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Abstract

A common setting for novelty detection assumes that labeled examples from the
nominal class are available, but that labeled examples of novelties arailabée:
The standard (inductive) approach is to declare novelties where the alaheimsity
is low, which reduces the problem to density level set estimation. In this paper
consider the setting where an unlabeled and possibly contaminated sampte is als
available at learning time. We argue that novelty detection in this semi-supgrvise
setting is naturally solved by a general reduction to a binary classificatadrigon.
In particular, a detector with a desired false positive rate can be achienmdyh a
reduction to Neyman-Pearson classification. Unlike the inductive appreaomi-
supervised novelty detection (SSND) yields detectors that are optimal $&ts-
tically consistent) regardless of the distribution on novelties. Therefoneguslty
detection, unlabeled data have a substantial impact on the theoreticaltigopé
the decision rule. We validate the practical utility of SSND with an extensiverexp
imental study.

We also show that SSND provides distribution-free, learning-theoretiticos
to two well known problems in hypothesis testing. First, our results providena g
eral solution to the general two-sample problem, that is, the problem ofuiatag
whether two random samples arise from the same distribution. Secondgialspe
ization of SSND coincides with the standgpevalue approach to multiple testing
under the so-called random effects model. Unlike standard rejectiomeehased
on thresholdeg-values, the general SSND framework allows for adaptation to arbi-
trary alternative distributions.

1 Introduction

Several recent works in the machine learning literatureetzidressed the issue of nov-
elty detection. The basic task is to build a decision rule thstinguishesrominalfrom
novelpatterns. The learner is given a random sample. ., xm € x of nominal patterns,
obtained, for example, from a controlled experiment or apeeix Labeled examples
of novelties, however, are not available. The standardagmbr has been to estimate a
level set of the nominal density [Scholkopf et al., 2001 jristart et al., 2005, Scott and
Nowak, 2006, Vert and Vert, 2006, El-Yaniv and Nisenson,Z2®fero, 2007], and to de-
clare test points outside the estimated level set to be neseWe refer to this approach
asinductivenovelty detection.

In this paper we incorporate unlabeled data into noveltgat&in, and argue that this
framework offers substantial advantages over the indeicmproach. In particular, we
assume that in addition to the nominal data, we also havesatoearunlabeledsample
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Xm+1, - - -, Xmen Cconsisting potentially of both nominal and novel data. Wsuage that
eachx,i=m+1 ..., m+nis paired with an unobserved labgle {0,1} indicating its

status as nominalj(= 0) or novel ¢ = 1), and thatXm1,Ym+1), - - -, (Xn,Yn) are realiza-
tions of the random paifX,Y) with joint distributionPxy. The marginal distribution of
an unlabeled patterd is the contamination model

X ~ Py = (1-mPo+ TPy,

whereR, y= 0,1, is the conditional distribution oY =y, andrt= Pxy(Y = 1) isthe a
priori probability of a novelty. Similarly, we assunxe, ..., xn are realizations ofy. We
assume no knowledge B, Py, P, orm, although in Section 6 (where we want to estimate
the proportior) we do impose a natural condition & which ensures identifiability of
.

We take as our objective to build a decision rule with a snafid negative rate subject
to a fixed constraintt on the false positive rate. Our emphasis here isemi-supervised
novelty detection (SSND), where the goal is to construct mega detector that could
classify an arbitrary test point. This general detector gaoourse be applied in the
transductivesetting, where the goal is to predict the labgls1, . .., ym.n associated with
the unlabeled data. Our results extend in a natural way $cs#iting.

Our basic contribution is to develop a general solution thNB®y reducing it to Neyman-
Pearson (NP) classification, which is the problem of binéagsification subject to a user-
specified constraint on the false positive rate. In paricue argue that SSND can be
addressed by applying a NP classification algorithm, tngatie nominal and unlabeled
samples as the two classes. We argue that our approach eativetfy adapt to any nov-
elty distributionPy, in contrast to the inductive approach which is only optimatertain
extremely unlikely scenarios. Our learning reductionwafiaus to import existing sta-
tistical performance guarantees for Neyman-Pearsonifitas®n [Cannon et al., 2002,
Scott and Nowak, 2005] and thereby deduce generalizatronlgounds, consistency, and
rates of convergence for novelty detection. In additiorhtse theoretical properties, the
reduction to NP classification has practical advantaget)anit allows essentially any
algorithm for NP classification to be applied to SSND.

SSND is particularly suited to situations where the nogslibccupy regions where the
nominal density is high. If a single novelty lies in a regidnhigh nominal density, it
will appear nominal. However, if many such novelties arespre, the unlabeled data will
be more concentrated than one would expect from just themadmaomponent, and the
presence of novelties can be detected. SSND may also behthoiugs semi-supervised
classification in the setting where labels from one classldfieult to obtain (see discus-
sion of LPUE below). We emphasize that we do not assume theitres are rare, i.e.,
thattis very small, as in anomaly detection. However, SSND isiagple to anomaly
detection provided is sufficiently large.

We also discuss estimation afand the special case of= 0, which is not treated in
our initial analysis. We present a hybrid approach thatraataally reverts to the in-
ductive approach wher = 0, while preserving the benefits of the NP reduction when
> 0. In addition, we describe a distribution-free one-sidedficlence interval forr,
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consistent estimation af, and testing fort= 0, which amounts to a general version of
the two-sample problem in statistics. We also discuss adiomes to multiple testing,
where we show that SSND generalizes a standard approachtiplentesting, based on
thresholdingp-values, under the common “random effects” model. Whereap-tralue
approach is optimal only under strong assumptions on teenative distribution, SSND
can optimally adapt to arbitrary alternatives.

The paper is structured as follows. After reviewing relatexk in the next section, we
present the general learning reduction to NP classificatidbection 3, and apply this
reduction in Section 4 to deduce statistical performanaajtees for SSND. Section 5
presents our hybrid approach, while Section 6 applies ilegitheoretic principles to the
estimation ofrt Connections to multiple testing are developed in Sectidixperiments
are presented in Section 8, while conclusions are discussiy@ final section. Shorter
proofs are presented in the main text, and longer proofsaappéhe first appendix.

2 Related work

Inductive novelty detectiobescribed in the introduction, this problem is also known a
one-class classification [Scholkopf et al., 2001] or leagrior only positive (or only neg-
ative) examples. The standard approach has been to assatmevhlties are outliers with
respect to the nominal distribution, and to build a nove#tedtor by estimating a level set
of the nominal density [Scott and Nowak, 2006, Vert and \2006, El-Yaniv and Nisen-
son, 2007, Hero, 2007]. As we discuss below, density lewedst@nation is equivalent to
assuming that novelties are uniformly distributed. Therethese methods can perform
arbitrarily poorly (wherPy is far from uniform, and still has significant overlap wk).

In Steinwart et al. [2005], inductive novelty detection éluced to classification d%
againstP; , whereinP; can be arbitrary. However an i.i.d. sample frénis assumed to
be available in addition to the nominal data. In contrast, semi-supervised approach
optimally adapts té’, where only an unlabeled contaminated sample is availasigles
the nominal data. In addition, we address estimation arth¢esf the proportion of
novelties.

Classification with unlabeled dat#n transductive and semi-supervised classification, la-
beled training dat(x;,yi) }i" ; from bothclasses are given. The setting proposed here is a
special case where training data from only one class ar&abl&i In two-class problems,
unlabeled data typically have at best a slight affect on tamms, finite sample bounds,
and rates [Rigollet, 2007, Lafferty and Wasserman, 2008, Bavid et al., 2008, Singh

et al., 2009], and are not needed for consistency. In cdntnesargue that for novelty
detection, unlabeled data are essential for these desittadxbretical properties to hold.

Learning from positive and unlabeled exampl€dassification of an unlabeled sample
given data from one class has been addressed previouslyjthutertain key differences
from our work. This body of work is often termed learning frdpositive” and unla-
beled examples (LPUE), although in our context we tend taktbf nominal examples as
negative. Terminology aside, a number of algorithms haea lobeveloped which proceed



roughly as follows: First, identify a reliable set of negatexamples in the unlabeled data.
Second, iteratively apply a classification algorithm to tiabeled data until a stable la-
beling is reached. Several such algorithms are reviewedchang and Lee [2005], but

they tend to be heuristic in nature and sensitive to theairstioice of negative examples.

A theoretical analysis of LPUE is provided by Denis [1998grs et al. [2005] from
the point of view of computer-theoretic PAC learnable atsss polynomial time. While
some ideas are common with the present work (such as claggifye nominal sample
against the contaminated sample as a proxy for the ultimaa#),gour point of view is
relatively different and based on statistical learningtigeIn particular, our input space
can be non-discrete and we assume the distributigrasd P, can overlap, which leads
us to use the NP classification setting and study universedistncy properties.

We highlight here one strand of LPUE research having pdstiaelevance to our own.
The idea of reducing LPUE to a binary classification problésnyiewing the positive
data as one class and the unlabeled data as the other, hasdaged by Zhang and Lee
[2005], Liu et al. [2002], Lee and Liu [2003], Liu et al. [20p3Vost notably, Liu et al.
[2002] provide sample complexity bounds for VC classeslierlearning rule that mini-
mizes the number of false negatives while controlling thepprtion of false positives at
a certain level. Our approach extends theirs in severakotsp First, Liu et al. [2002]
does not consider approximation error or consistency, adhé bounds established there
imply consistency. In contrast, we present a general reztutiiat is not specific to any
particular learning algorithm, and can be used to deducsistmcy or rates of conver-
gence. Our work also makes several contributions not agédgsreviously in the LPUE
literature, including our results relating to the case 0, to the estimation oft, and to
multiple testing.

We also note recent work by A. Smola [2009] describeckdive novelty detectionThis
work is presented as an extension of standard one-classfidason to a setting where a
reference measure (indicating regions where noveltiemare likely) is known through

a sample. In practice, the authors take this sample to betaroarated sample consisting
of both nominal and novel measurements, so the setting satine as ours. The emphasis
in this work is primarily on a new kernel method, whereas oorkiveatures a general
learning reduction and learning theoretic analysis.

