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Abstract. Locally convergent iterative schemes have turned out to be very useful in the
analysis of the characteristic roots of delay-differential equations (DDEs) with constant co-
efficients. In this work we present a locally convergent iterative scheme for the characteristic
multipliers of periodic-coefficient DDEs. The method is an adaption of an iterative method
called residual inverse iteration. The possibility to use this method stems from an obser-
vation that the characteristic matrix can be expressed with the fundamental solution of a
differential equation. We apply the method to a coupled milling model containing a par-
tial and an ordinary differential equation. The conclusion of the numerical results is that
the stability diagram of the coupled model differs significantly from the combined stability
diagrams for each subsystem.

1. Introduction

Consider two time-dependent τ -periodic matrices A and B. We will call the equation

(1) ẋ(t) = A(t)x(t) +B(t)x(t− τ), t ∈ [s,∞),

where x(t) ∈ Rn, τ > 0, the associated time-periodic delay-differential equation (TPDDE).
We wish to study stability of this equation by computing the (so-called) characteristic mul-
tipliers.

There are numerous methods to analyze stability for the special case that A and B are
constant. Currently, a two-stage approach is a very common and effective way to compute
the multipliers (or the characteristic roots) for the constant-coefficient DDE. The two-stage
approach consists of

1) approximating all interesting characteristic roots, and
2) use the approximations as starting guess to local correction method.

The two-stage approach is used in the popular software package DDE-BIFTOOL (see En-
gelborghs et al. (2002); Samaey et al. (2002)) and also in other contexts, e.g., Gumussoy
and Michiels (2009). The first step is typically some form of discretization of an infinite
dimensional operator, a linear multistep method in DDE-BIFTOOL, and spectral methods,
e.g., Breda et al. (2005), whereas the second step is normally a Newton iteration.

Even though there are several methods (discussed below) which could be used as a first
step of the two-stage approach for the more general case (1), there are apparently no local
correction schemes in the spirit of the constant-coefficient case. The first contribution of the
paper is a correction scheme for the TPDDE. Note also that local correction schemes can be
effectively used in combination with continuation methods for stability analysis with respect
to uncertainties, which is the application presented in this paper.

We list some methods which could be used as the first step in a two-stage approach. There are
methods based on spectral discretization of the monodromy operator (Butcher et al. (2004);
Bueler (2007); Breda et al. (2006)), and methods based on discretization and estimating
each interval as a constant-coefficient DDE (Insperger and Stépán (2004, 2002a); Insperger
(2002); Insperger and Stépán (2002b)) and a collocation discretization combined with a
Newton correction is used in Szalai et al. (2006).

Note that even though these methods have been applied successfully to small systems, we
expect from the experience with the constant-coefficient case, that a good two-stage approach
and in particular an efficient correction scheme is necessary if we wish to treat large systems
accurately and reliably.
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Models related to milling have been widely studied using TPDDEs. In this work we apply the
constructed numerical scheme to such a model and show that the stability diagram changes
when the dynamics of the work-piece is taken into account.

These are the main contributions of the paper:

• We observe that a particular formulation of the characteristic equation is a type of
problem sometimes called nonlinear eigenvalue problem (in Section 2).

• This observation allows us to adapt a method (residual inverse iteration) and con-
struct an iterative correction method (in Section 3).

• We show the usefulness of the approach by applying it to a milling model coupled
with a PDE (in Section 4).

• From the numerical results we establish that other simpler models (involving mod-
elling of the subsystems separately) do not predict the stability diagram accurately.

2. The nonlinear eigenvalue problem for the TPDDE

The stability of TPDDE is traditionally derived from the characteristic roots and multipli-
ers of an infinite dimensional representation in Hale and Verduyn Lunel (1993); Diekmann
et al. (1995). We will use a slightly different formulation. Consider the linear time-varying
differential equation

(2) ṗ(t) = C(t, λ)p(t),

where

(3) C(t, λ) := A(t) +B(t)e−λτ − λI.

