1− ε) ,

which establishes the last claim of the theorem.

6.2 Distribution-free lower confidence bounds onπ

In the last part of Theorem 6, if we assume that the functionα 7→ R∗
X,α(F )/(1−α) is

nonincreasing (a common regularity assumption; see Appendix B for a discussion of how
this condition can always be ensured by considering possibly randomized classifiers), then
α 7→ R∗

X,α(F ) is left differentiable atα = 1 and (8) reduces to

π = 1−
dR∗

X,α(F )

dα

∣∣∣
α=1−

.

This suggests estimatingπ by estimating the slope ofR∗
X,α(F ) at its right endpoint (where

we recall thatF must contain at least all deterministic classifiers). This can be related to
the problem of estimating a monotone density at its right endpoint [Kulikov and Lopuhaä,
2006, Langaas et al., 2005]. Rather than pursue this approachhere, however, we instead
employ learning-theoretic techniques to use (7) for deriving a lower confidence bound on
π:

Theorem 7 Consider a classifier setF for which we assume a uniform error bound of
the following form is available: for any distribution Q onX , with probability at least
1−δ over the draw of an i.i.d. sample of size n according to Q , we have

∀ f ∈ F
∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)

∣∣∣ ≤ εn(F ,δ) , (9)
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whereQ̂ denotes the empirical distribution built on the sample.

Then the following quantity is a lower bound onπ with probability at least(1− δ)2 ≥
1−2δ (over the draw of the nominal and unlabeled samples) :

π̂−(F ,δ) = 1− inf
f∈F

R̂X( f )+ εn

(1− R̂0( f )− εm)+
, (10)

where the ratio is formally defined to be1 whenever the denominator is0 .

Note that if we definêfα = arg minf∈F R̂X( f ) under the constraint̂R0( f ) ≤ α , this can
be rewritten

π̂−(F ,δ) = 1− inf
α∈[0,1]

R̂X( f̂α)+ εn

(1− R̂0( f̂α)− εm)+
.

There are two balancing forces at play here. From the population version, we know that
we would like to haveα as close as possible to 1 for estimating the derivative ofR∗

X,α(F )
atα = 1. This is balanced by the estimation error which makes estimations close toα = 1
unreliable because of the denominator. Taking the inf alongthe curve takes in a sense the
best available tradeoff.

Proof As in the proof of the previous result, write for any classifier f :

PX( f (X) = 1) ≤ (1−π)P0( f (X) = 1)+π ,

from which we deduce after applying the uniform bound

1− R̂X( f )− εn = P̂X( f (X) = 1)− εn

≤ (1−π)(R̂0( f )+ εm)+π ,

which can be solved whenever 1− R̂0( f )− εm > 0 .

The following result shows that̂π−(F ,δ) , when suitably applied using a sequence of
classifier setsF1,F2, . . . that have a universal approximation property leads to a strongly
universally consistent estimate of the proportionπ of proper novelties. The proof is given
in Appendix A and relies on Theorem 7 in conjunction with the Borel-Cantelli lemma.

Theorem 8 Consider a sequenceF1,F2, . . . of classifier sets having the following uni-
versal approximation property: for any measurable function f∗ : X → {0,1} , and any
distribution Q , we have

liminf
k→∞

inf
f∈Fk

Q( f (X) 6= f ∗(X)) = 0.

Suppose also that each classFk has finite VC-dimension Vk, so that for eachFk we have

a uniform confidence bound of the form(9) for εn(Fk,δ) = 3
√

Vk log(n+1)−logδ/2
n . Define

π̂−(δ) = sup
k

π̂−
(
Fk,δk−2) .

If δ = (mn)−2, thenπ̂− converges toπ almost surely as m,n→ ∞.
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6.3 There are no distribution-free upper bounds onπ

The lower confidence boundŝπ−(F ,δ) andπ̂−(δ) are distribution-free in the sense that
they hold regardless ofP0,P1 andπ. We now argue that distribution-free upper confidence
bounds do not generally exist.

We define adistribution-free upper confidence bound̂π+(δ) to be a function of the
observed data such that, for anyP0, any proper novelty distributionP1, and anyπ < 1, we
haveπ̂+(δ) ≥ π with probability 1−δ over the draw of the two samples.

We will show that such a universal upper bound does not exist unless it is trivial. The
reason is that the novel distribution can be arbitrarily hard to distinguish from the nominal
distribution. Looking at Section 6, this means that the slope of the straight line between
(α,PX( f ∗α = 1)) and(1,1) can be made arbitrarily close to one for very small values ofα
while its derivative atα = 1 remains bounded away from one. We can detect with some
certainty that there is some proportion of novelties in the contaminated data (see Corollary
11 below), but we can never be sure that there are no novelties. This situation is similar to
the philosophy of significance testing: one can never acceptthe null hypothesis, but only
have insufficient evidence to reject it.

We will say that the nominal distributionP0 is weakly diffuseif for any γ > 0 there exists a
setA such that 0< P0(A) < γ . We say an upper confidence boundπ̂+(δ) is non-trivial if
there exists a weakly diffuse nominal distributionP0, a novelty distributionP1, constants
π > 0, δ > 0 such that

P(π̂+(δ) < 1) > δ ,

where the probability is over the joint draw of nominal and contaminated samples. This
assumption demands that there is at least a specific setting where the upper bound̂π+(δ)
is significantly different from the trivial bound 1, meaningthat it is bounded away from 1
with larger probability than its allowed probability of error δ .

Theorem 9 There exists no distribution-free, non-trivial upper confidence bound onπ .

The proof appears in Appendix A. The non-triviality assumption is quite weak and rel-
atively intuitive. The only not directly intuitive assumption is thatP0 should be weakly
diffuse, which is satisfied for all distributions having a continuous part. This assumption
effectively excludes finite state spaces. We believe it is possible to obtain a non-trivial
upper confidence bound onπ on a finite state space.

Corollary 10 The rate of convergence of any distribution-free lower boundπ̃− towards
π can be arbitrarily slow.

Proof If there was a universally valid upper boundδn on the convergence rate ofπ̃−, then
π̃− +δn would be a distribution-free upper confidence bound onπ .

To achieve some prescribed rate of convergence, some assumptions on the generating
distributions must be made. This parallels the estimation of the Bayes risk in classification
[Devroye, 1982].
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6.4 Testing forπ = 0

The lower confidence bound onπ can also be used as a test forπ = 0, i.e., a test for
whether there are any novelties in the test data:

Corollary 11 LetF be a set of classifiers. If̂π−(F ,δ) > 0, then we may conclude, with
confidence1−δ, that the unlabeled sample contains novelties.

