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Abstract

Operation regimes of a two section monolithic quantum dot mode-locked
laser are studied theoretically using a model that takes into account carrier
exchange between quantum dots and wetting layer. It is shown that when the
absorber section length is large enough the laser exhibits bistability between
laser off state and different mode-locking regimes. Q-switching instability
leading to slow modulation of the mode-locked pulse peak intensity is com-
pletely eliminated in this case.

1 Introduction

Mode-locking in lasers is a powerful tool for generating short optical pulses for dif-
ferent practical applications ranging from high speed communications to medical
diagnostics. In particular, monolithic passively mode-locked semiconductor lasers
are compact sources of picosecond pulses with high repetition rates suitable for ap-
plications in telecommunication technology [1, 2]. Recently a new generation of
mode-locked semiconductor lasers based on quantum-dot (QD) materials was de-
veloped [3]. These lasers demonstrate many advantages over conventional quantum
well lasers, such as low threshold current, small alpha factor, low pulse chirp, high
stability to noise and external feedback, etc. [4, 5]. It was recently shown that QD
mode-locked lasers can generate very short subpicosecond optical pulses [6].

Due to the discrete nature of electron density states in QD lasers, they demon-
strate a number of characteristic features distinguishing them from conventional
semiconductor devices [7]. Therefore, theoretical modeling of these lasers requires
a development of more sophisticated models which would take into account these
features. In particular, carrier dynamics in quantum dot lasers includes carrier ex-
change processes between wetting layer and discrete levels in quantum dots. These
processes are characterized by a large number of quite different characteristic time
scales, which have an important impact on the quality of mode-locked pulses and
the dynamical behavior of the laser in general.

Rate equations describing the carrier exchange dynamics in QD lasers were pro-
posed in [8, 9]. These equations govern the time evolution of three quantities:
carrier density in the wetting layer and occupation probabilities of two discrete lev-
els in quantum dots corresponding to the first excited state and the ground state,
respectively. Assuming that the carrier relaxation rate from the excited states to the
ground state is sufficiently fast one gets only two carrier equations for occupation
probability of the quantum dot ground state ρ and carrier density in the wetting
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layer n [10, 11]. Similar pairs of carrier rate equations for gain and absorber sec-
tions were recently incorporated into the delay differential mode-locking model to
describe passive mode-locking in quantum dot lasers [12, 13]. It was shown that fast
carrier capturing from the wetting layer to quantum dots can lead to suppression
of undesirable Q-switching instability of the fundamental mode-locking regime [11].
Such instability leading to a degradation of the quality of mode-locking regime is
quite difficult to eliminate in quantum well mode-locked devices [2, 14]. In this
paper, using the delay differential equations (DDE) model and the traveling wave
equations, we perform a more systematic study of the effect of carrier exchange pro-
cesses on the dynamics of a quantum dot mode-locked laser. We show that taking
into consideration Pauli blocking terms in carrier exchange equations can lead to
a qualitative change in the laser dynamical behavior. When the absorber section
length becomes large enough Q-switching instability of fundamental mode-locking
regime disappears and a bistability develops between the laser off state and different
mode-locking regimes. We also describe the period doubling bifurcation leading to
a harmonic mode-locking regime with two different pulses circulating in the cavity.

2 Model equations

We consider a model of passively mode-locked quantum-dot laser consisting of two
sections, a forward biased amplifying section and a reversely biased saturable ab-
sorber section. In each section the spatial-temporal evolution of the amplitudes of
two counter-propagating waves E± can be described by the so-called traveling wave
equations [15]:

∂E±

dt
± ∂E±

∂z
= −βg,q

2
E± +

1− iαg,q

2
gg,q(2ρ− 1)E±, (1)

where the index g corresponds to the amplifying section and the index q refers to
the absorber section. The parameters βg,q describe linear internal losses in the semi-
conductor medium, αg,q are the linewidth enhancement factors, and gg (gq) is the
differential gain (loss) parameter in the amplifying (absorbing) section. Equations
(1) are coupled to the equations governing the evolution of the occupation proba-
bility of the ground state in quantum dots ρ and the carrier density in the wetting
layer n:

