
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Homogenization in gradient plasticity

Hauke Hanke1

submitted: 5th November 2009

1 Weierstraß-Institut für
Angewandte Analysis und Stochastik
Mohrenstraße 39
10117 Berlin
Germany
E-Mail: hanke@wias-berlin.de

No. 1457
Berlin 2009

Key words and phrases. two-scale convergence, folding and unfolding, elasto-plasticity, gradient plas-
ticity, Γ-convergence of rate-independent systems.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

This paper yields a two-scale homogenization result for a rate-independent elasto-
plastic system. The presented model is a generalization of the classical model of
linearized elastoplacticity with hardening, which is extended by a gradient term of
the plastic variables. The associated stored elastic energy density has periodically
oscillating coefficients, where the period is scaled by ε > 0. The additional gradi-
ent term of the plastic variables z is contained in the elastic energy with a prefactor
εγ (γ ≥ 0). We derive different limiting models for ε → 0 in dependence of γ. For
γ > 1 the limiting model is the two-scale model derived in [MT07], where no gradient
term was present. For γ = 1 the gradient term of the plastic variable survives on the
microscopic cell poblem, while for γ ∈ [0, 1) the limit model is defined in terms of a
plastic variable without microscopic fluctuation. The latter model can be simplified
to a purely macroscopic elastoplasticity model by homogenisation of the elastic part.

1 Introduction

Our aim is to provide homogenization of an elastoplastic model with an additional gradient
term of the vector of internal variables. The modeling is done in the framework of the
energetic formulation for rate-independent problems. This framework allows us to apply
the theory of Γ-convegence for rate-independent systems developed in [MRS08].

The energetic formulation is based on the energy-storage functional E : [0, T ] × Q → R

and the dissipation potential R : Q → [0,∞], which is convex, continuous and positively
homogeneous of degree 1, i.e. R(0) = 0 and R(βq) = βR(q) for all β > 0 and every q ∈ Q.
Here Q is a Hilbert space with dual Q∗ and dual pairing 〈·, ·〉Q : Q∗ ×Q → R and the fact
that R : Q → [0,∞] is positively homogeneous of degree 1 ensures us the rate-independence.
In our case the energy functional is defined via E(t, q) := 1

2〈Aq, q〉Q − 〈�(t), q〉Q, where
� ∈ C1([0, T ];Q∗) is a loading and A : Q → Q∗ is a continuous, linear, positive definite,
symmetric operator.

The evolutionary problem is given by the stability condition (S) and the energy balance
(E), which read as follows:

(S) E
(
t, q(t)

)
≤ E

(
t, q′

)
+R

(
q′−q(t)

)
for all q′ ∈ Q,

(E) E
(
t, q(t)

)
+ DissR

(
q; [0, t]

)
= E

(
0, q(0)

)
+
∫ t

0
∂sE

(
s, q(s)

)
ds,

where the total dissipation DissR(q; [r, s]) is defined via Diss(q; [r, s]) :=
∫ s
r R(q̇(t)) dt. A

function q : [0, T ] → Q which solves the energetic formulation (S)&(E) for every t ∈ [0, T ]
is called energetic solution of the rate-independent system (Q, E ,R).

In homogenization we consider problems depending on a small length-scale parameter
ε > 0, that denotes the size of a micro cell inside the domain Ω ⊂ Rd. For fixed ε > 0
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the elastoplastic evolution of the body described by Ω ⊂ Rd is given by the energetic
formulation of the rate-independent system (Q, Eε,Rε), where Q = H1

ΓDir
(Ω)d × H1(Ω)m.

The goal is to derive homogenized limit models as ε → 0 and to study the link between
the energetic solutions qε of the systems (Q, Eε,Rε) and the energetic solutions of the limit
models. In the applications we have in mind, the energy functional Eε : [0, T ] × Q → R

with periodic coefficients and the dissipation potential Rε : Q → [0,∞] are defined as

Eε(t, u, z) =
1
2

∫
Ω

〈〈
A

(x
ε

)⎛⎝ e(u)(x)
z(x)

εγ∇z(x)

⎞⎠ ,

⎛⎝ e(u)(x)
z(x)

εγ∇z(x)

⎞⎠〉〉
dx− 〈�(t), u〉, γ ≥ 0,

Rε(z) =
∫
Ω

ρ
(x
ε
, z(x)

)
dx,

where u ∈ H1
ΓDir

(Ω)d is the displacement and e(u) = 1
2(∇u + (∇u)T ) is the linearized

strain tensor. The vector of the internal variables z ∈ H1(Ω)m describes the inelastic
effects caused by plastic hardening and plastic strains. Here the tensor valued mapping
A : Y → Lin(Rd×d

sym × Rm × Rm×d) and the function ρ(·, z) : Y → [0,∞] are Λ-periodic in
y ∈ Y with respect to the d-dimensional periodic lattice Λ and Y = Rd/Λ, see section 2.
The model which we consider here is a generalization of a problem treated in [MT07].

In [MT07] a similar energetic formulation was considered, but without the gradient term
of z ∈ H1(Ω)m in the energy functional; i.e. there εγ ≡ 0 was considered. This additional
term has a couple of good properties. Firstly, this term can be seen as a regularization
which, depending on γ ≥ 0, leads to more regularity of the solution of the homogenized
problem. Secondly, this term enables us to deduce a one-scale homogenized model in the
case of γ ∈ [0, 1). In general the homogenized model will be a two-scale one; see [MT07].
Finally, the inelastic effects of a single point influences its neighborhood due to this gradient
term.

The task is to find a function space Qγ and limit functionals Eγ : [0, T ] × Qγ → R and
Rγ : Qγ → [0,∞], so that the energetic solutions qε : [0, T ] → Q of the family of energetic
formulations (Sε)&(Eε) in some sense converge to the energetic solution q : [0, T ] → Qγ of
formulation (Sγ)&(Eγ), if ε tends to zero. The index γ denotes the γ-dependence of the
two-scale homogenized rate-independent system (Qγ ,Eγ ,Rγ).

This kind of convergence will be a variant of the strong and weak two-scale convergence
introduced in [Vis07a, Vis07b] and used for elastoplasticity in [MT07], which is closely
linked with the classical two-scale convergence introduced by G. Nguetseng in [Ngu89] and
further developed by G. Allaire in [All92] for some more details. As common in two-scale
convergence, it will not be possible to find a homogenized model with functionals defined
only on Ω again in general. That means Eγ : [0, T ] × Qγ → R and Rγ : Qγ → [0,∞] are
two-scale functionals, i.e. they are defined as integrals over Ω×Y. But as mentioned before,
an equivalent one-scale plasticity model can be given in the case of γ ∈ [0, 1), by using
special minimization properties of the energetic solution of the two-scale rate-independent
system (Qγ ,Eγ ,Rγ). It turns out, that in this case the effective elasticity tensor is the
same as in the linear elastic case. Moreover, we obtain the same two-scale homogenized
model as in [MT07] in the case of γ > 1. The limit passage ε → 0 is a special case of the
general theory of Γ-convergence for rat-independent systems as developed in [MRS08]. In
addition to the Γ-convergence of Eε to Eγ and Rε to Rγ we will need a suitable “joint
recovery condition“, see Proposition 4.3.
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The current paper is structured as follows: In the following section we introduce the main
tools, which are necessary to obtain the homogenization results of section 4. Thereby, we
mainly follow [MT07]. We start with introducing the two-scale convergence with the help
of an embedding of the one-scale space Lp(Ω) into the two-scale space Lp(Rd × Y). The
embedding, called periodic unfolding operator, is given by (Tεu)(x, y) := uex(Nε(x) + εy),
where uex is the extension of the one-scale function u : Ω → R by 0 to all of Rd and
Nε : Rd → εΛ maps every point x ∈ Rd to its nearest latice point Nε(x) ∈ εΛ, cf.
[CDG02, CDD04]. In subsection 2.3 we introduce our notion of strong and weak two-scale
convergence:

uε
s→ U in Lp(Ω × Y) ⇔ Tεuε → U in Lp(Rd × Y),

uε
w
⇀ U in Lp(Ω × Y) ⇔ Tεuε ⇀ U in Lp(Rd × Y).

This definition is an adaptation of the definitions in [Vis04] to the case that Ω has a bound-
ary. The main results of this section are proposition 2.9, which is a two-scale convergence
statement for sequences (vε)ε>0 of H1(Ω) with supε>0(‖vε‖L2(Ω) +εγ‖∇vε‖L2(Ω)d) ≤ C, and
proposition 2.11, which gives a construction of a folding operator Gε from the two-scale
domain Ω × Y to the one-scale domain Ω. The operators will be crucial to construct the
“joint recovery sequences“ needed for the Γ-convergence theory in [MRS08].

Section 3 contains all elastoplastic models, including the limit models, which are considered
and discussed in the sections 4 and 5. We start with introducing the energetic formulation
in the way it will be used in the following subsections. For more details and a more
general setting of this formulation we refer to [Mie03, MR07, MRS08]. The ε-dependent
elastoplastic model, which will be homogenized, is stated in subsection 3.2. It turns out,
that the z-component of the unique energetic solution of this system is bounded in the
sense mentioned above. Furthermore, the two-scale and one-scale homogenized model are
described in subsection 3.3 and 3.4, respectively, and existence results are proved.

In section 4 we prove the convergence of the ε-dependent elastoplastic model with Λ-
periodic coefficients to the two-scale model defined in subsection 3.3, assuming strong
convergence of the initial dates. The proof is an adapted variant of the techniques of
[MT07] and is done for all γ ≥ 0. That means, the functionals Eγ and Rγ are the Γ-limits of
(Eε)ε>0 and (Rε)ε>0, respectively, and that the energetic solutions of the rate-independent
systems (Q, Eε,Rε) converge strongly to the energetic solution of the rate-independent
system (Qγ ,Eγ ,Rγ). Thereby, the convergence has to be understood as a kind of two-
scale convergence, defined in section 2.

Finally, in section 5 we focus on the case γ ∈ [0, 1) and show the equivalence of the
two-scale system (Qγ ,Eγ ,Rγ) and the one-scale model defined in subsection 3.4. This is
actually a consequence of the homogenization result for nonlinear and quasiconvex integrals
of D. Cioranescu, A. Damlamian and R. De Arcangelis in [CDD04] and [CDD06], respec-
tively. For these parameters γ the two-scale dissipation potential Rγ actually depends on
a one-scale function z0 only. This property is the reason why it is possible to construct
a homogenized model in the classical sense, i.e. the functionals Eε : [0, T ] × Q → R and
Rε : Q → [0,∞] as well as their Γ-limits Eγ : [0, T ] × Qγ → R and Rγ : Qγ → [0,∞] are
defined as integrals over the domain Ω ⊂ Rd, only. Since Q0 = Q if γ = 0, we especially
obtain that E0 : [0, T ] × Q → R and R0 : Q → [0,∞] are the classical Γ-limits of (Eε)ε>0

and (Rε)ε>0, respectively, by combining the results from section 4 and 5.
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Ω
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2 Two-scale convergence

2.1 Definitions

Let d ∈ N be the space dimension. To describe periodicity let Λ be a d-dimensional,
periodic lattice given by

Λ :=

⎧⎨⎩λ =
d∑

j=1

kjbj | k = (k1, k2, . . . , kd) ∈ Zd

⎫⎬⎭ ,

where {b1, b2, . . . , bd} is an arbitrary basis in Rd. An almost everywhere on Rd defined
function f is called Λ-periodic, if f(x) = f(x+ λ) for all λ ∈ Λ and almost every x ∈ Rd.
Furthermore, let Y := {x =

∑d
j=1 βjbj |βj ∈ [−1

2 ,
1
2)} ⊂ Rd be the to Λ associated unit

cell, so that Rd is the disjoint union of all translated cells λ+Y, e.g. λ ranges all of Λ. We
also want to distinguish the unit cell Y from the periodicity cell Y := Rd/Λ, as it is done
in [Vis04]. In the following we may be inconsistent and use y to denote elements of Y and
Y simultaneously.

Now we introduce the mappings [·]Λ and {·}Y on Rd, so that

[·]Λ : Rd → Λ, {·}Y : Rd → Y, and x = [x]Λ + {x}Y for all x ∈ Rd.
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Let x ∈ Rd be in the cell λ+Y, then is [x]Λ the center λ of the cell and {x}Y is determinable
as {x}Y = x− [x]Λ. For ε > 0 we have the following decomposion for x ∈ Rd :

x = Nε(x) + εVε(x), with Nε(x) := ε
[x
ε

]
Λ

and Vε(x) :=
{x
ε

}
Y
,

where Nε(x) denotes the macroscopic center of the cell Nε(x) + εY that contains x and
Vε(x) is the microscopic part of x in Y. Thereby, an on Rd defined function f is Λ-periodic,
if f(x) = f({x}Y ) for almost every x ∈ Rd. Moreover, Lp(Y ) and Lp(Y) may be identified,
but Ck(Y ) and Ck(Y) = Ck

per(Y ) have to be distinguished. Also H1(Y) = H1
per(Y ) differs

from H1(Y ).

Following [Vis04], it is now possible to construct a decomposing map Dε and a composing
map Sε as follows:

Dε :
{

Rd → Rd × Y,
x �→ (Nε(x),Vε(x)),

Sε :
{

Rd × Y → Rd,
(x, y) �→ Nε(x) + εy,

where in the last sum y ∈ Y is identified with y ∈ Y ⊂ Rd. For the periodic unfolding oper-
ator and a variant of the folding operator constructed in [CDG02], the following properties
are essential:

Dε(Sε(x, y)) = (Nε(x), y) and Sε(Dε(x)) = x for all (x, y) ∈ Rd × Y.