The characteristic roots are those values λ ∈ C for which the values of p at the boundaries
t = 0 and t = τ coincide, i.e., there is a p(0) = p0 such that p(τ) = p0. The value µ = eλτ is
called the characteristic multiplier.

Consider the fundamental solution corresponding to (2), i.e., the time-dependent matrix
Φ(t, λ) such that p(t) = Φ(t, λ)p(0). The condition p(τ) = p(0) can now be rewritten as

(4) det (Φ(λ)− I) = 0,

where we have denoted Φ(λ) = Φ(τ, λ) to stress that Φ(λ) is for a specific time-point.

Note 1. (The constant case). The determinant equation (4) is a generalization of the
characteristic equation for the constant case in the following sense. Since C is now constant
with respect to t, the fundamental solution of (2) is given by the matrix exponential

Φ(t, λ) = exp(t(A+Be−λτ − λI)).

We insert this into (4) and find that there is a non-zero vector x such that

x = exp(τ(A+Be−λτ − λI))x = e−λτ exp(τ(A+Be−λτ ))x,

since the identity matrix commutes with any matrix. The spectral mapping principle (see
e.g. (Diekmann et al., 1995, Appendix II, Theorem 4.17)) and the fact that τ 6= 0 now
implies that

(A+Be−λτ )x = λx

which is the well known characteristic equation of a DDE with constant coefficients.
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3. An adaption of residual inverse iteration

In some contexts, the following class of problems is known as nonlinear eigenvalue problems:
find λ ∈ C and v ∈ Cn\{0} such that

(5) T (λ)v = 0.

There are numerous methods for nonlinear eigenvalue problems; see, e.g. Mehrmann and
Voss (2004); Ruhe (1973).

Clearly, (4) is a nonlinear eigenvalue problem of the form (5). This is a key observation in
this work and allows us to solve the problem efficiently. In this work we focus on a method
called residual inverse iteration (RESINV) introduced in Neumaier (1985). One version of
RESINV is the repeated solution of a scalar nonlinear equation, solving a linear system and
updating a vector,

vT
i T (λ)vi = 0,(6)

T (µ)∆v = ri = T (λi)vi(7)

vi+1 = vi −∆v.(8)

Note 2. (RESINV vs. Newton). There are Newton methods for the nonlinear eigenvalue
problem (5). An important difference between Newton’s method and the residual inverse
iteration is that the matrix in the linear system T (µ) does not change throughout the itera-
tion. This will turn out to be advantageous as this is a computationally dominating part of
the iteration. The trade-off is that, unlike Newton, residual inverse iteration only has linear
convergence (to simple eigenvalues).

3.1. Solving the nonlinear scalar equation. In the step associated with (6) we need to
solve a nonlinear scalar equation to compute λ ∈ C. As usual for nonlinear equations we
will solve it with Newton iteration. To this end we have to evaluate

f(λ) = xTT (λ)x = xT Φ(λ)x− xTx(9)

f ′(λ) = xTT ′(λ)x = xT Φ′(λ)x(10)

for given x. Since Φ(·, λ) is the fundamental solution of (2) with parameter λ, the matrix
vector product Φ(τ, λ)x = p(τ, λ, x) is the solution to (2) with initial condition p(0) = x. In
order to compute the derivative of Φ′(λ)x we assume p to be sufficiently smooth and form
the derivative of (2) with respect to λ

(11) ∂λ∂tp = ∂t∂λp = ∂tg = ∂λC(t, λ)p+ C(t, λ)g,

with g = ∂p/∂λ. Combining (11) with (2) we obtain the following ODE system

∂

∂t

[
p
g

]
=

[
C(t, λ) 0
∂λC(t, λ) C(t, λ)

] [
p
g

]
.(12)

In order to find the appropriate initial value for g(t, λ, x, g0), we integrate (2) in time and
rearrange the expression to get an explicit formula for the initial condition

(13) x = p(t, λ)−
∫ t

0

C(s, λ)p(s, λ)ds = p(0, λ).
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Since the initial condition x does not depend on λ, the derivative of (13) with respect to λ
reads