∂ρ

∂t
= −γg,qρ− rg,qρ + bg,qn(1− ρ)− gg,q(2ρ− 1)

(
|E+|2 + |E−|2

)
, (2)

∂n

∂t
= ηg,q − δg,qn + 2rg,qρ− 2bg,qn(1− ρ). (3)

Here n = σW , σ is the wetting layer occupation probability, W = f/2ND, f is
the number of states in the wetting layer, and ND is the total number of quantum
dots in the corresponding section. The factor 2 in Eq. (3) accounts for the double
degeneracy of the ground state in quantum dots. The parameters γg,q (δg,q) are the
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carrier relaxation rates in wetting layer (quantum dots). The parameters rg,q and
bg,q describe, respectively, the rate of carrier escape from quantum dots to wetting
layer and carrier capturing rate from wetting layer to quantum dots. Finally, note
that in the gain section Eq. (3) contains the term ηg that describes linear gain due to
injection current. Since there is no current in the absorber section, we have ηq = 0.
However, we assume that the relaxation time δq increases with the increase of the
reverse voltage applied to the absorber section. Boundary conditions for Eqs. (1)
are given by E+ (0, t) =

√
κ1E

− (0, t) and E− (L, t) = Γ
√

κ2

∫
e−ΓτE+ (L, t− τ) dτ ,

where z = 0 (z = L) corresponds to the left (right) laser facet. These conditions
account for the reflectivities of the facets κ1,2 and the gain dispersion which is
described by Lorentzian filter of width Γ [16].

Equations (1)-(3) have been used for numerical modeling dynamics of monolithic
quantum dot laser. A numerical scheme for solving these equations is described in
[16]. Along with these equations a simplified model assuming ring cavity geometry
and unidirectional lasing approximation [12, 13, 17] was used. This model can be
written as a set of five delay differential equations [11]

Γ−1dA

dt
+ A =

√
κe(1−iαg)G(t−T )/2+(1−iαq)Q(t−T )/2A(t− T ), (4)

dPg

dt
= − (γg + rg) Pg + bgNg (1− Pg)− eQ(eG − 1)|A|2, (5)

dPq

dt
= − (γq + rq) Pq + bqNq (1− Pq)− s(eQ − 1)|A|2, (6)

dNg

dt
= δg (g0 −Ng) + 2rgPg − 2bgNg (1− Pg) , (7)

dNq

dt
= −δqNq + 2rqPq − 2bqNq (1− Pq) . (8)

Here A is the normalized electric field envelope at the entrance of the absorber
section. The variables Pg,q =

∫
g,q ρdl/lg,q and Ng,q =

∫
g,a ndl/lg,q are normalized

integrals of the occupation probability ρ and carrier density n along the the cor-
responding section where lg (lq) denotes the length of the gain (absorber) section.
Cumulative saturable gain G and loss Q introduced by the gain and absorber sec-
tions are given by

G = gglg (2Pg − 1) , Q = gqlq (2Pq − 1) .

The parameter T is the cavity round trip time, Γ is the spectral filtering width, κ is
the attenuation factor that accounts for the linear nonresonant losses βg,q and reflec-
tivities of the laser facets κ1,2. Finally, g0 =

∫
g ηgdl/lg is the linear gain parameter.
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Figure 1: Dependence of the carrier density in wetting layer Ng and occupation
probability in quantum dots Pg in the gain section on the linear gain parameter g0

for the solution with zero laser intensity.
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Figure 2: Dependence of the laser intensity on the linear gain parameter g0. 1 –
monostable behavior, short absorber section lg = 0.9 mm, lq = 0.1 mm. 2 – bistable
behavior: longer absorber section, lg = 0.8 mm, lq = 0.2 mm. Other parameters
are T = 25 ps, αg = αq = 0, s = 15, Γ−1 = 0.4 ps, κ = 0.3, γ−1

