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1. Introduction 

Mean field models in statistical mechanics furnish nice examples for the interpretation of 
thermodynamics as the theory of large deviation for Gibbs measures of microscopically defined 
statistical mechanics systems [E]. Roughly speaking, in such models the Hamiltonian is only a 
function of (extensive) 'macroscopic' quantities (density, magnetization,etc.) of the system. In 
the thermodynamic limit, the distribution of these quantities is expected to be concentrated on a 
sharp value and to satisfy a large deviation principle. The corresponding rate functions are then 
the thermodynamic potentials (free energy, pressure) that govern the macroscopic response of the 
system to external (intensive) conditions. The classical paradigm of the theory is that the number 
of relevant macroscopic variables is excessively small (order of 10) compared to the .number of 
microscopic variables (order of 1023 ) • 

Over the last decade, the formalism of statistical mechanics and thermodynamics has found 
increasing applications in systems in which the macroscopic behaviour is far more complex and 
described by a 'large' number of variables. Such systems can be found in biology (heteropolymers, 
neural networks) but also in the domain of disordered solids, and in particular spin glasses. Some 
fundamental aspects of these ideas are discussed in an interesting recent paper by Parisi [P]. For 
such systems, many basic proble.ms are not very well understood, and many technical aspects defy 
a mathematical investigation at the present time. An interesting toy model (that nonetheless has 
also practical relevance) where this situation can be studied and for which mathematical results 
are available, is the Hopfield model [FPl,Ho]. This model is a mean field spin system in the sense 
explained above. However, the Hamiltonian, instead of being a function of few macroscopic variables 
is a function of macroscopic variables that are random functions of the microscopic ones and those 
number tends to infinity with the size of the system in a controllable way. More specifically, the 
model is defined as follows. 

Let SN = {-1, l}N denote the set of functions u : {1, ... , N} ~ {-1, 1}, and set S = 
{-1, l}lN. We call u a spin configuration and denote by Ui the value of u at i. Let (f!,:F,IP) 
be an abstract probability space and let ef, i, µ E IN, denote a family of independent identically 
distributed random variables on this space. For the purposes of this paper we will assume that 
IP[ef = ±1] = t, but more general distributions can be considered. We will write eµ[w] for the 
N-dimensional random vector whose i-th component is given by ef[w] and call such a vector a 
'pattern'. On the other hand, we use the notation ei[w] for the M-dimensional vector with the 
same components. When we write e[w] without indices, we frequently will consider it as an M x N 

matrix and we write et[w] for the transpose of this matrix. Thus, ei[w]t[w] is the M x M matrix 
whose elements are '2:~1 tf[w]ti[w]. With this in mind we will use throughout the paper a vector 
notation with ( ·, ·) standing for the scalar product in whatever space the argument may lie. E.g. 
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the expression (y, ei) stands for L:!1 eryµ, etc. 

We define random maps m~[w]: SN-> [-1, 1] through1 

N 

m~[w](a) = ~ Lef[w]ai 
i=l 

(1.1) 

Naturally, these maps 'compare' the configuration a globally to the random configuration e'"'[w]. A 
Hamiltonian is now defined as the simplest negative function of these variables, namely 

N M(N) 
HN[w](a) = -2 L (m~[w](a))2 

µ=1 
(1.2) 

where M(N) is some, generally increasing, function that crucially influences the properties of the 
model. With 11 · 112 denoting the l2-norm in IRM, (1.2) can be written in the compact form 

N 2 HN[w](a) = -2 llmN[w](a)ll2 (1.3) 

Also,(·,·) will stand throughout for the scaler product of the two argument in whatever space they 
may lie in. 

Through this Hamiltonian we define in a natural way finite volume Gibbs measures on SN via 

1 
µ [w](a) = e-J3HN[w](u) 

N,,6 - Z [w] N,,6 

and the induced distribution of the overlap parameters 

The normalizing factor ZN,,a[w], given by 

zN,,l3[w] =: 2-N L e-J3HN[w](u) = 1Eue-.8HN[w](u) 

uESN 

is called the partition function. 

(1.4) 

(1.5) 

(1.6) 

This model has been studied very heavily in the physics literature. As a basic introduction to 
what is commonly believed about its properties, we refer to the seminal paper by Amit, Gutfreund 
and Sompolinsky [AGS]. Over the last few years, a considerable amount of mathematically rigorous 
results on these measures has been established [BG1,BGP1,BGP2,BGP3,K,N,KP,KPa,ST,PST]. It 
is known that under the hypothesis that limsupNioo M(N)/N = 0 weak limits can be constructed 

1 We will make the dependence of random quantities on the random parameter W explicit by an added [w] 
whenever we want to stress it. Otherwise, we will frequently drop the reference to W to simplify the notation. 
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for which the QN converge to Dirac measures in IR00 [BGPl]. Disjoint weak limits have also been 
constructed in the case where lim sup NToo M(N)/ N = a > O, for small a in [BGP3]. In this note we 
restrict our attention to the case a = 0 and the question to what extent a large deviation principle 
(LDP) for the distribution of the macroscopic overlaps can be proven. 

A first step in this direction had been taken already in [BGP2]. There, a LDP was proven, 
but only under the restrictive assumption M(N) < \~ 1-f, while only a weaker result concerning the 
existence of the convex hull of the rate function was proven in the general case a = 0 in a rather 
indirect way. The first LD P in the Hopfield model was proven earlier by Comets [Co] for the case 
of a finite number of patterns. Here we prove a LDP under more natural, and probably optimal, 
assumptions. 

Since the overlap parameters form a vector in a space of unbounded dimension, the most 
natural setting for a LDP is to consider the finite dimensional marginals. Let I C IN be a finite 
set of integers and let IR1 C IRIN denote the corresponding subspace and finally let Ilr denote 
the canonical projection from JRP onto IR1 for all p for which I C {1, ... ,p}. Without loss of 
generality we can and will assume in the sequel that I = {1, ... , III}. Let us introduce the maps 
n1r1 : [-1, 1]211 

~ [-1, l]P through 
211 

np(Y) = 2-p L: e'Yy'Y 
"(=1 

(1.7) 

where e'Y, I = 1, ... , 2P is some enumeration of all 2P vectors in JRP whose components take values 

±1 only. Given I C IN, we define the set D1r1 as the set 

(1.8) 

Theorem 1: Assume that lim sup NToo ~ = 0. Then for any finite I C IN and for all 0 < {3 < oo, 
the family of distributions QN,13[w] o II[1 satisfies a LDP for almost all w E !1 with rate function 
F13 given by 

FJ(m) = - sup sup 
pEJN 11E[-1,1]211 

np,11 (11)=7'&. 

where 
I(y) = { !:}1£ ln(l + y) + ~ ln(l - y) , if IYI ~ 1 

+ oo , otherwise 

(1.9) 

(1.10) 

FJ is lower semi-continuous, Lipshitz-continuous on the interior of D1 111 bounded on D1r1 and equal 

to +oo on Df II. 