0 = ∂λp(t, λ)−
∫ t

0

∂λ (C(s, λ)p(s, λ)) ds

= g(t, λ)−
∫ t

0

∂λC(s, λ)p(s, λ) + C(s, λ)g(s, λ)ds

= g(0, λ),(14)

which can be interpreted as the integral formulation of the second equation in (12). Con-
sequently, (14) provides an expression for the initial condition for the second equation in
(12), i.e. g(0, λ) = 0. Thus, the solution of (12) for initial condition (x, 0)T finally yields
f(λ) = xTp(τ, λ, x) − xTx and f ′(λ) = xTg(τ, λ, x, 0). For the numerical approximation of
the solution of (12) we apply a standard ODE solver, i.e. ode113 (see e.g. Shampine and
Gordon (1975)).

3.2. Evaluating and solving the linear system. In the second step of RESINV (7) we
need to solve a linear system to compute the update of the eigenvector ∆v. Since there is no
simple closed form for the fundamental solution of (2), we have to approximate the linear
operator T (µ) numerically, preferably again with ode113. Let {pa(ti, µ, x)} be an approx-
imate numerical solution of (2) for a discrete time interval {t0, . . . , ti, . . . , τ}, parameter µ
and given initial conditions x. Then, the approximate fundamental solution

(15) Φa(τ, µ) = (pa(τ, µ, e1), . . . , p
a(τ, µ, en)) ,

can be constructed by solving (2) n-times with different initial conditions ej, j = 1, . . . , n
and fixed parameter µ. Here, ej ∈ Rn represents the unit vector with component j equal to
one. With (4) and (15) we deduce that we can approximate T (µ) by

(16) T a (µ) = Φa(τ, µ)− I.

The residual on the right hand side of (7) can be calculated in the same way as the evaluation
of the nonlinear equation (6). In this case we do not need the derivative with respect to λ.
Thus, we only have to solve (2) for initial condition p(0) = vi to end up with the residual

(17) ri(λ, vi) = pa(τ, λ, vi)− vi.

Combining (16) and (17) and solving the linear system for ∆vi finally provides the update
for the eigenvector. Note that µ is fixed throughout the iteration. Consequently, we have to
compute T a(µ) only once in each iteration.
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3.3. Algorithmic details. We describe the RESINV algorithm through the following scheme.
Let λ0 denote the initial guess for the eigenvalue and let v0 represent the corresponding guess
for the eigenvector. During the path following procedures the above values can be taken from
the previous solution.

Algorithm 1 RESINV

1: Set RESTOL, µ = λ0, λ = λ0 and v = v0.
2: Compute T a(µ) according to (16).
3: while NOT(stopIter) do
4: Solve nonlinear equation (6) to update λ.
5: Compute residual r(λ, v) according to (17).
6: if |r| < RESTOL then
7: stopIter = true
8: else
9: Solve linear system (7) to get ∆v.

10: Update v = v −∆v.
11: end if
12: end while

4. Modelling and numerical examples

4.1. Classical 1D system. As a first example we consider a 1D milling system which has
been studied by several authors, see for example Mann et al. (2002) or Butcher et al. (2005).
The corresponding equation reads

ÿ(t) + 2ζω0ẏ(t) + ω2
0y(t)

= −apb(t)

m
(y(t)− y(t− τ)) ,(18)

b(t) =
N∑

i=1

g(ϕi(t))
[
Kt cos(ϕi(t))

+Kn sin(ϕi(t))
]
sin(ϕi(t)),(19)

ϕi(t) = 2π (nt+ (i− 1)/N) ,(20)

with

g(θ) =

{
1 if ϕs ≤ P2π(θ) ≤ ϕe

0 otherwise
(21)

where P2π(.) denotes the projection of a given angle on the interval [0, 2π]. The material and
cutting parameters have been taken form Butcher et al. (2005) with entry and exit angles
ϕs = 0 and ϕe = π, corresponding to an immersion ration a/D = 1.