Since Ω ⊂ Rd should be a body, we want to consider a domain Ω, which does not coincide
with Rd. Due to this there are some technical problems, because of the fact that in this
case the images of Dε and Sε are not contained in Ω × Y and Ω, respectively. To handle
this and to make sure that our periodic unfolding operator is well-defined we consider now
the following subsets of Λ :

Λ−
ε :=

{
λ ∈ Λ | ε(λ + Y ) ⊂ Ω

}
and Λ+

ε := {λ ∈ Λ | ε(λ + Y ) ∩ Ω �= ∅} .

With this we define the sets Ω−
ε and Ω+

ε as:

Ω±
ε := int

( ⋃
λ∈Λ±

ε

ε(λ+ Y )
)
.

Let diam(M) be the diameter and Nε0(M) the ε0-neighborhood of the set M for some
ε0 > 0. Then Ω−

ε and Ω+
ε have the following properties:

Ω−
ε ⊂ Ω ⊂ Ω+

ε ,
[
Ω±

ε

]±
ε

= Ω±
ε , Ω ⊂ Nεdiam(Y )(Ω

−
ε ) and Ω+

ε ⊂ Nεdiam(Y )(Ω). (2.1)

Furthermore, we set [Ω × Y]ε := S−1
ε (Ω) = {(x, y) | Sε(x, y) ∈ Ω} . For this set we have the

relation
Ω−

ε × Y ⊂ [Ω × Y]ε ⊂ Ω+
ε × Y, (2.2)

which will be needed below.

Let Ω be a bounded open set in Rd satisfying Ld(∂Ω) = 0, then we get for ε→ 0

Ld(Ω\Ω−
ε ) + Ld(Ω+

ε \Ω) → 0. (2.3)

This can be seen by considering the characteristic function 1ε of the set Nεdiam(Y )(∂Ω).
We now have on the one hand Ω\Ω−

ε ∪ Ω+
ε \Ω ⊂ Nεdiam(Y )(∂Ω) and on the other hand

1ε(x) → 0 for all x /∈ ∂Ω and ε → 0. Thereby, it follows Ld(Ω\Ω−
ε ) + Ld(Ω+

ε \Ω) ≤
Ld(NεdiamY (∂Ω)) =

∫
Rd 1ε(x) dx→ 0 for ε→ 0.
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2.2 Folding and periodic unfolding operators

Henceforth let Ω be a bounded open set in Rd satisfying Ld(∂Ω) = 0 and we may also
assume

Ld(Y ) = 1.

The two-scale convergence is linked to a “suitable“ two-scale embedding of Lp(Ω) in the
two-scale space Lp(Rd × Y). Such an embedding is called periodic unfolding operator. It
is also necessary to find a function uε defined on Ω which has a corresponding microscopic
behavior like a two-scale function U defined on Ω × Y. A mapping from Lp(Rd × Y) to
Lp(Ω) is called folding operator.

The following definition of a periodic unfolding operator was given in [CDG02].

Definition 2.1. [CDG02] Let Ω ⊂ Rd be open, ε > 0 and p ∈ [1,∞). Then the natural
candidate of a periodic unfolding operator Tε is defined via:

Tε : Lp(Ω) → Lp(Rd × Y); u �→ uex ◦ Sε,

where uex ∈ Lp(Rd) is the extension with 0 to Rd of function u.

With this definition the following product rule is valid:

1
p + 1

q = 1
r , u ∈ Lp(Ω), v ∈ Lq(Ω) ⇒ Tε(uv) = (Tεu)(Tεv) ∈ Lr(Rd × Y).

Note that in general [Ω × Y]ε is the support of Tεv, and from subsection 2.1 we know that
this is not contained in Ω × Y. In the next subsection we will use this periodic unfolding
operator to introduce the kind of two-scale convergence which is used here.

To indicate a well-defined folding operator Fε : Lp(Rd × Y) → Lp(Ω), we first have to give
the definition of the classical projector to piecewise constant functions on every ε(λ+ Y ).

Definition 2.2. [MT07] Let ε > 0 and p′ ∈ (1,∞). On Lp′(Rd ×Y) the classical projector
to piecewise constant functions in the x-component is

(PεU)(x, y) := −
∫

Nε(x)+εY

U(ξ, y) dξ,

where −
∫
A g(a) da := 1

|A|
∫
A g(a) da is the average of the function g over A.

This definition yields (Pε)2 = Pε, ‖PεU‖Lp′ (Rd×Y) ≤ ‖U‖Lp′ (Rd×Y) and PεU → U in
Lp′(Rd × Y) for all U ∈ Lp′(Rd × Y).

Now the folding operator Fε, which is a variant of the “averaging operator“ defined in
section 5 of [CDG02], is given as follows.

Definition 2.3. [MT07] Let ε > 0 and p′ ∈ (1,∞). Then the folding operator Fε is defined
as follows:

Fε : Lp′(Rd × Y) → Lp′(Ω); U �→ (Pε(1εU) ◦ Dε)|Ω with 1ε := 1[Ω×Y ]ε
= Tε1Ω.
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Note that this folding operator is defined on the space of functions with supports contained
in Rd × Y and that it takes values in the space of functions, which are defined on Ω.
This is guaranteed by the construction with the characteristic function 1ε, because of
supp(1ε ◦ Dε) = Ω and 1ε = Pε1ε, which follow directly from the definition of [Ω ×Y]ε .

Basic properties of the periodic unfolding operator Tε and the folding operator Fε are listed
in the following proposition.

Proposition 2.4. [MT07] Let p ∈ (1,∞), p′ := p
p−1 and ε > 0. Then the periodic unfolding

operators Tε : Lp(Ω) → Lp(Rd × Y), T̃ε : Lp′(Ω) → Lp′(Rd × Y) and the folding operator
Fε : Lp′(Rd × Y) → Lp′(Ω) have the following properties:

(a) ‖Tεu‖Lp(Rd×Y) = ‖u‖Lp(Ω) and supp(Tεu) ⊂ [Ω ×Y]ε for all u ∈ Lp(Ω).
(b) ‖FεU‖Lp′ (Ω) ≤ ‖U‖Lp′ (Rd×Y) for all U ∈ Lp′(Rd × Y).
(c) Fε is the adjoint of Tε, i.e. Fε = (Tε)′.
(d) Fε ◦ T̃ε = idLp′ (Ω) and

(
T̃ε ◦ Fε

)2 = T̃ε ◦ Fε = 1εPε.

2.3 Strong and weak two-scale-convergence

In this section we give the definition of the two-scale convergence used in this paper follow-
ing the lines in [MT07]; the strong and weak two-scale convergence, respectively. But we
want to start by defining the classical two-scale convergence introduced by G. Nguetseng
in 1989 ([Ngu89]), because of the equivalence of classical and weak two-scale convergence
in the bounded case.

Definition 2.5. [Ngu89] A sequence of functions (uε)ε>0 in Lp(Ω) is called two scale
convergent to a function U ∈ Lp(Ω × Y), shortly uε

2
⇀ U, if for all testfunctions ψ :

Ω ×Y → R from a set of testfunctions Ψ we have:

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
{x
ε

}
Y

)
dx =

∫
Ω×Y

U(x, y)ψ(x, y) dydx.

Here the choice of the set of testfunctions is very important. Choosing Ψ = C∞
c (Ω × Y),

then the classical two-scale convergence corresponds to a kind of distributional convergence.
Let p′ := p

p−1 be the dual of p ∈ (1,∞), then Ψ = Lp′(Ω,C(Y)) guarantees the weak
convergence of (uε)ε>0 to

∫
Y U(·, y) dy in Lp(Ω). The following definition of strong and

weak two-scale convergence was given in [MT07] and will be used here mainly.

Definition 2.6. [MT07] Let p ∈ (1,∞) and let (uε)ε>0 be a sequence in Lp(Ω). Then

(a) uε converges strongly two-scale to U ∈ Lp(Ω×Y) in Lp(Ω×Y), uε
s→ U in Lp(Ω×Y),

if Tεuε → U ex in Lp(Rd × Y).
(b) uε converges weakly two-scale to U ∈ Lp(Ω×Y) in Lp(Ω×Y), uε

w
⇀ U in Lp(Ω×Y),

if Tεuε ⇀ U ex in Lp(Rd × Y).

Because of the fact that for all ε > 0 the support of the function Tεuε is contained in
[Ω × Y]ε ⊂ Ω+

ε × Y, we conclude with (2.2) and (2.3), that the support of a possible
accumulation point U of the sequence (Tεuε)ε>0 has to be in Ω × Y. Moreover, we have
Lp(Ω×Y) = Lp(Ω×Y) because of Ld(∂Ω) = 0 and so every accumulation point of (Tεuε)ε>0
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can be uniquely identified with an element of Lp(Ω × Y). But notice that it is important
to determine the convergence in Lp(Rd × Y) and not in Lp(Ω × Y). We refer to [MT07]
where it is shown in example 2.3 that convergence in Lp(Ω × Y) is not sufficient.

Using property (c) of proposition 2.4, an equivalent definition of the weak two-scale con-
vergence is given as follows:

uε
w
⇀ U in Lp(Ω × Y) ⇔

∫
Ω

uεFεV
exdx ε→0→

∫
Ω×Y

UV dydx ∀V ∈ Lp′(Nε0(Ω) × Y),

where ε0 > 0 is arbitrary but fixed. Because of the characteristic function 1ε in the
definition 2.4 of the folding operator Fε and property (2.1) and (2.2), it is sufficient to
consider all functions V of Lp′(Nε0(Ω) ×Y) instead of Lp′(Rd ×Y).

For convenience we list further convergence properties in proposition 2.7 and refer to
[MT07] for the proofs.

Proposition 2.7. [MT07] Let p ∈ (1,∞), p′ := p
p−1 and ε > 0. Then

(a) uε
w
⇀ U in Lp(Ω × Y) ⇒ ‖uε‖Lp(Ω) is bounded for all ε > 0.

(b) uε
w
⇀ U in Lp(Ω × Y) ⇒ uε

2
⇀ U in Lp(Ω × Y).

(c) uε
w
⇀ U in Lp(Ω × Y) and ‖uε‖Lp(Ω) → ‖U‖Lp(Ω×Y) ⇔ uε

s→ U in Lp(Ω × Y).
(d) uε

w
⇀ U in Lp(Ω × Y) and vε

s→ V in Lp′(Ω × Y) ⇒ 〈uε, vε〉L2(Ω) → 〈U, V 〉L2(Ω×Y).

(e) For all U ∈ Lp(Ω × Y) there exists a sequence (uε)ε>0 so that uε
s→ U in Lp′(Ω ×Y)

(for example uε = FεU
ex).

(f) For all w ∈ Lp(Ω) we have w s→ Ew in Lp(Ω × Y), where E : Lp(Ω) → Lp(Ω × Y)
is defined via Ev(x, y) := v(x).

(g) wε → w in Lp(Ω) ⇒ wε
s→ Ew in Lp(Ω × Y).

(h) For p ∈ (1,∞), q ∈ (1,∞] and 1
p + 1

q = 1
r ≤ 1 let uε

w
⇀ U in Lp(Ω × Y) and vε

s→ V

in Lq(Ω ×Y). Then uεvε
w
⇀ UV in Lr(Ω ×Y). If additionally uε

s→ U in Lp(Ω ×Y),
then uεvε

s→ UV in Lr(Ω × Y).

The following proposition is an extension of property (h) of proposition 2.7.

Proposition 2.8. [MT07] Let p ∈ [1,∞), ε > 0 and (uε)ε be a sequence in Lp(Ω) with
uε

s→ U in Lp(Ω × Y). Furthermore, let (mε)ε be in L∞(Ω) so that Tεmε(x, y) →M(x, y)
for almost every (x, y) ∈ Ω × Y. Then mεuε

s→MU in Lp(Ω ×Y).

2.4 Two-scale convergence of Sobolev-functions

In this subsection we will consider sequences of H1(Ω) which are bounded in the sense of
relation (2.4) below. Especially we will need the function space

H1
av(Y) :=

{
v ∈ H1(Y)|

∫
Y
v(y) dy = 0

}
.

To describe the weak two-scale convergence of gradients multiplied by a scaling parameter
εγ (ε > 0, γ ≥ 0), we introduce the function space L2(Ω;H1

av(Y)), which is the space of
functions V ∈ L2(Ω × Y) = L2(Ω; L2(Y)), with

∫
Y V (x, y) dy = 0 for almost every x ∈ Ω

and ∇yV ∈ L2(Ω × Y)d in the sense of distribution.

8



Proposition 2.9. Let γ ≥ 0 be given and (vε)ε>0 be a sequence in H1(Ω) so that

‖vε‖L2(Ω) + εγ‖∇vε‖L2(Ω)d ≤ C (2.4)

for all ε > 0 and a C ≥ 0. Then there exists a subsequence (vε′)ε′>0 of (vε)ε>0 and

γ = 0 : functions v0 ∈ H1(Ω) and V1 ∈ L2(Ω;H1
av(Y)) so that

vε′
s→ Ev0 in L2(Ω × Y),

∇vε′
w
⇀ ∇xEv0 + ∇yV1 in L2(Ω × Y)d.