g = 1 ns, γ−1
q = 1

ns, δ−1
g = 1 ns, δ−1

q = 10 ps, gg = 4 mm−1, gq = 10 mm−1, b−1
g = 5 ps, b−1

q = 5 ps,
r−1
g = 100 ps, r−1

q = 10 ps.
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Figure 3: Dependence of cw laser intensity on the gain parameter g0 calculated for
different values of the capturing rate bg and the relaxation rate γg in the gain section.
Top: The curves 1, 2, 3, 4, and 5 correspond to b−1

g = 2 ps, b−1
g = 20 ps, b−1

g = 36
ps, b−1

g = 57 ps, and b−1
g = 80 ps, respectively. Bottom: The curves 1, 2, 3, 4, and 5

correspond to γ−1
g = 200 ps, γ−1

g = 100 ps, γ−1
g = 67 ps, γ−1

g = 50 ps, and γ−1
g = 40

ps. Other parameters are the same as in Fig. 2.
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3 CW regimes

In this section we study the solutions of Eqs. (4)-(8) corresponding to cw laser
output. The simplest cw solution is that corresponding to zero laser intensity. It is
given by

A = 0, Pg = Pg0, Ng = Ng0, Pq = Nq = 0 (9)

with

Pg0 =
1 + ξ

2
−

√√√√
(

1 + ξ

2

)2

− g0ζ

2
, Ng0 = g0 − 2Pg0

ζ
, (10)

and

ξ =
ζ

2

(
g0 +

rg + γg

bg

)
, ζ =

δg

γg

. (11)

The dependence of the quantities Pg = Pg0 and Ng = Ng0 on the linear gain param-
eter g0 in the amplifying section is shown in Fig. 1. We see that unlike the carrier
density Ng in the wetting layer, which grows linearly at large linear gains g0, the
growth of the occupation probability Pg of quantum dots saturates at Pg = 1 when
the injection current becomes sufficiently large. The smaller the ratio (rg + γg) /bg in
(11) and the larger ζ, the faster Pg saturates. This saturation is related to the pres-
ence of the Pauli blocking factor 1−Pg in the capturing rate term in Eq. (6), hence
it is a consequence of the fact that the number of free places for electrons in quan-
tum dots is limited. Saturation of the occupation probability results in saturation
of the gain in the amplifying section. This gain can not exceed the maximal value
G = gglg corresponding to a state with fully occupied quantum dots, Pg = ρg = 1.

Since at A = 0 the absorber section is completely unsaturated, we have Pq = 0 and,
hence, the cumulative loss introduced by this section is Q = −gqlq. Therefore, for
g0 → ∞ when all the states in quantum dots are fully occupied, i.e., G = gglg, the
stability of the zero intensity cw solution (9)-(11) is determined by the inequality
gglg − gqlq + ln κ < 0, where ln κ describes the linear nonresonant losses. This
inequality ensures that the absolute value of the coefficient by the delayed electric
field term in Eq. (4) is less than 1. From this condition we see that when the
absorber section length is large enough, namely

gqlq > gglg + ln κ, (12)

the zero intensity steady state (9)-(11) remains stable at arbitrary large injection
currents (arbitrary large g0). In this case the maximal achievable linear cumulative
gain G = gglg is smaller than total unsaturated losses |Q| = gqlq introduced by the
absorber section plus linear nonsaturated losses − ln κ. However, even in this case
laser generation is possible in a regime with strongly saturated absorber. Indeed,
considering for simplicity the case of zero linewidth enhancement factors αg = αq =
0, in the limit g0 → ∞ one obtains that apart from zero intensity steady state
(9)-(11) there exist two cw solutions with |A|2 6= 0. The first of these cw solutions
corresponds to a fully saturated absorber Pq = 1/2 and is always stable in this
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limit (see the upper branch of curve 2 in Fig. 2). The second solution (the lower
branch of curve 2 in Fig. 2) corresponds to the positive occupation probability
Pq = (gqlq − gglg − ln κ)/(2gqlq) > 0 only when the inequality (12) is satisfied.
Otherwise, this solution corresponds to negative occupation probability and laser
intensity, ρq, |A|2 < 0 , and, therefore, is nonphysical. Thus, if the inequality (12)
holds, the branch of nonzero-intensity cw solutions is isolated from the zero intensity
state (curve 2 in Fig. 2) and the bistability exists between the two cw states. If
the absorber section length is sufficiently short, so that the inequality (12) is not
satisfied, the solution with nonzero laser intensity bifurcates from the zero intensity
state at gain parameter value

g0 = (gglg + gqlq − ln κ)