It is worth noting that testing this hypothesis is equivalent to testing if P0 and PX are
the same distribution, which is the classical two-sample problem in an arbitrary input
space. This problem has recently generated attention in themachine learning community
[Gretton et al., 2007], and the approach proposed here, using arbitrary classifiers, seems
to be new. Our confidence bound could of course also be used to test the more general
hypothesisπ ≤ π0 for a prescribedπ0, 0≤ π0 < 1 .

Note that, by definition of̂π−(F ,δ), testing the hypothesisπ = 0 using the above lower
confidence bound forπ is equivalent to searching the classifier spaceF for a classifier
f such that the proportions of predictions of 0 and 1 byf differ on the two samples
in a statistically significant manner. Namely, for a classifier f belonging to a classF for
which we have a uniform bound of the form (9), we have the lowerboundPX( f (X) = 1)≥
P̂X( f (X) = 1)−εn and the upper boundP0( f (X) = 1)≤ P̂0( f (X) = 1)+εm (both bounds
valid simultaneously with probability at least 1− δ). If the difference of the bounds is
positive we conclude that we must havePX 6= P0, henceπ > 0 . This difference is precisely
what appears in the numerator ofπ̂−(F ,δ) in (10) . Furthermore, if this numerator is
positive then so is the denominator since it is always larger. In the end,̂π−(F ,δ) > 0 is
equivalent to

sup
f∈F

(
(P̂X( f (X) = 1)− εn)− (P̂0( f (X) = 1)+ εm)

)
> 0.

7 Relationship between SSND and multiple testing

In this section, we show how SSND offers powerful generalizations of the standardp-
value approach to multiple testing under the widely used “random effects” model, as
considered for example by Efron et al. [2001].

7.1 Multiple testing under the random effects model

In the multiple testing framework, a finite family(H1, . . . ,HK) of null hypotheses to test
is fixed; from the observation of some dataX , a decisionD(Hi,X) ∈ {0,1} must be taken
for each hypothesis, namely whether (given the data) hypothesisHi is deemed to be false
(D(Hi ,X) = 1, hypothesis rejected) or true (D(Hi ,X) = 0 , hypothesis not rejected). A
typical exemplary application domain is that of microarraydata analysis, where each null
hypothesisHi corresponds to the absence of a difference in expression levels of genei
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in a comparison between two experimental situations. A rejected null hypothesis then
indicates such a differential expression for a specific gene, and is called adiscovery(since
differentially expressed genes are those of interest). However, the number of null hy-
potheses to test is very large, for exampleK ≃ 4.104 in the gene expression analysis, and
the probability of rejecting by chance a null hypothesis must be strictly controlled.

In the standard setting for multiple testing, it is assumed that a testing statisticZi(X) ∈ R

has been fixed for each null hypothesisHi , and that its marginal distribution is known
whenHi is true. This statistic can then be normalized (e.g. by monotone transform) to
take the form of ap-value. A p-value is a functionpi(X) of the data such that, if the
corresponding null hypothesisHi is true, thenpi(X) has a uniform marginal distribution
on [0,1] . In this setting, it is expected that the rejection decisions D(Hi ,X) are taken
based on the observedp-values(p1, . . . , pK) rather than on the raw data. In fact, in most
cases it is assumed that the decisions take the formD(Hi ,X) = 1pi≤T̂ , whereT̂ is a data-
dependent threshold. Further, simplifying distributional assumptions on the family of
p-values are often posited. A common distribution model calledrandom effectsassumes
that the veracity of hypothesisHi is governed by an underlying latent variablehi and reads
as follows:

• the variableshi ∈ {0,1} , 1≤ i ≤ K are i.i.d. Bernoulli with parameterπ

• the variablespi are independent, and conditionally to(h1, . . . ,hK) have distribution

pi ∼

{
Uniform[0,1] , if hi = 0

P1 , if hi = 1.

Under the random effects model, thep-values thus follow a mixture distribution(1−
π)U [0,1] + πP1 on the interval[0,1] and can be seen as a contaminated sample, while
the variableshi play the role of the unknown labels. It should now be clear that the
above model is in fact aspecificationof the SSND model, with the following additional
assumptions:

1. The observation space is the interval[0,1];

2. The nominal distributionP0 is known to be exactly uniform on[0,1] (equivalently,
the nominal distribution is uniform and the nominal sample has infinite size)

3. The class of novelty detectors considered is the set of intervals of the form[0, t], t ∈
[0,1] .

Therefore, the results developed in this paper can apply to the more restricted setting
of multiple testing under the random effects model as well. In particular, the estimator
π̂−(F ,δ) developed in Section 6, when specified under the above additional conditions,
recovers the methodology of non-asymptotic estimation of 1−π which was developed by
Genovese and Wasserman [2004], Section 3, and our notion of proper novelty distribution
recovers their notion ofpurity in that setting (and has somewhat more generality, since
they assumedP1 to have a density).
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There are several interesting benefits in considering for the purpose of multiple testing
the more general SSND model developed here. First, it can be unrealistic in practice to
assume that the distribution of thep-values is known exactly under each one of the null
hypotheses: instead, only assuming the knowledge of a reference sample under controlled
experimental conditions as in the SSND model is often more realistic. Secondly, the
restriction to decision sets of the form{pi ≤ t} can also be questionable. For a single
test, decision regions of this form are optimal (in the Neyman-Pearson sense) only if the
likelihood ratio of the alternative to the null is decreasing, which amounts to assuming
that the alternative distributionP1 has a decreasing density.

This assumption has been criticized in some recent work. A simple example of a situation
where this assumption fails is in the framework ofz or t-tests, i.e., the null distribution
of the statistic (before rescaling intop-values) is a standard Gaussian or a Studentt-
distribution, and the correspondingp-value function is the usual one- or two-sidedp-
value. If the alternative distributionP1 is a mixture of Gaussians (resp. of noncentral
t distributions), optimal rejection regions for the original statistic are in general a finite
union of disjoint intervals and do not correspond to level sets of thep-values. In order
to counter this type of problem, Sun and Cai [2007] suggest to estimate from the data
the alternate density and the proportion of true null hypotheses, and use these estimates
directly in a plug-in likelihood ratio based test. Chi [2007]develops a procedure based on
growing rejection intervals around a finite number of fixed control points in[0,1] . In both
cases, an asymptotic theory is developed. Both of these procedures are more flexible than
using only rejection intervals of the form[0, t] and aim at adaptivity with respect to the
alternative distributionP1. Finally, the remaining restriction that effective observations
(the p-values) belong to the unit interval was also put into question by Chi [2008], who
considered a setting of multidimensionalp-values belonging to[0,1]d . The distribution
was still assumed to be uniform under the corresponding nullhypothesis, although this
seems an even less realistic assumption than in dimension one: in this framework, the use
of a reference “nominal” sample under the null distributionseems even more relevant.