Remark: Note that FJ is not convex in general. 
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To prove Theorem 1 we will define, for m E IR/ 

(1.11) 

and show that 

i) ff m E D1 11, then 

lim lim Fk Q im) = F!(m) e!O Njoo ,,..,, ,.., (1.12) 

almost surely and 

ii) ff m E Df11 , then 

lim lim Fk Q e(m) = +oo e!O Njoo ,,..,, (1.13) 

almost surely. 

From these two equations it follows from standard arguments (see e.g. [DZ]) that for almost 
all w for all Borel-sets A C B( IR1 ) 

_ i~f FJ(m) ~ liminf Nl ln QN,tJ[w] o IT[1 (A) 
mEmt .A Njoo 

1 
~ limsup N ln QN,f3[w] o II[1 (A)~ - inf FJ(m) 

Njoo mEcl.A 

(1.14) 

The properties of the rate function will be established directly from its explicit form (1.9). 

An important feature is that the rate function is non-random. This means that under the 
conditions of the theorem, the thermodynamics of this disordered system is described in terms of 
completely deterministic potentials. From the thermodynamic point of view discussed above, this is 
an extremely satisfactory result. Namely in these terms it means that although the Hamiltonian of 
our model is a function of an unbounded number of random macroscopic quantities, we may select 
any finite subset of these in which we may be interested and can be assured that there will exist,. 
with probability one, in the infinite volume limit, thermodynamic potentials that are functions of 
these variable only and which are, moreover, completely deterministic. The sole condition for this 
to hold is that the number of macroscopic variables goes to infinity with a sublinear rate. 

In the remainder of this article we will present the proof of Theorem 1. There will be three 
important steps. First, we prove large deviation estimates for the mass of small balls in IRM, 
using fairly standard techniques. The resulting bounds are expressed in terms of a certain random 
function. The crucial step is to show that in a certain strong sense this function is 'self-averaging'. 
The proof of this fact uses the Yurinskii martingale representation and exponential estimates (see 
e.g. [LT]). These are finally combined to obtain deterministic estimates on cylinder events from 
which the convergence result (1.12) then follows rather easily. 
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2. The basic large deviation estimates 

In this section we recall exponential upper and lower bounds that have already been derived 

in [BGP2]. They provide the starting point of our analysis. 

Let us consider the quantities 

(2.1) 

We first proof a large deviation upper bound. 

Lemma 2.1: 
1 

{3N lnZN,,8,p(m) ~ <pN,13(m) + p(llt*ll2 + llmll2 + p/2) (2.2) 

where 
(2.3) 

with 

(2.4) 

and t* = t*(m) is defined through WN,13(m, t*(m)) = infteJRM WN,13(m, t), if such at* exists, while 
otherwise llt*ll = oo. 
Proof: Note that for arbitrary t E IRM, 

Thus 
ZN,13,p( m) = lEue ~llmN(u)ll~ J[{llmN(u)-mll2 ::;p} 

< inf .lE el3NHllmll~+2pllmll2+P2 )e13N(t,(mN(u)-m))+,8Npllt112 
- tEJRM O' 

< inf e/3N [i llmll~-(m,t)+ ;iN :E::1 In cosh(/3(e,,t))] el3Np( llmll2+11tll 2+p/2) 
- tEJRM 

This gives immediately the bound of Lemma 2.1.0 

Remark: Note that if a finite t*(m) exists, then it is the solution of the system of equations 

1 N 
mµ = NL ~r tanhf3(~i, t) 

i=l 

Next we prove a corresponding lower bound. 

Lemma 2.2: For p ~ j2ii-, we have that 

/3~ In ZN,,a,p(m) 2: <l!N,,a(m) - p(llmll2 + llt*(m)ll2 - p/2)- ~; 
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where the notations are the same as in Lemma 2.1. 

Proof: The technique to prove this bound is the standard one to prove a Cramer-type lower 
bound (see e.g. [Va]). It is of course enough to consider the case where 11t*ll 2 < oo. We define, for 
t* E m,M, the probability measures iP on {-1, l}N through their expectation fEu, given by 

(2.9) 

We have obviously that 

ZN,/3,p( m) = fEue tl.f llmN(u)ll~-/3N(t* ,mN(u)) lI{llmN(u)-mll2 5:P}IEuef3N(t* ,mN(u)) 

> e-f3N(t* ,m)-/3N(pllf*llr!llmll~+PllmllrP2 /2)JE ef3N(t* ,mN(<T)) fE JI 
- <T <1' {1imN(<T)-mll25:P} 

= ef3N(! llmll~-(t* ,m)+b I.:7=1 lncosh /3(e,,t*)) e-,8Np(llt* 11 2+11mllrP/2) 

(2.10) 
But, using Chebychev's inequality, we have that 

(2.11) 

We choose t*(m) that satisfies equation (2.7). Then it is easy to compute 

M ( 1 N ) lEllmN(u)- mll~ = N 1- N ~tanh2 (,B(~;,t*(m))) (2.12) 

from which the lemma follows. 0 

In the following lemma we collect a few properties of~ N,/3( m) that arise from convexity. We set 
r = { m E mM I llt*(m)ll2 < 00} where t•(m) is defined_in Lemma 2.1, D = { m E m,M I CFN,/3(m) > -00}, 
and we denote by intD the interior of D. We moreover denote by I(x) = suptEJR(tx - lncosht) 
the Legendre transform of the function ln cosh t. A simple computation shows that I( x) coincides 
with the function defined in (1.10). 

Lemma 2.3: 

i) 
N 

'PN,13(m) = ~llmll~ - inf {3lN LI(yi) 
2 yEJRN:mN(Y)=m i=l 

where for each m E IRM the infimum is attained or is +oo vacuously. 

ii) 
D = {m E !RM I 3y E [-1,l]Ns.t. mN(Y) = m} 
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iii) ~ N,{j( m) is continuous relative to intD 

iv) r = intD 

v) If t* is de.fined as in Lemma 2.1 and y* realizes the in.fimum in {2.13), then 

(2.15) 

Remark: Note that point i) of Lemma 2.3. provides an alternative formula for the variational 
formula (2.3). 