[
1

gglgζ
+

rg + γg

bg (gglg − gqlq + ln κ)

]
,

which corresponds to the linear lasing threshold (see curve 1 in Fig. 2). In this case,
either there is no bistability or the bistability domain is rather small.

Fig. 3 illustrates the dependence of the cw solutions of Eqs. (4)-(8) on the parame-
ters of the gain section. According to this figure, both the increase of the capturing
rate bg and the decrease of the relaxation rate γg lead to the increase of the cw laser
intensity. It should be noted, however, that these plots do not take into account the
stability issues.

4 Mode-locking regimes

The results of numerical bifurcation analysis of Eqs. (4)-(8) performed using the
path following software package DDEBIFTOOL [18] are summarized in Figs. 4
and 5. These figures show the dependence of the laser field peak intensity on the
linear gain parameter g0 in lasers with two different lengths of the absorber section.
Fig. 4 corresponds to a laser with a rather short absorber section when there is no
bistability between zero and nonzero intensity cw solutions (see Fig. 2). Bifurcation
sequence depicted in this figure is qualitatively similar to that described earlier for
a model of a monolithic quantum well mode-locked device [12, 13]. Mode-locking
solutions bifurcate from the cw solution corresponding to nonzero laser intensity. At
sufficiently small injection currents g0 the fundamental mode-locking regime exhibits
an instability leading to undamped oscillations of the pulse peak intensity at the
Q-switching frequency. This instability leads to a regime of “Q-switched” mode-
locking, which is indicated qsml in Fig. 4 (see also the time trace in Fig. 6b).
However, unlike the model of quantum well laser described in [12, 13], the QD
mode-locked model (4)-(8) apart from Q-switched mode-locking can exhibit a pure
Q-switching regime. This regime, indicated qs in Fig. 4, corresponds to a periodic
laser intensity (see Fig. 6a for the time trace). With the increase of the injection
current Q-switching regime looses stability and a transition to Q-switching mode-
locking with quasiperiodic laser intensity takes place. On the contrary, with the
increase of the injection current the fundamental mode-locking regime labeled ml
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Figure 4: Bifurcation diagram illustrating the sequence of dynamical regimes that
takes place with the increase of the linear gain parameter g0. Solid (dotted) lines
correspond to stable (unstable) solutions. Grey dots indicate the extrema of the
absolute value of the electric field amplitude |A| obtained by means of direct nu-
merical simulation of Eqs. (4)-(8). cw, ml , ml2, qs, and qsml correspond to
continuous wave, fundamental mode-locking, harmonic mode-locking, Q-switching,
and Q-switched mode-locking regimes, respectively. lg = 0.9 mm, lq = 0.1 mm,
gg = 4 mm−1, gq = 20 mm−1, γ−1

n = 5 ps, b−1
g = 5 ps, b−1

q = 5 ps, r−1
g = 250 ps,

r−1
q = 6.67 ps. Other parameters are the same as for Fig. 2.

becomes stable (see Fig. 6c). This regime is characterized by a sequence of short
pulses with the repetition period close to the cavity round trip time. At even larger
values of g0 a transition to harmonic mode locking regime with approximately twice
higher repetition rate and finally to a stable cw regime takes place. These regimes
are labeled ml2 and cw in Fig. 4. The time trace corresponding to the regime ml2
is shown in Fig. 6d.

Figure 5 presents a diagram similar to that of Fig. 4, but corresponds to a longer
absorber section. As it is seen, in this case a bistability appears between zero
intensity state and different mode-locked regimes. The branch of fundamental mode-
locking regime in Fig. 5 becomes semi-infinite and bistable with the laser-off state.
Furthermore, the Q-switching instability of the fundamental mode-locking regime
does not appear any more. Thus, by increasing the absorber section length the
Q-switching instability can be completely eliminated.