The framework developed in the present paper allows to coverat once these different
types of extensions rather naturally by just considering a richer classF of candidate clas-
sifiers (or equivalently in this setting, rejection regions), and provides a non-asymptotical
analysis of their behavior using classical learning theoretical tools such as VC inequal-
ities. Furthermore, such non-asymptotic inequalities canalso give rise to adaptive and
consistent model selection for the set of classifiers using the structural risk minimization
principle, a topic that was not addressed previously for theextensions mentioned above.

7.2 SSND with controlled FDR

One remaining important difference between the SSND setting studied here and that of
multiple testing is that our main optimization problem (1) is under a false positive rate
constraintR0( f ) ≤ α , while most recent work on multiple testing generally imposes a
constraint on the false discovery rate (FDR) instead. If we denote Pos( f ) = P̂X( f (X) = 1)
and FP( f ) = P̂XY( f (X) = 1,Y = 0) the proportion of reported novelties and the proportion
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of false discoveries on the contaminated sample, respectively, then the false discovery pro-
portion (FDP) is defined as FDP( f ) = Pos( f )/FP( f ) (taken to be zero if the denominator
vanishes), and the FDR is defined as FDR( f ) = E[FDP( f )] . Some classical variations of
this quantity are the positive FDR, pFDR( f ) = E[FDP( f )|Pos( f ) > 0] and the marginal
FDR, mFDR( f ) = E[FP( f )]/E[Pos( f )] . Under the mixture contamination model, it can
be checked that pFDR( f ) = mFDR( f ) = PXY(Y = 0| f (X) = 1) [Storey, 2003], hence
also equal to one minus the precision for class 1 (as defined earlier in Section 4). The
following result states explicit empirical bounds on thesequantities:

Proposition 12 Consider a classifier setF for which we assume uniform error bound of
the following form is available: for any distribution Q onX ×{0,1} , with probability at
least1−δ over the draw of an i.i.d. sample of size n according to Q , both

∀ f ∈ F
∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)

∣∣∣ ≤ εn(F ,δ) , (11)

and
∀ f ∈ F

∣∣∣Q( f (X) = 1,Y = 0)− Q̂( f (X) = 1,Y = 0)
∣∣∣ ≤ εn(F ,δ) , (12)

hold, whereQ̂ denotes the empirical distribution built on the sample.

Then the following inequalities hold with probability at least (1−δ)2 ≥ 1−2δ (over the
draw of the nominal and unlabeled samples) :

∀ f ∈ F mFDR( f ) = PX(Y = 0|X = 1) ≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))

(1− R̂X( f )− εn)+
,

and

∀ f ∈ F FDP( f ) ≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))+ εn

(1− R̂X( f ))
,

whereπ̂−(F ,δ) is defined in(10).

Note that equations (11) (12) holds as before withεn(F ,δ) = c
√

V logn−logδ
n whenF has

VC dimensionV . In the interest of simplicity, we use the same boundεn for both uniform
error assumptions. Separate bounds could also be adopted, allowing (11) to be slightly
tighter. We also remark that since FDP is an empirical quantity based on the contaminated
sample, the second bound is in fact atransductivebound rather than semi-supervised.

Proof The mFDR can be rewritten as mFDR( f )= P0( f (X)= 1|Y = 0)PXY(Y = 0)/PX( f (X)=
1) = R0( f )(1−π)/(1−RX( f )) ; in this expression we can plug in the lower bound for
π of Theorem 7 and uniform bounds forR0( f ) andRX( f ) coming from assumption (11).
The FDP can be written as FDP( f ) = P̂XY( f (X) = 1,Y = 0)/(1− R̂X( f )) . Using as-
sumption (12), the numerator can be upper bounded byPXY( f (X) = 1,Y = 0) + εn =
R0( f )(1−π)+ εn , and we can then use the same reasoning as for the first part.
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Similarly to what was proposed in Section 4 under the false positive rate constraint, we
can in this context consider to maximizêRX( f ) over f ∈ F subject to the constraint that
the above empirical bound on the mFDR or FDP is less thanα . This can then be suitably
extended to a sequence of classesFk . While a full study of the resulting procedure is
out of the scope of the present paper, we want to point out the important difference that
the mFDR is necessarily lower bounded by infx∈X PXY(Y = 0|X = x) which is generally
strictly positive. Hence, the required constraint may not be realizable ifα is smaller than
this lower bound, in which case the empirical procedure should return a failure statement
with probability one asn→ ∞. A similar approach was also introduced recently by Scott
et al. [2009], but under the stronger requirement that labeled examples frombothclasses
are available.

Practical example.As a typical setting for multiple testing, assume that the observation
spaceX is the real line, and that the reference distributionP0 is exactly known to be a
standard Gaussian. Then probability of events underP0 can be computed exactly, and
we can takeεm = 0 in the previous bounds. Consider the setFk of rejection regions
(classifiers) made of a disjoint union of at mostk intervals. ThenFk has VC dimension
2k . To compute the relevant quantities such as the boundπ̂−(Fk,δ) , and the above bounds
on the mFDR or the FDP, it is sufficient to consider intervals with endpoints belonging to
{X1, . . . ,Xn} . Furthermore, for all calculations it is sufficient to know,for each possible
fixed value ofR̂X , what is the classifier achieving the lowest value ofR0 . This can be
accomplished using dynamic programming in timeO (kn3) .

8 Experiments

Despite previous work on learning with positive and unlabeled examples (LPUE), as dis-
cussed in Section 2, the efficacy of our proposed learning reduction has not been em-
pirically demonstrated. To assess the impact of unlabeled data on novelty detection,
we applied our framework to some datasets which are common benchmarks for binary
classification. The first 13 datasets [Müller et al., 2001] are fromhttp://ida.first.
fhg.de/projects/bench/ and the last five datasets [Chang and Lin, 2001] are from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Each dataset consists of both positive and negative examples. Furthermore, each dataset
is replicated 100 times (except for image and splice, which are replicated 20 times), with
each copy corresponding to a different random partitioninginto training and test exam-
ples. All numerical results for a dataset were obtained by averaging across all partitions.
The negative examples from the training set were taken to form the nominal sample, and
the positive training examples were not used at all in the experiments. The datasets are
summarized in Table 1. HereNtrain andNtest are the sizes1 of the training and test sets,
respectively, whileπbase is the proportion of positive examples in the combined train-
ing and test data. Thus, the average (across permutations) nominal sample sizem is
(1−πbase)Ntrain.

1The web and adult datasets were subsampled owing to their large size.
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Data set dim Ntrain Ntest πbase

banana 2 400 4900 0.45
breast-cancer 9 200 77 0.29
diabetes 8 468 300 0.35
flare-solar 9 666 400 0.55
german 20 700 300 0.30
heart 13 170 100 0.44
ringnorm 20 400 7000 0.50
thyroid 5 140 75 0.30
titanic 3 150 2051 0.32
twonorm 20 400 7000 0.50
waveform 21 400 4600 0.33
image 18 1300 1010 0.57
splice 60 1000 2175 0.48
ionosphere 34 251 100 0.64
mushrooms 112 4124 4000 0.48
sonar 60 108 100 0.47
adult 123 3000 3000 0.24
web 300 3000 3000 0.03

Table 1: Description of data sets.dim is the number of features, andNtrain andNtest are
the numbers of training and test examples.πbase is the proportion of positive examples
(novelties) in the combined training and test data. Thus, the average (across permutations)
nominal sample sizem is (1−πbase)Ntrain.