Proof: All results of convex analysis used in this proof can be found in [R]. Note that the func-
tion g(t) = {j1N I;~1 ln cosh,B(li, t) is a proper convex function on IRM. Denoting by h(m) = 
SUPteJRM {( m, t) - g( t)} its Legendre transform, it follows from standard results of convex analysis 
that h( m) is a proper convex function on IRM a~d that 

1 N 
h(m) = inf ,BN :E I(yi) 

yE.lRN :mN(Y)=m i=l 
(2.16) 

where for each m E IRM the infimum is either attained or is +oo. This immediately yields i). 
Denoting by domh = { x E IRM I h(m) < +oo} the effective domain of h, we have, by (1.7), that 
domh equals the right hand side of (2.14) , and since llmll~ ~ 0, ii) is proven. iii) simply follows. 
from the fact that h being convex, it is continuous relative to the interior of domh. Finally, to 
prove iv), we will make use of the following two important results of convex analysis. First, the 
subgradient of hat m, 8h(m), is a non empty set if and only if m belongs to the interior of domh, 
i.e., m E intD. 8h(m) is moreover a bounded convex set. Next, (m, t)- g(t) achieves its supremum 
at t* = t*(m) if and only if t* E 8h(m). To prove v) we ~nly have to consider the case where t* 
exists and consequently IYil < 1 for all i. Using the fact that I'(x) = tanh-1(x) and the definition 
of I( x) as the Legendre transform of ln cash( t), formula (2.15) follows from a simple computation. 
This concludes the proof of the lemma. O 

We see that as long asp can be chosen as a function of N that tends to zero as N goes to infinity, 
Lemma 2.1 and Lemma 2.2 seem to provide asymptotically coinciding upper and lower bounds, at 
least for such m for which t* ( m) is bounded. The unpleasant feature in these bounds is that 'lT N,{j 

is a rather complicated random function and that the ~ N,{j is defined through an infimum of such 
a function. In the next section we analyse this problem and show that this function is essentially 
non-random. 
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3. Self averaging 

We show now that the random upper and lower bounds derived in the last section are actually 
with large probability independent of the realization of the randomness. In fact we will prove this 
under the restriction that m should be such that, at least on a subspace of full measure, t* ( m) has a 
uniformly bounded L2-norm. With this in mind the result will follow from the next proposition. Let 
in the sequel fh C n denote the subspace for which IW[w]~[w]/Nll = ll~[w]e[w]/Nll ~ (l+fo)2(1+ 
€) holds for some fixed small€(€= 1 will be a suitable choice). We recall from [ST,BGl,BGPl] 
that .1P[n1] ~ 1 - 4N e-e.N

116
• 

Proposition 3.1: For any R < oo there exists 0 < 8 < 1/2 and a set n 2 c n with .1P[n2) ~ 
N i-26/R 1 - e- a , such that for all w E ni n n2, 

sup l'I![w](m, t) - .IE'I!(m, t)I ~ a1l 2 - 6 (6 + 2jlmll2) 
t: !1tll2~R 

Remark: The subspace n2 does not depend on m. 

Note that an immediate corollary to Proposition 3.1 is that, under its assumptions, 

(3.1) 

(3.2) 

Remark: An obvious consequence of (3.2) is the observation that if m E m.M and w E fh n n2 
are such that 

inf 'I![w]( m, t) = inf w[w]( m, t) 
tEJR.M t :lltll2~R 

(3.3) 

and 
inf .IE'I!(m, t) = inf .IE'I![w](m, t) 

tEJR.M t :lltl12~R 
(3.4) 

then 
1~[w)(m)- i~f .IE'I!(m, t)I ~ ca112

-
6 (3.5) 

Proof: The proof of the proposition follows from the fact that for bounded values of t, w( m, t) 
differs uniformly only little from its expectation. This will be proven by first controlling a lattice 
supremum, and then using some a priori Lipshitz bound on 'I!(m, t). We prove the Lipshitz bound 
first. 

Lemma 3.2: Assume that w E ni. Then 

j'I![w](m, t)- 'I![w](m, s)I ~ ((1 + y'a)(l + e) + llmll2) llt - sll2 (3.6) 
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Proof: Nate that 

1 IW(m, t) - w(m, .s)I ~ -(m, t - s) + {3N ~ [ln cosh(f3(li, t)) - ln cosh(f3(li, s ))] 
' (3.7) 

1 
~ llmll2 llt - .sll2 + {3N ~ [1n cosh(f3( li, t)) - ln cosh(f3( li, s) )] 

' ' 

On the other hand, by the mean-value theorem, there exists l such that 

1 . ( 1 ) /3 N ~ [In cosh(/3( (;, t)) - In cosh(/3( (;, s))] = t - s, N ~ (; tanh(/3( 6, l)) 
(3.8) 

= ~ l)t - s, li) tanh(f3(li, l)) 
i 

Using the Schwartz inequality, we have that 

(3.9) 

But this implies the lemma.O 

Let us now introduce a lattice WN,M with spacing 1/VJi in IRM. We also denote by WN,M(R) 
the intersection of this lattice with the ball of radius R. The point is that first, for any t E IRM, 
there exists a lattice point s E WN,M such that 11.s - t11 2 ~.Ja, while on the other hand 

IWN,M(R)I ~ eaN(ln(R/a)) (3.10) 

Lemma 3.3: 

IP [ sup IW(m,t)-.lEW(m,t)I > x] ~ e-N(~(l-!em/R)-aln(R/a)) (3.11) 
tEWN,M(R) 

Proof: Clearly we only have to prove that for all t E WN,M(R) 

IP [lw(m, t) - IEW(m, t)I > x] ~ e-NS:(t-!e
111

x) (3.12) 
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To do this we write W(m, t)- JEW(m, t) as a sum of martingale differences and use an exponential 

Markov inequality for martingales. Note first that 

1 N 
'l!(m, t) - IE'I!(m, t) = {3N L (ln cosh(f3(ei, t)) - IEln cosh(f3(ei, t))) (3.13) 

i=l 

We introduce the decreasing sequence of sigma-algebras :Fk,K. that are generated by the random 
. bl {tµ.}1<µ.<M {tµ.}µ.>K. W var1a es "°i i~k+l U "°k - • e set 

/C/;"<) = IE [,a-1 ~In cosh(,B( (;, t))l:Fk,,.] - IE ~-l ~In cosh(,B(U)) 1.:Ft,,.] (3.14) 

where for notational convenience we have set 

(3.15) 

Notice that we have the identity 

N M 

( ) ( ) - 1 """ """ ~k,K.) W m, t - JEW m, t = N LI LI f N 
k=l K.=1 

(3.16) 

Our aim is to use an exponential Markov inequality for martingales. This requires in particular 
bounds on the conditional Laplace transforms of the martingale differences (see e.g. [LT]). Namely, 
we clearly have that 

IP [ ~ ~ Jf;•") 2'. N x] ~ 2 J~ e-lulN~ IE exp { u ~ ~ Jf;·"l} 
(3.17) 

= 2 ~~k e-lulN:i; IE [IE [ ... IE [ euj~·1> IFt1 J euj~·2> l:Ft2 J ... euj1N,M) 1.r_t,M J 

Now notice that 

1-<;·K.) = IE[{3-1 L ln cosh(f3(ei, t))l:Fk,K.] - JE[f3-1 L ln cosh(f3(ei, t))l:Ft,K.] 
i i 

= JE[f3-1 ln cosh(f3(~k, t))l:Fk,K.] - JE[{3-1 ln cosh(f3(~k, t))l:Ft,K.] 