γ ∈ (0, 1) : functions v0 ∈ L2(Ω) and V1 ∈ L2(Ω;H1
av(Y)) so that

vε′
w
⇀ Ev0 in L2(Ω × Y),

εγ∇vε′
w
⇀ ∇yV1 in L2(Ω × Y)d.

γ = 1 : a function V1 ∈ L2(Ω;H1
av(Y)) so that

vε′
w
⇀ V1 in L2(Ω × Y),

ε∇vε′
w
⇀ ∇yV1 in L2(Ω × Y)d.

γ > 1 : a function V ∈ L2(Ω × Y) so that

vε′
w
⇀ V in L2(Ω × Y),

εγ∇vε′
w
⇀ 0 in L2(Ω × Y)d.

Proof 2.9. Theorem 3.1.4 in [Pe07] yields the result.

To simplify notation, we introduce the function space Xγ of the limit functions of propo-
sition 2.9 and a map Lγ : Xγ → L2(Ω × Y)d+1.

γ ∈ Xγ := Lγ(Vγ) �→
{0} H1(Ω) × L2(Ω;H1

av(Y)) (Ev0,∇xEv0 + ∇yV1)

(0, 1) L2(Ω) × L2(Ω;H1
av(Y)) (Ev0,∇yV1)

{1} L2(Ω;H1
av(Y)) (V1,∇yV1)

(1,∞) L2(Ω × Y) (V1, 0)

(2.5)

where Vγ denotes the Elements of Xγ and is defined via

Vγ :=
{

(v0, V1) ∈ Xγ if γ ∈ [0, 1),
V1 ∈ Xγ if γ ≥ 1.

(2.6)

Furthermore, we equip L2(Ω;H1
av(Y)) with the norm ‖V1‖L2(Ω;H1

av(Y)) := ‖∇yV1‖L2(Ω×Y)d

and set ‖ · ‖Xγ : Xγ → [0,∞) as the norm of the product space (γ ∈ [0, 1)).

Definition 2.10. Let (vε)ε>0 be a sequence in H1(Ω). Then strong and weak two-scale-γ-
convergence in Xγ are defined as follows:

vε
sγ→ Vγ in Xγ :⇐⇒ (vε, ε

γ∇vε)
s→ Lγ(Vγ) in L2(Ω × Y)d+1.

vε
wγ
⇀ Vγ in Xγ :⇐⇒ (vε, ε

γ∇vε)
w
⇀ Lγ(Vγ) in L2(Ω × Y)d+1.

9



Note, if (vε)ε>0 ⊂ H1(Ω) satisfies estimate (2.4), then there exists a subsequence (vε′)ε′>0

of (vε)ε>0 and a function Vγ in Xγ so that vε′
wγ
⇀ Vγ in Xγ (see propostion 2.9).

Now we want to prove a kind of density result, namely, that for every function Vγ ∈ Xγ

there exists a sequence (vε)ε>0 in H1(Ω), so that this sequence converges strongly to Vγ in
the sense of definition 2.10, i.e. vε

sγ→ Vγ in Xγ . This sequence is called “recovery sequence“
and will be used in section 4 to prove stability of the limit function of a stable sequence.

Thereto, we extend an idea from [MT07] from the case γ = 0 to γ ≥ 0. We start with
defining L := L2(Rd × Y) and for ε > 0 and γ ≥ 0 the two norm-preserving and linear
operators T

γ
ε and F

γ
ε as follows:

Tγ
ε :

{
H1(Ω) → Ld+1,
v0 �→ (Tεv0,Tε(εγ∇v0)),

Fγ
ε :

{
Xγ → Ld+1,
Vγ �→ (Lγ(Vγ))ex.

In the case of γ = 0 we obtain

‖(∇xEv0 + ∇yV1)ex‖2
Ld = ‖(∇xEv0)ex‖2

Ld + ‖(∇yV1)ex‖2
Ld (2.7)

for v0 ∈ H1(Ω) and V1 ∈ L2(Rd; H1
av(Y)) by using ‖ · ‖2

Ld = 〈·, ·〉Ld , integration by parts
and the facts that Ev0 is constant and V1 is periodic in the y-component. That indicates
the norm-preservation of F0

ε (in the case of γ > 0 it is obvious).

By these definitions the images X ε
Tγ := T

γ
εH1(Ω) and X ε

Fγ := F
γ
εXγ are closed subsets of

Ld+1, so that we are able to consider the orthogonal projections Qε
Tγ and Qε

Fγ of Ld+1 on
X ε

Tγ and X ε
Fγ , respectively. Now for ε > 0 and γ ≥ 0 we introduce the folding operator T γ

ε

and the unfolding operator Gγ
ε .

T γ
ε :

{
H1(Ω) → Xγ ,
v �→ (Fγ

ε )−1(Qε
Fγ (Tγ

ε (v))),
Gγ

ε :

{
Xγ → H1(Ω),

Vγ �→ (Tγ
ε )−1(Qε

Tγ (Fγ
ε (Vγ))).

Because of the fact that the operators T γ
ε and Gγ

ε are compositions of norm-preserving
operators and orthogonal projections, they have a norm less or equal 1. The following
proposition will show that the operator Gγ

ε is related to an elliptic problem and that it will
help us to construct a “recovery sequence“ which converges in the sense of definition 2.10.

Proposition 2.11. Let ε > 0, γ ≥ 0 and Vγ ∈ Xγ be given. Then the function Gγ
ε (Vγ) is

uniquely characterized as the solution v ∈ H1(Ω) of the following elliptic problem:∫
Ω

((
v −Fε(Lγ

1(Vγ))ex
)
w +

〈
εγ∇v −Fε(Lγ

2(Vγ))ex, εγ∇w
〉
d

)
dx = 0 for all w ∈ H1(Ω),

where Lγ
1 : Xγ → L2(Ω×Y) and Lγ

2 : Xγ → L2(Ω×Y)d are the first and second component
of the mapping Lγ : Xγ → L2(Ω × Y)d+1 defined in (2.5). Furthermore, for ε→ 0 :

Gγ
ε (Vγ)

sγ→ Vγ in Xγ .

Proof 2.11. 1. Let first ε > 0 be fix and set v := Gγ
ε (Vγ). Since T

γ
εv is the orthogonal

projection of F
γ
ε (Vγ) on X ε

Tγ := T
γ
εH1(Ω)d the following is fulfilled for all w ∈ H1(Ω)d :

0 = 〈Tγ
εv − Fγ

ε (Vγ),Tγ
εw〉Ld+1
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=
∫

Rd×Y

((
Tεv − (Lγ

1(Vγ))ex
)
Tεw +

〈
Tε(εγ∇v) − (Lγ

2(Vγ))ex,Tε(εγ∇w)
〉
d

)
dydx

=
∫
Ω

(
vw −Fε(Lγ

1(Vγ))exw + 〈εγ∇v, εγ∇w〉d − 〈Fε(Lγ
2(Vγ))ex, εγ∇w〉d

)
dx.

Here, we used the definitions of T
γ
ε and F

γ
ε plus property (c) and (d) of proposition 2.4.

2. Because of the definition of the operator Fε and proposition 2.4(c), it is sufficient to
show the desired convergence on the dense subset

Cγ :=
{

C∞
c (Ω) × C∞

c (Ω × Y) if γ ∈ [0, 1)
C∞

c (Ω × Y) if γ ≥ 1

of Xγ . For Vγ ∈ Cγ we set v(γ)
ε := Gγ

ε (Vγ) and split vε as follows:

v(γ)
ε (x) = ϑ(γ)

ε (x) + g(γ)
ε (x) with ϑ(γ)

ε (x) =
{
v0(x) + ε1−γV1

(
x,
{

x
ε

}
Y

)
if γ ∈ [0, 1)

V1

(
x,
{

x
ε

}
Y

)
if γ ≥ 1

.

Thereby, g(γ)
ε is the solution of the following elliptic problem:∫

Ω

(
g(γ)
ε w+

〈
εγ∇g(γ)

ε , εγ∇w
〉
d

)
dx = lε(w) for all w ∈ H1(Ω),

with lε(w) =
∫
Ω

((
Fε(Lγ

1(Zγ))ex−ϑ(γ)
ε

)
w+

〈
Fε(Lγ

2(Zγ))ex−εγ∇ϑ(γ)
ε , εγ∇w

〉
d

)
dx.

3. Immediately we obtain ϑ
(γ)
ε

s→ Lγ
1(Zγ) in L2(Ω × Y) by using the definition of the

periodic unfolding operator Tε and the continuity of the function ϑ(γ)
ε .

4. Furthermore, we have

‖Tε(εγ∇ϑ(γ)
ε ) − (Lγ

2(Vγ))ex‖Ld

=
{ ∥∥Tε

(
εγ∇v0 + ε∇xV1

(
·,
{ ·

ε

}
Y

)
+ ∇yV1

(
·,
{ ·

ε

}
Y

))
− (Lγ

2(Vγ))ex
∥∥
Ld if γ ∈ [0, 1)∥∥Tε

(
εγ∇xV1

(
·,
{ ·

ε

}
Y

)
+ εγ−1∇yV1

(
·,
{ ·

ε

}
Y

))
− (Lγ

2(Vγ))ex
∥∥
Ld if γ ≥ 1

where the terms multiplied by an ε-factor can be split off by using the Minkowski inequal-
ity. Thereby, these terms converge to zero by using the norm-preservation of Tε and the
boundedness of the functions. The remaining term of Tε(εγ∇ϑ(γ)

ε ) converges pointwise to
(Lγ

2(Vγ))ex in Rd ×Y by using the definition of the periodic unfolding operator Tε. Hence,
we obtain limε→0 ‖Tε(εγ∇ϑ(γ)

ε )−(Lγ
2(Vγ))ex‖Ld = 0, i.e. εγ∇ϑ(γ)

ε
s→ Lγ

2(Vγ) in L2(Ω×Y)d.

5. Now it is sufficient to show ‖g(γ)
ε ‖L2(Ω) → 0 and ‖εγ∇g(γ)

ε ‖2
L(Ω)d → 0 for ε → 0. With

the elliptic problem of step 2 and proposition 2.4(a), (c) and (d) we have

1
2

[
‖g(γ)

ε ‖L2(Ω) + ‖εγ∇g(γ)
ε ‖2

L(Ω)d

]2
≤ ‖g(γ)

ε ‖2
L2(Ω) + ‖εγ∇g(γ)

ε ‖2
L2(Ω)d = lε(g

(γ)
ε )

=
∫
Ω

((
Fε(Lγ

1(Vγ))ex − ϑ
(γ)
ε

)
g
(γ)
ε +

〈
Fε(Lγ

2(Vγ))ex − εγ∇ϑ(γ)
ε , εγ∇g(γ)

ε

〉
d

)
dx

=
∫

Rd×Y

((
(Lγ

1(Vγ))ex − Tεϑ
(γ)
ε

)
Tεg

(γ)
ε +

〈
(Lγ

2(Vγ))ex − Tε(εγ∇ϑ(γ)
ε ),Tε(εγ∇g(γ)

ε )
〉
d

)
dydx
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≤‖(Lγ
1(Vγ))ex − Tεϑ

(γ)
ε ‖L‖g(γ)

ε ‖L2(Ω) + ‖(Lγ
2(Vγ))ex − Tε(εγ∇ϑ(γ)

ε )‖Ld‖εγ∇g(γ)
ε ‖L2(Ω)d

≤
[
‖(Lγ

1(Vγ))ex − Tεϑ
(γ)
ε ‖L +‖(Lγ

2(Vγ))ex − Tε(εγ∇ϑ(γ)
ε )‖Ld

][
‖g(γ)

ε ‖L2(Ω) +‖εγ∇g(γ)
ε ‖L2(Ω)d

]
.

Dividing this by ‖g(γ)
ε ‖L2(Ω) + ‖εγ∇g(γ)

ε ‖L2(Ω)d and going to the limit ε→ 0 we obtain the
result.

In the following section we introduce an elastoplastic model described by the displacement
u : Ω → Rd and a vector of internal variables z : Ω → Rm. Furthermore, we expect a
special Dirichlet boundary condition for the displacement. That is why we have to make
some modifications in the construction of the “recovery sequence“, to make sure that the
“recovery sequence“ used in section 4 has the same boundary condition as its limit. Thereto,
we define

Gε :
{

H1
0(Ω) × L2(Ω;H1

av(Y)) → H1
0(Ω),

(v, V ) �→ T−1
ε (Qε

T
(Fε(v, V ))),

where the mappings Tε : H1
0(Ω) → Ld+1 and Fε : H1

0(Ω)× L2(Ω;H1
av(Y)) → Ld+1 are given

by Tε = T0
ε|H1

0(Ω) and Fε = F0
ε|H1

0(Ω)×L2(Ω;H1
av(Y)), respectively. Furthermore, is Qε

T
the

orthogonal projection of Ld+1 on TεH1
0(Ω).

Corollary 2.12. [MT07] Let ε > 0 and (u0, U1) ∈ H1
0(Ω)× L2(Ω;H1

av(Y)) be given. Then
the function Gε(u0, U1) ∈ H1

0(Ω) is uniquely characterized as the solution v ∈ H1
0(Ω) of the

following elliptic problem:∫
Ω

((
v −Fε(Eu0)ex

)
w +

〈
∇v −Fε(∇xEu0 + ∇yU1)ex,∇w

〉
d

)
dx = 0 for all w ∈ H1

0(Ω).