8.1 Experimental setup

We evaluated our methodology in two learning paradigms, comparing five learning meth-
ods across several values ofπ. The two learning paradigms are semi-supervised and
transductive. For semi-supervised learning, the test datawere divided into two halves.
The first half was used as the contaminated, unlabeled data. The second half was used as
an independent sample of contaminated data, not used in the learning stage, but only for
independent evaluation of classifiers returned by each method. In particular, the second
half of the test data was used to estimate the area under the ROC (AUC) of each method.
Here, the ROC is the one which viewsP0 as the null distribution andP1 as the alternative.
For transductive learning, the entire test set was treated as the unlabeled data, and was
also used for evaluating the AUC.

The learning methods are the inductive approach, our proposed learning reduction, and
three versions of the hybrid approach. The three hybrids correspond topn = 1.0,0.5,0.1,
in which a uniform sample of size 100pn% of the unlabeled sample size isappendedto the
unlabeled data. We emphasize that each algorithm was implemented in the same way in
the two learning paradigms; the only differences are the size of the contaminated sample,
and how they are evaluated.

We implemented the inductive novelty detector using a thresholded kernel density esti-
mate (KDE) with Gaussian kernel, and SSND using a plug-in KDEclassifier. (To alle-
viate concerns that our inductive implementation is inadequate, we also tested the one-
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class support vector machine [Schölkopf et al., 2001] in several experimental settings,
and found its performance to be very similar.) For each class, a single kernel bandwidth
parameter was employed, and optimized by maximizing a cross-validation estimate of the
AUC. This ROC is different from the one used to evaluate the methods (see above). In
particular, it still viewsP0 as the null distribution, but now the alternative distribution is
taken to be the uniform distributionP2 for the inductive detector (see Section 5; effec-
tively we use a uniform random sample of sizen in place of the unlabeled data),PX for
SSND, and the appropriatẽPX for the hybrid methods (see Section 5). Thus, the test label
information was not used at any stage (prior to validation) by any of the methods.

We also compared the learning methods for several values ofπ. For semi-supervised
learning, we examinedπ = 0.5,π = 0.2,π = 0.1, andπ = 0.0. For transductive learning,
we examinedπ = 0.5,π = 0.2, andπ = 0.1. The caseπ = 0.0 cannot be evaluated in the
transductive paradigm because there are no positive examples in the unlabeled data. For
each value ofπ, we discarded just enough examples (either negative or positive) so that
the desired proportion was achieved in the contaminated data. Note that the number of
positive examples (novelties) in the contaminated sample could be very small. For the
smallest datasets, in the semi-supervised setting and whenπ = 0.1, this number is less
than 10.

8.2 Statistical summaries and methodology

The complete results are summarized in Tables 2 through 5. Tables 2 and 3 show the aver-
age AUC for each dataset and experimental setting, for the semi-supervised and transduc-
tive paradigms respectively. The inductive method is labeled Ind. Our learning reduction
is labeled SSND or TND depending on the setting. The hybrid methods are labeled H(p)
in Tables 2-3, and Hybrid(p) in Tables 4-5.

We followed the methodology of Demšar [2006] for comparing algorithms across multi-
ple datasets. For each dataset and each experimental setting, the algorithms were ranked
1 (best) through 5 (worst) based on AUC. The Friedman test was used to determine, for
each experimental setting, whether there was a significant difference in the average ranks
of the five algorithms across the datasets. The average ranksandp-values are reported in
Tables 4 and 5. The results indicate that there is a significant difference among the algo-
rithms at the 0.1 significance level for all settings, with the exception of the transductive
setting whenπ = 0.1.

When the Friedman test resulted in significant differences, we then performed a post-
hoc Nemenyi test to assess when there was a significant difference between individual
algorithms. For a five algorithm experiment on 18 datasets, with a significance level of
0.1, the critical difference for the Nemenyi test is 1.30. Thatis, when the average ranks of
two algorithms differ by more than 1.30, their performance is deemed to be significantly
different.
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dataset π = 0.5 π = 0.2
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.939 0.931 0.933 0.9360.924 0.915 0.924 0.923 0.921
breast-cancer 0.654 0.643 0.675 0.669 0.6670.654 0.557 0.657 0.648 0.621
diabetes 0.744 0.782 0.770 0.772 0.7760.744 0.684 0.724 0.727 0.717
flare-solar 0.674 0.661 0.664 0.660 0.6620.674 0.629 0.641 0.643 0.642
german 0.628 0.703 0.693 0.696 0.7040.628 0.582 0.633 0.632 0.636
heart 0.793 0.854 0.845 0.853 0.8510.793 0.690 0.805 0.789 0.745
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.992 0.990 0.991 0.983
thyroid 0.985 0.966 0.964 0.967 0.9550.985 0.889 0.929 0.940 0.943
titanic 0.628 0.643 0.636 0.644 0.6430.628 0.612 0.636 0.634 0.628
twonorm 0.915 0.993 0.989 0.989 0.9900.915 0.940 0.961 0.958 0.953
waveform 0.761 0.958 0.952 0.945 0.9560.761 0.839 0.848 0.896 0.901
image 0.818 0.939 0.929 0.935 0.9390.818 0.892 0.874 0.879 0.875
splice 0.415 0.935 0.905 0.921 0.9320.415 0.702 0.613 0.764 0.785
ionosphere 0.256 0.926 0.839 0.921 0.9220.256 0.695 0.475 0.607 0.704
mushrooms 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999
sonar 0.688 0.752 0.757 0.764 0.7640.688 0.595 0.682 0.683 0.646
adult 0.605 0.872 0.872 0.864 0.8350.605 0.705 0.720 0.829 0.720
web 0.462 0.778 0.749 0.697 0.7880.462 0.616 0.631 0.585 0.674