= JE[{3-1 1n cosh(f3 (L e~tµ. + ektK.) )l:Fk,K.1 - JE[{3-1 in cosh(f3 (L e~tµ. + ektK.) )l:Ft,K.J · 
µ.#K. µ.#K. 

= ~,a-1 IE [In cosh(,B (~ (rt11 H~t}- ln cosh(,B (~ (rt11 - (~t}l.rk,,.] 
(3.18) 

Now we use the fact that 

cosh(a + b) 1 + tanha tanhb 1 + tanh lbl 2 lbl 
-~----= < < e 
cosh(a- b) 1- tanhatanhb - 1- tanh lbl - (3.19) 
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to deduce from· (3.18) that 
(3.20) 

Using the standard inequalities e:i: ~ 1 + x + ~2 el:z:I and 1 + y ~ eY we get therefore 

(3.21) 

From this and (3.17) we get now 

(3.22) 

where the last inequality is obtained by choosing u = x/lltll~ in the first and u = x/lltll2 in the 
second case. This gives the lemma. 0 

We can now continue the proof of Proposition 3.1. Choose 0 < 6 < 1/2 and define n2 to be 
the set of w En for which 

s·up lw(m, t) - .IEw(m, t)I ~ a.112- 6 (3.23) 
tEWN,M(R) 

By Lemma 3.3, 

( 
a.1-26 1 l/2-6 ) 

1P[n2] ~ 1- exp -N ~(1- 2ea fR) + Na.ln(R/a.) 
(3.24) 

= 1 - exp (-NO(a.1- 26 / R)) 

Combining Lemma 3.2 with (3.23) and taking into account the remark preceeding Lemma 3.3, we 
see that on nl n n2' 

for a. small, which proves Proposition 3.1.0 
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4. Proof of the Theorem 

The results of Sections 2.1 and 3.1 can now be combined to get a large deviation principle in 
the product topology. T~e point here is that, apart from the possibility that t*(m) may become 
unbounded, the estimates in Lemma 2.1 and Lemma 2.2 together with Proposition 3.1 tell us that 
up to corrections that tend to zero with N, the quantity ([3N)-1 ln Z N,{3,~( m) is given by the 
infimum over t of the completely non-random function IE'I! N,{3( m, t). We will first prove that for 
all ih E DI (1.12) holds. The main step in the proof of this fact is the following theorem. 

Theorem 4.1: Assume that limsupNfoo Mr) = 0 and that 0 < {3 < oo. Then there exists a 
.set fi C n with 1P [ fi] = 1 such that for all finite subsets I C IN and for all m E [ -1, 1 ]1 such that 
for all€> 0 there exists c = c(m, E) < oo, 3No ~ 00 1\:/N ~ N0 , 

it holds that for all w E fi, 

lim lim Fk r.1 E[w](m) 
E!O Nj 00 i/J' 

= - sup sup [-
2
1 llnp(y)ll~ - p-1 rP :t I(y.,.)] + sup (~y2 - {3-1 I(y)) 

pEJN 11E[-1,1]2P -y=l yEIR 2 
IlJ"'p(11)='1L 

( 4.2) 

Remark: The assumption in Theorem 4.1 looks horrible at first glance. The reader will observe 

that it is made in order to allow us to apply the self-averaging results from the last section. We will 
show later, however, that the set of values m for which it is satisfied can be constructed explicitly 

and is nothing else than D111. 

Proof: We will first establish an upper bound for the quantity 

(4.3) 

To do so, notice that on 01, llmN(a)ll2 ~ (1 + ya)J(l + €) < 2 for all a. We may cover the ball 
of radius 2 with balls of radius p rv ya, centered at the lattice points in WN,M(2). We then have 

that on n1, 

mEWN,M(2) 
f1Il1m-'9a.ll2S• 

sup 
mEWN,M(2) 

11n1 m-'91.fl2S• 

ZN,{3,p[w](m) 

mEWN,M(2) 
llil1m-tfl.ll2S• 

< sup ZN,{3,p[w](m)eaN(ln2/a) 
m:flmlf2<2 

1tn1m-'9a.lf2S• 
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As long as a LO, the factor eaN(In 2/a) in the upper bound is irrelevant for the exponential asymp-
totic, as is the difference between€ and€ - p. Using the estimates used in the proof of Lemma 2.1, 
we can replace ZN,,8,p[w](m) in (4.4) by its upper bound in terms of the function'.¥. Namely, 

(4.5) 

Finally, combining ( 4.5) with (3.2), we get that, for w E fh n 0 2 and for any c, 

1 
(3 N ln zii-,,a,Aw](m) ~ sup_ t~~t IEWN(m, t) + 100:1/2- 0 + p(c + 2 + p/2) + (3-1o:ln 1/o: 

m: llII1m-mll2 ~€ lltll2Sc 

(4.6) 
By assumption, there exists a value c < oo, such that the true minimax over JEW N( m, t) is taken 
for a value of t with norm bounded uniformly in N by some constant c. The constant c in ( 4.6) 
is then chosen as this same constant, and then the restriction lltll 2 ~ c is actually void, and the 
minimax is taken for some values (m*, t*) which depend only on m and€. This is already essentially 
the desired form of the upper bound. 

We now turn to the more subtle problem of obtaining the corresponding form of the lower 
bound. Trivially, 

(4.7) 

We will modify slightly the derivation of the lower bound for ZN,,8,p[w](m*). Namely, instead of 
defining the shifted measure f> with respect to the random value of t that realizes the infimum of 
WN[w](m*, t), we do this with the deterministic value t* that realizes the infimum of IEWN(m*, t). 
This changes nothing in the computations in (2.10) and (2.11). What changes, is however the 
estimate on lEu llmN( a) - m* II~, since t* does not satisfy (2. 7) but is instead solution of the 
equations 

m~ = IEef t~nh(f3(6, t*)) (4.8) 

Thus in place of (2.12) we get 

lEullmN(a) - m*ll~ = 
IE rr1:1 e,8(t· ,e,ui)" (N-2 ". C"!CV a ·ak - 2m* N-1 ".Cl! a.+ (m*)2) u i=l L.Jv L.J3,k':.3':.k 3 v L.J3':.3 3 v 

II~1 coshf3(ei, t*) 

= ~2 L L 1 + ~2 L L tanh(f3(t*, e1n tanh(f3(t*, ek))e7e;: 
v j v #k (4.9) 

1 
- 2 NL L m: tanh(f3(t*' e;))ej + L(m:)2 

j v v 

= ~ ( 1- ~ ~ tanh2()3(t*,@) + ~ u ~~f tanh(J3(t·,~·))- m~ r 
13 



The first summand in ( 4. 7) is bounded by a, and we have to control the second. To do so we use 
( 4.8) to write 

~ ( ~ ~)ita.nh(,B(t*,(;))- m~) 
2 

= ~ ( ~ ~ (;'tanh(,B( t*, 6)) - .IE(fta.nh(,B( 6, t•))) 
2 

(4.10) 

= L (~ L er tanh(,B(t*, (;)) - lE ~ Ler tanh(,B(t*, e.)i) 
2 

v i i 

= GN(t*) 
We will now prove, in analogy to Proposition 3.1, that G N( t) is actually small with large probability. 
This will be slightly more complicated than in Proposition 3.1 and will, in fact consist of two steps. 
The first is a fairly crude bound on G N( t) that in a second step will be· used to obtain a refined 
one. 