Multiple testing The multiple testing problem is also concerned with theusiameous
detection of many potentially abnormal measurements @ieas rejected null hypothe-
ses). In Section 7, we discuss in detail the relation of oumtanmination model to the
random effects modeh standard model in multiple testing. We show how SSND is, in
several respects, a generalization of that model, and ticpkar includes directly several
different extensions proposed in the recent multiple ngdliterature. The SSND model,
and the results presented in this paper, are thus of paticelevance for multiple testing
as well, and suggest an interesting point of view to this domia particular, through a
reduction to classification, we introduce broad connestiorstatistical learning theory.



3 The fundamental reduction

To begin, we first consider the population version of the faat) where the distributions
are known completely. Recall thBx = (1 — )Py + 1P, is the distribution of unlabeled
test points. Adopting a hypothesis testing perspectiveamgee that the optimal tests
for Hy: X ~ Py vs. Hi: X ~ Py are identical to the optimal tests fbty : X ~ Py vs.
Hx : X ~ Px. The former are the tests we would like to have, and the latietests we
can estimate by treating the nominal and unlabeled samgliebaled training data for a
binary classification problem.

To offer some intuition, we first assume thgthas densityy, y = 0,1. According to the
Neyman-Pearson lemma [Lehmann, 1986], the optimal tektsiae (false positive rate)
o for Ho: X ~ Py vs. Hy : X ~ Py is given by thresholding the likelihood ratim(x) /ho(x)
at an appropriate value. Similarly, lettitg = (1 — 11)hg + 1h; denote the density d#,
the optimal tests foHp : X ~ Py vs. Hx : X ~ Px are given by thresholdinl (x) /ho(X).

Now notice (% hy(x)

X 1

ho () (1—m) +T[h0(x).
Thus, the likelihood ratios are related by a simple monotwaesformation, provided
1> 0. Furthermore, the two problems have the same null hypisth&serefore, by the
theory of uniformly most powerful tests [Lehmann, 1986k thptimal test of size for
one problem is also optimakith the same size, for the other problem. In other words,
we can discriminatéy from P; by discriminating between the nominal and unlabeled
distributions. Note the above argument does not requirevligudge ofrtother tharmt> 0.

The hypothesis testing perspective also sheds light omthective approach. In particu-
lar, estimating the nominal level sgt : hp(x) > A} is equivalent to thresholding/hp(x)
at 1/A. Thus, the density level set is an optimal decision rule joleyh; is constant on
the support ohp. This assumption tha® is uniform on the support d® is therefore
implicitly adopted by a majority of works on novelty detexsti

We now drop the requirement thag andP; have densities. Left : RY — {0,1} denote a
classifier. Foy = 0,1, let

Ry(f) :==R(f(X) #Y)
denote the false positive rate (FPR) and false negative F&R) of f, respectively. For
greater generality, suppose we restrict our attention toestixed set of classifierg

(possibly the set of all classifiers). The optimal FNR for asslfier of the clasg with
FPR<a,0<a<1,is

Ria(r) = inf Ru(f) ®
s.t. Ry(f) <a.
Similarly, introduce
Rx(f) = Px(f(X)=0)
= TR(f)+(1-m(1-Ro(f))



and let
Ria(#) = inf Rx(f) (2)
feg
s.t. Ro(f) <a.
In this paper we will always assume the following propenty@lving  , Po andPy) holds:

(A) Foranya € (0,1), there exists™ € # such thaRo(f*) = a andRy(f*) =Ry 4 (7).

Itis possible to ensure that this assumption is satisfieddfextends the clags to a larger
class containing randomized classifiers obtained by coowexbination of classifiers of
the original class. This construction is standard in theiker operating characteristic
(ROC) literature. Some basic results on this topic are redatl Appendix B in relation
to the above assumption.

By the following result, the optimal classifiers for probleifi3 and (2) are the same.
Furthermore, one direction of this equivalence also haldan approximate sense. In
particular, approximate solutions ¥Xo~ Py vs. X ~ Px translate to approximate solutions
for X ~ Py vs. X ~ P;. The following theorem constitutes our ma@arning reductionn
the sense of Beygelzimer et al. [2005]:

Theorem 1 Assume propertfA) is satisfied. Consider ary, 0<a <1, and assume>
0. If Ru(f) =Rj4(#) and R(f) = a, then K (f) = R; ,(# ). Conversely, if R(f) =
Ria(#),and R(f) <athen R(f) =Rj,(F)and R(f)=a.
More generally, let o (f,F) = Ry(f) — Ria(f) and Lx o(f,7) = Rx(f) — R;k(?a(f)
denote the excess losses (regrets) for the two problems, ssudrert > 0. If Ry(f) <
o +¢, then

Lia(f,7) < HLxa(f,7)+(1—10g).

Proof . For any classifief , we have the relatioRy (f) = (1 —1m)(1— Ro(f)) + Ry (f).
First considerf € 7 such thatRy(f) = R ,(#) andRo(f) = o, but assumdx(f) >
R (7). Letf’ € # such thaRx(f’) < Rx(f) andRy(f’) < a. Then sincat> 0,
Ru(f") =10* (Rx(f') — (1-1)(1—Ro(f)))
<1 (Rx(f)— (1-m)(1-a))
=Ruy(f),
contradicting minimality oRy ().
Conversely, lef € 7 be such thaRx (f) =R 4(F) andRo(f) <a, butassum&(f) >
Riq(7) or Ro(f) <a. Let f’ be such thaRo(f') = a andRy(f’) = Rj(¥) (whose
existence is ensured by assumpt{én). Then
Rx(f) = (1-m(l—a)+mRy(f)
< (1-m(1-Ro(f))+T1Ry(f)
Rx (f)
= R;F(,a(f)
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contradicting minimality ofRx(f). To prove the final statement, first note that we es-
tablishedRy (7 ) = TR; 4 (¥ ) + (1 —m)(1—a), by the first part of the theorem. By
subtraction we have

Lia(f.7) = 10 HLxalf,7)+(1-m(Ro(f) —a))

4 Statistical performance guarantees

Theorem 1 suggests that we may estimate the solution to ($plwng an “artificial”
binary classification problem, treating,...,Xn as one class angn,;1,...,Xmn as the
other. If a learning rule is consistent or achieves certates of convergence for the
Neyman-Pearson classification probleém- Py vs. X ~ Px [Cannon et al., 2002, Scott
and Nowak, 2005], then those properties will hold for the sd@arning rule viewed as a
solution toX ~ Py vs. X ~ Py. In other words, ifLx ,€ — O, thenL, 4 — O at the same
rate. Althoughrtwill not affect the rate of convergence, Theorem 1 suggésiissmallrt
makes the problem harder in practice, a difficulty which cdarore avoided.

As an illustrative example, we consider the case of a fixedfsgassifiersr having finite
VC-dimension [Vapnik, 1998] and consider

fr = arg minRx(f)
fer

s.t.Ro(f) <a+T,

whereR s the empirical version of the corresponding error qugnbiefine the precision

of a classifierf for classi asQi(f) = Pxy(Y =i|f(X) =i) (the higher the precision, the
better the performance). Then we have the following resutiding the difference of the
guantitiesR; andQ; to their optimal values over :

Theorem 2 Assume the nominal and unlabeled data are i.i.d. realizetiof their re-
spective distributions, and that the two samples are indegenof each other. Let be
a set of classifiers of VC-dimension V . Assume progé@)yis satisfied and denote by
f* the optimal classifier inf with respect to the criterion ifl). Fixing d > 0, define

& = \/w . There exist absolute constants’csuch that, if we choose= cep,

the following bounds hold with probability— d:

Ro(fr)—a < Cen; 3)
Ri(f) —Ru(f*) < 1t l(en+em) (4)

~

Qi(f*) —Qi(fr)

IN

m(smtam),izo,l. (5)
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The proof is given in Appendix A. The primary technical ingients in the proof are
Theorem 3 of Scott and Nowak [2005] and the learning redoatfoTheorem 1 above.
The above theorem shows that the procedure is consistéte the clasg for all criteria
considered, i.e., these quantities decrease (resp. sgraaymptotically to their value at
f*. This is in contrast to the statistical learning bounds jnesly obtained [Liu et al.,
2002, Thm. 2], which do not imply consistency.

Following Scott and Nowak [2005], by extending suitably engument and the method in
the spirit of structural risk minimization over a sequentelassesry having the universal

approximation property, we can conclude that this methashigersally consistent (i.e.

relevant quantities converge to their valuefat wheref* is the solution of (1) over the

set of all possible classifiers). Therefore, although texily simple, the reduction result
of Theorem 1 allows us to deduce stronger results than tlstixiones concerning this
problem. This can be paralleled with the result that indectiovelty detection can be
reduced to classification against uniform data [Steinwadl.e 2005], which made the
statistical learning study of that problem significantiynpier.

Itis interesting to note that the multiplicative constantront of the rate of convergence of
the precision criteria iB (f*(X) = i)~ rather tharnt* for Ry . In particularPy (f*(X) =

0) > (1-m(1—a), so that the convergence rate for class O precision is noifisigntly
affected ast— 0. SimilarlyPx(f*(X) =1) > (1—-ma, so the convergence rate for class
1 precision depends more crucially on the (knowrthan onrt.

Under an additional minor condition it is possible to shome(tletails are given at the end
of Appendix B) that under the constralR§(f) < a, the best attainable precision for class
Ointhe setr is attained byf = f*. Therefore, in (5)i(= 0), we are really comparing the
precision off; against the best possible class 0 precision given the FP&raant. On the
other hand, it does not make sense to consider the bestadimaiciass 1 precision under
an upper constraint oRy, since we can have bofy — 0 andQ, — 1 by only rejecting

a vanishingly small proportion of very sure novelties. Butan easily be seen th&t
realizes the best attainable class 1 precision undexdhalityconstraintRy(f) = a .