Furthermore, for ε→ 0 :
Gε(u0, U1)

s0→ (u0, U1) in X0.

2.5 Two-scale Γ-convergence

In this subsection we will discuss the question, in which sense functionals behave under
two-scale convergence.

Definition 2.13. [MT07] A function W : Y × Rn → R∞ n ∈ N, is called a convex normal
integrand, if for all v ∈ Rn the function y �→ W(y, v) is measurable and for almost every
y ∈ Y the function v �→ W(y, v) is lower semicontinuous and convex.

Now the two-scale Γ-convergence for the following functionals is given in definition 2.14
below.

Wε :
{

Lp(Ω)n → R∞,
v �→

∫
Ω W

( {
x
ε

}
Y
, v(x)

)
dx

and

W :
{

Lp(Ω × Y)n → R∞,
V �→

∫
Ω×Y W(y, V (x, y)) dydx.

(2.8)

Definition 2.14. The functional W : Lp(Ω ×Y)n → R∞ is called the two-scale-Γ-limit of
the sequence (Wε)ε>0, if the following two conditions are satisfied for all V ∈ Lp(Ω×Y)n :
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(i) (lim inf-inequality) For every sequence (vε)ε>0 ∈ Lp(Ω)n, which satisfies vε
w
⇀ V in

Lp(Ω × Y)n, it follows:
W(V ) ≤ lim inf

ε>0
Wε(vε).

(ii) (lim sup-inequality) There exists a sequence (ṽε)ε>0 ∈ Lp(Ω)n, which satisfies ṽε
s→ V

in Lp(Ω × Y)n and
W(V ) ≥ lim sup

ε>0
Wε(ṽε).

The following two lemmata show under which assumptions the functionals Wε are two-
scale-Γ-convergent to W. The lemmata are proved in [MT07].

Lemma 2.15. [MT07] Let p ∈ (1,∞), ε > 0 and W : Y × Rn → R∞ be a convex normal
integrand. Furthermor let W(y,
v) ≥ 0 for almost every (y,
v) ∈ Y × Rn. Then:

vε
w
⇀ V in Lp(Ω × Y)n ⇒ W(V ) ≤ lim inf

ε→0
Wε(vε).

Lemma 2.16. [MT07] Let p ∈ (1,∞) and ε > 0.

(a) Let W : Y × Rn → R∞ be a Carathéodory-function. Furthermore, there exists a
function h ∈ L1(Y), so that |W(y,
v)| ≤ h(y) + C(1 + ‖
v‖n)p for all 
v ∈ Rn and
almost every y ∈ Y for a constant C > 0. Then:

vε
s→ V in Lp(Ω ×Y)n ⇒ W(V ) = lim

ε→0
Wε(vε).

This implies especially Wε(FεV
ex) → W(V ).

(b) Let W : Y × Rn → R∞ be a convex normal integrand. Furthermore, there exists a
function h ∈ L1(Y), so that |W(y, 0)| ≤ h(y) for almost every y ∈ Y. Then:

W(V ) = lim
ε→0

Wε(FεV
ex) for all V ∈ Lp(Ω × Y)n.

Altogether we obtain the following corollary with lemma 2.15 and 2.16.

Corollary 2.17. [MT07] Let p ∈ (1,∞) and let W : Y × Rn → R∞ be a convex normal
integrand. Moreover, there exists a function h ∈ L1(Y), so that W(y,
v) ≥ −h(y) for all

v ∈ Rn and almost every y ∈ Y and W(y, 0) ≤ h(y) for almost every y ∈ Y. Then W is
the two-scale-Γ-limit of (Wε)ε>0, where W and Wε are defined as in (2.8).

3 Existence and uniqueness of solutions

In the following subsection we shortly introduce the energetic formulation and cite an
existence and uniqueness result from [MTh04] and [Mie05]. In subsection 3.2 we consider
an ε-dependent periodic model and clarify the existence and uniqueness of a solution. Since
the task is to pass to the limit ε→ 0 in this model, we also state a two-scale and a one-scale
model, which turn out to be the limits of the ε-dependent periodic one. Finally, we show
existence and uniqueness of a solution for these two models, too. Whereas the analysis of
the convergence of the ε-dependent periodic model to these two models is done in section
4 and 5.
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3.1 Energetic formulation

We start with a Hilbert space Q with a dual Q∗, a dual pairing 〈·, ·〉Q : Q∗ × Q → R

and a positive definite, continuous and symmetric operator A ∈ Lin(Q,Q∗), i.e. A = A∗

and 〈Aq, q〉Q ≥ α‖q‖2
Q. For a function � ∈ C1([0, T ];Q∗) we define the energy functional

E : [0, T ] × Q → R via E(t, q) := 1
2〈Aq, q〉Q − 〈�(t), q〉Q. Furthermore, let a dissipation

potential R : Q → [0,∞] be given which is convex, lower semicontinuous and positively
homogeneous of degree 1, i.e R(0) = 0 and R(βq) = βR(q) for all β > 0 and every q ∈ Q.
Then the energetic formulation (S)&(E) of the rate-independent system (Q, E ,R) is given
by:

(S) E
(
t, q(t)

)
≤ E

(
t, q′

)
+Rε

(
q′−q(t)

)
for all q′ ∈ Q.

(E) E
(
t, q(t)

)
+ DissR

(
q; [0, T ]

)
= E

(
0, q(0)

)
+
∫ t

0
∂sE

(
s, q(s)

)
ds,

where ∂sE(s, q(s)) = −〈�̇(s), q(s)〉 and DissR(q; [r, s]) =
∫ r
s R(q̇(t)) dt is called total dissi-

pation. We call q : [0, T ] → Q satisfying (S)&(E) for all t ∈ [0, T ] an energetic solution
associated with (Q, E ,R). An equivalent definition of the global stability condition (S) can
be given by defining the set of stable states S(t) for t ∈ [0, T ] via

S(t) :=
{
q ∈ Q | E(t, q) ≤ E(t, q′) −R(q′ − q) for all q′ ∈ Q

}
.

Then (S) just means q(t) ∈ S(t).

Theorem 3.1. Let Q be a Hilbert space with norm ‖ · ‖Q : Q → [0,∞). Furthermore, let
A ∈ Lin(Q,Q∗) be a positive definite, continuous and symmetric operator, i.e. we have:

∃α > 0 : ∀ q ∈ Q : 〈Aq, q〉Q ≥ α‖q‖2
Q, (3.1)

where α > 0 is the ellipticity constant. Moreover, let R : H1(Ω)m → [0,∞] be convex,
lower semicontinuous and positively homogeneous of degree 1 and � ∈ C1([0, T ];Q∗). Then,
for a given q0 ∈ S(0), there exists a unique solution q ∈ C0,1([0, T ];Q) of the energetic
formulation (S)&(E) of the rate-independent system (Q, E ,R) with:

q(0) = q0, sup
t∈[0,T ]

‖q(t)‖Q ≤ ‖q0‖Q + TΘ
α , ess sup

t∈[0,T ]
‖q̇(t)‖Q ≤ Θ

α ,

where Θ = ‖�̇‖L∞([0,T ];Q∗).

Proof 3.1. The proof of this theorem can be found in [MTh04] and [Mie05], respectively,
in a more general setting.

3.2 Elastoplasticity with periodic coefficients

Let the elastoplastic body be given by a bounded open domain Ω ⊂ Rd with Lipschitz-
boundary ∂Ω.Moreover, let ΓDir ⊂ ∂Ω be a part of the boundary of the set Ω with a positive
(d−1)-dimensional measure. Now we consider the Hilbert space Q := H1

ΓDir
(Ω)d×H1(Ω)m

where H1
ΓDir

(Ω) :=
{
u ∈ H1(Ω)|u|ΓDir

= 0
}
, i.e. the displacement vanishes on ΓDir. We

denote the elements of Q by q = (u, z), where u ∈ H1
ΓDir

(Ω)d denotes the displacement and
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z ∈ H1(Ω)m denotes a vector of internal variables which describe the inelastic effects like
plastic hardening. For ε > 0 and γ ≥ 0 we equip Q with the following ε-dependent norm:

‖q‖2
Q,ε := ‖u‖2

H1(Ω)d + ‖z‖2
L2(Ω)m + ‖εγ∇z‖2

L2(Ω)m×d . (3.2)

To describe the problem by the energetic formulation, we denote by 〈〈·, ·〉〉 : Rn × Rn → R

the scalarproduct of Rn and define the function W : Y × Rn → R as follows:

W
(
y, ξ, ζ, η

)
:=

〈〈
A(y)

⎛⎝ ξ
ζ
η

⎞⎠ ,

⎛⎝ ξ
ζ
η

⎞⎠〉〉
,

where n := d2 +m+md, ξ ∈ Rd×d
sym, ζ ∈ Rm, η ∈ Rm×d and y ∈ Y. Thereby, the mapping

A : Y → Rn has the block structure

A(y) =

⎛⎝ C(y) −C(y)B(y) 0
−BT (y)C(y) H(y) + BT (y)C(y)B(y) 0

0 0 F(y)

⎞⎠
and the elasticity tensor C ∈ L∞(Y,Linsym(Rd×d

sym ,R
d×d
sym)) (tensor of fourth order), the

hardening tensor H ∈ L∞(Y,Linsym(Rm,Rm)) (tensor of second order) and the tensor
F ∈ L∞(Y,Linsym(Rm×d,Rm×d)) (tensor of fourth order) have the following properties:

The tensors are uniformly positive definite and symmetric. (3.3)

Thereby, the fourth order tensors are symmetric in the following way: Fiκjμ(y) = Fjμiκ(y)
and Cijkl(y) = Cklij(y) = Cjikl(y) = Cijlk(y) for almost every y ∈ Y and i, j, k, l =
1, . . . , d, κ, μ = 1, . . . ,m . Furthermore, let B ∈ L∞(Y,Lin(Rm,Rd×d

sym)).

Let 〈·, ·〉 : (H1
ΓDir

(Ω)d)∗ × H1
ΓDir

(Ω)d → R be the dual pairing and e(u) := 1
2(∇u + (∇u)T )

for u ∈ H1
ΓDir

(Ω)d the linearized strain tensor. Then we define the energy functional
Eε : [0, T ] ×Q → R as

Eε(t, u, z) =
1
2

∫
Ω

W
( {

x
ε

}
Y
, e(u)(x), z(x), εγ∇z(x)

)
dx−

〈
�(t), u

〉
, (3.4)

where 〈
�(t), u

〉
:=

∫
Ω

〈
ũ(x), fap(t, x)

〉
d
dx+

∫
∂Ω\ΓDir

〈
ũ(ξ), gap(t, ξ)

〉
d
dξ,

for fap ∈ C1([0, T ],L2(Ω)d), gap ∈ C1([0, T ],L2(∂Ω \ ΓDir)d) and u ∈ H1
ΓDir

(Ω)d, so that
� ∈ C1([0, T ], (H1

ΓDir
(Ω)d)∗).

Let Q∗ be the dual of Q and 〈·, ·〉Q : Q∗ × Q → R the dual pairing. Then, with respect
to the quadratic structure of the function W, the energy functional Eε can be equivalently
represented as

Eε(t, u, z) = 1
2

〈
Aεq, q

〉
Q −

〈
�(t), u

〉
,

where Aε ∈ Lin(Q,Q∗) is the continuous, linear, positive definite and symmetric operator
given by 〈Aεq, q〉Q :=

∫
Ω W

( {
x
ε

}
Y
, e(u)(x), z(x), εγ∇z(x)

)
dx.
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Finally, let a convex, lower semicontinuous and positively homogeneous of degree 1 dissi-
pation potential Rε : H1(Ω)m → [0,∞] be given by

Rε(z) :=
∫
Ω

ρ
({x

ε

}
Y
, z(x)

)
dx (3.5)

where ρ : Y × Rm → [0,∞] satisfies the following properties:

ρ : Y ×Rm → [0,∞] is a Cartheodory-function and there exists a constant C > 0
and a function h ∈ L1(Y), so that |ρ(y, 
z)| ≤ h(y) + C(1 + |
z|m)2 for all 
z ∈ Rm

and almost every y ∈ Y. Furthermore, ρ(y, ·) : Rm → [0,∞] is convex and positive
homogeneous of degree 1 for almost every y ∈ Y.

(3.6)

Now the energetic formulation (Sε)&(Eε) for the elastoplastic model with periodic coeffi-
cients is indicated. The ε-dependent energy balance (Eε) and the global stability condition
(Sε) read for ε > 0 as follows:

(Sε) Eε

(
t, uε(t), zε(t)

)
≤ Eε

(
t, u′, z′

)
+Rε

(
z′−zε(t)

)
for all q′ = (u′, z′) ∈ Q.

(Eε) Eε

(
t, uε(t), zε(t)

)
+ DissRε

(
zε; [0, t]

)
= Eε

(
0, uε(0), zε(0)

)
−
∫ t

0

〈
�̇(s), uε(s)

〉
ds,

where DissRε(z; [0, t]) :=
∫ t
0 Rε(ż(s)) ds. The set of stable states Sε(t) for t ∈ [0, T ] is

defined via:

Sε(t) :=
{
q = (u, z) ∈ Q | Eε(t, u, z) ≤ Eε(t, u′, z′) −Rε(z′ − z) for all q′ = (u′, z′) ∈ Q

}
.

Under all these assumptions we obtain the following existence and uniqueness result.