Figure 5 demonstrates another peculiar feature of Eqs. (4)-(8) describing a mode-
locked QD laser. For certain parameter values these equations can exhibit a period-
doubling bifurcation of the harmonic mode-locked solution with the pulse repetition
rate twice larger than that of the fundamental regime. After this bifurcation of
the mode-locking regime with two pulses circulating in the cavity, the pulses acquire
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Figure 5: Same diagram as in Fig. 4 but calculated for twice longer absorber section.
Γ−1 = 0.5 ps, lg = 0.8 mm, lq = 0.2 mm, gg = 2.22 mm−1, gq = 20 mm−1, δ−1

q = 10
ps, b−1

g = 1 ps, b−1
q = 20 ps, r−1

g = 1 ns, r−1
q = 10 ps. Other parameters are the

same as for Fig. 2. Arrows indicate jumps between different regimes.
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Figure 6: Time traces illustrating different dynamical regimes shown in Fig. 4.
(a) – Q-switching (qs); (b) – Q-switched mode-locking (qsml); (c) – fundamental
mode-locking (ml); (d) – harmonic mode-locking (ml2).
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Figure 7: Bifurcation tree obtained from numerical simulations of Eqs. (1)-(3).
Black dots correspond to maxima of intensity time traces calculated at different
values of the linear gain parameter g0 = ηglg. Period doubling bifurcations of the
harmonic mode-locking regime are labeled PD. lg = 1.125 mm, lq = 0.125 mm,
Γ−1 = 0.25 ps, κ1,2 = 0.55, βg = βq = 0, gg = 2 mm−1, gq = 9 mm−1, r−1

g = 20 ps,
r−1
q = 1 ns, γ−1

g = γ−1
q = 10 ps, δ−1

g = 10 ps, δ−1
q = 1 ns.

������� ��	
�� 	
�	 	
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� 	
�� 	

���� �����
��	��������������
Figure 8: Harmonic mode-locking regime with two pulses having different peak
intensities and separations, g0 = ηglg = 0.5. Other parameters are the same as for
Fig. 7.
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different amplitudes and separations. This regime is indicated ml2′ in Fig. 5. Similar
period-doubling bifurcation was found in numerical simulations of the traveling wave
equations (1)-(3), see the bifurcation diagram in Fig. 7, which is qualitatively very
similar to that in Fig. 5, and time trace in Fig. 8. A regime with two different pulses
existing in the cavity simultaneously was recently observed experimentally in a two-
section mode-locked QD laser [19]. The period doubling bifurcation shown in Figs. 5
and 7 is different from that described in Ref. [16]. The latter bifurcation is possible
only in the case of the linear cavity geometry when an additional passive section is
present in the laser cavity. This contrasts to the period doubling bifurcation shown
in Fig. 5, which appears in the DDE model of a two section laser assuming the ring
laser cavity. This bifurcation is related to the carrier exchange processes.

Two-parameter plots illustrating the dependence of the mode-locking range on the
capture and escape rates in the gain and absorber sections are presented in Figs. 9
and 10. They have been obtained by direct numerical simulation of Eqs. (4)-(8).
In these figures different dynamical regimes are indicated by different levels of grey
color. As we see from the upper panel of Fig. 9, the range of stable fundamental
mode-locking (shown by dark grey color) increases with the capturing rate bg in
the gain section. However, this dependence is quite weak: the ordinate axis in this
figure uses logarithmic scale. The dependence of mode-locking range on the escape
rate rg in the gain section is, on the contrary, quite strong. As it is seen from the
lower panel of Fig. 9, the laser can exhibit stable mode-locking only if the carrier
escape rate from quantum dots to the wetting layer is sufficiently small. With the
increase of this rate mode-locking regime is replaced by either a cw or a Q-switching
behavior. Figure 10 illustrates the dependence of the mode-locking range on the
capture and escape rates in the absorber section. According to this figure the range
of fundamental and harmonic mode-locking regimes increases with the decrease of
the capturing rate bq and increases with the escape rate rq. The increase of the
mode-locking range is usually accompanied by the appearance of harmonic mode-
locking with the pulse repetition rate close to twice the cavity round trip time.
However, as it is seen from the lower panel of Fig. 10, when the escape rate rq