Lemma 4.2: For all w E !li, 
( 4.11) 

Proof: Let us for notational simplicity set Ti= tanh(.B(ei, t)). We have that 

GN(t)~2~ ([~~(fTr + [~~lE(fTfl 
2 M 

= N2 L L (ere:TiT; + IE(efTi)IE(e:T;)) 
µ=1 i,j 

( 4.12) 

For the first term, we can use simply that 

( 4.13) 

But on !li, the norm in the last line is bounded by (1 + y'a)2(1 + c). To bound the second term in 
( 4.12), we use the independence of both ef and Ti for different indices i to write 

2 M 2 M 
N 2 L LIE(efTi)IE(e%T;) = N 2 L LIE (efTie:T;) 

µ=1 i,j µ=1 i,j 

M 

+ ~2 L L ((IEefTi) 2 
- IE(Ti) 2

) 
µ=1 i 

( 4.14) 

~ 2.IE II~· II + 
2
: 

~ 2a + 2(1 + ya)2(1 + c1
) 
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Combining these two bounds we get (4.11).0 

Lemma 4.2 tells us that G N( t) is bounded, but not yet that it is small. To do this, we observe 
first that its mean value is small. 

Lemma 4.3: 
( 4.15) 

Proof: 

( 4.16) 

where we have used the independence of the summands for different indices i. 0 

In the sequel we will need that the mean value of G N(t) does not differ much from its conditional 
expectation relative to fh. Namely, 

( 4.17) 

is arbitrarily small. 

Finally, we will show that on Oi, with large probability, GN(t) differs only little from its 
conditional expectation relative to 0 1 • 

Lemma 4.4: Assume that x > (InN)/VJi. Then, 

( 4.18) 

for some positive constant b. 

Proof: Basically the proof of this lemma relies on the same technique as that of Proposition 3.1. 
However, a number of details are modified. In particular, we use a coarser filtration of :F to define 
our martingale differences. Namely, we denote by F1c the sigma algebra generated by the random 

15 



variables { ef} f~f. We also introduce the trace sigma algebra f: = :F n fh and by f:k =: :Fk n !11 

the corresponding filtration of the trace sigma algebra. We set 

( 4.19) 

Obviously, we have for w E !11 
N 

G N[w](t) - lE[G N(t)l!11] = L l).;> ( 4.20) 
k=l 

Thus the lemma will be proven if we can prove an estimate of the form ( 4.18) for the sum of 
the l'i:). This goes just as in the proof of Proposition 3.1, i.e. relies on uniform bounds on the 
conditional Laplace transforms 

1E [ eutj;> lf:k+l] ( 4.21) 

The strategy to get those is very similar to the one used in [BGP3] and [B]. We introduce 

a<;>(t, z) = L (~ L efTi - lE ~ L efTi + ;e~Tk) 
2 

µ. i#k . i ( 4.22) 

and set 
9k(z) = a<;>(t, z) - a<;\t, 0) ( 4.23) 

We then have that 

l';;> = 1E [gk(l)lf:k] - lE [gk(l)l.tk+i] ( 4.24) 

since a<;> ( t, O) is independent of the random variables ek. On the other hand, 

9k(l) = [ dzg~(z) ( 4.25) 

and 

( 4.26) 

Let us first get a uniform bound on IJ~)I on n1. From the formulas above it follows clearly that 

If~) I ~ 2 sup lg~(z)I ( 4.27) 
z 

But using the Schwartz inequality, 

~;Vii L [~LerTi-lE~LerTi+ ;e~Tk]
2 

µ. i#k i 

( 4.28) 

= 2v;7 Ja<;>(t,z) 
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But on !hit is trivial to check that c<;.>(t, z) satisfies, for z E [O, 1], the same bound as GN(t). So 
that on n1, 

lg~(z)I :::; 
12f!l ( 4.29) 

Now we turn to the estimation of the conditional Laplace transform. Using the standard inequality 

we get 

IE [eut;;> iFk+l] :::; 1 + ~u2 IE [ (1J:>)2 elullt;;>11j-k+l] 

1 + ~u2eiul~ IE [ (1J:>/ IFk+l] 
A simple computation (see [BGP3]) shows that 

Let us write 

Thus 

IE [ (1J:>) 2 l.h+i] :::; 4IE [(gk(1))2 iFk+1] 

= 4IE [ ([ dzgl(z)) 
2 

l:Fk+l] 

:::; 4IE [[ dz (g~(z))2 IFH1] 

~ 4 sup IE [(gHz)) 2 IFk+1] 
O~.z:~l 

(gHz))
2

:::; 8 (~ [ ~ ~(iT; - IE ~ ~(iT;] ~(kTk) 
2 

4( . )2 M2 + BTk z - 1 N 4 

( 4.30) 

(4.31) 

( 4.32) 

( 4.33) 

( 4.34) 

Let us abbreviate the two summands in ( 4.34) by (I) and (II). The term (II) is of order a 2 N- 2 and 
thus can simply be bounded uniformly. We have to work a little more to control the conditional 
expectation of the first. We write 

IE [ (I)IFk+l] 

= ;2 IE [L ~~~;;T~ [~ L (fT; - IE ~ L (fT;] [~ L (iT; - IE ~ L (iT·] li"k+l] 
µ,v i s s s 

( 4.35) 
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We observe that under the expectation conditioned on ftk+l we may interchange the indices of 
1 ~ j ~ k and use this to symmetrize the expression ( 4.35).(Notice that this is the reason why we 
separated the z-dependent contribution in ( 4.34)).This gives 

( 4.36) 
But by Lemma 4.2, on 0 1 , 

( 4.37) 

and since t ~~}TJ ~ t ~~} = llB(k)ll 
j=l j=l 

( 4.38) 

we get that 

IE [(I).lftk+i] ~ ;~IE [llB(k)ll ln1] ~ ;~IEjjB(k)ll/IP[01] ( 4.39) 

It is easy to show that (see [B]) that 

IEllB(k)ll ~ c ( 1+JM!k) 2 
( 4.40) 

for some constant 2 > c > 1. Collecting our estimates and using that 1 + x ~ ex we arrive at 

Since 
N 

~~)1 + JMTk)2 = N +4JMN + MlnN = N(l +4v'Q+ alnN) (4.42) 
k=l 

this yields that 

IP l~ J}.;l ~ xl!l1] ~ i~f exp (-ux + ;~elull2v'.M/N 4 (8a2 + 76 + 304y'a + 76aln N]) ( 4.43) 