Proposition 3.2. Let ε > 0, γ ≥ 0 and let Q := H1
ΓDir

(Ω)d ×H1(Ω)m be equipped with the
norm given by (3.2). Moreover, let Eε : [0, T ]×Q → R and Rε : H1(Ω)m → [0,∞] be defined
by (3.4) and (3.5), respectively, and let the conditions (3.3) and (3.6) be satisfied. Then,
for a given q0ε ∈ Sε(0), there exists a unique solution qε ∈ C0,1([0, T ];Q) of the energetic
formulation (Sε)&(Eε) of the rate-independent system (Q, Eε,Rε) with:

qε(0) = q0ε , sup
t∈[0,T ]

‖qε(t)‖Q,ε ≤ ‖q0ε‖Q,ε + TΘ
α , ess sup

t∈[0,T ]
‖q̇ε(t)‖Q,ε ≤ Θ

α ,

where α is given in (3.1) and Θ = ‖�̇‖L∞([0,T ];(H1
ΓDir

(Ω)d)∗).

Proof 3.2. To apply theorem 3.1, it only remains to show the coercivity condition (3.1),
which is a straightforward consequence of Young and Korn inequality.

3.3 The two-scale homogenized problem

Since we want to consider the two-scale-Γ-limits of the functionals Eε and Rε, the limit
function space Qγ is basically given by Xγ defined in (2.5). The only thing we have to
keep in mind is that we assumed a Dirichlet boundary condition in the first component, so
that Qγ has the following form:

Qγ := Hd ×Xm
γ where H := H1

ΓDir
(Ω) × L2(Ω;H1

av(Y)) and Xγ defined in (2.5). (3.7)

16



Thereby, we equip L2(Ω;H1
av(Y)) with the norm ‖V ‖L2(Ω;H1

av(Y)) := ‖∇yV ‖L2(Ω×Y)d and
set ‖ · ‖Qγ : Qγ → [0,∞) as the norm of the product space. Analog to (2.6), the elements
of Xm

γ are denoted by Zγ , so that qγ = (u0, U1,Zγ) denotes the elements of Qγ . With the
help of the mapping Lγ given by (2.5), we specify the two-scale-functional as follows:

Eγ(t,qγ) =
1
2

∫
Ω×Y

W
(
y, ex(u0)(x, y) + ey(U1)(x, y),Lγ(Zγ)(x, y)

)
dydx−

〈
�(t), u0

〉
. (3.8)

The two-scale dissipation potential Rγ : Xm
γ → [0,∞] has the form:

Rγ(Zγ) :=
∫

Ω×Y
ρ
(
y,Lγ

1(Zγ)(x, y)
)
dydx, (3.9)

where Lγ
1 is the first component of the function Lγ : Xm

γ → L2(Ω × Y)m × L2(Ω ×Y)m×d.
Note , if γ ∈ [0, 1), then the two-scale dissipation potential Rγ actually depends on a
one-scale function z0 only. This property is the reason why it is possible to construct an
equivalent one-scale model, if γ ∈ [0, 1), see section 5.

The energetic formulation (Sγ)&(Eγ) is now given by:

(Sγ) Eγ

(
t,qγ(t)

)
≤ Eγ

(
t,q′

γ

)
+Rγ

(
Z ′

γ−Zγ(t)
)

for all q′
γ = (u′0, U

′
1,Z ′

γ) ∈ Qγ ,

(Eγ) Eγ

(
t,qγ(t)

)
+ DissRγ

(
Zγ ; [0, t]

)
= Eγ

(
0,qγ(0)

)
−
∫ t

0

〈
�̇(s), u0(s)

〉
ds,

where DissRγ (Zγ ; [0, t]) :=
∫ t
0 Rγ(Żγ(s)) ds. Note, that in the case of γ ∈ (0, 1) the

energetic solution qγ = (u0, U1, z0, Z1) : [0, T ] → Qγ of the rate-independent system
(Qγ ,Eγ ,Rγ) satisfies Z1 ≡ 0. This follows by testing the stability condition (Sγ) with
special testfunctions and will be specified in section 5.

Finally, the set of stable states S̃γ(t) for t ∈ [0, T ] is defined via

S̃γ(t) :=
{
q ∈ Qγ |Eγ(t,q) ≤ Eγ(t,q′) − Rγ(Z ′

γ −Zγ) for all q′ = (u′0, U
′
1,Z ′

γ) ∈ Qγ

}
.

The abstract existence and uniqueness theorem 3.1 now yields the following result.

Proposition 3.3. Let Qγ be given by (3.7) and equipped with the norm described above.
Furthermore, let Eγ : [0, T ] × Qγ → R and Rγ : H1(Ω)m → [0,∞] be defined by (3.8)
and (3.9), respectively, and let the conditions (3.3) and (3.6) be satisfied. Then, for a given
q0

γ ∈ S̃γ(0), there exists a unique solution qγ ∈ C0,1([0, T ],Qγ) of the energetic formulation
(Sγ)&(Eγ) of the rate independent system (Qγ ,Eγ ,Rγ) with

qγ(0) = q0
γ , sup

t∈[0,T ]
‖qγ(t)‖Qγ ≤ ‖q0

γ‖Qγ + TΘ
α , ess sup

t∈[0,T ]
‖q̇γ(t)‖Qγ ≤ Θ

α ,

where α is defined in (3.1) and Θ = ‖�̇‖L∞([0,T ];(H1
ΓDir

(Ω)d)∗).

Proof 3.3. It only remains to show the coercivity condition (3.1). With condition (2.7)
this follows analogously to proof 3.2.
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3.4 Equivalent one-scale model in the case of γ ∈ [0, 1)

In this subsection we introduce a one-scale model which turns out to be equivalent (section
5) to the two-scale model of the previous subsection if γ ∈ [0, 1) and if B is constant,
i.e. B ∈ Lin(Rm,Rd×d

sym). To prove this (section 5), we will use a special property of the
solution of the two-scale energetic formulation (Sγ)&(Eγ) of the rate-independent system
(Qγ ,Eγ ,Rγ), namely, that the solution minimizes the energy functional Eγ . Furthermore,
we will use the fact that the two-scale dissipation potential Rγ in this case (γ ∈ [0, 1))
depends on a one-scale function z0 only.

Thereto, we introduce the space Qγ := H1
ΓDir

(Ω)d × Xm
γ where

Xγ :=

{
H1(Ω); ‖ · ‖Q0 := ‖ · ‖Q if γ = 0,
L2(Ω); ‖(u, z)‖2

Qγ
:= ‖u‖2

H1(Ω)d + ‖z‖2
L2(Ω)m if γ ∈ (0, 1). (3.10)

Now we consider two minimizing problems which correspond to the minimizing property
of the two-scale solution of the energetic formulation (S)γ&(E)γ of the rate-independent
system (Qγ ,Eγ ,Rγ) as it is shown in section 5. Let Ceff : Rd×d → R,Heff : Rm → R and
Feff : Rm×d → R for ξ ∈ Rd×d, ζ ∈ Rm and η ∈ Rm×d be given by

Ceff(ξ) = min
v∈H1

av(Y)d
I1(ξ, v) := min

v∈H1
av(Y)d

∫
Y

〈C(y)(ξ + e(v)(y)), ξ + e(v)(y)〉d×d dy, (3.11)

Heff(ζ) = 〈Heffζ, ζ〉m :=
∫
Y

〈H(y)ζ, ζ〉m dy,

Feff(η) = min
w∈H1

av(Y)m
I2(η,w) := min

w∈H1
av(Y)m

∫
Y

〈F(y)(η + ∇w(y)), η + ∇w(y)〉m×d dy. (3.12)

Before describing the one-scale energetic formulation with the help of these mappings, we
want to show the existence and uniqueness of solutions of (3.11) and (3.12).

Lemma 3.4. Let C ∈ L∞(Y; Lin(Rd×d,Rd×d)) and F ∈ L∞(Y; Lin(Rm×d,Rm×d)) be uni-
formly positive definite and symmetric. Then there exist unique solutions of minimizing
problems (3.11) and (3.12) and symmetric, linear mappings Ceff ∈ Linsym(Rd×d

sym ,R
d×d
sym) and

Feff ∈ Linsym(Rm×d,Rm×d), so that Ceff(·) = 〈Ceff ·, ·〉d×d and Feff (·) = 〈Feff ·, ·〉m×d .

Proof 3.4. 1. Let ξ ∈ Rd×d and η ∈ Rm×d be given and fixed. Since the functionals
I1(ξ, ·) : H1

av(Y)d → R and I2(η, ·) : H1
av(Y)m → R are strictly convex and continuous,

the existence and uniqueness of minimizers v∗ ∈ H1
av(Y)d and w∗ ∈ H1

av(Y)m of (3.11)
and (3.12) follows. Furthermore, by applying the Lax-Milgram theorem to the Euler-
Lagrange equations of I1(ξ, ·) : H1

av(Y)d → R and I2(η, ·) : H1
av(Y)m → R there exist linear

mappings LC : Rd×d → H1
av(Y)d and LF : Rm×d → H1

av(Y)m, which satisfy LC(ξ) = v∗ and
LF(η) = w∗. Therefore, we used crucially the uniqueness of the minimizeres of (3.11) and
(3.12) as well as the uniqueness of the solutions of the Euler-Lagrange equations.

2. It remains to show that Ceff : Rd×d → R and Feff : Rm×d → R actually have quadratic
structure. We show this only for the second one. According to step 1 this mapping can be
written in the following form:

Feff (η) =
∫
Y

〈F(y)(η + ∇LF(η)(y)), η + ∇LF(η)(y)〉m×d dy.
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Testing this function with η = eij ∈ Rm×d, where (eij)kl := δij,kl and δij,kl for i, k ∈
{1, . . . ,m} and j, l ∈ {1, . . . d} is the Kronecker delta, enables us to define the effective
tensor Feff of forth order as follows:

Feffijkl
:=

∫
Y

〈F(y)(eij + ∇LF(eij)(y)), ekl + ∇LF(ekl)(y)〉m×d dy. (3.13)

By this definition, the symmetry of Feff is obvious and the quadratic structure can be seen
by writing η ∈ Rm×d, η := (ηij)

j∈{1,...,d}
i∈{1,...m} as η =

∑m
i=1

∑d
j=1 ηijeij .

Note that the effective tensor Ceff ∈ Linsym(Rd×d,Rd×d), defined analogously to (3.13), is
exactly the same as in the linear elastic case, see [Ngu89] subsection 6.2. There, equation
(6.10) is in fact the Euler-Lagrange equation of I1(ξ, ·) : H1

av(Y)d → R with ξ = −ejl, if
one extends the result of [Ngu89] to the d-dimensional case, i.e. u ∈ H1

0(Ω)d instead of
u ∈ H1

0(Ω). Furthermore, in our case u ∈ H1
ΓDir

(Ω)d instead of u ∈ H1
0(Ω)d, but this is

only an easy generalization. Then the definition of the effective tensor of [Ngu89] given in
condition (6.14) is the same as ours in definition (3.13).

The one-scale energy functional Eγ : [0, T ] ×Qγ → R is given by

Eγ(t, u, z) =
1
2

∫
Ω

〈〈
Aγ

⎛⎝ e(u)(x)
z(x)
∇̃z(x)

⎞⎠ ,

⎛⎝ e(u)(x)
z(x)
∇̃z(x)

⎞⎠〉〉
dx− 〈�(t), u〉, (3.14)

where

Aγ =

⎛⎝ Ceff −CeffB 0
−BT Ceff Heff + BT CeffB 0

0 0 Fγ

⎞⎠ with Fγ :=
{

Feff if γ = 0,
0 if γ ∈ (0, 1)

and

∇̃ :

⎧⎨⎩
Xm

γ → L2(Ω)m×d

z �→
{

∇z if γ = 0,
0 if γ ∈ (0, 1).

(3.15)

The one-scale dissipation potential Rγ : Xm
γ → [0,∞] reads as follows

Rγ(z) :=
∫
Ω

ρeff(z(x)) dx, (3.16)

where ρeff :=
∫
Y ρ(y, ·) dy : Rm → [0,∞]. With this definition we obtain Rγ(z0) = R̃γ(z0)

for every z0 ∈ H1(Ω)m, where Rγ(z0, Z1) ≡ R̃γ(z0) :=
∫
Ω×Y ρ(y, z0(x)) dydx for all

(z0, Z1) ∈ Xm
γ .

Now the energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ , Eγ ,Rγ)
reads as follows:

(Sγ) Eγ

(
t, u(t), z(t)

)
≤ Eγ

(
t, u′, z′

)
+Rγ

(
z′−z(t)

)
for all (u′, z′) ∈ Qγ ,

(Eγ) Eγ

(
t, u(t), z(t)

)
+ DissRγ

(
ż; [0, t]

)
= Eγ

(
0, u(0), z(0)

)
−
∫ t

0

〈
�̇(s), u(s)

〉
ds,
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where DissRγ (ż; [0, t]) :=
∫ t
0 Rγ(ż(s)) ds. Furthermore, we define the set of stable states

Sγ(t) for t ∈ [0, T ] via

Sγ(t) :=
{
q ∈ Qγ | Eγ(t, q) ≤ Eγ(t, q′) −Rγ(z′ − z) for all q′ ∈ Qγ

}
.