We emphasize that the above result is but one of many poshkibdeems that could be
deduced from the learning reduction; other results frommay-Pearson classification
could also be applied. We also remark that, although thaquevtheorem corresponds to
the semi-supervised setting, an analogous transducswgt is easily obtained by incor-
porating an additional uniform deviation bound relating #mpirical error rates on the
unlabeled data to the true error rates.

5 The caseat= 0and a hybrid method

The preceding analysis only applies when- 0. Whentt= 0, the learning reduction
Is trying to classify between two identical distributiorad the resulting decision rule
could be arbitrarily poor. In this situation, perhaps thstlvee can expect is to perform as
well as an inductive method. Therefore we ask the followingsiion: Can we devise a
method which, having no knowledge mf shares the properties of the learning reduction
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above whent > 0, and reduces to the inductive approach otherwise? Oureartsvihe
guestion is “yes” under fairly general conditions.

The intuition behind our approach is the following: As not=tlier, the inductive ap-
proach essentially performs density level set estimatidmerefore, level set estimation
can be achieved by generating an artificial uniform sampteparforming weighted bi-
nary classification against the nominal data. Thus, ourcambr is to sprinkle a vanish-
ingly small proportion of uniformly distributed data amotige unlabeled data. When
=0, the uniform points will influence the final decision rulet whentt > 0, they will
be swamped by the actual novelties.

To formalize this approach, letf p, < 1 be a sequence tending to zero. Assume3isit

a set which is known to contain the supporiRgf(obtained, e.g., through support estima-
tion), and letP, be the uniform distribution 0. Consider the following procedure: Let
k ~ binom(n, py). Drawk independent realizations froR, and redefin&m1, - . ., Xm+k

to be these values. (In practice, the uniform data would kirng appended to the unla-
beled data, so that information is not erased. The presenegdure, however, is slightly
simpler to analyze.)

The idea now is to apply the SSND learning reduction from feefo this modified un-
labeled data. Toward this end, we introduce the followintations. For simplicity, we
do not explicitly indicate the underlying clags. We refer to any data point that was
drawn from eithePy or P, as anoperativenovelty. The proportion of operative novelties
in the modified unlabeled sampleiis= 1(1— pn) + pn- The distribution of operative

novelties ish; := ™-P)p; - p, and the overall distribution of the modified unlabeled
data isPx := TP + (1 - T)Py. Let Ry, §7G,R1,R§7G,Rx, and RX.a be defined in terms
of P, Py, and Py, respectively, in analogy to the definitions in Section 3scAbenote

L27a(f) = Rz(f) — RE,O(’ |:170((f) = ﬁl(f) — ﬁia, andl:xﬂ = ﬁx(f) — ﬁ?(,a'
By applying Theorem 1 to the modified data, we immediately hatethat ifRy(f) <
o+ ¢, then

2([xa(1) +(1-7) = Z([xa() + L-T(A-pe).  (6)

By previously cited results on Neyman-Pearson classifioatiee quantities on the right-
hand side can be made arbitrarily smallhaandn grow. The following result translates
this bound to the kind of guarantee we are seeking.

Lia(f) <

Theorem 3 AssumdA) holds. Let f be a classifier withgRf ) < a +¢. If t= 0, then
Loa(f) < prt(Lxa(f) + (1 pn)e).
If t> O, then

1 ~
Lia(f) < m(LX,a(f)Jr(l—n)(l— Pn)€+ Pn)-

To interpret the first statement, note thag, (f) is the inductive regret. The bound implies
thatL, o (f) — O as long as both = Ry(f) —a andLx «(f) tend to zerdaster than p.
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This suggests taking, to be a sequence tending to zero slowly. The second statesnent
similar to the earlier result in Theorem 1, but with addiabfactors ofp,. These factors
suggest choosing, tending to zero rapidly, in contrast to the first statememingractice
some balance should be struck.

Proof If t=0, thenI:La = Lo and the first statement follows trivially from (6). To

prove the second statement, denf@ie= T[(—l;TTp—") and observe that

Ri = inf Ry(f
1,0 Ro(f)<a 1( )

— Ro(i?)fga[Ban(f)+(1_Bn)R2(f)]

< PRy +(1—Bn).

Therefore

—
=
Q
YaS
—
SN—

Ri(f) —Rigq

BaRa1(f) + (1 —Bn)Re(f) —BnRiq — (1—PBn)
Bn(Ru(f) —Ryq) — (1—Bn)
BoL1a(f)+(1—Bn)

(AVARAY

and we conclude
1- 1-—
Ll,a(f) < E'—l,a + Ban
1 -

1o (Dxa(H) + (L =10 (L= po)e+ pn)

IN

We remark that this hybrid procedure could be applied with@ror distribution on nov-
elties besides uniform. In addition, the hybrid approachl@¢@lso be practically useful
whenn is small, assuming the artificial points are appended to tifebeled sample.

6 Estimating tand testing fort=0

We now turn to estimating the proportionof novelties in the contaminated distribution
Px . For this purpose it should first be noted at this point thalheut additional assump-
tions, tis not an identifiable parameter in our model. To see thissicen the idealized
case where we have an infinite amount of nominal and contdedmata, so that we have
perfect knowledge oPy andPx. Assuming the decompositiofx = (1 — )Py + 1P,
holds, note that any alternate decomposition of the fBgm= (1 — 11— y)Po+ (TT+y)P; ,
with P = (1t4y) ~(mPy +yPo) , andy € [0,1— 11, is equally valid. Because the most im-
portant feature of the model is that we have no direct knogdeafP; , we cannot decide
which representation is the “correct” one; we could not egrcludea priori the case
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wheremt= 1 andP; = Px. The previous results established in Theorems 1-3 are valid
for whatever underlying representation is assumed to beecior For the estimation of
the proportion of novelties however, it makes sense to defixetheminimal proportion

of novelties that can explain the difference betw&randPx . First we introduce the
following definition:

Definition 4 Assume § P; are probability distribution functions on the spage We call
P, a proper novelty distributionvith respect to Rif there exists no decomposition of the
form B = (1—y)Q+ yPy where Q is some probability distribution ayd> 0.

This defines a proper novelty distributiét as one that cannot be confounded wWegh-
it cannot be represented as a (nontrivial) mixtur@®givith another distribution.

The next result establishes a canonical decompositioneotdmtaminated distribution
into a mixture of nominal data and proper novelties. As a eqasnce the proportion
1T of proper novelties, and therefore the proper novelty ithgtion Py itself, are well-
defined (i.e. identifiable) given the knowledge of the (adpit) nominal and contaminated
distributions.

Proposition 5 Assume §, Px are probability distributions on the space. Then there
is a uniquert” € [0,1] and R such that the decompositior P- (1 — 1) Py + 1Py holds,
and that R is a proper novelty distribution wrt.J2 moreover

T :=min{a € [0,1] : 3Q probability distribution: R = (1—a)Py+0aQ} .

The proof is given in Appendix A. From now on we assume thahdP; are the propor-
tion and distribution of proper novelties B with respect td .

6.1 Population case

We now want to relate the estimationmfo quantities previously introduced and problem
(1). We first treat the population case and optimal noveltgcen over the set of all
possible classifiers.

Theorem 6 For any classifier f, we have the inequality

Rx(f)
m>1-——r. 7
21T R (7)
Optimizing this bound over a set of classifiersunder the FPR constraintdRf) < a
yields for anya > O:
R;
> 1 Rxal?)
1-a
Furthermore, if¥ is a set of possibly randomized classifiers containing akdeinistic
classifiers,
R*
ne1- inf alZ)
acfo,) l1—a

(8)
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Proof For the first part, just write for any classifiér
1-Rx(f) = (f(X)=1)

= (1-mPy(f (X) 1) +1P(f(X) =1)

(1-mRo(f) +

resulting in the first inequality in the theorem. Under thexstoaintRy(f) < a, this

inequality then yields

IN

Rx(f) Rx(f)
m>1-—_>1— :
21 1—Ro(f)_1 1-a’
optimizing the bound under the constraint yields the sedoaguality.

We establish in Lemma 13 in Appendix A that for any O there exists a deterministic
classifierf such thatRy(f) <1 andRy(f)/(1—Ro(f)) <e. Puta = Rp(f); we then
have

Rxa(#) <Rx(f) = (1-m)(1-0)+1Ry(F),

implying
R;k( a(f) Rl(f)
>1- 2" >l —mZ ) > -
n>1 1 o 2 (1 1—Ro(f)>—n(1 £),
which establishes the last claim of the theorem. [ |

6.2 Distribution-free lower confidence bounds ort

In the last part of Theorem 6, if we assume that the function R} (7 )/(1—a) is
nonincreasing (a common regularity assumption; see App@&hfibr a discussion of how
this condition can always be ensured by considering pgssabldomized classifiers), then
o — R «(# ) is left differentiable atr = 1 and (8) reduces to

dRa(#)

=1-— .
n da a=1"

This suggests estimatinmgoy estimating the slope &% , (7 ) atits right endpoint (where
we recall thatr must contain at least all deterministic classifiers). Tls be related to
the problem of estimating a monotone density at its righpeit [Kulikov and Lopuhad,
2006, Langaas et al., 2005]. Rather than pursue this appteaeh however, we instead
employ learning-theoretic techniques to use (7) for deg\a lower confidence bound on
T

Theorem 7 Consider a classifier set for which we assume a uniform error bound of
the following form is available: for any distribution Q on, with probability at least
1— 0 over the draw of an i.i.d. sample of size n according to Q, weshav

Vier |Q(F(X)=1)—Q(f(X)=1)| <en(7,d), (9)



Whereé denotes the empirical distribution built on the sample.