In order to perform the infimum over u in ( 4.43) we must disti:Q.guish two cases. First, if a~ 1/ ln N, 

we may chose u = P which yields 

IP l~ 1;> ~ X] ~ e-,/Nz+c1 ( 4.44) 
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for some positive constant c1 • ff now a goes to zero with N more slowly than 1/ ln N, a good 
estimate of the infimum is obtained by choosing u = N /12y}j. This gives 

11' [~ f~) ~ x] ::; e-v'N~ exp {Ha+~+~+ 2lnN]} 
( 4.45) 

~ e-VNx/12+c2 ln N 

for some positive constant c2 • From here the lemma follows immediately. 0 

Corollary 4.5: 
w E n3(t*) 

There exists a set n3(t*) c nl with .JP(n1 \n3) ~ e-bNl/4: such that for all 

( 4.46) 

Proof: This follows from combining ( 4.9) and ( 4.10) with Lemmas 4.2, 4.3 and 4.4 and choosing 
x = N-1 / 4 in the latter.O 

Since by assumption llt*l12 < c, lemma 2.3 implies that on ni, llm*ll2 ~ 2. As a consequence, 
putting together Proposition 3.1, Corollary 4.5 and (2.10), we find that on n3(t*), 

/3~ 1n Z1,!l.•+p[w](iii) ~ IE'I!N(m*, t*) - lOa1 t2
-

5 
- p(c + 2 - p/2) - ;~ ( 4.4 7) 

Which is the desired form <?f the lower bound. 

·Finally, by a simple Borel-Cantelli argument, it follows from the estimates on the probabilities 
of the sets ni, n2 and n3(t*) that there exits a set n of measure one on which 

( 4.48) 

and 

liminf ~1NlnZAr,,8,e[w](m) ~ liminf sup infM.lE'l'N(m,t) (4.49) 
Njoo fJ Njoo m: llII1m-ml12~£-p tElR 

It remains to show that the limsup and the liminf's on the right-hand sides of ( 4.48) and ( 4.49) 
coincide .. From here on there is no difference to the procedure in the case M < ln N / ln 2 that was 
treated in [BGP2]. We repeat the outline for the convenience of the reader. We write lE'l! N(m, t) 
in its explicit form as 

1 2M 

lE'l! N(m, t) = 2llmll~ - (m, t) + [3-1 2~M L ln cosh(f3( e-y, t)) 
-y=l 

( 4.50) 

where the vectors e-y, 1 = 1, ... , 2M form a complete enumeration of all vectors with components 
±1 in IRM. They can be conveniently chosen as 

( 4.51) 
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where [x] denotes the smaller integer greater or equal to x. Note that IE'I!N(m, t) depends on N 
only through M(N). We may use Lemma 2.3 to show that 

( 4.52) 

and hence 

2M 

sup inf IE'I!N(m,t) = sup ! llnp(Y)ll~ -,a-12-MLI(y..,) (4.53) 
m: llII1m-ml12~£ tEJRM yEJR2M: llII1np(Y)-mll2~E 2 -y=l 

To prove that this expression converges as N (or rather M) tends to infinity, we define the sets 

Obviously, 

~ C At' C .. . A~_1 CA~= [-1, 1]2
M 

The definition of these sets implies the following fact: If y E Ar with d < M, then 

.(i) n~(y). = 0, if v > d and 

(ii) n~(y) = n~(y), ifµ,~ d. 

Let us set 

and 

T p,e:( ih) = sup 0p(Y) 
vE.A:' 

11n1~p(v)-"'-ll2S• 

( 4.29) 

( 4.30) 

( 4.32) 

( 4.33) 

Therefore, for y EA~, 0p(Y) = 0d(y), while at the same time the constraint in the sup is satisfied 
simultaneously w.r.t. np or nd, as soon as dis large enough such that IC {1, ... , d}. Therefore, 

sup 0p(y) = 
vE.A~ 

11n1~p(v)-"'-ll2S• 

sup 0d(Y) = Td,e:(m) ( 4.34) 
vE.A~ 

llil1~pCv>-"'-ll2S• 

Hence T p,e:( ih) is an increasing sequence in M and being bounded from above, converges. Thus 

lim sup inf IE'I!N(m, t) = lim Tp e:(m) 
Njoo m: llII1m-mll2~e: teJRM Njoo , 

20 

=sup Tp,e:(m) 
p 

( 4.54) 



It remains to consider the limit El 0. It is clear that supP T p,E( m) converges to a lower-semicontinuous 
function and that 

limsupTp,E(m) = lim sup supTp,o(m) 
E!O p E!O m: llIT1m-mll2 ~E P 

( 4.55) 

Thus if supP T p,o( ih) is continuous in a neighborhood of ih, we get 

lim sup Tp,E(m) =sup Tp,o(m) 
E!O p p 

( 4.56) 

as desired. But, as has been shown in [BGP2], from the explicit form of T one shows easily that 
supP T p,o( ih) is Lipshitz continuous in the interior of the set on which it is bounded. This proves 
Theorem 4.1 0 

We will show next that a sufficient condition for condition ( 4.1) to hold is that ih belongs to 
D111· While this appears intuitively 'clear', the rigorous proof is surprisingly tedious. Let us first 
introduce some notation and results. 

Let Ep be the p x 2P-matrix whose rows are given by the vectors e..,, r = 1, ... , 2P, which, 
for convenience, are ordered accordingly to (4.51). We will denote byeµ,µ= 1, .. . ,p the column 
vectors of Ep and by E; its transpose. It can easily be verified that 

· 2-P( eµ, e11) = { 1 ifµ= ~ 
0 otherwise 

( 4.57) 

Thus, the 2P x 2P-matrix 2-p EpE! is a projector that projects on the subspace spanned by the 

orthogonal vectors {eµ}~=l> and 2-p E!Ep is the identity in JRP. Given a linear transformation A 
from RP to Rq, we define 

AC = {Ax I x E C} for C C JRP ( 4.58) 

With this notations the vector np(Y) and the set Dp, defined in (1.7) and (1.8), can be rewritten as 

np(y) = 2-p E!y 

D - 2-p Et[-1 1]211 
p - p ' 

( 4.59) 

Moreover, for any set IC {1, ... ,p}, we have the following property, 

( 4.60) 

Finally, let us remark that of course the statements of Lemma 2.3 apply also to the deterministic 
function inf tEJRP IE'I! N,(3( m, t) . All references to Lemma 2.3 in the sequel are to be understood as 
referring to properties of this latter function. 