dataset π = 0.1 π = 0.0
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.891 0.922 0.919 0.9130.924 0.540 0.919 0.905 0.785
breast-cancer 0.654 0.515 0.643 0.633 0.5750.654 0.556 0.640 0.628 0.568
diabetes 0.744 0.605 0.699 0.700 0.6920.744 0.494 0.689 0.669 0.657
flare-solar 0.674 0.571 0.624 0.629 0.6260.674 0.471 0.613 0.603 0.611
german 0.628 0.548 0.623 0.624 0.6020.628 0.522 0.595 0.608 0.592
heart 0.793 0.593 0.778 0.776 0.6880.793 0.506 0.759 0.750 0.620
ringnorm 0.999 0.984 0.981 0.986 0.9910.999 0.478 0.958 0.978 0.985
thyroid 0.985 0.786 0.884 0.906 0.8950.985 0.590 0.852 0.869 0.795
titanic 0.628 0.591 0.632 0.634 0.6210.628 0.443 0.630 0.628 0.572
twonorm 0.915 0.931 0.945 0.934 0.9230.915 0.480 0.894 0.879 0.860
waveform 0.761 0.801 0.815 0.822 0.8060.761 0.487 0.736 0.727 0.705
image 0.818 0.769 0.824 0.836 0.8510.818 0.431 0.634 0.696 0.780
splice 0.415 0.630 0.518 0.584 0.6250.415 0.523 0.447 0.493 0.493
ionosphere 0.256 0.618 0.438 0.488 0.5750.256 0.520 0.392 0.431 0.486
mushrooms 0.945 0.995 0.992 0.998 0.9960.945 0.566 0.972 0.980 0.982
sonar 0.688 0.556 0.658 0.652 0.6150.688 0.510 0.628 0.643 0.587
adult 0.605 0.627 0.659 0.666 0.6260.605 0.505 0.558 0.556 0.572
web 0.462 0.554 0.584 0.544 0.6110.462 0.557 0.553 0.523 0.564

Table 2: AUC values for five novelty detection algorithms in the semi-supervised setting.
’H’ indicates a hybrid method.
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dataset π = 0.5 π = 0.2
Ind. TND H(1.0) H(0.5) H(0.1) Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0.938 0.931 0.932 0.9350.924 0.915 0.923 0.923 0.919
breast-cancer 0.663 0.673 0.662 0.662 0.6700.663 0.615 0.649 0.659 0.630
diabetes 0.742 0.784 0.776 0.779 0.7880.742 0.708 0.728 0.725 0.727
flare-solar 0.673 0.686 0.683 0.684 0.6840.673 0.661 0.658 0.662 0.666
german 0.633 0.739 0.709 0.711 0.7140.633 0.617 0.632 0.637 0.636
heart 0.796 0.869 0.856 0.856 0.8640.796 0.716 0.811 0.794 0.788
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.993 0.989 0.991 0.983
thyroid 0.984 0.976 0.978 0.979 0.9740.984 0.957 0.962 0.955 0.962
titanic 0.629 0.667 0.646 0.658 0.6610.629 0.642 0.641 0.658 0.645
twonorm 0.915 0.993 0.990 0.990 0.9900.915 0.940 0.961 0.961 0.956
waveform 0.771 0.960 0.953 0.947 0.9570.771 0.847 0.850 0.900 0.905
image 0.845 0.955 0.949 0.949 0.9530.845 0.897 0.889 0.891 0.901
splice 0.416 0.941 0.913 0.930 0.9390.416 0.716 0.623 0.769 0.820
ionosphere 0.254 0.953 0.844 0.931 0.9520.254 0.714 0.413 0.633 0.746
mushrooms 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999
sonar 0.683 0.757 0.767 0.778 0.7810.683 0.615 0.678 0.683 0.662
adult 0.606 0.875 0.873 0.865 0.8350.606 0.687 0.736 0.847 0.739
web 0.464 0.810 0.758 0.727 0.7880.464 0.644 0.639 0.590 0.667

dataset π = 0.1
Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0.896 0.921 0.920 0.910
breast-cancer 0.663 0.564 0.687 0.642 0.598
diabetes 0.742 0.658 0.720 0.709 0.693
flare-solar 0.673 0.615 0.655 0.643 0.659
german 0.633 0.556 0.615 0.616 0.615
heart 0.796 0.626 0.792 0.784 0.729
ringnorm 0.999 0.985 0.973 0.986 0.992
thyroid 0.984 0.910 0.970 0.955 0.932
titanic 0.629 0.603 0.643 0.642 0.626
twonorm 0.915 0.933 0.943 0.937 0.923
waveform 0.771 0.813 0.821 0.823 0.808
image 0.845 0.888 0.870 0.871 0.880
splice 0.416 0.630 0.554 0.553 0.640
ionosphere 0.254 0.589 0.349 0.443 0.552
mushrooms 0.945 0.996 0.994 0.997 0.997
sonar 0.683 0.514 0.646 0.655 0.592
adult 0.606 0.658 0.681 0.684 0.629
web 0.464 0.567 0.573 0.538 0.604

Table 3: AUC values for five novelty detection algorithms in the transductive setting. ’H’
indicates a hybrid method.
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π Inductive SSND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value
0.0 1.89 4.39 2.72 2.89 3.11 0.000
0.1 2.83 4.00 2.83 2.28 3.06 0.023
0.2 3.28 3.83 2.61 2.56 2.72 0.071
0.5 4.28 1.94 3.44 3.00 2.33 0.000

Table 4: The comparison of average ranks of the five algorithms in the semi-supervised
setting, by the Friedman test. The critical difference of the post-hoc Nemenyi test is 1.30
at a confidence levelα = 0.1.

π Inductive TND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value
0.1 2.94 3.78 2.56 2.67 3.06 0.157
0.2 3.17 3.78 3.06 2.50 2.50 0.085
0.5 4.44 1.44 3.56 3.17 2.39 0.000

Table 5: The comparison of average ranks of the five algorithms in the transductive set-
ting, by the Friedman test. The critical difference of the post-hoc Nemenyi test is 1.30 at
a confidence levelα = 0.1.

8.3 Analysis of results

From the results presented in Tables 2-5, we draw the following conclusions.

1. The average ranks in Tables 4-5 conform to our expectations in many respects.
SSND/TND outrank the inductive approach whenπ = 0.5, and inductive outranks
semi-supervised whenπ = 0.0. At the intermediate valuesπ = 0.1 and 0.2, hybrid
methods achieve the best ranking.

2. The average ranks also reveal that the performance of the hybrid methods vary
according to the value ofπ. As π increases, the best performing hybrid has a cor-
respondingly smaller amount of auxiliary uniform data appended to the unlabeled
sample. This also conforms to our expectations.

3. All tables indicate that the proposed methodology performs better in the transduc-
tive setting than the semi-supervised setting. A likely reason is that, in our experi-
mental setup, TND sees twice as much unlabeled data as SSND.

4. Whenπ = 0.0 in the semi-supervised experiments, SSND typically has anAUC
around 0.5, which corresponds to random guessing. This makes sense, because it is
essentially trying to classify between two realizations ofthe nominal distribution.
From Tables 2 and 4 we see that the hybrid methods clearly improve upon SSND
whenπ = 0.0.

5. For some datasets (splice, ionosphere, web), the inductive method does worse than
random guessing, but our methods do not. In each case, our methods yield dramatic
increases in AUC.