Then the following quantity is a lower bound arwith probability at least(1 — &)% >
1-— 26 (over the draw of the nominal and unlabeled samples) :

L Rx(f)+&n
fer (1—Ro(f) —&m)+
where the ratio is formally defined to havhenever the denominator@s

T (F,0)=1

(10)

Note that if we definefy = arg min;., Rx(f) under the constrairi(f) < a, this can
be rewritten

(7,8 =1— inf Refa) +en
a€l0.1] (1 - Ro(fo) —€m)+

There are two balancing forces at play here. From the pdpolagersion, we know that
we would like to havex as close as possible to 1 for estimating the derivativé&of (7 )
ata = 1. This is balanced by the estimation error which makes esitims close tar = 1
unreliable because of the denominator. Taking the inf atbegurve takes in a sense the
best available tradeoff.

Proof As in the proof of the previous result, write for any classifie
Px(f(X) =1) < (1-mP(f(X) =1+,
from which we deduce after applying the uniform bound
1-Ru(f)—en = B(f(X)=1)—&

A~

< A1-m(Ro(f)+em)+,

which can be solved wheneverIRy(f) —&m > 0. [

The following result shows thai (¥ ,8), when suitably applied using a sequence of
classifier set1, o, ... that have a universal approximation property leads to agtyo
universally consistent estimate of the proportioof proper novelties. The proof is given
in Appendix A and relies on Theorem 7 in conjunction with thed@dCantelli lemma.

Theorem 8 Consider a sequencgs, #», ... of classifier sets having the following uni-
versal approximation property: for any measurable funeti : x — {0,1}, and any
distribution Q, we have

liminf inf Q(f(X) # *(X)) =0.

k—oo fegF,
Suppose also that each clagg has finite VC-dimensioncso that for eachry we have
a uniform confidence bound of the fo(8) for en( 7y, 8) = 3\/Vk'°g(”+#)"°gé/2 . Define

T (8) = suprt (7x, 0k ?) .
k
If 8= (mn)~—2, thenTt converges tatalmost surely as om — oo,
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6.3 There are no distribution-free upper bounds onrt

The lower confidence bounds (# ,8) andTi () are distribution-free in the sense that
they hold regardless &b, P; andrt. We now argue that distribution-free upper confidence
bounds do not generally exist.

We define adistribution-free upper confidence boundi™(3) to be a function of the
observed data such that, for ay, any proper novelty distributioR;, and anyrti< 1, we
haveTt" (8) > mtwith probability 1— & over the draw of the two samples.

We will show that such a universal upper bound does not exikss it is trivial. The
reason is that the novel distribution can be arbitrarilydrtardistinguish from the nominal
distribution. Looking at Section 6, this means that the slopthe straight line between
(a,Px(fg =1)) and(1,1) can be made arbitrarily close to one for very small values of
while its derivative att = 1 remains bounded away from one. We can detect with some
certainty that there is some proportion of novelties in thietaminated data (see Corollary
11 below), but we can never be sure that there are no noveltns situation is similar to

the philosophy of significance testing: one can never adbeptull hypothesis, but only
have insufficient evidence to reject it.

We will say that the nominal distributid®, is weakly diffuséf for any y > 0 there exists a
setA such that 6< Py(A) < y. We say an upper confidence boumd(d) is non-trivial if
there exists a weakly diffuse nominal distributiBs) a novelty distributiorP;, constants
> 0,0 > 0 such that

P(Tt"(8) < 1) >3,

where the probability is over the joint draw of nominal anehtzoninated samples. This
assumption demands that there is at least a specific settiagevthe upper bourm™ ()

is significantly different from the trivial bound 1, meanitigat it is bounded away from 1
with larger probability than its allowed probability of errd.

Theorem 9 There exists no distribution-free, non-trivial upper cdefice bound onm.

The proof appears in Appendix A. The non-triviality assuimpts quite weak and rel-
atively intuitive. The only not directly intuitive assuniq is thatPy should be weakly
diffuse, which is satisfied for all distributions having antiouous part. This assumption
effectively excludes finite state spaces. We believe it ssiide to obtain a non-trivial
upper confidence bound anon a finite state space.

Corollary 10 The rate of convergence of any distribution-free lower botindowards
Ttcan be arbitrarily slow.

Proof If there was a universally valid upper boudg¢lon the convergence rateaf , then
T + On would be a distribution-free upper confidence boundton |

To achieve some prescribed rate of convergence, some assnspn the generating
distributions must be made. This parallels the estimatf@éheBayes risk in classification
[Devroye, 1982].
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6.4 Testing forrt=0

The lower confidence bound amcan also be used as a test for= 0, i.e., a test for
whether there are any novelties in the test data:

Corollary 11 Let ¥ be a set of classifiers. fi (7 ,d) > 0, then we may conclude, with
confidencd — 9, that the unlabeled sample contains novelties.

It is worth noting that testing this hypothesis is equivalentesting if Py and Px are
the same distribution, which is the classical two-sampleblgm in an arbitrary input
space. This problem has recently generated attention im#ohine learning community
[Gretton et al., 2007], and the approach proposed hereg ashitrary classifiers, seems
to be new. Our confidence bound could of course also be usestithe more general
hypothesigt < 1 for a prescribedp, 0<H < 1.

Note that, by definition oft (¥ ,d), testing the hypothesis = 0 using the above lower
confidence bound fort is equivalent to searching the classifier spacéor a classifier
f such that the proportions of predictions of 0 and 1 fbdiffer on the two samples
in a statistically significant manner. Namely, for a classifi belonging to a clasg for
which we have a uniform bound of the form (9), we have the IdveemdPx (f(X) =1) >

P (f(X) = 1) —¢&, and the upper bourieh(f (X) = 1) < Po(f(X) = 1) +&m (both bounds
valid simultaneously with probability at least-10). If the difference of the bounds is
positive we conclude that we must hde=~ Py, hencert> 0. This difference is precisely
what appears in the numerator @f (7 ,0) in (10). Furthermore, if this numerator is
positive then so is the denominator since it is always largethe endt (7 ,0) > 0 is
equivalent to

sup ((P((X) = 1) &) = (Ro((X) = 1) +&m) ) > 0.
fer

7 Relationship between SSND and multiple testing

In this section, we show how SSND offers powerful generétizes of the standarg-
value approach to multiple testing under the widely useddoan effects” model, as
considered for example by Efron et al. [2001].

7.1 Multiple testing under the random effects model

In the multiple testing framework, a finite familyHi, ..., Hk) of null hypotheses to test
is fixed; from the observation of some ddaa decisiorD(H;, X) € {0, 1} must be taken
for each hypothesis, namely whether (given the data) hysidhl; is deemed to be false
(D(H;,X) = 1, hypothesis rejected) or tru®(H;,X) = 0, hypothesis not rejected). A
typical exemplary application domain is that of microardaya analysis, where each null
hypothesisH; corresponds to the absence of a difference in expressiefslef gend
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in a comparison between two experimental situations. Actegenull hypothesis then
indicates such a differential expression for a specific gané is called aiscovery(since
differentially expressed genes are those of interest). évew the number of null hy-
potheses to test is very large, for examidle- 4.10% in the gene expression analysis, and
the probability of rejecting by chance a null hypothesis nngsstrictly controlled.

In the standard setting for multiple testing, it is assunied & testing statistiz;(X) € R
has been fixed for each null hypothebis, and that its marginal distribution is known
whenH; is true. This statistic can then be normalized (e.g. by mam®transform) to
take the form of gp-value A p-value is a functionp;(X) of the data such that, if the
corresponding null hypothests; is true, thenp;(X) has a uniform marginal distribution
on [0,1]. In this setting, it is expected that the rejection decisibriH;, X) are taken
based on the observgrvalues(ps,..., px) rather than on the raw data. In fact, in most
cases it is assumed that the decisions take the B, X) = 1,<%: whereT is a data-
dependent threshold. Further, simplifying distributibaasumptions on the family of
p-values are often posited. A common distribution modelechthndom effectassumes
that the veracity of hypothesi4 is governed by an underlying latent variabjend reads
as follows:

e the variabledy € {0,1}, 1 <i <K are i.i.d. Bernoulli with parametet

¢ the variableg; are independent, and conditionally(tw, ..., hk) have distribution

_ Uniform[0,1], ifh=0
PP if by =1.
Under the random effects model, tipevalues thus follow a mixture distributiofil —
mU [0, 1] 4+ 1P, on the interval0,1] and can be seen as a contaminated sample, while
the variabledh; play the role of the unknown labels. It should now be cleat tha
above model is in fact apecificationof the SSND model, with the following additional
assumptions:

1. The observation space is the interf@ll];

2. The nominal distributiof is known to be exactly uniform of®, 1] (equivalently,
the nominal distribution is uniform and the nominal samps nfinite size)

3. The class of novelty detectors considered is the setefials of the fornjo,t],t €
[0,1].

Therefore, the results developed in this paper can applyadaniore restricted setting
of multiple testing under the random effects model as wellparticular, the estimator

Tt (7 ,0) developed in Section 6, when specified under the above additconditions,
recovers the methodology of non-asymptotic estimation-eftwhich was developed by
Genovese and Wasserman [2004], Section 3, and our notionjeépnovelty distribution
recovers their notion gburity in that setting (and has somewhat more generality, since

they assume®; to have a density).
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There are several interesting benefits in considering ferpiirpose of multiple testing
the more general SSND model developed here. First, it camtealistic in practice to
assume that the distribution of tlevalues is known exactly under each one of the null
hypotheses: instead, only assuming the knowledge of earafersample under controlled
experimental conditions as in the SSND model is often moadistec. Secondly, the
restriction to decision sets of the forfip; <t} can also be questionable. For a single
test, decision regions of this form are optimal (in the NegrR&arson sense) only if the
likelihood ratio of the alternative to the null is decreagimvhich amounts to assuming
that the alternative distributio®, has a decreasing density.