Equation (18) models the dynamics of a milling process where a rigid cutter machines a rigid
workpiece that was mounted on a flexible device. Since this setting exhibits a frequency
response function similar to a 1D harmonic oscillator, the stability limits, predicted from
the analysis of the 1D system (18), are in perfect agreement with the experimental results
(c.f. Mann et al. (2002)). The system has been analyzed for up- and downmilling and
different immersion ratios a/D = 0.25, 0.5, 0.75, 1, (see Butcher et al. (2005)).
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Figure 1. Recomputation of the down milling example.

Figure 1 shows the result of the recomputation of the down milling example given in Butcher
et al. (2005) for a radial immersion ratio of a/D = 1. We combined the method based on
RESINV with a simple Euler-Newton continuation method (c.f. Allgower and Georg (1990))
to follow the stability limit given by <(λ) = 0. The result is in perfect agreement with the
stability limits obtained with Butchers Chebychev-Collocation-Method, as we see in Figure 1.
Note that we cannot follow the stability limit defined by a flip bifurcation, that can be seen
in right part of Figure 1. In this case, two conjugate complex eigenvalues become one with
vanishing imaginary part when traversing the stability boundary from stable to unstable due
to variation of the rotation speed n (see Mann et al. (2003)).

4.2. A coupled ODE-PDE-system. Generally, the stability limits for a milling process
depend on the cutting forces and on the dynamical characteristics of milling machine and
workpiece. ODE-systems derived from modal analysis data provide reliable models for the
milling machine and the attached cutter. The workpiece is often assumed to be rigid. How-
ever, when machining thin walled pieces the latter assumption eventually leads to large errors
in the stability limit prediction. In order to overcome this difficulty, the ODE-system for
machine and cutter can be extended by additional equations accounting for the workpiece
characteristics that are usually assumed to be constant (see Altintas (2000)). Because of
the material removal and since the cutting zone translates along the workpiece boundary,
the workpiece characteristics, i.e. the impulse response function, change during the cutting
operation. In order to account for these effects, the workpiece has to be considered as series
of continuous visco-elastic bodies each being represented by a partial differential equation
(c.f. Hömberg and Rott (2008)). The coupling of machine and workpiece representation via
the cutting forces, finally leads to a coupled ODE-PDE-system with delay.

Fig 2 shows an example of a simple coupled ODE-PDE-system with delay. While the os-
cillator on the right represents the rigid milling cutter mounted on a flexible device, the
beam on the left is a model for an visco-elastic workpiece. With this example we wish to
illustrate the usefulness of the numerical method by analyzing the effect of the coupling. To
this end we compare the evolution of the characteristic exponents of the coupled system and
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the corresponding decoupled systems. The two decoupled systems can be derived form the
equations of the coupled system by the assumptions that either the workpiece is perfectly
rigid ((36) and (34)), or that the rigid cutter is mounted on a perfectly ridgid device ((35)
and (33)). Note that the assumption that the workpiece is perfectly rigid leads to a system
presenting the same structure as (18).

τ

ϕ (t)

LR(t)

RL

m l(t)

d

k

q(t)

x, u(t,x)

L

FT

FR

h

L 0

(t−  )

Figure 2. Scheme of the coupled ODE-PDE milling model.

The equations of motion for the beam and the rigid cutter mounted on a flexible device read

%0 utt(t, x)− ∂xσ(u(t, x)) = 0,(22)

u(t, 0) = 0, σ(t, L) = −F/A,(23)

q̈(t) + 2ζω0q̇(t) + ω0
2q(t) = −F/m,(24)

with ζ = d
2
√

km
and ω2

0 = k
m

. Since we focus on engineering materials we have the following

relation for the stress

(25) σ(u(t, x)) = E∂xu(t, x) +D∂xut(t, x),

with E denoting the elastic modulus and D a damping constant corresponding to the Voigt
model. The variational form of (22) reads∫ L

0

%0utt(t, x)ψ(x)dx+

∫ L

0

σ(u(t, x))∂xψ(x)dx

= σ(u(t, L))ψ(L),∀ψ ∈ V,(26)

where V = {v ∈ H1([0, L]), v|0 = 0}. The cutting forces F occurring during the metal
cutting process act on the workpiece boundary and on the cutter. The models used to
predict the stability limits in milling generally use empirical cutting force models, that can
be written as [

FR

FT

]
=

[
KR

KT

]
aph,(27)

to relate the deformations and the resulting forces acting perpendicularly (FT ) and normally
(FR) to the cutting edge, i.e. the tip of the cutter in Figure 2. The above mentioned force

F follows from the projection of the vector (FR, FT )T in x-direction, i.e.