By Lemma 2.3, the condition ( 4.1) of Theorem 4.1 is satisfied if and only if the supremum in 
the l.h.s of ( 4.1) is taken on at a point m in intDp. More precisely, by (2.15), this condition is 
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equivalent to demanding that for all e > 0 and all p, the supremum over y s.t. llIIrnp(y)- mll2 ~ e 
of 0p(Y) is taken on at a point y* such that 

2P 

rP :E [I'(y;)] 2 ~ c ( 4.61) 
"Y=l 

We set 

( 4.62) 

Lemma 4.6: Assume that 0 < f3 < oo. Then for all ih E D1r1 and e > 0 there exists c(ih, e) < oo 
such that for all p ~ III 

where 

inf 0(y) = 0(y*) 
11E[-l 1 1]2P 

IIJ"'p(11)EBc("") 

2P 

Tp(y*) = 2-P :E [I'(y;)] 2 ~ c(ih, e) 
"Y=l 

( 4.63) 

( 4.64) 

Proof: The proof proceeds by showing that if y does not satisfy condition ( 4.64), then we can find 
a oy such that y + oy E Ae(m) and 0p(Y + oy) < 0p(y), so that y cannot be the desired y*. Let us 
first note that 

Using the properties of the matrix Ep we can bound the difference of the quadratic terms as follows 

llnp(Y + oy)ll~ - llnp(Y)ll~ =llnp(oy)ll~ + 2-P+l(oy, 2-PEpE: y) 

~ - 2-p/2+1 l18Yll2 

Thus we can show that 0p(Y +Sy)< 0p(Y) holds by showing that 

2P 

2-P(3-1 :E [I(y"Y) - l(y"Y + oy"Y)] > 2-pf21loyll2 
"Y=l 

Define the map Y from [-1,1]2,, to (-1,1]2 111 by 

2P-IIl _1 

Y"Y(y) =: 2-P+III :E Y"Y+.:y2111 ' 1=1, ... ' 2III 
i'=O 
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Using ( 4.59) we get that 

( 4.69) 

Therefore, the property that y E A(m) depends only on the quantity Y(y). 

Notice that if m E D1r1 and€> 0, then there exists X E (-1, 1)2111 such that llnr(X)-mll2 :5 €. 
This implies that for any p, the vector x E JR2

p with components X-y = Xymod 2111 lies also in A(m). 
Moreover, 

max lx-rl = max IX-rl = 1- d < 1 
'Y 'Y 

( 4.70) 

and therefore 
Tp( x) :5 (J'(l - d)]2 ( 4. 71) 

is some finite p-independent constant. We will use this fact to construct our 8y. We may of course 
choose an optimal X, i.e. one for which d is maximal. In the sequel X and x will refer to this 
vector. Let now y be a vector in Ae(m) for which Tp(Y) > c for some large constant c. We will 
show ~hat this cannot minimize E>p· We will distinguish two cases: 

Case 1: Let us introduce two parameters, 0 < 'T/ <t: d and 0 < .A < 1, that will be appropriately 
chosen later. In this first case we assume that y is such that 

2P 

L lI{ly'Y l~l-11} ~ (1 - .A)2P-lll ( 4. 72) 
-y=l 

and we choose 
8y=:p(x-y) (4.73) 

where 0 < p < 1 will be determined later. It theJJ. trivially follows from the definition of x and the 
convexity of the set Ae that y + p(x -y) EA and that y + p(x -y) E [-1+pd,1- pd] 2

p. H Thus 
if we can show that with this choice, and with an p such that pd > 'TJ, ( 4.67) holds, we can exclude 
that the infimum is taken on for such any. 

Let us first consider components Y-r such that IY-rl > 1 - d. Since lx-rl ~ 1 - d we have, for 
those components, sign8y-r = -signy-r and thus I(y-r) - I((y + oy)-r) > 0. This fact together with 
( 4. 72) entails 

2P 2P 

2-M L[I(Y-r)- I((y + oy)-r)]JI{IY"l~l-d} ~2-M L[I(Y-r)- I((y + oy)-r)]JI{IY"'~1-11} 
-y=l -r=l (4.74) 

~ inf (1- .A)2-111[J(y-r) - I((y + oy)-y)] 
lv'Y(~l-4 
l•'Y l~l-4 
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Note that I(z) is symmetric with respect to zero and is a strictly increasing function of z for z > 0. 

Thus I((y + oy)-r) is maximized over lx'YI ~ 1 - d for x"f = (1- d)signy'Y. From this we get 

inf [I(y"f) - I((y + oy)"f)] ~ [I(y"f) - I(IY"fl + p((l - d) - IY'YI))] (4.75) 
lx..,19-d 

and the infimum over IY'YI ~ l-77 in the r.h.s. of (4.75) is easily seen to be taken on for IY'YI = l-77. 
Thus 

inf (1 - .A)2-l1l(J(y'Y) - I((y + oy)"f)] ~(1- .A)2-l1l[J(l - 77) - J(l - 71- p(d- 71))] 
1'11-rl~l-d 
111..,1:51-ti 

~(1- .A)2-IIlp(d- 77)J'(l - 71- p(d- 71)) (4.76) 
1 

~(1 - .A)2-l1lp(d- 77)2l ln(77 + p(d- 71))1 

where we have used the convexity of I and the bound, J'(l - x) ~ tl lnxl for 0 < x < 1. 

We now have to consider the components y"f with IY'Y I ~ 1 - d. Here the entropy difference 

I(y"f)-I((y+oy)"f) can of course be negative. To get a lower bound on this difference we use (4.75) 

and perform the change of variable IY'YI = (1- d) - z"f to write 

inf [I(y"f) - I((y + oy)"f)] = inf J((l - d) - z"f + pz"f) - J((l - d) - z"f) 
1'11 7 1:51-tt O~z.., ~1-d 
l11-r l:5l-d 

~ inf -pz'YI'((l-d)-z"f+pz"f) 
O~z.., 9-d 

. f 1 ln ( 2 - d - Z; + PZ;) = m -pz"f-
O$z7 ~1-d 2 d + z"f - PZ; 

2'. - p( 1 - d) i In (2 ~ d) 

>-ein~ - 2 d 

and putting together ( 4. 77) and ( 4.72) yields 

( 4.77) 

2-M f)J(y-y) - I((y + 5y)-y)]~lv, \<H} 2'. -(1- (1- >.)2-111)~ In(~) ( 4.78) 
"f=l 

Therefore, (4.78) together with (4.74) and (4.76) give 

2P 

{3-12-M _E[I(y"f) - I((y + oy)"f)] 
;=1 (4.79) 

2:,8-1 p { (1- >.)r111(d- 11)~l In(11 + p(d- ri))I - (1- (1- >.)rl11 )~ In (D} 
On the other hand, we have 

( 4.80) 
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Consequently, ( 4.67) holds if we can choose A, 1}, and p so that the following inequality holds, 

{3-1 
{ (1 - >.)rlll(d - 11)~l In(11+p(d-11))1- (1- (1- >.)rl1I)~ In G)} > 2 (4.81) 

But this is always possible by taking e.g. A< 1, 1J = pd/2 and p = dK where K = K(d, III, A)> 1 
is chosen sufficiently large as to satisfy 

( 4.82) 

Case 2: We will assume that A < 1, and that 1}, and pare chosen as in the case 1. We can then 
assume that 