6. The benefits of unlabeled data increase with dimension. Inparticular, SSND and
TND tend to perform much better relative to the inductive approach on datasets of
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dimension at least 18. This is especially evident in the second half of the datasets,
which even show significant gains forπ = 0.1. This trend suggests that as dimen-
sion increases, the assumption implicit in the inductive approach (that novelties are
uniform where they overlap the support of the nominal distribution) breaks down.

Figure 1 depicts a sampling of results comparing the inductive and semi-supervised meth-
ods, and highlights the impact of dimension. The top graph shows ROCs for a two-
dimensional dataset where the two classes are fairly well separated, meaning the novelties
lie in the tails of the nominal class, andπ = 0.5. Not surprisingly, the inductive method
is close to the semi-supervised method. The middle graph represents the 60-dimensional
splice dataset, where the inductive method does worse than random guessing, yet SSND
does quite well. The bottom graph in Figure 1 shows the results for the 21-dimensional
waveform data forπ = 0.1. Here the assumptions of the inductive approach are also
evidently violated to some degree.

9 Conclusions

We have shown that semi-supervised novelty detection reduces to Neyman-Pearson clas-
sification. This allows us to leverage known performance guarantees for NP classification
algorithms, and to import practical algorithms. We have applied techniques from statis-
tical learning theory, such as uniform deviation inequalities, to establish distribution free
performance guarantees for SSND, as well as a lower bound andconsistent estimator for
π, and test forπ = 0. Our approach optimally adapts to the unknown novelty distribu-
tion, unlike inductive approaches, which operate as if novelties are uniformly distributed.
We also introduced a hybrid method that has the properties ofSSND whenπ > 0, and
effectively reverts to the inductive method whenπ = 0.

Our analysis strongly suggests that in novelty detection, unlike traditional binary classi-
fication, unlabeled data are essential for attaining optimal performance in terms of tight
bounds, consistency, and rates of convergence. In an extensive experimental study, we
found that the advantages of our approach are most pronounced for high dimensional
data. Our analysis and experiments confirm some challenges that seem to be intrinsic to
the SSND problem. In particular, SSND is more difficult for smaller π. Furthermore,
estimating the novelty proportionπ can become arbitrarily difficult as the nominal and
novel distributions become increasingly similar.

Our methodology also provides general solutions to two well-studied problems in hy-
pothesis testing. First, our lower bound onπ translates immediately to a test forπ = 0,
which amounts to a distribution-free solution to the two-sample problem. Second, we also
show that SSND provides a powerful generalization of standard multiple testing. Impor-
tant problems for future work will include developing practical methodologies for these
problems based on our theoretical framework.
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Figure 1: Illustrative results from the semi-supervised setting. Top: In the 2-dimensional
banana data, the two classes are well separated, and the inductive approach fares well.
Middle: In the 60-dimensional splice data, the inductive approach does worse than ran-
dom guessing. Bottom: In the 21-dimensional waveform data, unlabeled data still offer
gains whenπ is small (here 0.1).
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Appendix A: Proofs

Proof of Theorem 2

For the first two claims of the theorem, we directly apply Theorem 3 of Scott and Nowak
[2005] to the problem of NP classification ofP0 versusPX , and obtain that for a suitable
choice of constantsc,c′ we have with probability at least 1−δ :

R0( f̂τ)−α ≤ c′εn ; RX( f̂τ)−RX( f ∗) ≤ c′εm.

From this, we deduce (3)-(4) by application of Theorem 1.

For the second claim, by application of Bayes’ rule we have forany classifierf :

Q0( f ) =
(1−π)(1−R0( f ))

PX( f (X) = 0)
=

(1−π)(1−R0( f ))
πR1( f )+(1−π)(1−R0( f ))

and

Q1( f ) =
π(1−R1( f ))
PX( f (X) = 1)

=
π(1−R1( f ))

(1−π)R0( f )+π(1−R1( f ))
.

Note that fora,b > 0 the function(x,y) ∈ [0,1]×R+ 7→ a(1−x)
by+a(1−x) is decreasing in both

variables. Hence, using (3)-(4) and the fact thatRi( f ) ∈ [0,1] , we derive a lower bound
onQ0( f̂τ) as follows:

Q0( f̂τ) =
(1−π)(1−R0( f̂τ))

πR1( f̂τ)+(1−π)(1−R0( f̂τ))

≥
(1−π)(1−α−c′εn)+

π(R1( f ∗)+c′π−1(εn + εm))+(1−π)(1−R0( f ∗)−c′εn)+

≥
(1−π)(1−α)

PX( f ∗(X) = 0)+c′(εm+πεn)
−

c′(1−π)εn

PX( f ∗(X) = 0)

≥
(1−π)(1−α)−c′(1−π)εn

PX( f ∗(X) = 0)
−

(1−π)(1−α)c′(εm+πεn)

PX( f ∗(X) = 0)2

≥ Q0( f ∗)−
c′(εn + εm)

PX( f ∗(X) = 0)
.

In the first inequality(.)+ denotes the positive part. The second is elementary. In the
third inequality we used the fact that the functiong : δ 7→ g(δ) = A

B+δ is convex forA,B,δ
positive and has derivative−A/B2 in zero, so thatg(δ) ≥ A

B −δ A
B2 , with A = (1−π)(1−

α),B = PX( f ∗(X) = 0),δ = c′(εm+ πεn) . In the last inequality we used (with the same
definition forA,B) that A

B = Q0( f ∗) ≤ 1 .
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The treatment forQ1 is very similar. We have

Q1( f̂τ) =
π(1−R1( f ))

(1−π)R0( f )+π(1−R1( f ))

≥
π(1−R1( f ∗)−c′π−1(εn + εm))+

(1−π)(α+c′εn)+π(1−R1( f ∗)−c′π−1(εn + εm)+)

≥
π(1−R1( f ∗))
PX( f ∗(X) = 1)

−min

(
1,

c′(εn + εm)

PX( f ∗(X) = 1)−c′(εn + εm)

)

≥ Q1( f ∗)−
2c′(εn + εm)

PX( f ∗(X) = 1)
;

we introduced the min(1, . . .) operation sinceQ1( f̂τ) ≥ 0 and in the last inequality we
used the fact that min(1,x/(1−x))≤ 2x for x≥ 0 (with x= c′(εn+εm)/PX( f ∗(X) = 1)) .

Proof of Proposition 5

Consider the Lebesgue decompositionPX = P0
X +P⊥

X with P0
X ≪ P0 (i.e. P0

X is absolutely
continuous with respect toP0) andP⊥

X ⊥ P0
X (i.e. P⊥

X andP0 are mutually singular) . Let
f = dP0

X/dP0 and a be the essential infimum off wrt P0. We claim thatπ∗ = 1− a.
Certainly we have the valid decomposition

PX = aP0 +(1−a)P1 , P1 :=
(
(1−a)−1

(
( f −a)P0 +P⊥

X

))
,

so thatπ∗ ≤ 1−a .