Proposition 3.5. Let Qγ be given as above and be equipped with the norm introduced by
(3.10). Furthermore, let Eγ : [0, T ]×Qγ → R and Rγ : Xm

γ → [0,∞] be defined by (3.14) and
(3.16), respectively, and let the conditions (3.3) and (3.6) be satisfied. Then, for a given
q0 ∈ Sγ(0), there exists a unique solution q ∈ C0,1([0, T ],Qγ ) of the energetic formulation
(Sγ)&(Eγ) of the rate-independent system (Qγ , Eγ ,Rγ), with

q(0) = q0, sup
t∈[0,T ]

‖q‖Qγ ≤ ‖q0‖Qγ + TΘ
α , ess sup

t∈[0,T ]
‖q̇‖Qγ ≤ Θ

α ,

where α is defined in (3.1) and Θ = ‖�̇‖L∞([0,T ];(H1
ΓDir

(Ω)d)∗).

Proof 3.5. It only remains to show the coercivity condition (3.1). Analog to condition
(2.7), we obtain for all v ∈ H1

av(Y)d∫
Y
〈C(y)(ξ + e(v)(y)), ξ + e(v)(y)〉d×ddy ≥

∫
Y
c|ξ+e(v)(y)|2d×d dy

(2.7)
= c

[
|ξ|2d×d+‖e(v)‖2

L2(Y)d×d

]
,

where we used that C ∈ L∞(Y; Lin(Rd×d,Rd×d)) is uniformly positive definite. Since this
is true for every ξ ∈ Rd×d, this means that Ceff ∈ Linsym(Rd×d,Rd×d) is positive definite.
Analog we obtain that Feff ∈ Linsym(Rm×d,Rm×d) (γ = 0) is positive definite and thereby
follows coercivity condition (3.1) analog to Proof 3.2.

4 Convergence results

The following theorem yields one of the main results of this paper: Assuming strong two-
scale convergence (in sense of definition 2.10) of the initial data we obtain strong two-scale
convergence (in sense of definition 2.10) of the solutions (uε, zε) of the energetic formulation
(Sε)&(Eε) of the rate-independent systems (Q, Eε,Rε) to the solution (u0, U1,Zγ) of the
energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ).

Theorem 4.1. Let γ ≥ 0, ε > 0 and let q0ε = (u0
ε, z

0
ε ) ∈ Sε(0) be given. Furthermore, let

qε = (uε, zε) ∈ C0,1([0, T ],Q) be the unique solution of the energetic formulation (Sε)&(Eε)
of the rate-independent system (Q, Eε,Rε) with qε(0) = q0ε . Moreover, let uε(0)

s0→ (u0
0, U

0
1 )

in Hd and let zε(0)
sγ→ Z0

γ in Xm
γ . Then q0

γ := (u0
0, U

0
1 ,Z0

γ ) ∈ S̃γ(0) and for all t ∈ [0, T ] it

follows: uε(t)
s0→ (u0(t), U1(t)) in Hd and zε(t)

sγ→ Zγ(t) in Xm
γ where qγ := (u0, U1,Zγ) ∈

C0,1([0, T ],Qγ) is the unique solution of the energetic formulation (Sγ)&(Eγ) of the rate-
independent system (Qγ ,Eγ ,Rγ) with qγ(0) = q0

γ .

One of the main difficulties by proving this result is to show that the weak limit (in sense
of definition 2.10) of a stable sequence is stable again. That is why we first start with two
propositions before proving theorem 4.1. In [MRS08] was introduced a sufficient condition
to get this result, namely, the existence of a “joint recovery sequence“. In the context of
this paper, “joint recovery sequences“ are defined as follows:
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Definition 4.2. The functionals Eε and Rε fulfill the “joint recovery condition“, if for every
stable sequence (uε, zε)ε>0 ⊂ Q (i.e. (uε, zε) ∈ Sε(t) for every ε > 0) with uε

w0
⇀ (u0, U1)

in Hd and zε
wγ
⇀ Zγ in Xm

γ and every q̃γ = (ũ0, Ũ1, Z̃γ) ∈ Qγ , there exists a sequence

(ũε, z̃ε)ε>0 ⊂ Q with ũε
w0
⇀ (ũ0, Ũ1) in Hd and z̃ε

wγ
⇀ Z̃γ in Xm

γ so that:

lim sup
ε→0

(
Eε(t, ũε, z̃ε) + Rε(z̃ε − zε) − Eε(t, uε, zε)

)
≤ Eγ(t, q̃γ) + Rγ(Z̃γ −Zγ) − Eγ(t,qγ),

where qγ = (u0, U1,Zγ) ∈ Qγ . The sequence (ũε, z̃ε)ε>0 ⊂ Q is called “joint recovery
sequence“.

The following proposition shows the existence of such “joint recovery sequences“ and that
this is sufficient for the stability of a limit of stable states.

Proposition 4.3. Let γ ≥ 0 and (uε, zε)ε>0 be a sequence in Q with (uε, zε) ∈ Sε(t) for
t ∈ [0, T ]. Furthermore, let uε

w0
⇀ (u0, U1) in Hd and zε

wγ
⇀ Zγ in Xm

γ . Then:

(a) For every q̃γ = (ũ0, Ũ1, Z̃γ) ∈ Qγ exists a “joint recovery sequence“.
(b) qγ = (u0, U1,Zγ) ∈ S̃γ(t).

Proof 4.3. 1. With the help of the in subsection 2.4 introduced folding operators Gε and
Gγ

ε , the joint recovery sequence can be constructed explicitly:(
ũε

z̃ε

)
:=

(
uε

zε

)
+
(
ũ0 − u0 + Gε(0, Ũ1 − U1)

Gγ
ε (Z̃γ −Zγ)

)
.

Note, that the first component of this sequence has the correct boundary value because
of uε + ũ0 − u0 ∈ H1

ΓDir
(Ω)d and Gε(0, Ũ1 − U1) ∈ H1

0(Ω)d. Now proposition 2.7 (f) and
corollary 2.12 yield

ũε − uε = ũ0 − u0 + Gε(0, Ũ1 − U1)
s0→ (ũ0 − u0, Ũ1 − U1) in Hd (4.1)

and proposition 2.11 yields

z̃ε − zε = Gγ
ε (Z̃γ −Zγ)

sγ→ (Z̃γ −Zγ) in Xm
γ . (4.2)

Condition (4.1) and (4.2) imply ũε
w0
⇀ (ũ0, Ũ1) in Hd and z̃ε

wγ
⇀ Z̃γ in Xm

γ because of the

assumed convergence uε
w0
⇀ (u0, U1) in Hd and zε

wγ
⇀ Zγ in Xm

γ , respectively.

2. Since ρ : Y × Rm → [0,∞] has the properties (3.6) and z̃ε − zε
s→ Lγ

1(Z̃γ − Zγ)
in L2(Ω × Y)m, according to definition 2.10 and condition (4.2), we obtain with lemma
2.16(a):

lim
ε→0

Rε(z̃ε−zε) = lim
ε→0

∫
Ω

ρ
({x

ε

}
Y
, z̃ε − zε

)
dx =

∫
Ω×Y

ρ
(
y,Lγ

1(Z̃γ−Zγ)
)
dydx = Rγ(Z̃γ−Zγ).

3. Because of the quadratic structure of the energy functionals Eε, we obtain

Eε(t, ũε, z̃ε) − Eε(t, uε, zε) =
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1
2

∫
Ω

〈〈
A

({x
ε

}
Y

)⎛⎝ e(ũε − uε)(x)
z̃ε(x) − zε(x)

εγ∇(z̃ε(x) − zε(x))

⎞⎠,
⎛⎝ e(ũε + uε)(x)

z̃ε(x) + zε(x)
εγ∇(z̃ε(x) + zε(x))

⎞⎠〉〉 dx− 〈�(t), ũε − uε〉.

Using definition 2.10 and the results of step 2, we have firstly⎛⎝ e(ũε + uε)
z̃ε + zε

εγ∇(z̃ε + zε)

⎞⎠ w
⇀

⎛⎜⎝ ex(E(ũ0 + u0)) + ey(Ũ1 + U1)
Lγ

1(Z̃γ + Zγ)
Lγ

2(Z̃γ + Zγ)

⎞⎟⎠ in L2(Ω ×Y)n,

and secondly with condition (4.1) and (4.2)⎛⎝ e(ũε − uε)
z̃ε − zε

εγ∇(z̃ε − zε)

⎞⎠ s→

⎛⎜⎝ ex(E(ũ0 − u0)) + ey(Ũ1 − U1)
Lγ

1(Z̃γ −Zγ)
Lγ

2(Z̃γ −Zγ)

⎞⎟⎠ in L2(Ω ×Y)n,

where n := d2 +m+md.

The last result allows us now to apply proposition 2.8 to mε := A
( { ·

ε

}
Y

)
, i.e.

A

({ ·
ε

}
Y

)⎛⎝ e(ũε − uε)
z̃ε − zε

εγ∇(z̃ε − zε)

⎞⎠ s→ A

⎛⎜⎝ ex(E(ũ0 − u0)) + ey(Ũ1 − U1)
Lγ

1(Z̃γ −Zγ)
Lγ

2(Z̃γ −Zγ)

⎞⎟⎠ in L2(Ω × Y)n,

where we used Tεmε(x, y) = A(y).

4. Now, with step 3, all assumptions of proposition 2.7(d) are fulfilled and we conclude

∫
Ω

〈〈
A

({x
ε

}
Y

)⎛⎝ e(ũε − uε)(x)
z̃ε(x) − zε(x)

εγ∇(z̃ε(x) − zε(x))

⎞⎠,
⎛⎝ e(ũε + uε)(x)

z̃ε(x) + zε(x)
εγ∇(z̃ε(x) + zε(x))

⎞⎠〉〉
dx ε→0→

∫
Ω×Y

〈〈
A(y)

⎛⎜⎝ ê((ũ0, Ũ1) − (u0, U1))(x, y)
Lγ

1(Z̃γ −Zγ)(x, y)
Lγ

2(Z̃γ −Zγ)(x, y)

⎞⎟⎠,
⎛⎜⎝ ê((ũ0, Ũ1) + (u0, U1))(x, y)

Lγ
1(Z̃γ + Zγ)(x, y)

Lγ
2(Z̃γ + Zγ)(x, y)

⎞⎟⎠〉〉
dydx,

where ê(û0, Û1) = ex(Eû0) + ey(Û1), which gives:

lim
ε→0

(
Eε(t, ũε, z̃ε) − Eε(t, uε, zε)

)
= Eγ(t, ũ0, Ũ1, Z̃γ) − Eγ(t, u0, U1,Zγ),

where we used ũε − uε ⇀ ũ0 − u0 in H1(Ω)d. Thereby, we proved part (a).

5. Part (b) is a direct consequence of part (a). Let (u0, U1,Zγ) ∈ Qγ be the weak two-
scale-γ-limit of the stable states (uε, zε) ∈ Q and let (ũ0, Ũ1, Z̃γ) ∈ Qγ be an arbitrary
teststate. Replacing (ũ, z̃) ∈ Q in the stability condition (Sε) by the constructed “joint
recovery sequence“ (ũε, z̃ε) ∈ Q from step (a), leads to

0 ≤ Eε(t, ũε, z̃ε) + Rε(z̃ε − zε) − Eε(t, uε, zε). (4.3)

According to part (a), the right-hand side of (4.3) converges for ε → 0 and we obtain
0 ≤ Eγ(t, ũ0, Ũ1, Z̃γ) + Rγ(Z̃γ −Zγ) −Eγ(t, u0, U1,Zγ). Thereby, stability is proven since
(ũ0, Ũ1, Z̃γ) ∈ Qγ was arbitrary.
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Finally, before proving theorem 4.1, we show that Eγ and Rγ are the two-scale Γ-limits
(in sense of definition 2.14) of Eε and Rε, respectively.

Proposition 4.4. Let γ ≥ 0 and let (uε, zε)ε>0 be a sequence in Q. Then for t ∈ [0, T ] :

(a) If uε
w0
⇀ (u0, U1) in Hd and zε

wγ
⇀ Zγ in Xm

γ then{
Eγ(t, u0, U1,Zγ) ≤ lim inf

ε→0
Eε(t, uε, zε),

Rγ(Zγ) ≤ lim inf
ε→0

Rε(zε).

(b) For all (ũ0, Ũ1, Z̃γ) ∈ Qγ there exists a sequence (ũε, z̃ε)ε>0 in Q so that ũε
s0→ (ũ0, Ũ1)

in Hd, z̃ε
sγ→ Zγ in Xm

γ and{
Eγ(t, ũ0, Ũ1, Z̃γ) = lim

ε→0
Eε(t, ũε, z̃ε),

Rγ(Z̃γ) = lim
ε→0

Rε(z̃ε).

Proof 4.4. (a) This is an easy consequence of lemma 2.15. We only have to show that
W : Y × Rn → [0,∞] and ρ : Y × Rm → [0,∞] satisfy its assumptions. Thereby, let
n := d2 + m + md. Since A ∈ L∞(Y; Linsym(Rn; Rn)) is uniformly positive definite, we
have W(y, (A, b,C)) ≥ 0 for all (A, b,C) ∈ Rn and almost every y ∈ Y. Furthermore,
(A, b,C) �→ W(y, (A, b,C)) is continuous and because of its quadratic structure it is also
convex for almost every y ∈ Y.

