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Abstract

Precipitation processes are modeled by population balance systems. A
very expensive part of the simulation of population balance systems is the
solution of the equation for the particle size distribution (PSD) since this
equation is defined in a higher dimensional domain than the other equations
in the system. This paper studies different approaches for the solution of this
equation: two finite difference upwind schemes and a linear finite element
flux–corrected transport method. It is shown that the different schemes lead
to qualitatively different solutions for an output of interest.

1 Introduction

Precipitation processes describe nucleation, growth, breakage, agglomeration and
transport of particles in a fluid. They are very important in the chemical indus-
try. Already a decade ago, over 50% of the products in chemical engineering were
produced in particulate form [18]. Since that time, the importance of particulate
products has been even increased. Nowadays, the main focus is on the production
of particles with prescribed characteristics, such as size, shape or chemical prop-
erties. The numerical simulation of precipitation processes will make an essential
contribution to the optimization of the production process.

Isothermal precipitation processes are modeled by a coupled system of the
Navier–Stokes equations to describe the flow field, of convection–diffusion–reaction
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equations to describe the transport and the reaction of the chemical species and of a
transport equation for the particle size distribution (PSD).

The flow field in applications is often turbulent. The numerical simulation of
turbulent flows is by itself an active field of research [1, 6, 17]. In the numerical
simulations presented in this paper, a finite element variational multiscale (VMS)
method will be used [7]. VMS methods are a rather new approach for turbulence
modeling, which were derived from general principles for simulating multiscale
phenomena [3, 4].

A chemical reaction happens in the flow field which is modeled by a nonlinear
system of convection–diffusion–reaction equations. These equations are convection–
and reaction–dominated. Also the numerical simulation of this type of equations is
by itself an active field of research [16].

The main feature of precipitation processes is the nucleation of particles if the
concentration of a species exceeds a saturation concentration. In applications, not
the behavior of the individual particles is of interest, but the PSD. The PSD depends
not only on time and space, but also on properties of the particles, so–called in-
ternal coordinates. Thus, the transport equation for the PSD is defined in a higher
dimensional domain than the other equations of the coupled system.

The simulations presented in this paper will consider the flow of a dilute solu-
tion. Hence, the effect of the particles on the flow field are negligible. Nucleation and
growth of particles, which are the most important chemical mechanisms in a precip-
itation process, are included into the used model. Breakage and agglomeration of
particles will not be part of the model, because they are of much less importance
and the growth process of the particles in this model is realized by layering [15].
The PSD has one internal coordinate, namely the diameter of the particles.

The simulation of complex coupled systems is generally rather time–consuming.
In simulations of precipitation processes, a very expensive part will be the solution
of the higher–dimensional PSD equation. This paper will study different schemes
for discretizing this equation: on the one hand rather inexpensive but also inaccurate
schemes and on the other hand a more expensive but also more accurate scheme.
It will be demonstrated that the use of the different schemes leads to qualitatively
different results for an output of interest.

2 The model of the precipitation process

For shortness of presentation, we will give here only the non–dimensionalized
model, see [10, 11] for its derivation.

Let Ω be the flow domain and T a final time. We will consider a dilute fluid, i.e.
the number of particles and their size are sufficiently small such that their influence
on the flow field can be neglected. Then, the Navier–Stokes equations are given by

∂u
∂ t
− 1

Re
∆u+(u ·∇)u+∇p = 0 in (0,T ]×Ω , (1)

∇ ·u = 0 in [0,T ]×Ω , (2)
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where u is the velocity, p is the pressure and Re = u∞l∞/ν is the Reynolds number
with l∞ being a characteristic length scale and u∞ a characteristic velocity scale of
the problem. Let cA and cB be the concentrations of the reactants A and B, then their
reaction is described by the following equations

∂ci

∂ t
− Di

u∞l∞
∆ci +u ·∇ci + kR

l∞c∞

u∞

cAcB = 0 in (0,T ]×Ω , (3)

i ∈ {A,B}, where Di is a diffusion coefficient, kR is the reaction rate constant and
c∞ is a characteristic concentration scale for the reactants. The equation for the
concentration of the dissolved product C is given by

∂cC

∂ t
− DC

u∞l∞
∆cC +u ·∇cC−ΛchemcAcB +Λnuc max

{
0,(cC−1)5

}
+

(
cC−

csat
C,∞

cC,∞

)∫ 1

dp,min

d2
p f d(dp) = 0 in (0,T ]×Ω . (4)

Here, DC is a diffusion constant, dp describes the size of the particles, f denotes
the PSD, csat

C,∞ is the saturation concentration of the dissolved product C and cC,∞ =

csat
C,∞ exp(C2/d̃p,0) is a characteristic concentration scale for C with C2 being a model

constant and d̃p,0 (d̃p,max) being the smallest (largest) possible particle diameter. The
parameters in (4) are