By definition of singular measures there exists a measurable setD such thatP0(D) = 1 and
P⊥

X (D) = 0 . Fix ε > 0 ; by definition of the essential infimum there exists a measurable
setC such thatP0(C) > 0 and f ≤ a+ ε P0-a.s. onC . PutA = C∩D . ThenP0(A) =
P0(C) > 0 . Furthermore

P1(A)

P0(A)
=

EX∼P0 [( f −a)1X∈A]

P0(A)
≤ ε .

Existence of a decomposition of the formP1 = (1− γ)Q+ γP0 implies that for any mea-
surable setA , P1(A) ≥ γP0(A) . Hence the above implies thatγ = 0 for any such decom-
position, i.e.P1 must be a proper novelty distribution wrt.P0 . It also implies that for any
ε > 0 there exists a measurable setA with P0(A) > 0 andPX(A)/P0(A) ≤ a+ ε . By the
same token, the latter implies(1−π∗) ≤ a . We thus establishedπ∗ = 1−a and the exis-
tence of the decomposition. Concerning the unicity, the decomposition established above
for π∗ implies that for anyπ ≥ π∗ , PX = (1−π)P0+πQ holds withQ = (1− π∗

π )P0+ π∗

π .
Note that for any fixedπ , existence of a decompositionPX = (1− π)P0 + πQ uniquely
determinesQ . Hence forπ > π∗ the correspondingQ is not a proper novelty distribution,
and the only valid decomposition ofPX into P0 and a proper novelty distribution is the
one established previously.
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Lemma used in Proof of Theorem 6

For the proof of Theorem 6 we made use of the following auxiliary result:

Lemma 13 Assume P1 is a proper novelty distribution wrt. P0 . Then for anyε > 0 there
exists a (deterministic) classifier f such that R0( f ) < 1 and

R1( f )
1−R0( f )

≤ ε .

Proof SinceP1 is a proper novelty distribution wrt.P0, reiterating the reasoning in
the proof of Proposition 5 shows that there exists a measurable setA with P0(A) > 0
andP1(A)/P0(A) ≤ ε . Put α = 1−P0(A) < 1 . Consider the classifierf = 1Ac . Then
R0( f ) = P0( f = 1) = α , while

0≤ R1( f ) = P1( f = 0) = P1(A) ≤ ε(1−α) . (13)

This leads to the desired conclusion.

Proof of Theorem 8

By application of Lemma 13, for anyε > 0 there exists a classifierf ∗ such that R1( f ∗)
1−R0( f ∗) ≤

ε . Then we have as in the proof of Theorem 6:

1−
RX( f ∗)

1−R0( f ∗)
= π

(
1−

R1( f ∗)
1−R0( f ∗)

)
≥ π(1− ε) .

Fix γ > 0 and definẽP = 1
2(P0 +P1) . Using the assumption of universal approximation,

pick k such that there existsf ∗k ∈ Fk with P̃( f ∗k (X) 6= f ∗(X)) ≤ γ . SinceP̃ ≥ 1
2P0 and

P̃≥ 1
2P1 this implies alsoP0( f ∗k (X) 6= f ∗(X)) ≤ 2γ as well asPX( f ∗k (X) 6= f ∗(X)) ≤ 2γ .

From now we only work in the classFk and so we omit the parameters in the notation
εi ≡ εi(Fk,δk−2) . By the union bound, the uniform control of the form (9) is valid si-
multaneously for allFk , with probability 1−cδ (with c = π2/6). Hence with probability
1−cδ = 1−c(mn)−2 , we have

R̂0( f ∗k ) ≤ R0( f ∗k )+ εm ≤ R0( f ∗)+2γ+ εm,

and also
R̂X( f ∗k ) ≤ RX( f ∗k )+ εn ≤ RX( f ∗)+2γ+ εn .

From this we deduce that with probability 1−c(mn)−2 :

π̂−(δ) ≥ π̂−(Fk,(mn)−2k−2) ≥ 1−
RX( f ∗)+2γ+2εn

1−R0( f ∗)−2γ−2εm
.
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Sinceεn,εm go to zero as min(m,n) goes to infinity we deduce that a.s. (using the Borel-
Cantelli lemma, and the fact that the error probabilities aresummable over(m,n) ∈ N

2)

liminf
min(m,n)→∞

π̂−(δ) ≥ 1−
RX( f ∗)+2γ

1−R0( f ∗)−2γ
≥ π(1− ε)

1−R0( f ∗)
1−R0( f ∗)−2γ

−
4γ

1−R0( f ∗)−2γ
.

Taking the limit of the above asγ → 0 (for fixed ε and f ∗), then asε → 0 , leads to the
conclusion.

Proof of Theorem 9

Let P0,P1,δ,π be given by the non-triviality assumption andP denote correspondingly
the joint distribution of nominal and contaminated data. Fix someγ > 0 and a setD such
that 0< P0(D) < γ ; put A = Dc , so that 1− γ < P0(A) < 1 . Consider the distributionP0

conditional to belonging toA, denoted̃P0 = 1x∈A
P0(A)P0. This is a proper novelty distribution

as it has it support strictly included in the support ofP0 .

Consider the proper novelty distributioñPX = (1− π)P̃0 + πP1 . Since it is proper, the
novelty proportion of̃PX with respect toP0 is π̃ = 1. Finally, define the joint distribution
on nominal and contaminated dataP̃ = P⊗m

0 ⊗ P̃⊗n
X .

By the non-triviality assumption, there exists a setB of (m,n) samples such that̂π+(δ) < 1
on the setB andP(B) = δ0 > δ . DenoteÃ = X m×An . By assumption,P(Ã) ≥ (1− γ)n ;
furthermore by definition of̃P it can be verified straightforwardly that for any setD ⊂ Ã ,
P̃(D) ≥ P(D) . Define nowB̃ = B∩ Ã ; we haveP(B̃) ≥ δ0− (1− (1− γ)n) . Since for all
samples iñB , all points of the contaminated set belong toA , we have

P̃(B̃) ≥ P(B̃) ≥ δ0− (1− (1− γ)n).

Hence forγ small enough, we havẽP(B̃) > δ which contradicts the fact that̂π+(δ) is a
1−δ confidence upper bound, since onB̃ we havêπ+(δ) < 1 = π̃ .

Appendix B: Randomized classifiers and ROCs

In this appendix we recall some well-known properties of ROCsthat are relevant to our
setting. LetF be a fixed set of classifiers, and recall the Neyman-Pearson classification
optimization problem (1), restated here for convenience:

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f ) ≤ α .

The optimal ROC ofP1 versusP0 for setF is the functionα ∈ [0,1] 7→ 1−R∗
1,α(F ) ∈

[0,1] .