This assumption has been criticized in some recent workmflg example of a situation
where this assumption fails is in the frameworkzadr t-tests, i.e., the null distribution
of the statistic (before rescaling infpvalues) is a standard Gaussian or a Student
distribution, and the correspondirmgvalue function is the usual one- or two-sided
value. If the alternative distributioR; is a mixture of Gaussians (resp. of noncentral
t distributions), optimal rejection regions for the origissatistic are in general a finite
union of disjoint intervals and do not correspond to leves sé# the p-values. In order
to counter this type of problem, Sun and Cai [2007] suggesstionate from the data
the alternate density and the proportion of true null hyps#s, and use these estimates
directly in a plug-in likelihood ratio based test. Chi [20@&velops a procedure based on
growing rejection intervals around a finite number of fixedtcol points in[0, 1] . In both
cases, an asymptotic theory is developed. Both of thesequoeg are more flexible than
using only rejection intervals of the forf,t] and aim at adaptivity with respect to the
alternative distributiorP;. Finally, the remaining restriction that effective obssrons
(the p-values) belong to the unit interval was also put into queshy Chi [2008], who
considered a setting of multidimensiorabalues belonging t¢0,1]9. The distribution
was still assumed to be uniform under the correspondinghwdbthesis, although this
seems an even less realistic assumption than in dimensenrothis framework, the use
of a reference “nominal” sample under the null distributs@@ms even more relevant.

The framework developed in the present paper allows to cavence these different
types of extensions rather naturally by just consideringleer classr of candidate clas-
sifiers (or equivalently in this setting, rejection regiprad provides a non-asymptotical
analysis of their behavior using classical learning thicaketools such as VC inequal-
ities. Furthermore, such non-asymptotic inequalities @lao give rise to adaptive and
consistent model selection for the set of classifiers usiegstructural risk minimization
principle, a topic that was not addressed previously foetttensions mentioned above.

7.2 SSND with controlled FDR

One remaining important difference between the SSND sgge#tindied here and that of
multiple testing is that our main optimization problem (4)under a false positive rate
constraintRy(f) < a, while most recent work on multiple testing generally impos
constraint on the false discovery rate (FDR) instead. If weoteePosf) = Py (f(X) = 1)
and FRf) = Py(f(X) = 1,Y = 0) the proportion of reported novelties and the proportion
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of false discoveries on the contaminated sample, resggtiien the false discovery pro-
portion (FDP) is defined as FDP) = Pog f) /FP(f) (taken to be zero if the denominator
vanishes), and the FDR is defined as KDR= E[FDP(f)]. Some classical variations of
this quantity are the positive FDR, pFDR = E[FDP(f)|Pog f) > 0] and the marginal
FDR, mFDR f) = E[FP(f)]/E[Pog f)]. Under the mixture contamination model, it can
be checked that pFDR) = mFDR(f) = Pxy(Y = 0|f(X) = 1) [Storey, 2003], hence
also equal to one minus the precision for class 1 (as defindigrea Section 4). The
following result states explicit empirical bounds on thgsantities:

Proposition 12 Consider a classifier set for which we assume uniform error bound of
the following form is available: for any distribution Q on x {0,1} , with probability at
leastl — & over the draw of an i.i.d. sample of size n according to Q, both

vier |QUX)=1)-QU(X) =1)| <en(r.9). (11)

and
Vies )Q(f(X) —1,Y =0)—O(f(X) = 1,Y:O)‘ <en(7,5), (12)

hold, where@ denotes the empirical distribution built on the sample.

Then the following inequalities hold with probability at leéds — )2 > 1 — 25 (over the
draw of the nominal and unlabeled samples) :

< (Ro(f) +&m)(L—Tr (7 ,3))

Vf e s mFDR(f)=Px(Y=0X=1) (1—Rx(f) —&n)+

)

and R
(Ro(f) +&m)(1—TC (7 ,9)) +¢n

vfeF FDP(f) < =R

Y

whereTt (¥ ,0) is defined in(10).

Note that equations (11) (12) holds as before wjfy ,d) = cy/ \M when# has
VC dimensiorV . In the interest of simplicity, we use the same boggqtbr both uniform
error assumptions. Separate bounds could also be adofitedng (11) to be slightly
tighter. We also remark that since FDP is an empirical gtiabéised on the contaminated
sample, the second bound is in fadtansductivebound rather than semi-supervised.

Proof The mFDR can be rewritten as mFDR = Po(f (X) = 1|Y = 0)Pxy(Y =0)/Px(f(X) =
1) = Ro(f)(1—m)/(1—Rx(f)); in this expression we can plug in the lower bound for
mtof Theorem 7 and uniform bounds fBp( f) andRx (f) coming from assumption (11).
The FDP can be written as FDP = Py (f(X) = 1,Y = 0)/(1—Rx(f)). Using as-
sumption (12), the numerator can be upper bounde®y f(X) = 1Y =0) + ¢, =
Ro(f)(1—1) +¢€n, and we can then use the same reasoning as for the first part. &
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Similarly to what was proposed in Section 4 under the falsstpe rate constraint, we
can in this context consider to maximigg (f) over f € # subject to the constraint that
the above empirical bound on the mFDR or FDP is less thaifihis can then be suitably
extended to a sequence of clasggs While a full study of the resulting procedure is
out of the scope of the present paper, we want to point outntipeitant difference that
the mFDR is necessarily lower bounded byinfPxy(Y = O|X = Xx) which is generally
strictly positive. Hence, the required constraint may retdrlizable ifa is smaller than
this lower bound, in which case the empirical procedure khaiurn a failure statement
with probability one as1 — . A similar approach was also introduced recently by Scott
et al. [2009], but under the stronger requirement that exbekamples fronboth classes
are available.

Practical example.As a typical setting for multiple testing, assume that theesbation
spacex is the real line, and that the reference distributi®ns exactly known to be a
standard Gaussian. Then probability of events urideran be computed exactly, and
we can takeem = 0 in the previous bounds. Consider the ggtof rejection regions
(classifiers) made of a disjoint union of at mésntervals. Therngy has VC dimension
2k . To compute the relevant quantities such as the bauridy, 8) , and the above bounds
on the mFDR or the FDP, it is sufficient to consider intervaithwndpoints belonging to
{X1,..., %} . Furthermore, for all calculations it is sufficient to knder each possible
fixed value ofRx , what is the classifier achieving the lowest valueRgt This can be
accomplished using dynamic programming in timgn®) .

8 Experiments

Despite previous work on learning with positive and unladedxamples (LPUE), as dis-
cussed in Section 2, the efficacy of our proposed learningctexh has not been em-
pirically demonstrated. To assess the impact of unlabesgd dn novelty detection,
we applied our framework to some datasets which are commochbgarks for binary
classification. The first 13 datasets [Muller et al., 2008 momhttp://ida.first.

f hg. de/ proj ect s/ bench/ and the last five datasets [Chang and Lin, 2001] are from
http://ww. csie.ntu.edu.tw ~cjlin/libsvntools/datasets/.

Each dataset consists of both positive and negative examplethermore, each dataset
is replicated 100 times (except for image and splice, whielreplicated 20 times), with
each copy corresponding to a different random partitiomirig training and test exam-
ples. All numerical results for a dataset were obtained lgyaying across all partitions.
The negative examples from the training set were taken ta the nominal sample, and
the positive training examples were not used at all in theegrpents. The datasets are
summarized in Table 1. Heyain and Neest are the size'sof the training and test sets,
respectively, whilemyaseis the proportion of positive examples in the combined train
ing and test data. Thus, the average (across permutationsnal sample sizen is

(1 — Thase Nrrain-

1The web and adult datasets were subsampled owing to thgér $ze.
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Data set dim  Nrain  Nest Thase

banana 2 400 4900 0.45
breast-cancer 9 200 77 0.29
diabetes 8 468 300 0.35
flare-solar 9 666 400 0.55
german 20 700 300 0.30
heart 13 170 100 0.44
ringnorm 20 400 7000 0.50
thyroid 5 140 75 0.30
titanic 3 150 2051 0.32
twonorm 20 400 7000 0.50
waveform 21 400 4600 0.33
image 18 1300 1010 0.57
splice 60 1000 2175 0.48
ionosphere 34 251 100 0.64
mushrooms | 112 4124 4000 0.48
sonar 60 108 100 0.47
adult 123 3000 3000 0.24
web 300 3000 3000 0.03

Table 1: Description of data setdim is the number of features, amdain and Neest are
the numbers of training and test examplégaseis the proportion of positive examples
(novelties) in the combined training and test data. Thuesatierage (across permutations)
nominal sample sizeis (1 — Thase Nirain-

8.1 Experimental setup

We evaluated our methodology in two learning paradigms,paring five learning meth-
ods across several values mf The two learning paradigms are semi-supervised and
transductive. For semi-supervised learning, the test wata divided into two halves.
The first half was used as the contaminated, unlabeled dhtasdcond half was used as
an independent sample of contaminated data, not used iedheihg stage, but only for
independent evaluation of classifiers returned by eachadethn particular, the second
half of the test data was used to estimate the area under t8g(RQC) of each method.
Here, the ROC is the one which views as the null distribution anB, as the alternative.
For transductive learning, the entire test set was treagdtieaunlabeled data, and was
also used for evaluating the AUC.

The learning methods are the inductive approach, our peaptesarning reduction, and
three versions of the hybrid approach. The three hybridespond tgp, = 1.0,0.5,0.1,

in which a uniform sample of size 1pg% of the unlabeled sample sizeagpendedo the
unlabeled data. We emphasize that each algorithm was inepieah in the same way in
the two learning paradigms; the only differences are the gizhe contaminated sample,
and how they are evaluated.