(28) F (t, h) = g(ϕ(t)) (sinϕ, cosϕ) (FR(h), FT (h))T ,

with g denoting the switch function introduced in (21). Note that, for the sake of simplicity,
we focus on milling cutters with only one tooth. In (27) the parameter ap represents the
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axial depth of cut, the vector (KR, KT )T empirical constants and h the uncut chip thickness
depending on the deformations of workpiece and cutter. In order to derive a formula for the
uncut chip thickness, we consider the beam in Figure 2 that consists of two parts. The first
visco-elastic part, of length L, is followed by a small rigid and massless part with varying
length LR(t) that is removed during the cutting operation. From Figure 2 we can derive an
explicit formula for this quantity at time t and time t− τ

LR(t) + u(t, L) + L = L0 − l(t)− D

2
sinϕ− q(t),(29)

LR(t− τ) + u(t− τ, L) + L = L0 − l(t− τ)

− D

2
sinϕ− q(t− τ).(30)

The uncut chip thickness is defined as the difference of LR(t − τ) and LR(t), projected on
the vector pointing from the center to the tip of the cutter, i.e.

h =
[
(LR(t− τ)− LR(t)

]
sinϕ

= fz sinϕ

+ [u(t, L)− u(t− τ, L) + q(t)− q(t− τ)] sinϕ,(31)

with fz = l(t) − l(t − τ) denoting the feed per tooth. Thanks to the above-mentioned
expression for the uncut chip thickness, we obtain the following formula for the cutting
forces

F = g(t) (sinϕKR + cosϕKT ) ap{[q(t)− q(t− τ)]

+ [u(t, L)− u(t− τ, L)] + fz} sinϕ

= apw(t) [q(t)− q(t− τ)]

+ apw(t) [u(t, L)− u(t− τ, L)]

+ apw(t)fz(32)

where the function w(t) := g(t)
(
sin2ϕ KR + cosϕ sinϕ KT

)
denotes a τ -periodic coefficient.

The last term on the right hand side of (32) represents a periodic perturbation of the system.
Since the system is linear, we can split the solution in two parts, i.e u = u∗+up and q = q∗+qp,
where up(t, x) and qp(t) represent the solution of the system for F = F p(t) = apw(t)fz, that
can be considered separately from the stability problem. Thus, the equations determining
the stability of the coupled system read∫ L

0

%0u
∗
tt(t, x)ψ(x)dx+

∫ L

0

σ(u∗(t, x))∂xψ(x)dx

= −F ∗ψ(L)/A, ∀ψ ∈ V,(33)

q̈∗(t) + 2ζω0q̇
∗(t) + ω0

2q∗(t) = −F
∗

m
,(34)

F ∗ = apw(t) [q∗(t)− q∗(t− τ)]

+ apw(t) [u∗(t, L)− u∗(t− τ, L)] .

Note that, setting the feed per tooth fz = 0 in (32) yields the same system as above for
nonzero feed. In order to solve the system (33)- (34) numerically, we apply the Garlerkin
method for u(t, x) and approximate the basis of H1([0, L]) with linear finite elements. The
resulting space discrete system has the same form as (1), if we introduce additional variables
to obtain a first order equation in time.
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Now we can use the path following algorithm to determine the stability limits of the coupled
system. The material and cutting parameters are m = 0.06 kg, ζ = 1.2 %, ω0 = 2π ×
2241.49 Hz, N = 1, Kn = 690.0 N/mm2 and Kt = 894.0 N/mm2. The entry and exit angles
have been chosen as ϕs = 0 and ϕe = π. The material parameters for the beam equation
have been set to ρ = 0.27 kg/mm3, E = 70 × 104 kg/(sec2mm), D = 0.0378 kg/(mmsec),
L = 0.1 mm and A = 10 mm2. The beam was discretised with 5 elements. Note that
the beam parameters are artificial values that have been chosen for presentation purposes.
Figure 3 shows the result of the path following procedure.
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4

0

1

2

3

4

5

Figure 3. Stability chart for the coupled system (grey shaded area represents
the unstable regions).