2" 

L 1I{IY7 l~l-11} < (1 - A)2P-lll ( 4.83) 
"Y=l 

We assume further that 
( 4.84) 

for c sufficiently large to be chosen later. Here we will choose oy such that 

Y(oy) := 0 ( 4.85) 

so that trivially y + oy E Ae:(m). Let us introduce a parameter 0 < ( < TJ, that we will choose 
appropriately later, and let us set, for I E {1, ... , 2111}, 

K~ = { :y E {1, ... , 2p-III} I 1Y"Y+(i'-1)2fI( I ~ 1 - (} ( 4.86) 

and 

K-:; :={:YE {1, ... ,2P-III} I IY"Y+(.:Y-1)2f1il ~ l -17} 

For all indices r such that x:; = 0, we simply set 8y"Y+(1'-l)2111 = 0 for all :Y E {1, ... , 2P-111}. If 
x:; were empty for all 1, then Tp(y) ~ [J'(l - ()] 2 which contradicts our assumption ( 4.84), for 
suitably large c (depending only on (). Thus we consider now the remaining indices I for which 
x:; -10. 

First note that ( 4.83) implies that IKtl < (1-A)2P-111 and that K; > A2P-111 so that choosing 

1 > A > t, we have IKt I < IK; I· Our strategy will be to find oy in such a way as to decrease the 
moduli of the components in x:; at the expense of possibly increasing them on x:; in such a way 
as to leave Y(y + oy) = Y(y). 

We will in the sequel consider the case where there is only one index 'Y, e.g. r = 1, for which 
Kt is nonempty. The general case is treated essentially by iterating the same procedure. We will 

use the simplified notation Yi+2111:y = y:y, 8y1+2111:y = oy.iy and also set Kf = x:±. We will assume 
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moreover that all components y:y are positive, as this is the worst situation. We will chose oy such 
that oy:y = O, if i E {K:+ U x:-y and oy:y < 0 if i E K:+. For each i E x:+ we will choose in a 
unique and distinct i' Ex:- and set oy:y' = -oy:y. This ensures that Y(oy) = 0. We will also make 
sure that for all')', l8Y1'1 ~ TJ/2 :_ (. 

We have to construct oy:y for i E x:+. In this process we have to consider the following three 
functionals: 

( 1) The change in the quadratic term of 0p. This is bounded by 

8E(8y) = 2-p/2+t 2 :E .Sy~ 
.:ryex:+ 

(2) The change in the entropy term, 

81(8y) = 2-p :E (I(y.y + oy:y) - I(y:y)) 
:yex:+ 

+ 2-p :E (I(y:y. + oy:y) - I(y:y)) 

~ 2-p-1 :E ISY:rlI'(Y:r + oy:y) 
.:rex:+ 

( 4.87) 

( 4.88) 

where we have used that for 1 ~ lxl ~ IYI ~ 0.9, I(x) - I(y) ~ Ix - Yll ln(l - y)I and that 
under our assumption for 1' E x:+, Y:y + oy:y ~ 1 - TJ/2. 

(3) Finally, we have that 

~ [J'(l - 17/2)]2 + 2-p :E [I'(y:y + oy:y)] 2 
( 4.89) 

.:rex:+ 

Looking at these three functionals suggests to choose 8y:y for i E K:+ as the solution of the 
equation 

-5y:y = r I'(y.y + 5y:y) ( 4.90) 

The point is that with this choice (4.89) yields (we set for simplicity 5E(oy(r)) = 5E(r), etc.) 

OI(r):?: 8~(6E(r))2 ( 4.91) 
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while 
( 4.92) 

Thus we can ensure that the entropy gain dominates the potential loss in the quadratic term 
provided we can chooser < 8E(r)/B. However, we know that Tp(r) is a continuous function oft 
and Tp(O) ~c. Thus there exists r0 > 0 such that for all r ~ r0 , Tp(r) ~ c/2, and so by (4.92), 

r-18E(r) ~ Jc/2 - [1'(1- ()]2 ( 4.93) 

which inserted in ( 4.92) yields that 

51( T) '2: ~ 2 .j c/2 - (J'(l - ()]20E( T) ( 4.94) 

It is clear that if c is chosen large enough ('large' depending only on(), this gives 8I(t) > 8E(t), as 
desired. Finally, it is easy to see that l8Y;.I is bounded from above by the solution of the equation 

x = rI'(l - x) ( 4.95) 

which is of the order of x ::::::: rl lnrl. ff (is chosen e.g. ( = TJ/4, we see from this that for small 
. enough r, l8Y;.I ~ TJ/2 - (, so that all our conditions can be satisfied. Thus, there exist c < oo 

depending only on T/ (which in turn depends only on m and e) such that any y that satisfies the 
assumptions of Case 2 with this choice of c in ( 4.84) cannot realize the infimum of 0p. The two 
cases combined prove the lemma. 0 

To conclude the proof of Theorem 1 we show that form ED[ (1.13) holds. This turns out to 
be rather simple. The main idea is that if m E Df11' then on a subset of n of probability one, for 
N large enough and e small enough, the set {a E SN I llII1mN(u) - mll2 ~ e} is empty. 

To do so we will first show that uniformly in the configurations u, the vector II1mN( u) can be 
rewritten as the sum of a vector in D1 11 and a vector whose norm goes to zero as N goes to infinity. 
Let e..,,";= 1, ... , 2111, be the column vectors of the matrix Ej11 • We set 

v.., = { i E { 1, ... , N} I er = e~ ' \Iµ E I} ( 4.96) 

These sets are random sets, depending on the realization of the random variables er. Their cardi-
nality, however, remains very close to their mean value. More precisely let .X.., denote the :fluctuation 
of lv..,I about its mean, 

( 4.97) 

There exists a subset 0 4 E n of probability one and a function, SN, tending to zero as N tends to 
infinity, such that for all but a finite number of indices, 

I .x.., I < 8 N , 'Y = 1, ... ' 2 I II ( 4.98) 
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This fact has been proven in [G]. Using (4.96), IIrmN(cr) can be rewritten as 

( 4.99) 

where X(a) and (6X)(cr) are respectively the vectors with components X-y(a) = lv"Yj-1 L.:iEv
7 

CTi E 

[-1, 1], (6X)-y(cr) = A-yX-y(cr), 'Y = 1, ... , 2111. It then follows from the properties of the matrix Ef11 
and ( 4.98) that, on n4, 

(4.100) 

Now, by assumption, ih E Dfrp i.e. there exists € > 0 such that {x E .mill I llx - mll 2 ~ €} C 

(D111t· Therefore, since n111(X(a)) E D111, we have lln111(X(a))- mll2 > €. From this and (4.100) 
it follows that on n4, llIIrmN(cr) - mll2 > € - 6N. Finally, for N large enough and€ small enough 
we get 

( 4.101) 

From this, part (1.13) easily follows. This concludes the proof of Theorem 1. 
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