We implemented the inductive novelty detector using a tiokeed kernel density esti-
mate (KDE) with Gaussian kernel, and SSND using a plug-in Kil#ssifier. (To alle-
viate concerns that our inductive implementation is inadég, we also tested the one-
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class support vector machine [Scholkopf et al., 2001] iressvexperimental settings,
and found its performance to be very similar.) For each classngle kernel bandwidth
parameter was employed, and optimized by maximizing a erakdation estimate of the
AUC. This ROC is different from the one used to evaluate thehoud (see above). In
particular, it still viewsPy as the null distribution, but now the alternative distribatis
taken to be the uniform distributioR, for the inductive detector (see Section 5; effec-
tively we use a uniform random sample of sizén place of the unlabeled datd)y for
SSND, and the appropriafk for the hybrid methods (see Section 5). Thus, the test label
information was not used at any stage (prior to validatignaioy of the methods.

We also compared the learning methods for several valugs dfor semi-supervised
learning, we examinett = 0.5,1= 0.2, 1= 0.1, andrt= 0.0. For transductive learning,
we examinedt= 0.5,11= 0.2, andrt= 0.1. The caseat= 0.0 cannot be evaluated in the
transductive paradigm because there are no positive egeampthe unlabeled data. For
each value oft, we discarded just enough examples (either negative otiy@sso that
the desired proportion was achieved in the contaminateal débte that the number of
positive examples (novelties) in the contaminated sampladcbe very small. For the
smallest datasets, in the semi-supervised setting and whef.1, this number is less
than 10.

8.2 Statistical summaries and methodology

The complete results are summarized in Tables 2 throughldeda and 3 show the aver-
age AUC for each dataset and experimental setting, for thé-sepervised and transduc-
tive paradigms respectively. The inductive method is letdéhd. Our learning reduction
is labeled SSND or TND depending on the setting. The hybrithods are labeled Hbj

in Tables 2-3, and Hybrigh) in Tables 4-5.

We followed the methodology of DemsSar [2006] for comparifgpathms across multi-
ple datasets. For each dataset and each experimentad séiBralgorithms were ranked
1 (best) through 5 (worst) based on AUC. The Friedman test wed to determine, for
each experimental setting, whether there was a significiatehce in the average ranks
of the five algorithms across the datasets. The average astksvalues are reported in
Tables 4 and 5. The results indicate that there is a signtfdiéfierence among the algo-
rithms at the 0.1 significance level for all settings, witk #xception of the transductive
setting whermt=0.1.

When the Friedman test resulted in significant differences ttven performed a post-
hoc Nemenyi test to assess when there was a significantatitferbetween individual

algorithms. For a five algorithm experiment on 18 dataseit$) avsignificance level of

0.1, the critical difference for the Nemenyi test is 1.30. Tisatvhen the average ranks of
two algorithms differ by more than 1.30, their performanceeemed to be significantly
different.
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dataset n=0.5 n=0.2

Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)
banana 0.924 0.939 0931 0.933 0.9360.924 0915 0.924 0.923 0.921
breast-cancer 0.654 0.643 0.675 0.669 0.66(0.654 0.557 0.657 0.648 0.621
diabetes 0.744 0.782 0.770 0.772 0.7760.744 0.684 0.724 0.727 0.717
flare-solar 0.674 0.661 0.664 0.660 0.66R0.674 0.629 0.641 0.643 0.642
german 0.628 0.703 0.693 0.696 0.7040.628 0.582 0.633 0.632 0.636
heart 0.793 0.854 0.845 0.853 0.8510.793 0.690 0.805 0.789 0.745
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.992 0990 0.991 0.983
thyroid 0.985 0.966 0.964 0.967 0.9550.985 0.889 0.929 0.940 0.943
titanic 0.628 0.643 0.636 0.644 0.6430.628 0.612 0.636 0.634 0.628
twonorm 0.915 0.993 0.989 0.989 0.9900.915 0.940 0.961 0.958 0.953
waveform 0.761 0.958 0.952 0.945 0.9560.761 0.839 0.848 0.896 0.901
image 0.818 0.939 0.929 0.935 0.9390.818 0.892 0.874 0.879 0.875
splice 0.415 0.935 0.905 0.921 0.93R0.415 0.702 0.613 0.764 0.785
ionosphere | 0.256 0.926 0.839 0.921 0.92p0.256 0.695 0.475 0.607 0.704
mushrooms | 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999
sonar 0.688 0.752 0.757 0.764 0.7640.688 0.595 0.682 0.683 0.646
adult 0.605 0.872 0.872 0.864 0.8350.605 0.705 0.720 0.829 0.720
web 0.462 0.778 0.749 0.697 0.7880.462 0.616 0.631 0.585 0.674
dataset n=0.1 =0.0

Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)
banana 0.924 0.891 0.922 0.919 0.91830.924 0540 0919 0.905 0.785
breast-cancer 0.654 0515 0.643 0.633 0.5750.654 0.556 0.640 0.628 0.568
diabetes 0.744 0.605 0.699 0.700 0.6920.744 0.494 0.689 0.669 0.657
flare-solar 0.674 0.571 0.624 0.629 0.6260.674 0.471 0.613 0.603 0.611
german 0.628 0.548 0.623 0.624 0.60R0.628 0.522 0.595 0.608 0.592
heart 0.793 0.593 0.778 0.776 0.6880.793 0.506 0.759 0.750 0.620
ringnorm 0.999 0.984 0.981 0.986 0.9910.999 0478 0958 0.978 0.985
thyroid 0.985 0.786 0.884 0.906 0.8950.985 0590 0.852 0.869 0.795
titanic 0.628 0.591 0.632 0.634 0.6210.628 0.443 0.630 0.628 0.572
twonorm 0.915 0.931 0.945 0.934 0.9230.915 0.480 0.894 0.879 0.860
waveform 0.761 0.801 0.815 0.822 0.8060.761 0.487 0.736 0.727 0.705
image 0.818 0.769 0.824 0.836 0.8510.818 0.431 0.634 0.696 0.780
splice 0.415 0.630 0.518 0584 0.6250.415 0.523 0.447 0.493 0.493
ionosphere | 0.256 0.618 0.438 0.488 0.5750.256 0.520 0.392 0.431 0.486
mushrooms | 0.945 0.995 0.992 0.998 0.9960.945 0566 0.972 0.980 0.982
sonar 0.688 0.556 0.658 0.652 0.6150.688 0.510 0.628 0.643 0.587
adult 0.605 0.627 0.659 0.666 0.6260.605 0505 0558 0.556 0.572
web 0.462 0.554 0.584 0544 0.6110.462 0557 0553 0.523 0.564

Table 2: AUC values for five novelty detection algorithmshe semi-supervised setting.
'H’ indicates a hybrid method.
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dataset m=0.5 n=0.2

Ind. TND H(1.0) H(0.5) H(0.1)] Ind. TND H(1.0) H(0.5) H(0.1)
banana 0.924 0.938 0.931 0.932 0.9350.924 0.915 0.923 0.923 0.919
breast-cancer 0.663 0.673 0.662 0.662 0.6700.663 0.615 0.649 0.659 0.630
diabetes 0.742 0.784 0.776 0.779 0.7880.742 0.708 0.728 0.725 0.727
flare-solar 0.673 0.686 0.683 0.684 0.6840.673 0.661 0.658 0.662 0.666
german 0.633 0.739 0.709 0.711 0.7140.633 0.617 0.632 0.637 0.636
heart 0.796 0.869 0.856 0.856 0.8640.796 0.716 0.811 0.794 0.788
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.993 0.989 0.991 0.983
thyroid 0.984 0976 0.978 0979 0.9740.984 0.957 0.962 0.955 0.962
titanic 0.629 0.667 0.646 0.658 0.66[10.629 0.642 0.641 0.658 0.645
twonorm 0.915 0.993 0.990 0.990 0.9900.915 0.940 0.961 0.961 0.956
waveform 0.771 0.960 0.953 0.947 0.9570.771 0.847 0.850 0.900 0.905
image 0.845 0.955 0.949 0949 0.9530.845 0.897 0.889 0.891 0.901
splice 0.416 0.941 0.913 0.930 0.9390.416 0.716 0.623 0.769 0.820
ionosphere | 0.254 0.953 0.844 0.931 0.95R0.254 0.714 0.413 0.633 0.746
mushrooms | 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999
sonar 0.683 0.757 0.767 0.778 0.7810.683 0.615 0.678 0.683 0.662
adult 0.606 0.875 0.873 0.865 0.8350.606 0.687 0.736 0.847 0.739
web 0.464 0.810 0.758 0.727 0.7880.464 0.644 0.639 0.590 0.667
dataset n=0.1

Ind. TND H(1.0) H(0.5) H(0.1)
banana 0.924 0.896 0.921 0.920 0.91D
breast-cancer 0.663 0.564 0.687 0.642 0.598
diabetes 0.742 0.658 0.720 0.709 0.698
flare-solar 0.673 0.615 0.655 0.643 0.659
german 0.633 0.556 0.615 0.616 0.61pH
heart 0.796 0.626 0.792 0.784 0.729
ringnorm 0.999 0.985 0.973 0.986 0.99p
thyroid 0.984 0910 0.970 0.955 0.932
titanic 0.629 0.603 0.643 0.642 0.62p
twonorm 0.915 0.933 0.943 0.937 0.928
waveform 0.771 0.813 0.821 0.823 0.808
image 0.845 0.888 0.870 0.871 0.88D
splice 0.416 0.630 0.554 0.553 0.64D
ionosphere | 0.254 0.589 0.349 0.443 0.55p
mushrooms | 0.945 0.996 0.994 0.997 0.99)
sonar 0.683 0.514 0.646 0.655 0.59p
adult 0.606 0.658 0.681 0.684 0.629
web 0.464 0567 0.573 0538 0.604

Table 3: AUC values for five novelty detection algorithmshe transductive setting. 'H’
indicates a hybrid method.
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m | Inductive SSND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value

0.0 1.89 4.39 2.72 2.89 3.11 0.000
0.1 2.83 4.00 2.83 2.28 3.06 0.023
0.2 3.28 3.83 2.61 2.56 2.72 0.071
0.5 4.28 1.94 3.44 3.00 2.33 0.000

Table 4: The comparison of average ranks of the five algostimthe semi-supervised
setting, by the Friedman test. The critical difference efplost-hoc Nemenyi test is3D
at a confidence level = 0.1.