Λchem = kR
c2

∞l∞
cC,∞u∞

, dp,min =
d̃p,0

dp,∞
, Λnuc = Cnucd3

p,mind3
p,∞knuc

l∞c4
C,∞

u∞

,

with dp,∞ being an upper bound for the largest possible particle diameter and Cnuc
and knuc are constants in the model for the nucleation process. To obtain the last
term on the left hand side of (4) in the presented form, the characteristic scale of the
PSD f∞ = u∞/(CGkGd3

p,∞l∞) was used, where CG is a constant to model the growth
of the particles and kG is a growth rate constant. The last equation describes the PSD

∂ f
∂ t

+u ·∇ f +G(cC)
l∞

u∞dp,∞

∂ f
∂dp

= 0 in (0,T ]×Ω ×

(
dp,min,

d̃p,max

dp,∞

)
(5)

with the growth rate G(cC) = kGcC,∞(cC− csat
C,∞/cC,∞).

In summary, the coupled system of equations (1), (2), (3) for cA, (3) for cB, (4)
and (5) has to be solved. All equations have to be equipped with initial and boundary
conditions.



4 Volker John and Michael Roland

3 The applied numerical methods

The Crank–Nicolson scheme with an equidistant time step is applied as temporal
discretization for the equations (1) – (4).

In the considered system, the velocity u is needed in all other equations but
the other quantities do not influence the Navier–Stokes equations. For this reason,
a straightforward approach consists in solving at each discrete time first (1), (2).
The velocity is approximated with the Q2 finite element and the pressure with the
Pdisc

1 finite element, i.e. with discontinuous piecewise linears. The simulations will
study a turbulent flow, hence a turbulence model has to be applied. We will use
the projection–based finite element variational multiscale method from [7] with a
piecewise constant large scale space, see [8] for an adaptive choice of the large
scale space.

With the obtained velocity field, the system for the concentrations cA and cB can
be solved. This is done by a fixed point iteration. The linearized equations are dis-
cretized with the Q1 finite element. They are strongly convection–dominated such
that a stabilization has to be applied. Comparative studies of stabilized finite ele-
ment schemes [12, 13] have shown that for the Q1 finite element FEM–FCT (flux–
corrected transport) schemes outperform more standard approaches like SUPG. In
the simulations presented in Section 4, a linear FEM–FCT scheme from [14] is used.

After having computed cA and cB, a coupled system for cC and f remains. This
system is decoupled and linearized in our approach by treating (4) in a semi–implicit
way, namely by using cC and the PSD f from the previous discrete time in the last
two terms on the left hand side of (4). Thus (4) becomes a linear equation in each
discrete time, which is solved also with a linear Q1–FEM–FCT scheme.

The emphasis of the numerical studies is on the schemes for the PSD equa-
tion (5). This equation is given in a 4D domain and its solution might be rather
expensive. For this reason, one can think about using comparatively cheap but also
rather inaccurate schemes for (5). The first scheme of this kind which we apply is
the forward Euler simple upwind finite difference scheme. The second scheme, the
backward Euler simple upwind finite difference scheme, is only somewhat more ex-
pensive. The results and the costs of these schemes will be compared with the much
more expensive linear Q1–FEM–FCT scheme.

4 Numerical studies

The calcium carbonate precipitation Na2CO3 + CaCl2 −→ CaCO3 ↓ +2NaCl is
considered in the numerical studies. The parameters of this process are given by
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• ν = 10−6 m2/s • ρ = 1 kg/m3

• kG = 10−7 m4/kmol s • knuc = 1024 (1/m3 s)/(kmol/m3)5

• kR = 10−2 m3/kmol s • csat
C,∞ = 1.37 10−4 kmol/m3

• C2 = 7.2 10−9 m • CG = 45.98 kmol/m3

• Cnuc = 15.33 kmol/m3 • DA = DB = DC = 1.5 10−9 m2/s

• d̃p,0 = 10−9 m • d̃p,max = 10−4 m.

The following reference quantities have been used in the dimensionless equations:

• l∞ = 1 m • u∞ = 10−2 m/s • t∞ = 102 s
• c∞ = 1 kmol/m3 • cC,∞ = 0.183502 kmol/m3 • dp,∞ = 10−4 m
• f∞ = 2.17486 1015 1/m4.

Concerning the flow, a situation similar to a driven cavity problem is considered.
The flow domain is (0,1)3. There are opposite inlets at {0}× (0.4375,0.5625)×
(0.4375,0.5625) and {1} × (0.4375,0.5625)× (0.4375,0.5625) and an outlet at
(0.4375,0.5625)× (0.4375,0.5625)×{0}. A situation like this is sometimes called
T–mixer. The inflows are given by a profile which was precomputed by solving the
Poisson equation with right hand side equal to the constant 1 on the inlets and with
homogeneous Dirichlet boundary conditions. On the top of the cavity, the velocity
(1,0,0)T is prescribed, outflow boundary conditions are given at the outlet and no
slip boundary conditions on the remaining boundaries. Initially, the fluid was con-
sidered to be at rest and an impulsive start was performed. The Reynolds number of
the flow is Re = 10000. Even the driven cavity problem without inlets and outlet is
a turbulent flow at this Reynolds number [2, 5].