Let now (uε, zε)ε>0 ⊂ Q with uε
w0
⇀ (u0, U1) in Hd and zε

wγ
⇀ Zγ in Xm

γ be given. Following
definition 2.10, this means vε

w
⇀ Vγ in L2(Ω×Y)n, where vε := (e(uε), zε, εγ∇zε) ∈ L2(Ω)n

and Vγ := (ex(u0) + ey(U1),Lγ(Zγ)) ∈ L2(Ω × Y)n. Thereby, the assumptions of lemma
2.15 are fulfilled and we have

W(Vγ) =
∫

Ω×Y
W
(
y, Vγ(x, y)

)
dydx ≤ lim inf

ε→0
Wε(vε) = lim inf

ε→0

∫
Ω

W
({x

ε

}
Y
, vε(x)

)
dx.

Because of the weak convergence of uε to u0 in H1(Ω)d, it follows : 〈�(t), u0〉 = lim
ε→0

〈�(t), uε〉.
Finally, we obtain:

Eγ(t, u0, U1,Zγ) = W(Vγ)−〈�(t), u0〉 ≤ lim inf
ε→0

Wε(vε)− lim
ε→0

〈�(t), uε〉 = lim inf
ε→0

Eε(t, uε, zε).

Since ρ : Y × Rm → [0,∞] has the properties (3.6) and zε
s→ Lγ

1(Zγ) in L2(Ω × Y)m, we
also have

Rγ(Zγ) =
∫

Ω×Y
ρ
(
y,Lγ

1(Zγ)(x, y)
)
dydx ≤ lim inf

ε→0

∫
Ω

ρ
({x

ε

}
Y
, zε(x)

)
dx = lim inf

ε→0
Rε(zε)

according to lemma 2.15. Lemma 2.16(a) states that this is even an equality.

(b) With the help of the in subsection 2.4 given folding operators Gε and Gγ
ε , the sequence

(ũε, z̃ε)ε>0 ⊂ Q is explicitly given in the form(
ũε

z̃ε

)
:=

(
ũ0 + Gε(0, Ũ1)

Gγ
ε (Z̃γ)

)
.
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Proposition 2.11 immediately yields the wanted convergence and analog to step 2 of proof
4.3 we obtain limε→0 Rε(z̃ε) = Rγ(Z̃γ) with lemma 2.16(a). Finally, we conclude analog
to step 3 and 4 of proof 4.3 that: limε→0 Eε(t, ũε, z̃ε) = Eγ(t, ũ0, Ũ1, Z̃γ).

Now we are in the position to prove theorem 4.1.

Proof of theorem 4.1. Let qε = (uε, zε) ∈ C0,1([0, T ],Q) be the unique solution of the
energetic formulation (Sε)&(Eε) of the rate-independent system (Q, Eε,Rε) with qε(0) =
q0ε ∈ Sε(0).

1. Let Q := H1(Ω)d × L2(Rd ×Y)n, where n := d2 +m+md. Now we consider the subset
M of C0,1([0, T ],Q) defined as follows:

M := {q̃ε := (uε,Tε(∇uε),Tεzε,Tε(∇zε)) | (uε, zε) : [0, T ] → Q solution of (Sε)&(Eε)} .

According to proposition 3.2 we obtain

sup
t∈[0,T ]

(
‖uε(t)‖2

H1(Ω)d + ‖zε(t)‖2
L2(Ω)m + ‖εγ∇zε(t)‖2

L2(Ω)m×d

) 1
2 ≤ ‖q0ε‖Q,ε +

TΘ
α
, (4.4)

ess sup
t∈[0,T ]

(
‖u̇ε(t)‖2

H1(Ω)d + ‖żε(t)‖2
L2(Ω)m + ‖εγ∇żε(t)‖2

L2(Ω)m×d

) 1
2 ≤ Θ

α
.

Because of the assumed two-scale convergence (in sense of definition 2.10) of the initial
data, there exists a constant C1 > 0 so that ‖q0ε‖Q,ε ≤ C1 for every ε > 0. Thereby, we
obtain that the subset M is bounded in C0,1([0, T ],Q), since Tε is norm-preserving. Now,
according to the Arzela-Ascoli theorem, there exists a subsequence (q̃ε′)ε′>0 of (q̃ε)ε>0 and
a function (u0, Ũ1, Z̃γ , W̃γ) ∈ C0,1([0, T ]; Q), so that the following holds true for every
t ∈ [0, T ] : (

uε′(t),Tε(∇uε′(t))
Tεzε′(t),Tε((ε′)γ∇zε′(t))

)
⇀

(
u0(t), Ũ1(t)
Z̃γ(t), W̃γ(t)

)
weakly in Q. (4.5)

Since the supports of the functions Tε(∇uε(t)),Tε(zε(t)) and Tε(εγ∇zε(t)) are contained
in [Ω × Y]ε for every t ∈ [0, T ], the supports of the functions Ũ1(t), Z̃γ(t) and W̃γ(t) are
contained in Ω × Y.
2. According to proposition 2.9 (note condition (4.4)), we obtain for every t ∈ [0, T ],
that there exists a subsequence (uε′′(t))ε′′>0 of (uε′(t))ε′>0 and functions u0(t) ∈ H1

ΓDir
(Ω)d

and U1(t) ∈ L2(Ω;H1
av(Y))d, so that ∇uε′′(t)

w
⇀ ∇xEu0(t) + ∇yU1(t) in L2(Ω × Y)d×d.

Furthermore, ∇uε′′(t)
w
⇀ Ũ1(t) in L2(Ω ×Y)d×d for every t ∈ [0, T ] according to condition

(4.5), i.e. we obtain
∇yU1 = Ũ1 −∇xEu0 (4.6)

as a possible representation of the function ∇yU1 : [0, T ] → L2(Ω×Y)d×d. Following step 1,
the right-hand side of (4.6) is Lipschitz-continuous, i.e. U1 ∈ C0,1([0, T ]; L2(Ω;H1

av(Y))d).

Since the same argument works for the z-component, we showed: There exists a subse-
quence (uε′ , zε′)ε′>0 of (uε, zε)ε>0 and a function (u0, U1,Zγ) ∈ C0,1([0, T ];Qγ), so that

uε′(t)
w0
⇀ (u0(t), U1(t)) in Hd and zε′(t)

wγ
⇀ Zγ(t) in Xm

γ (4.7)
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for every t ∈ [0, T ]. Since every subsequence converges to the same limit, we obtain the
convergence of the whole sequence.

3. It remains to show that (u0, U1,Zγ) ∈ C0,1([0, T ];Qγ) is the unique solution of the
energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ) with the
initial value (u0(0), U1(0),Zγ(0)) = (u0

0, U
0
1 ,Z0

γ ) ∈ S̃γ(0). According to prop. 4.3(b),
(u0(t), U1(t),Zγ(t)) is stable for every t ∈ [0, T ]. To show the energy balance (Eγ), we
pass in (Eε) to the limit ε→ 0.

4. Proposition 3.2 yields for almost every t ∈ [0, T ]〈
�̇(t), uε(t)

〉
≤ ‖�̇‖L∞([0,T ];(H1

ΓDir
(Ω)d)∗)‖uε‖C0([0,T ];H1

ΓDir
(Ω)d) ≤ ‖�̇‖L∞([0,T ];(H1

ΓDir
(Ω)d)∗)C2,

where C2 := C1 + α−1TΘ. Thereby we obtain

lim
ε→0

∫ t

0

〈
�̇(s), uε(s)

〉
ds =

∫ t

0
lim
ε→0

〈
�̇(s), uε(s)

〉
ds =

∫ t

0

〈
�̇(s), u0(s)

〉
ds,

by applying Lebesgue’s theorem of dominated convergence and making use of uε(t) ⇀ u0(t)
in H1(Ω) for every t ∈ [0, T ].

5. Because of the assumed strong two-scale convergence of the initial condition, we have
limε→0 Eε(0, uε(0), zε(0)) = Eγ(0, U(0), Z(0)) analog to step 3 and 4 of proof 4.3.

6. According to step 4 and 5, we now obtain for every t ∈ [0, T ] from (Eε)[
Eε

(
t, uε(t), zε(t)

)
+
∫ t

0
Rε

(
żε(s)

)
ds
]

ε→0→ Eγ

(
0, u0(0), U1(0),Zγ(0)

)
+
∫ t

0

〈
�̇(s), u0(s)

〉
ds,(4.8)

if we pass in (Eε) to the limit ε→ 0. Furthermore, because of convergence (4.7) proposition
4.4 can be applied, so that for every t ∈ [0, T ] we have

Eγ

(
t, u0(t), U1(t),Zγ(t)

)
≤ lim inf

ε→0
Eε

(
t, uε(t), zε(t)

)
(4.9)

and for all tk ∈ [0, T ], where k = 0, . . . , N and N ∈ N, we have

N∑
j=1

Rγ

(
Zγ(tj) −Zγ(tj−1)

)
≤ lim inf

ε→0

N∑
j=1

Rε

(
zε(tj) − zε(tj−1)

)
≤ lim inf

ε→0

∫ t

0
Rε

(
żε(s)

)
ds.

In the last estimation we used DissRε(zε; [0, T ]) := sup
{∑N

j=1 Rε(zε(tj) − zε(tj−1))
}

as
an equivalent definition of the total dissipation DissRε(zε; [0, T ]) :=

∫ t
0 Rε

(
żε(s)

)
ds, where

N ∈ N and the supremum is taken over all finite partitions of [0, T ]. That means, after
taking the supremum over all finite partitions of [0, T ], we obtain with the same equivalent
definition of DissRγ (Zγ ; [0, T ])∫ t

0
Rγ

(
Żγ(s)

)
ds ≤ lim inf

ε→0

∫ t

0
Rε

(
żε(s)

)
ds. (4.10)
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Thereby, we finally showed together with condition (4.8)

Eγ

(
t, u0(t), U1(t),Zγ(t)

)
+
∫ t

0
Rγ

(
Żγ(s)

)
ds

≤ lim inf
ε→0

Eε

(
t, uε(t), zε(t)

)
+ lim inf

ε→0

∫ t

0

Rε

(
żε(s)

)
ds

≤ lim
ε→0

[
Eε

(
t, uε(t), zε(t)

)
+
∫ t

0
Rε

(
żε(s)

)
ds
]

= Eγ

(
0, u0(0), U1(0),Zγ(0)

)
+
∫ t

0

〈
�̇(s), u0(s)

〉
ds (4.11)

for every t ∈ [0, T ]. Because of the stability of (u0(t), U1(t),Zγ(t)) for every t ∈ [0, T ]
showed in step 3, we obtain immediately the opposite inequality to (4.11) and altogether
we have the energy balance (Eγ) for every t ∈ [0, T ]. That means

Eγ

(
t, u0(t), U1(t),Zγ(t)

)
+
∫ t

0
Rγ

(
Żγ(s)

)
ds = Eγ

(
0, u0(0), U1(0),Zγ(0)

)
+
∫ t

0

〈
�̇(s), u0(s)

〉
ds.

Hence, it is shown that (u0, U1,Zγ) ∈ C0,1([0, T ];Qγ) is the unique solution of the ener-
getic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ) with the initial
condition (u0(0), U1(0),Zγ(0)) = (u0

0, U
0
1 ,Z0

γ ) ∈ S̃γ(0).

7. According to step 6, (u0, U1,Zγ) ∈ C0,1([0, T ];Qγ) has to satisfy the energy balance
(Eγ), so that

lim inf
ε→0

Eε

(
t, uε(t), zε(t)

)
+lim inf

ε→0

∫ t

0
Rε

(
żε(s)

)
ds = lim

ε→0

[
Eε

(
t, uε(t), zε(t)

)
+
∫ t

0
Rε

(
żε(s)

)
ds
]

following condition (4.11). But this means that the limits limε→0 Eε

(
t, uε(t), zε(t)

)
and

limε→0

∫ t
0 Rε

(
żε(s)

)
ds have to exist. Furthermore, we have the following equation from

the energy balance (Eγ) and (4.11)

Eγ

(
t, u0(t), U1(t),Zγ(t)

)
− lim

ε→0
Eε

(
t, uε(t), zε(t)

)
︸ ︷︷ ︸

≤0 see (4.9)

+
∫ t

0
Rγ

(
Żγ(s)

)
ds− lim

ε→0

∫ t

0
Rε

(
żε(s)

)
ds︸ ︷︷ ︸

≤0 see (4.10)

= 0,

i.e. altogether we have

Eγ

(
t, u0(t), U1(t),Zγ(t)

)
= lim

ε→0
Eε

(
t, uε(t), zε(t)

)
&

∫ t

0
Rγ

(
Żγ(s)

)
ds = lim

ε→0

∫ t

0
Rε

(
żε(s)

)
ds.

8. In this step all arguments are valid for every t ∈ [0, T ], even if it is not explicitly
mentioned. By using the in (4.7) showed weak convergence, we now show strong con-
vergence. Thereto, let qε(t) := (uε(t), zε(t)) and qγ(t) := (u0(t), U1(t),Zγ(t)). Further-
more, we consider the sequence (q̃ε(t))ε∈(0,ε0), which is defined via q̃ε(t) := (ũε(t), z̃ε(t)) =

(u0(t)+Gε(0, U1(t)),Gγ
ε (Zγ(t))). Applying proposition 2.11, we have ũε(t)

s0→ (u0(t), U1(t))
in Hd and z̃ε(t)

sγ→ Zγ(t) in Xm
γ . Moreover, because of the ellipticity of the operator

Aε ∈ Lin(Q,Q∗) (see (3.1)), we obtain
α
2 ‖q̃ε(t) − qε(t)‖2

Q

≤ 1
2 〈Aε(q̃ε(t) − qε(t)), q̃ε(t) − qε(t)〉Q

= Eε(t, qε(t)) − Eε(t, q̃ε(t)) + 〈Aεq̃ε(t), q̃ε(t) − qε(t)〉Q − 〈�(t), ũε(t) − uε(t)〉.
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According to step 7 we have limε→0 Eε(t, qε(t)) = Eγ(t,qγ(t)) and moreover we obtain
firstly limε→0 Eε(t, q̃ε(t)) = Eγ(t,qγ(t)) and secondly limε→0 〈Aεq̃ε(t), q̃ε(t) − qε(t)〉Q = 0
analog to step 3 and 4 of proof 4.3. Finally, we have limε→0 〈�(t), ũε(t) − uε(t)〉 = 0 because
of ũε(t) − uε(t) ⇀ 0 in H1(Ω)d.