to the wetting layer becomes significantly larger then the wetting layer relaxation
rate δq the mode-locking range starts to decrease with rq. Speaking more generally,
stable mode-locking is possible only if the relaxation rate δq and the escape rate
rq are large enough, i.e., the quantum dot absorber is sufficiently fast. This is in
agreement with classical results of the mode-locking theory.

Fig. 11 illustrates the influence of the dependence of the mode-locking range on
the relaxation rate of the wetting layer. The result here is very similar to that
obtained in the quantum well laser [13]. The mode-locking domain increases with
the absorber relaxation rate and harmonic mode-locking regimes appear.
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Figure 9: Two parameter diagrams illustrating dependence of mode-locking range on
the carrier exchange rates bg and rg in the gain section. Different dynamical regimes
are indicated by different levels of grey color. White, light grey, grey, dark grey,
and black areas indicate, respectively, laser off, continuous wave (cw), fundamental
mode-locking (ml), harmonic mode-locking (ml2), and Q-switching (qs) regimes.
Grey area between fundamental mode-locking and Q-switching domains corresponds
to Q-switched mode-locking regime (qsml). s = 15, γ−1

q = 10 ps. Upper (lower)
panel corresponds to r−1

g = 250 ps and r−1
q = 5 ps (b−1

g = 5 ps and r−1
q = 2.5 ps).

Other parameters are the same as in Fig. 2.
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Figure 10: Two parameter diagrams illustrating dependence of mode-locking range
on the carrier exchange rates bq and rq in the absorber section. Notations are the
same as in Fig. 9: ml – fundamental mode-locking regime; ml2 – harmonic mode-
locking with approximately twice higher repetition rate; qs – Q-switching; qsml –
Q-switched mode-locking; cw – continuous wave regime. b−1

g = 5 ps, r−1
g = 250 ps.

Upper (lower) panel corresponds to r−1
q = 5 ps (b−1

q = 5 ps). Other parameters are
the same as in Fig. 9.
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Figure 11: Dependence of the mode-locking range on the absorber relaxation rate
δq. Notations are similar to those of Fig. 9: ml – fundamental mode-locking regime;
ml2 – harmonic mode-locking with approximately twice higher repetition rate; qs
– Q-switching; qsml – Q-switched mode-locking; cw – continuous wave regime.
Parameters are the same as in Fig. 10.

5 Conclusion

To conclude, we have studied the effect of carrier exchange processes between quan-
tum dots and wetting layer on the dynamical behavior of a monolithic mode-locked
QD laser. We have presented bifurcation analysis of the set of delay differential
equations governing the time evolution of the electric field envelope, occupation
probabilities of the ground state in quantum dots, and carrier densities in the wet-
ting layer. In particular, these equations contain Pauli blocking terms which lead
to a decrease of the capturing rate when the occupation probability of the ground
state in quantum dots increases. We have shown that the dynamical behavior of
the laser depends strongly on the relative length of the gain and absorber sections.
When the length of the absorber section is relatively small the qualitative behavior
of the laser is quite similar to that of the quantum well mode-locking laser model
reported in [12, 13, 17]. However when the absorber becomes sufficiently long a
bistability appears between zero intensity state and mode-locking regimes. In this
case, the Q-switching behavior disappears completely. Another peculiar feature of
the QD laser models (4)-(8) is the existence of period-doubling bifurcation of the
harmonic mode-locking regime with the repetition frequency approximately twice
higher than that of the fundamental mode-locking regime. As a results of this bifur-
cation a regime with two pulses having different amplitudes and separations in time
develops. A similar regime was observed experimentally in a 40 HGz monolithic QD
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mode-locked laser [19].
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