If F is the set of all possible deterministic classifiers, and oneassumes that both class
probabilitiesP0,P1 have densitiesh0,h1 with respect to some reference measure, and such
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that the likelihood ratioF(x) = h1(x)
h0(x)

is continuous with infF = 0 and supF = +∞ , then
the optimal solutionsf ∗α of (1) are indicators of sets of the form

Cλ =

{
x∈ X :

h1(x)
h0(x)

≥ λ
}

,

with λ(α) such thatP0(Cλ) = α . In this caseR∗
1,α(F ) = P1(Cλ(α)) and it can be shown

that the ROC is continuous, nondecreasing and concave between the points(0,0) and
(1,1) . In particular in this case it holds thatR0( f ∗α) = α .

When some of the above assumptions are not satisfied, for example if we consider an
arbitrary subsetF of classifiers, or the probability distributionsP0 andP1 have atoms,
some of these properties may fail to hold. While it is clear that the optimal ROC is always
a nondecreasing function, it might fail to be concave, and the optimal solution might have
R0( f ∗α) < α . This is for example obviously the case ifF is a finite set of classifiers, in
which case the ROC is a step function andR0( f ) can only take finitely many values.

We are interested in the following regularity properties depending onF ,P0 andP1:

(A’) For anyα∈ (0,1) , there exists a sequencefn∈ F such thatR0( fn)= α andR1( fn)→
R∗

1,α(F ) .

(B) The functionα 7→ R∗
1,α(F )/(1−α) is nondecreasing on[0,1] .

Note that for simplicity of exposition, in the main body of the paper we simplified prop-
erty (A’) into (A) , where the sequencefn is replaced by its limit, assumed to belong to
the considered set of classifiers. Our results still hold under (A’) with straightforward
modifications of the proofs.

Condition(B) states that the slope of the line joining the point of the optimal ROC atα
and the point(1,1) is nonincreasing inα ; this is assumption is weaker than concavity of
the ROC. It is relevant for the discussion in the final paragraph below, related to our result
on precision.

To ensure regularity properties of the ROC, a standard deviceis to extend the classF
and considerrandomizedclassifiers, whose output is not a deterministic function, but a
Bernoulli variable with probability depending on the pointx . Formally this amounts to
allowing a classifierf to take values in[0,1] ; now for a givenx the final decisionD( f ,x)
is to output class 1 with probabilityf (x) and 0 with probability 1− f (x) , where this de-
cision is reached using an independent coin flipping. In thissetting the error probabilities
become fory = 0,1 :

Ry( f ) := Py(D( f ,X) 6= y) = Ey(| f (X)−y|) .

We consider two types of extensions of a (usually deterministic) classF , the first one is
the convex hull ofF , or full randomization,

F =

{
g

∣∣∣∣g =
N

∑
i=1

λi fi ;N ∈ N , fi ∈ F ,λi ≥ 0 for 1≤ i ≤ N ,
N

∑
i=1

λi = 1

}
.

31



The second is given by

F
+ = {g|g = λ f +(1−λ) , f ∈ F ,λ ∈ [0,1]} ,

where the randomization is limited to convex interpolationbetween one classifier of the
base class and the constant classifier equal to 1.

The following standard lemma summarizes the properties of the optimal ROC curve for
these extended classes:

Lemma 14 Let F be a set of deterministic classifiers containing the constant classifier
equal to zero, and let P0,P1 be arbitrary distributions onX . Then assumptions(A’) and
(B) are met when considering optimization problem(1) over eitherF or F + . The optimal
ROC for the setF is concave.

Proof The fact that the constant zero classifier belongs toF ensures that the infimum in
(1) is not taken over an empty set and exists. Letgn be a sequence of elements ofF +

such thatR0(gn) ≤ α andR1(gn) → R∗
1,α(F +) . Then puttingλn = (1−α)/(1−R0(gn)) ,

the sequencefn = λngn +(1−λn) belongs toF + and ensures(A’) . The same reasoning
applies toF .

For property(B), consider a sequence( fn) from property(A’) , a numberβ ∈ [α,1] and
hn = (1− ζ) fn + ζ whereζ = (1− β)/(1− α) ∈ [0,1] . Then hn ∈ F + , R0(hn) = β
andR1(hn) = (1− ζ)R1( fn)+ ζ . Letting n grow to infinity we obtainR∗

1,β(F
+) ≤ (1−

ζ)R∗
1,α(F +)+ζ which in turn implies(B) .

In the case ofF , similarly consider sequencesfn,1, fn,2 like above forα = α1, resp.
α = α2 with α2 ≥ α1; for anyβ ∈ [α1,α2] , write β = λα1 +(1−λ)α2 ; correspondingly
the sequenceλ fn,1 +(1−λ) fn,2 belongs toF and ensures thatR∗

1,β(F ) ≤ λR∗
1,α1

(F )+

(1−λ)R∗
1,α2

(F ) i.e. the optimal ROC forF is concave.

Concerning estimation error control for the extended classes, note that if a uniform error
control holds over the base classF , for example of the form (9) , then the same bound
holds over the extended classesF + andF by convex combination. Hence, for uniform
statistical error control it is sufficient to consider the base classF , for example if it is a
VC-class.

For practical purposes, it might be significantly more difficult to find the solution of the
(empirical version of) (1) for randomized classes and in particular for the fully randomized
extensionF . An advantage of the more limited form of randomization is that optimiza-
tion problem (1) overF + can be rewritten equivalently as an optimization problem over
the original class, namely as

inf
h∈F

R1(h)

1−R0(h)
s.t. R0(h) ≤ α . (14)

To see why, assume for simplicity of exposition that(A) rather than(A’) is satisfied. Then
the optimization problem (1) overF + is attained for some randomized classifierf ∗ ; by
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constructionf ∗ is of the form f ∗ = λh∗ + (1− λ) for someλ ∈ [0,1] andh∗ ∈ F . By
property(A) we can assumeR0( f ∗) = α , which entailsλ = (1−α)/(1−R0(h∗)) and
R1( f ∗) = (1−α)R1(h∗)/(1−R0(h∗)) , hence the equivalence with (14) (with the above
relation betweenf ∗ andh∗) .

Finally, in general we can interpret the optimization problem (14) as a maximization of
the class 0 precision,

Q0( f ) = PXY(Y = 0| f (X) = 0) =
(1−π)(1−R0( f ))

(1−π)(1−R0( f ))+πR1( f )
=

(1−π)

(1−π)+π R1( f )
1−R0( f )

,

under the constraintR0( f ) ≤ α , since the above display shows thatQ0( f ) is a decreasing
function of the ratioR1( f )/(1−R0( f )) . In general if properties(A) and(B) are satisfied
for the considered class, then it is easy to see that the solutions to (1) and (14) coincide,
so that the same classifierf ∗ achieves the minimum FNR and class 0 precision under the
constraint on the FPR.
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