All concentrations inside the domain were zero at the initial time. On the bound-
ary, the concentrations of the reactants A at the left inlet and B at the right inlet were
set to 1 for all times. Homogeneous Neumann boundary conditions were used on all
other parts of the boundary. For the substance C, homogeneous Neumann bound-
ary conditions were applied on the whole boundary. The boundary condition for the
PSD with respect to the internal coordinate was

f (t,x1,x2,x3,dp,min) =
Bnuc(cC)
f∞G(cC)

if G(cC(t,x1,x2,x3)) > 0,

f (t,x1,x2,x3,dp,min) = 0 if G(cC(t,x1,x2,x3)) = 0,
f (t,x1,x2,x3,dp,max) = 0 if G(cC(t,x1,x2,x3)) < 0,

with the nucleation rate Bnuc(cC) = knucc5
C,∞ max{0,(cC−1)5}. With respect to the

spatial coordinates, the PSD was set to be zero at the closure of the fluid flow inlets
(no particles enter through the inlets).

The length of the time step was set to be ∆ t = 0.001. In space, a 16× 16× 16
uniform mesh consisting of cubes was used which leads to 107 811 velocity d.o.f.,
16 384 pressure d.o.f. and 4913 d.o.f. for the concentrations. The internal coordinate
was discretized with 64 nodes (319 345 d.o.f.) , were the mesh was finer small diam-
eters. Figure 1 shows the flow field and isosurfaces of the concentrations at around
the starting time of the precipitation process. The flow field and the concentrations
cA, cB, are always the same for all discretizations of the PSD equation. Until the start
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of the precipitation, i.e. until the back coupling of f onto cC starts, the concentration
cC is also identical for all discretizations of (5).

Fig. 1 Velocity field, isosurfaces for cA = 0.25, cB = 0.25 , cC = 0.7 at t = 32, left to right, top to
bottom.

An output of interest is the median of the volume fraction at the center of the
outlet. The volume fraction and the cumulative volume fraction are given by

q3(̃t, d̃p) :=
d̃3

p f̃ (̃t,0.5,0.5,0, d̃p)∫ d̃p,max

d̃p,0
d̃3

p f̃ (̃t,0.5,0.5,0, d̃p) d(d̃p)
, Q3(̃t, d̃p) :=

∫ d̃

d̃p,0

q3(̃t, d̃p) d(d̃p).

Then, the median of the volume fraction is defined to be the particle size for which
Q3(̃t, d̃p) takes the value 0.5: d̃p,50(̃t) := {d̃p : Q3(̃t, d̃p) = 0.5}.

The temporal developments of d̃p,50(̃t) for the different schemes of discretizing
the PSD equation (5) are presented in Figure 2. It can be seen that the first particles
reach the center of the outlet at around 3200 s. The main observation is that the
different numerical schemes lead to qualitatively different results. The forward Euler
and the backward Euler upwind finite difference schemes predict values of d̃p,50(̃t)
at 7500 s in the range of 23 µm. The median predicted with the linear FEM–FCT
scheme is less than half this value.
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In a numerical study at a coupled 2D/3D problem with prescribed solution in [11]
it has been shown that the FEM–FCT scheme leads to considerably more accurate
results than both finite difference upwind schemes. Based on this experience, it can
be expected that the results with the FEM–FCT scheme for solving the PSD equation
are more reliable.

Fig. 2 Median of the volume fraction at the cen-
ter of the outlet.

The numerical studies were per-
formed with the code MooNMD [9].
This is a flexible research code which is
not tailored for solving population bal-
ance systems. The average computing
times for a time step are given in Ta-
ble 1. It can be observed that the use of
the forward difference upwind schemes
is considerably less time–consuming.

Some numerical studies for 2D/3D
population balance systems with a
structured laminar flow field were per-
formed in [11]. It was shown that in
this case the results obtained with the
different discretization schemes for the
PSD equation were rather similar. This
suggests that the reason for the quali-
tatively different results is the presence
of the turbulent flow field, compare also

some other studies in [11].

5 Summary

The paper studied different discretization schemes for the higher dimensional trans-
port equation in a 3D/4D population balance system with a turbulent flow field.
It was demonstrated that the usage of inexpensive but inaccurate schemes on the
one hand and a more expensive but also more accurate scheme on the other hand
leads to qualitatively different results for an output of interest. This is similar to
the observations in simulations of 2D/3D population balance systems with a highly
time–dependent flow field in [11].

Table 1 Average computing times per time step, computer with Intel Xeon CPU, 2.4 GHz.

scheme for solving (5) computing time in s

forward Euler upwind FDM 19.1
backward Euler upwind FDM 23.2
Crank–Nicolson FEM–FCT 60.3
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The presented simulations demonstrate that outputs of interest in the simulation
of complex processes might highly depend on the applied numerical schemes. They
emphasize the need of using accurate schemes and the necessity of implementing
them such that they work efficiently. Our future work will focus on these topics.
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