Thereby, the above yields limε→0 ‖q̃ε(t) − qε(t)‖Q = 0 and the following estimation gives
us the wanted strong convergence.

‖Tεuε − (Eu0)ex‖L2(Rd×Y)d + ‖Tε(∇uε) − (∇xEu0 + ∇yU1)ex‖L2(Rd×Y)d×d

≤ ‖Tε(uε(t) − ũε(t))‖L2(Rd×Y)d + ‖Tε(∇uε(t) −∇ũε(t))‖L2(Rd×Y)d×d + δ
(1)
ε

≤
√

2‖qε(t) − q̃ε(t)‖Q + δ
(1)
ε ,

‖Tεzε − Lγ
1(Zγ)ex‖L2(Rd×Y)m×d + ‖Tε(εγ∇zε) − Lγ

2(Zγ)ex‖L2(Rd×Y)m×d

≤ ‖Tε(zε(t) − z̃ε(t))‖L2(Rd×Y)m + ‖Tε(εγ∇zε(t) − εγ∇z̃ε(t))‖L2(Rd×Y)m×d + δ
(2)
ε

≤
√

2‖qε(t) − q̃ε(t)‖Q + δ
(2)
ε

where δ(1)ε := ‖Tεũε− (Eu0)ex‖L2(Rd×Y)d +‖Tε(∇ũε)− (∇xEu0 +∇yU1)ex‖L2(Rd×Y)d×d and

δ
(2)
ε := ‖Tεz̃ε − Lγ

1(Zγ)ex‖L2(Rd×Y)m + ‖Tε(εγ∇z̃ε) − Lγ
2(Zγ)ex‖L2(Rd×Y)m×d . Thereby, we

added a nil, then estimated by triangle inequality and finally used the norm-preservation
of Tε. Now corollary 2.12 and proposition 2.11 yield δ

(1)
ε → 0 and δ

(2)
ε → 0, respectively,

for ε→ 0, and the proof is done.

5 Equivalence of the two-scale and the one-scale model

Henceforth let γ ∈ [0, 1) and B be constant in y, i.e. B ∈ Lin(Rm,Rd×d
sym).

Theorem 5.1. Let γ ∈ [0, 1). Then q = (u0, z0) ∈ C0,1([0, T ];Qγ ) is the solution of the en-
ergetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ , Eγ ,Rγ) with q(0) = q0,

if and only if q = (u0, U1 = LC(e(u0)−Bz0), z0, Z1 = LF(∇̃z0)) ∈ C0,1([0, T ];Qγ) is the so-
lution of the energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ)
with q(0) = q0, where LC,LF and ∇̃ are defined in subsection 3.4.

Before proving this, we show that Eγ and Eγ are equal along the energetic solution of the
rate-independent system (Qγ ,Eγ ,Rγ).

Lemma 5.2. Let γ ∈ [0, 1) and let q = (u0, U1, z0, Z1) ∈ C0,1([0, T ];Qγ) be the unique so-
lution of the energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ)
with q(0) = q0. Then for every t ∈ [0, T ] :

Eγ(t, u0(t), U1(t), z0(t), Z1(t)) = Eγ(t, u0(t), z0(t)).

Proof 5.2. 1. Let us start with showing that the solution of the two scale energetic
formulation (Sγ)&(Eγ) minimizes Eγ : [0, T ] ×Qγ → R. This is the motivation for the in
subsection 3.4 defined one-scale energetic formulation (Sγ)&(Eγ) as well.

Let q(t) = (u0(t), U1(t), z0(t), Z1(t)) ∈ Qγ be the unique solution of the energetic formu-
lation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ) with q(0) = q0.
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Because of the continuity and the strict convexity of the mapping Eγ(t, ·) : [0, T ] → R,
there exists a unique solution (U∗

1 (t), Z∗
1 (t)) of the following minimization problem:

min
{
Eγ(t, u0(t), U1, z0(t), Z1) | (U1, Z1) ∈ L2(Ω;H1

av(Y))d × L2(Ω;H1
av(Y))m

}
.

By choosing q̃(t) := (u0(t), U∗
1 (t), z0(t), Z∗

1 (t)) for t ∈ [0, T ] in the stability condition (Sγ),
we obtain (U1(t), Z1(t)) = (U∗

1 (t), Z∗
1 (t)) for every t ∈ [0, T ].

2. Considering the functionals I3 : Hd × Xm
γ → R, I4 : Xm

γ → R, I5 : Xm
γ → R given by:

I3(u0, U1, z0) :=
1
2

∫
Ω×Y

〈C(y)(ex(u0) + ey(U1) − BEz0), ex(u0) + ey(U1) − BEz0〉d×d dydx,

I4(z0) :=
1
2

∫
Ω×Y

〈H(y)Ez0(x, y), Ez0(x, y)〉mdydx,

I5(z0, Z1) :=
1
2

∫
Ω×Y

〈F(y)Lγ
2(z0, Z1)(x, y),Lγ

2(z0, Z1)(x, y)〉m×d dydx.

The two-scale energy functional Eγ : [0, T ] × Qγ → R now can be represented as

Eγ(t, u0, U1, z0, Z1) = I3(u0, U1, z0) + I4(z0) + I5(z0, Z1) − 〈�(t), u0〉.

Because of the continuity and strict convexity of I3(u0, ·, z0) : L2(Ω;H1
av(Y))d → R and

I4(z0, ·) : L2(Ω;H1
av(Y))m → R there exist unique minimizers U∗

1 ∈ L2(Ω;H1
av(Y))d and

Z∗
1 ∈ L2(Ω;H1

av(Y))m of these functionals, analog to step 1. Moreover, these minimizers
satisfy the Euler-Lagrange equations

D∇yU1(I3(u0, U1, z0))[Ũ1] = 0 ∀ Ũ1 ∈ L2(Ω;H1
av(Y))d, (5.1)

D∇yZ1(I5(z0, Z1))[Z̃1] = 0 ∀ Z̃1 ∈ L2(Ω;H1
av(Y))m. (5.2)

Furthermore, the one-scale energy functional Eγ : [0, T ] ×Qγ → R can be written as

Eγ(t, u0, z0) =
∫
Ω

I1
(
ex(u0)(x) − Bz0(x),LC(ex(u0)(x) − Bz0(x))

)
dx

+ I4(z0) +
∫
Ω

I2
(
∇̃z0(x),LF(∇̃z0(x))

)
dx− 〈�(t), u0〉,

where LC : Rd×d → H1
av(Y)d and LF : Rm×d → H1

av(Y)m are given in step 1 of proof 3.4,
I1 : Rd×d × H1

av(Y)d → R and I2 : Rm×d × H1
av(Y)m → R are defined in (3.11) and (3.12),

respectively, and ∇̃ : Xm
γ → L2(Ω)m×d is given by (3.15). In proof 3.4 we have also seen

that LC(ξ) and LF(η) are the unique solutions of the following Euler-Lagrange equations:

D∇v(I1(ξ, v))[ṽ] = 0 ∀ ṽ ∈ H1
av(Y)d, (5.3)

D∇w(I2(η,w))[w̃] = 0 ∀ w̃ ∈ H1
av(Y)m. (5.4)

3. Now we show that the unique solutions LC(ex(u0)(x) − Bz0(x)) and LF(∇̃z0(x)) of
the Euler-Lagrange equations (5.3) and (5.4) for ξ = ex(u0)(x) − Bz0(x) and η = ∇̃z0(x)
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are also the solutions of the Euler-Lagrange equations (5.1) and (5.2), respectively. Note
that here B ≡ constant is necessary, because we are only allowed to insert functions which
are constant in y. Inserting ξ = ex(u0)(x) − Bz0(x) and η = ∇̃z0(x) in (5.3) and (5.4),
respectively, and integrating over Ω nearly yields the result. The only difference between∫
Ω(5.3) dx&

∫
Ω(5.4) dx and (5.1)&(5.2) is the set of testfunctions.

How we get rid of this difference, we show exemplarily for the first equality (5.3). First
we take the special testfunction ṽi = viei ∈ H1

av(Y)d, where ei is the standard basis vec-
tor of Rd and vi ∈ H1

av(Y) for i ∈ {1, . . . , d}. Then we multiply (5.3) with an arbitrary
function fi ∈ L2(Ω) and finally we integrate over Ω. Now, for an arbitrary testfunction
ṽ = (v1, . . . , vd)T ∈ H1

av(Y)d, we repeat this with arbitrary functions f1, . . . , fd ∈ L2(Ω)
and the testfunctions ṽ1, . . . , ṽd ∈ H1

av(Y)d defined as before. Then we add everything
up (i = 1, . . . , d), so that we have (5.1) with Û1 = (f1v1, . . . , fdvd)T . Since the set{
(f1v1, . . . , fmvm)T | fi ∈ L2(Ω), vi ∈ H1

av(Y)
}

is dense in L2(Ω;H1
av(Y))d we finally obtain

equation (5.1) for all Ũ1 ∈ L2(Ω;H1
av(Y))d.

Now U∗
1 = LC(ex(u0) − Bz0) ∈ L2(Ω;H1

av(Y))d is the unique solution of (5.1) for a given
(u0, z0) ∈ Qγ and thereby it is also the minimizer of I3(u0, ·, z0) : L2(Ω;H1

av(Y))d → R.

Altogether we showed∫
Ω

I1
(
ex(u0)(x) − Bz0(x),LC(ex(u0)(x) − Bz0(x))

)
dx = min

U1∈Ld
I3(u0, U1, z0),∫

Ω

I2
(
∇̃z0(x),LF(∇̃z0(x))

)
dx = min

Z1∈Lm
I5(z0, Z1)

for given a (u0, z0) ∈ Qγ , where L := L2(Ω;H1
av(Y)).

4. Let q(t) = (u0(t), U1(t), z0(t), Z1(t)) ∈ Qγ for all t ∈ [0, T ] be the unique solution of
the energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ) with
q(0) = q0, then we have

Eγ

(
t,q(t)

)
= min

U1∈Ld
I3
(
u0(t), U1, z0(t)

)
+ I4

(
z0(t)

)
+ min

Z1∈Lm
I5
(
z0(t), Z1

)
−
〈
�(t), u0(t)

〉
,

according to step 1. Using step 3 and the representation of Eγ : [0, T ] ×Qγ → R of step 2,
we finally obtain

Eγ(t, u0(t), z0(t)) = Eγ(t, u0(t), U1(t), z0(t), Z1(t))

for every t ∈ [0, T ].

Note, if γ ∈ (0, 1), we obtain Z1 ≡ 0, because of the minimization property of the energetic
solution, so that there is no gradient term of the internal variables in the homogenized
model.

Now we are able to prove theorem 5.1.

Proof of theorem 5.1. “⇒“ Let q = (u0, z0) ∈ C0,1([0, T ];Q) be the unique solution
of the energetic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ , Eγ ,Rγ) with
q(0) = q0 = (u0

0, z
0
0) ∈ S0(0). Because of definition (3.16) and (3.9) of the dissipation
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potential Rγ and Rγ , respectively, we have Rγ(z0(t)) ≡ R̃γ(z0(t)), where R̃γ : Xm
γ → [0,∞]

is defined in subsection 3.4.

Furthermore, we have Eγ(t, u0(t), z0(t)) = Eγ(t, u0(t), U∗
1 (t), z0(t), Z∗

1 (t)) according to step
4 of proof 5.2, where U∗

1 (t) = LC(ex(u0(t)) − Bz0(t)) and Z∗
1 (t) = LF(∇xz0(t)). Thereby,

q∗(t) := (u0(t), U∗
1 (t), z0(t), Z∗

1 (t)) satisfies the energy balance (Eγ) and the stability con-
dition (Sγ) for every t ∈ [0, T ]. Because of the uniqueness of the solution of the ener-
getic formulation (Sγ)&(Eγ) of the rate-independent system (Qγ ,Eγ ,Rγ), it has to be
U∗

1 (t) = U1(t), Z∗
1 (t) = Z1(t) and thereby q∗(t) = q(t) for every t ∈ [0, T ].

“⇐“ Since Rγ(z0(t), Z1(t)) ≡ Rγ(z0(t)) this follows immediately from lemma 5.2.

Remark : Since in the case of γ = 0 the spaces Q0 and Q coincide, E0 and R0 are the
classical Γ-limits of the sequence (Eε)ε>0 and (Rε)ε>0, respectively, according to proposition
4.4 and lemma 5.2.

Furthermore, we obtain that the solution of the energetic formulation (Sε)&(Eε) converges
strongly in Qγ to the solution of the energetic formulation (Sγ)&(Eγ) for ε→ 0 according
to theorem 4.1, if we assume q0ε → q0 in Qγ for ε→ 0.
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