T | Inductive TND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value

0.1 2.94 3.78 2.56 2.67 3.06 0.157
0.2 3.17 3.78 3.06 2.50 2.50 0.085
0.5 4.44 1.44 3.56 3.17 2.39 0.000

Table 5: The comparison of average ranks of the five algogthmthe transductive set-
ting, by the Friedman test. The critical difference of thetpooc Nemenyi test is.20 at
a confidence levet = 0.1.

8.3 Analysis of results

From the results presented in Tables 2-5, we draw the fatigwonclusions.

1. The average ranks in Tables 4-5 conform to our expectiiomnmany respects.
SSND/TND outrank the inductive approach whees: 0.5, and inductive outranks
semi-supervised whem= 0.0. At the intermediate valugs= 0.1 and 02, hybrid
methods achieve the best ranking.

2. The average ranks also reveal that the performance ofythedhmethods vary
according to the value at. As Ttincreases, the best performing hybrid has a cor-
respondingly smaller amount of auxiliary uniform data apged to the unlabeled
sample. This also conforms to our expectations.

3. All tables indicate that the proposed methodology pemfobetter in the transduc-
tive setting than the semi-supervised setting. A likelysoais that, in our experi-
mental setup, TND sees twice as much unlabeled data as SSND.

4. Whentt= 0.0 in the semi-supervised experiments, SSND typically has\d@
around 0.5, which corresponds to random guessing. Thissskese, because it is
essentially trying to classify between two realizationghef nominal distribution.
From Tables 2 and 4 we see that the hybrid methods clearlyowepupon SSND
whentt= 0.0.

5. For some datasets (splice, ionosphere, web), the invgutiethod does worse than
random guessing, but our methods do not. In each case, obhodseyield dramatic
increases in AUC.

6. The benefits of unlabeled data increase with dimensiompatticular, SSND and
TND tend to perform much better relative to the inductiverapgh on datasets of
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dimension at least 18. This is especially evident in the sedwlf of the datasets,
which even show significant gains far= 0.1. This trend suggests that as dimen-
sion increases, the assumption implicit in the inductiverapch (that novelties are
uniform where they overlap the support of the nominal disition) breaks down.

Figure 1 depicts a sampling of results comparing the inde&hd semi-supervised meth-
ods, and highlights the impact of dimension. The top graphwshROCs for a two-
dimensional dataset where the two classes are fairly welirs¢ed, meaning the novelties
lie in the tails of the nominal class, amd= 0.5. Not surprisingly, the inductive method

is close to the semi-supervised method. The middle graplesepts the 60-dimensional
splice dataset, where the inductive method does worse #ratom guessing, yet SSND
does quite well. The bottom graph in Figure 1 shows the redaitthe 21-dimensional
waveform data fomt= 0.1. Here the assumptions of the inductive approach are also
evidently violated to some degree.

9 Conclusions

We have shown that semi-supervised novelty detection estiiacNeyman-Pearson clas-
sification. This allows us to leverage known performanceaguiges for NP classification
algorithms, and to import practical algorithms. We haveliggptechniques from statis-
tical learning theory, such as uniform deviation inequeditto establish distribution free
performance guarantees for SSND, as well as a lower boundarsilstent estimator for
11, and test forrr= 0. Our approach optimally adapts to the unknown noveltyridist
tion, unlike inductive approaches, which operate as if ftegeare uniformly distributed.
We also introduced a hybrid method that has the properti&SHND whenmt > 0, and
effectively reverts to the inductive method wheg- 0.

Our analysis strongly suggests that in novelty detectiofike traditional binary classi-
fication, unlabeled data are essential for attaining optpeeformance in terms of tight
bounds, consistency, and rates of convergence. In an @&demgerimental study, we
found that the advantages of our approach are most pronduncéiigh dimensional
data. Our analysis and experiments confirm some challehgése¢em to be intrinsic to
the SSND problem. In particular, SSND is more difficult foradiar . Furthermore,
estimating the novelty proportion can become arbitrarily difficult as the nominal and
novel distributions become increasingly similar.

Our methodology also provides general solutions to two -steitlied problems in hy-
pothesis testing. First, our lower bound mrranslates immediately to a test far= 0,
which amounts to a distribution-free solution to the twoagée problem. Second, we also
show that SSND provides a powerful generalization of stechdaultiple testing. Impor-
tant problems for future work will include developing priael methodologies for these
problems based on our theoretical framework.
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Figure 1: lllustrative results from the semi-supervisettirsg. Top: In the 2-dimensional
banana data, the two classes are well separated, and thativedapproach fares well.
Middle: In the 60-dimensional splice data, the inductiveraach does worse than ran-
dom guessing. Bottom: In the 21-dimensional waveform datbeled data still offer
gains whenrtis small (here ).
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Appendix A: Proofs

Proof of Theorem 2

For the first two claims of the theorem, we directly apply Tiezo 3 of Scott and Nowak
[2005] to the problem of NP classification Bf versusPx , and obtain that for a suitable
choice of constants, ¢’ we have with probability at least-19:

-~

Ro(fr) —a < cen; Rx(ﬂ) —Rx(f*) < den.

From this, we deduce (3)-(4) by application of Theorem 1.

For the second claim, by application of Bayes’ rule we havafuor classifierf :

(1-m(1-Ro(f)) (1-m(1-Ro(f))

PO =" =0~ mR(1)+ 1-(L—Ra(D)
and
Ql(f): T[(l_Rl(f)) _ T[(]-_Rl(f))
P(f(X)=1) (1-mRo(f)+1(1—Ry(f))
Note that fora,b > 0 the function(x,y) € [0,1] x R} — byi(;(_l’i)x) is decreasing in both

variables. Hence, using (3)-(4) and the fact tRdff ) € [0,1], we derive a lower bound
on Qp( fr) as follows:

a (1-m(1—Ro(fr))
Ol = )T (- R(R)
- (1-m(1—oa—Cen)y
~ TRy (f*)+ 't i(en+€m)) + (1 —m)(1— Ro(f*) —C'en)+
(1-m(l-a) c(1—men
= (P (X) =0)+Cem+TEn)  Px(F*(X)=0)
(1-m(1l-a)—c(1-mey (1—m(1—0a)c(em+TEn)
Px(f(X) =0) - Px(f*(X) =0)?
« C'(&n+E&m)
=@ =B -0)

In the first inequality(.), denotes the positive part. The second is elementary. In the

third inequality we used the fact that the functigpnd — g(d) = B—’ia is convex forA, B, 6

positive and has derivativeA/B? in zero, so thaty(8) > § — 3% , with A= (1—mm)(1—
a),B=Px(f*(X) =0),0=c(em+TEn) . Inthe last inequality we used (with the same
definition forA, B) that4 = Qo(f*) < 1.

>
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The treatment foQ); is very similar. We have

o T(1— Ry(f))
Qu(f) = (1—T)Ry(f) + (1 — Ry(T))
- (1 —Ry(f*) —cmrl(en+em))s
= (1—m)(a+Cen) +T(1—Ry(T*) — T L(en+€m)+)

(11— Ry(f*)) . c(en+€m)
= B(F(X) = 1) ‘m'“(l’ P (F*(X) = 1>—d<an+em>>
. 2] (en+em)

we introduced the mifi,...) operation sinces(f;) > 0 and in the last inequality we
used the fact that m{i,x/(1—x)) < 2xfor x> 0 (withx = ¢/ (en+&m) /Px (f*(X) =1)).

Proof of Proposition 5

Consider the Lebesgue decompositin= P{ -+ P¢ with P2 < Py (i.e. P is absolutely
continuous with respect ) andPy L PY (i.e. P¢ andPy are mutually singular) . Let
f = dPQ/dPo and a be the essential infimum of wrt Pp. We claim thatt* = 1 — a.
Certainly we have the valid decomposition

Pc=aR+(1-aP, Pui=((1-a)}((f-aR+Pt)),

sothatt* < 1—a.

By definition of singular measures there exists a measureblzsuch thaPy(D) = 1 and
P¢(D) =0. Fixe > 0; by definition of the essential infimum there exists a messier
setC such that?(C) > 0 andf < a+¢€ Py-a.s. onC. PutA=CnD. ThenPy(A) =
Po(C) > 0. Furthermore

Pi(A)  Ex~p [(f —a)1xea
Po(A) Po(A) -

Existence of a decomposition of the folPp = (1 —y)Q+ yPo implies that for any mea-
surable seA, P;(A) > yPy(A) . Hence the above implies that= 0 for any such decom-
position, i.e.P; must be a proper novelty distribution wRy . It also implies that for any
€ > 0 there exists a measurable getvith Po(A) > 0 andPx (A)/Po(A) < a+¢€. By the
same token, the latter impli¢d — 17*) < a. We thus establishex" = 1 — a and the exis-
tence of the decomposition. Concerning the unicity, the dgasition established above
for it implies that for anyt> 1, Px = (1—1)Py + 1Q holds withQ = (1— %)PoJr % :
Note that for any fixedt, existence of a decompositidtx = (1 — )Py + TQ uniquely
determine%) . Hence forrt > 1t the correspondin@ is not a proper novelty distribution,
and the only valid decomposition & into Py and a proper novelty distribution is the
one established previously.
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Lemma used in Proof of Theorem 6

For the proof of Theorem 6 we made use of the following auili@sult:

Lemma 13 Assume Pis a proper novelty distribution wrt.2 Then for any > 0 there
exists a (deterministic) classifier f such thatR) < 1 and

Ri(f)
T-Ry(f) =&

Proof SinceP; is a proper novelty distribution wrt.P, reiterating the reasoning in
the proof of Proposition 5 shows that there exists a meakussdiA with Py(A) > 0
andPi(A)/Py(A) <e. Puta =1—Py(A) < 1. Consider the classifielr = 1ac. Then
Ro(f) =Po(f =1) =a, while

0<Ry(f) =Pi(f =0) =Pi(A) <g(1-qa). (13)

This leads to the desired conclusion.