As in section 4.1 the white region characterises the combinations of ap and n where the
solution of the coupled system is asymptotically stable. The blue lines show the evolution
of the paths defined by <(λ(n, ap)) = 0.

Next, we focus on the effect of the coupling. To this end, we simplify the coupled system. As
mentioned before, we neglect either the second or the first part of the cutting force in (33)
and (34). Thus, the force F ∗ can be written as

F ∗ ≈ F ∗
pde = apw(t) [u∗(t, L)− u∗(t− τ, L)] ,(35)

F ∗ ≈ F ∗
ode = apw(t) [q∗(t)− q∗(t− τ)] .(36)
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Using (35) for the right hand side of (33) and (36) for (34) leads to a decoupling of the system
and the path following can be carried out for each equation separately. The comparison of
the corresponding stability lobes reveals the effect of the coupling. In Figure 4 the red

0.95 1 1.05

x 10
4

0

1

2

3

4

5

n / rpm

ap
 / 

m
m

Figure 4. Comparison of the coupled (red lines) system and decoupled (blue
lines) systems.

lines represent the stability lobes corresponding to the coupled system. The result of the
computations for the decoupled system has been plotted with blue lines. The main differences
between the blue and the red lines occur in the right part of each stability lobe. While the
lobe corresponding to an eigenvalue of the oscillator equation lies below the lobe of the
coupled system, the stability limit corresponding to an eigenvalue of the beam equation is
higher than the respective curve for the coupled system.

Since we approximate the space continuous beam equation with finite elements, we introduce
an additional discretization error. In order to display the effect of the discretization we focus
on the stability lobe that has a minimum at n = 9800 rpm, c.f. Figure 3. We discretise the
beam equation with 5, 10 and 20 elements and recompute the stability lobe for each grid
size. In Figure 5 we observe that the stability lobe moves to the left for smaller grid sizes. In
order to explain this observation, we recall that the finite element approximation leads to an
overestimation of the first eigenfrequency of the continuous beam equation. The refinement
of the grid reduces the approximation error and the lowest eigenfrequency converges to the
value of the continuous system. Since the position of the stability lobe is determined by one
of the eigenfrequencies of the oscillation system, the lobe translates because of the better
approximation of the first eigenfrequency of the beam equation.

Finally, we conclude that the path following method based on the RESINV algorithm can be
used to analyse the stability of coupled ODE-PDE-systems. We have shown that stability
limits of the coupled system differ from the stability limits of the corresponding decoupled
systems. The most significant discrepancy can be noticed on the right part of each lobe.
Thus, the disregard of structural components during the modeling of a milling system may
lead to errors in the prediction of the stability limits. The finite element approximation of
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Figure 5. Convergence of the stability lobe.

the PDE-part causes further errors in the prediction of the stability limits. The stability
lobes translate with decreasing grid size in the direction of lower values of n.

5. Conclusions and outlook

In this paper we have presented a numerical linear algebra approach to the characteris-
tic roots of time-periodic delay-differential equations, in the sense that we have adapted a
method from the field of nonlinear eigenvalue problems to construct an iterative correction
scheme.

Although we have focused on the method residual inverse iteration, many of the methods
reviewed in Ruhe (1973); Mehrmann and Voss (2004), could be applied to the implicitly
stated nonlinear eigenvalue problem (4). We have chosen RESINV as we can implement it
in a way where we only compute one matrix. Finally, the choice of the generality setting is
done to keep the presentation simple. The general methodology is apparently applicable to
more general problems such as systems with multiple delays and cases where the delay does
not coincide with the period. These type of systems are necessary in more accurate milling
models.
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