Proof of Theorem 8

By application of Lemma 13, for arg/> O there exists a classifiér such tha _RlR(Of(*f)*) <
€. Then we have as in the proof of Theorem 6:
Rx (f*) ( Ru(f") )
1-——————=m(l-——— | >ml—¢).
1= Ro(F) T-Ry(17)) =4

Fix y > 0 and defind® = %(Po+ P1) . Using the assumption of universal approximation,
pick k such that there existy € #y with P(f;(X) # f*(X)) <y. SinceP > 1P, and
P> %Pl this implies alsdP( f (X) # £*(X)) < 2yas well aP (fi (X) # £7(X)) < 2y.
From now we only work in the clasgx and so we omit the parameters in the notation
& = &i(7k, 0k?). By the union bound, the uniform control of the form (9) is dadii-
multaneously for ally , with probability 1— ¢d (with ¢ = 12/6). Hence with probability
1—cd=1-c(mn~2, we have

Ro(f) < Ro(fy) +&m < Ro(f*) +2y+&m,
and also R

Rx(f;) < Rx(f;) +&n < Rx(f*) +2y+€n.
From this we deduce that with probability-1c(mn)=2:
1-Ry(f*)—2y—2ey

Tt (8) > Tt (Fi, (Mn) %k 2) > 1—
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Sinceen, €m go to zero as mifm, n) goes to infinity we deduce that a.s. (using the Borel-
Cantelli lemma, and the fact that the error probabilitiessar@mable ovefm, n) € N?)

o  Rx(f)+2y 1-Ro(fr) 4y
i &2 TR 2y T T TR 2y T Re(F) 2y

Taking the limit of the above ag— 0 (for fixede and f*), then ass — 0, leads to the
conclusion.

Proof of Theorem 9

Let Py, P1,d, 1T be given by the non-triviality assumption afddenote correspondingly
the joint distribution of nominal and contaminated data $6mey > 0 and a seD such
that 0< Py(D) < y; putA= D¢, so that 1- y< Po(A) < 1. Consider the distributioRy
conditional to belonging té, denoted? = X(EA) Po. This is a proper novelty distribution
as it has it support strictly included in the supporfypt

Consider the proper novelty distributid® = (1— Tr)50+ P, . Since it is proper, the
novelty proportion oPx with respect td? is 1= 1. Finally, define the joint distribution
on nominal and contaminated ddta= P;'™ ® Py".

By the non-triviality assumption, theregxists aBeff (m,n) samples such tha" (5) < 1
on the seB andP(B) = &y > 5. DenoteA = x ™ x A". By assumptionP(A) > (1— y";

furthermore by definition oP it can be verified straightforwardly that for any &t A,
P(D) > P(D). Define nowB = BNA; we haveP(B) > 8y — (1— (1—y)"). Since for all
samples irB, all points of the contaminated set belongpwe have

P(B) >P(B) > 8 — (1 (1—y)".

Hence fory small enough, we have(B ) > & which contradicts the fact that" () is a
1— & confidence upper bound, since Brve haveri™ (8) < 1 =Tt.

Appendix B: Randomized classifiers and ROCs

In this appendix we recall some well-known properties of R@@s are relevant to our
setting. Lety be a fixed set of classifiers, and recall the Neyman-Pearsssifitation
optimization problem (1), restated here for convenience:

Ria(7):= nf Ru(f) @
S

s.t. Ry(f) <a

The optimal ROC of; versusP, for set# is the functiona € [0,1] — 1—-R; () €
0,1]. |

If 7 is the set of all possible deterministic classifiers, and assumes that both class
probabilitiesPy, P; have densitiegg, h; with respect to some reference measure, and such
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that the likelihood ratid-(x) = E;—Eg is continuous with inF = 0 and suf- =+, then

the optimal solutiond; of (1) are indicators of sets of the form
hy (%) }
Ch=9XeEXx:—=>A,,
4 { ho(x) ~
with A(a) such that(C,) = a . In this caseR] (7 ) = P1(Cy(q)) and it can be shown
that the ROC is continuous, nondecreasing and concave éetthe point§0,0) and
(1,1) . In particular in this case it holds thRp(fy) = a .

When some of the above assumptions are not satisfied, for éxahwe consider an
arbitrary subsetr of classifiers, or the probability distributior®y and P, have atoms,
some of these properties may fail to hold. While it is cleat tha optimal ROC is always
a nondecreasing function, it might fail to be concave, aedibtimal solution might have
Ro(fs) < a. This is for example obviously the caseif is a finite set of classifiers, in
which case the ROC is a step function ddf) can only take finitely many values.

We are interested in the following regularity propertiepel®ding ons , Py andP;:

(A) Foranya € (0,1), there exists a sequentec ¥ such thaRy(fn) =a andRy(f,) —

Ria(7)-

(B) The functiona — Ry (¥ )/(1— a) is nondecreasing 0j0, 1] .

Note that for simplicity of exposition, in the main body oktpaper we simplified prop-
erty (A) into (A), where the sequendg is replaced by its limit, assumed to belong to
the considered set of classifiers. Our results still holdenid’) with straightforward
modifications of the proofs.

Condition(B) states that the slope of the line joining the point of theroptiROC ata
and the poin{1,1) is nonincreasing i ; this is assumption is weaker than concavity of
the ROC. Itis relevant for the discussion in the final paralytaglow, related to our result
on precision.

To ensure regularity properties of the ROC, a standard desite extend the clasg
and considerandomizedclassifiers, whose output is not a deterministic functiart, &
Bernoulli variable with probability depending on the point Formally this amounts to
allowing a classifieif to take values in0, 1] ; now for a giverx the final decisioD( f, )

is to output class 1 with probabilitf(x) and 0 with probability 1 f(x), where this de-
cision is reached using an independent coin flipping. Indbtting the error probabilities
become fory=0,1:

Ry() :=R,(D(f,X) #y) = By (If(X) —yl).

We consider two types of extensions of a (usually deterrtimislass# , the first one is
the convex hull ofr , or full randomization

N N
F = g'g: Aifi;NeN, fieF Ai>0forl<i<N,$A=1;.
{ 2, 2,
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The second is given by
Fr={dg=Af+(1-A),feF Ae[01]},

where the randomization is limited to convex interpolatomiween one classifier of the
base class and the constant classifier equal to 1.

The following standard lemma summarizes the propertiee@bptimal ROC curve for
these extended classes:

Lemma 14 Let # be a set of deterministic classifiers containing the corstéassifier
equal to zero, and letd?P; be arbitrary distributions orx . Then assumption®’) and
(B) are met when considering optimization probléiover eithers or 7 +. The optimal
ROC for the se¥r is concave.

Proof The fact that the constant zero classifier belongs tensures that the infimum in
(1) is not taken over an empty set and exists. dsebe a sequence of elements of"
such thaRp(gn) < a andRy(gn) — Ry 4 (F *). Then putting\n = (1—a)/(1—Ro(gn)) ,
the sequencé, = Angn + (1 — An) belongs tor * and ensuregA’) . The same reasoning
applies tor .

For property(B), consider a sequencé,) from property(A’), a numbef3 € [a,1] and
hh=(1-Q)f,+{ where{ = (1-B)/(1—a) € [0,1]. Thenhy, € ¥, Ry(hy) =B
andRy(hn) = (1 - )Ry (fn) + . Lettingn grow to infinity we obtairR*l‘.B(er) <(1-
{R; o (7 )+ which in turn implies(B) .

In the case off , similarly consider sequencds 1, fn 2 like above fora = ay, resp.
a =0y with az > ay; forany € [a1,0z], write 3 = Ao + (1—)\)0(2_; correspondingly
the sequenc&fn 1+ (1—A)f2 belongs toF and ensures thﬂ’iﬁ(f) < ARy, (F)+

(1-M)R;,(7) i.e. the optimal ROC for is concave. u

Concerning estimation error control for the extended ckgsete that if a uniform error
control holds over the base clags, for example of the form (9), then the same bound
holds over the extended classes and# by convex combination. Hence, for uniform
statistical error control it is sufficient to consider thesbalassr , for example if it is a
VC-class.

For practical purposes, it might be significantly more diffi¢o find the solution of the
(empirical version of) (1) for randomized classes and itipalar for the fully randomized
extensionF . An advantage of the more limited form of randomization it thptimiza-
tion problem (1) overr ™ can be rewritten equivalently as an optimization problemrov
the original class, namely as

: Ra(h)

inf ———— s.t. h) <a. 14

hes 1—Ro(h) Ro(h) = (14)
To see why, assume for simplicity of exposition ti&} rather thar(A’) is satisfied. Then
the optimization problem (1) over * is attained for some randomized classiffér, by
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constructionf* is of the form f* = Ah* + (1—A) for someA € [0,1] andh* € ¥ . By
property(A) we can assumBy(f*) = a, which entailsh = (1—a)/(1— Ro(h*)) and
Ri(f*) = (1—a)Ry(h*)/(1— Ro(h*)), hence the equivalence with (14) (with the above
relation betweerf* andh*).

Finally, in general we can interpret the optimization peshl(14) as a maximization of
the class 0 precision,

) B . A-mA-R(f)) (-
Qo(f)_ny(Y—OH(X)—O)—(1_T[)(1_Ro(f))+ﬂR1(f)_(1—7T)+T[151@T€f()f)7

under the constraimi®y(f) < a, since the above display shows tk&f f) is a decreasing
function of the ratidR(f)/(1— Ro(f)) . In general if propertieA) and(B) are satisfied

for the considered class, then it is easy to see that thei@wuto (1) and (14) coincide,

so that the same classifiét achieves the minimum FNR and class 0 precision under the
constraint on the FPR.
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