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Abstract

In this paper we consider the optimal stopping problem for general dynamic mon-
etary utility functionals. Sufficient conditions for the Bellman principle and the exis-
tence of optimal stopping times are provided. Particular attention is payed to repre-
sentations which allow for a numerical treatment in real situations. To this aim, gener-
alizations of standard evaluation methods like policy iteration, dual and consumption
based approaches are developed in the context of general dynamic monetary utility
functionals. As a result, it turns out that the possibility of a particular generalization
depends on specific properties of the utility functional under consideration.

1 Introduction

Dynamic monetary utility functionals, or DMU functionals for short, can be seen as gen-
eralizations of the ordinary conditional expectation, the usual functional which is to be
maximized in standard stopping problems, which occur for instance in the theory of pric-
ing of American (Bermudan) options in a complete market. It is well known that in an
incomplete market the price of an American option is determined by the so called upper
and lower Snell envelope which in turn are obtained via optimal stopping of the reward
process with respect to two particular mutually conjugate DMU functionals (cf. e.g. (15)).
From an economic point of view, dynamic monetary utility functionals functionals may be
seen as representations of dynamic preferences in terms of utilities of financial investors.

By changing sign, a DMU functionals becomes a dynamic risk measure (e.g. in (21)) which
represents preferences in terms of losses instead of utilities in fact. Therefore, technically,
the study of DMU functionals is basically equivalent to the study of dynamic risk measures
which became an increasing research field in the last years. A realistic dynamic risk
assessment of financial positions should allow for updating as time evolves, taking into
account new information. The notion of dynamic risk measures has been established to
provide a proper framework (cf. e.g. (3), (8), (10), (11), (14)). It is based on an axiomatic
characterization extending the classical axioms for the concept of one-period risk measures
in (2) to the dynamic multiperiod setting. From the very beginning one crucial issue was
to find reasonable conditions of mutual relationships between the risk functionals, so-called
dynamic consistency, leading to different concepts (cf. e.g. (3), (8), (10), (11), (30), (31),
(33), (34)). The mostly used one is often called strict time consistency, and it is linked with
a technical condition for dynamic risk measures known as recursiveness. This condition
will play an important technical role in our investigations.

Recently, dynamic monetary utility functionals (as being dynamic risk measures with
changed sign) have been incorporated into different topics such as, for example, the dy-
namics of indifference prices (see (21), (9)), and the pricing of derivatives in incomplete
financial markets (cf. e.g. (30), (15), (28)). In this respect we want to emphasize the contri-
butions in (15) and (28) as being the starting point of this paper. There the superhedging
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of American options is analyzed as solutions of optimal stopping problems in the context
of coherent dynamic monetary utility functionals. We want to extend these considerations
to more general monetary utility functionals. For instance, we will not necessarily assume
translation invariance which has been recently questioned as a suitable condition for risk
assessment since it tacitly supposes certainty on discounting factors by the investors (cf.
(13)).

Within a time discrete setting we shall look for a minimal set of conditions for the dynamic
monetary utility functionals which guarantee solutions for the related optimal stopping
problems at different times. For classical stopping problems with respect to ordinary
conditional expectations the starting point for any solution representation is the Bellman
principle. This suggests to investigate when the Bellman principle holds for the general
optimal stopping problems. The above mentioned condition of recursiveness in connection
with a specific regularity condition will turn out to be sufficient.

Beyond the considerations of the general optimal stopping, the main contribution of this
paper is the development of iterative methods and other representations for solving them.
Based on these methods we naturally construct simulation based solution algorithms which
allow for solving such stopping problems in practice. In contrast to meanwhile industrial
standard approaches for Bermudan options, hence the ordinary stopping problem in dis-
crete time (among others, (1), (6), (22), (24), (32)), we have not seen yet a comprehensive
generic approach for treating generalized optimal stopping problems numerically. In this
respect this paper intends to be a first step in this direction.

The paper is organized as follows. In Section 2 the concept of dynamic monetary utility
functionals is introduced. In Section 3 we investigate the Bellman principle and the exis-
tence of optimal stopping strategies. In Section 4 a generalization of the policy iteration
method of (22) is presented. Section 5, Section 6, and Section 7 generalize, respectively,
the additive dual method of (29)-(17), the multiplicative dual of (20), and the consumption
based approach in (4)-(5). In Section 8 we shall provide a simulation setting to utilize the
results of sections 4-7 to construct approximations of the optimal values of the investigated
stopping problems. More technical proofs are given in Appendix A.

2 Dynamic monetary utility functionals

Let
(
Ω, (Ft)t∈{0,...,T}, F, P

)
be filtered probability space with {0, 1}−valued P |F0, and let

X be a real vector subspace of L0(Ω, F,P) containing the indicator mappings 1A of subsets
A ∈ F. It is assumed that for any X ∈ X and A ∈ F it holds 1AX ∈ X, A ∈ F. Moreover,
for any X,Y ∈ X and it holds X ∧Y ∈ X and X ∨Y ∈ X. Hence in particular X is a vector
lattice.

A family of mappings Φ := (Φt)t∈{0,...,T} with Φt : X → X∩L0(Ω, Ft,P) being monotone,
i.e. Φt(X) ≤ Φt(Y ) for X,Y ∈ X with X ≤ Y P−a.s.. is called a dynamic monetary
utility functional or shortly DMU functional.

We shall say that (Φt)t∈{0,...,T} is recursively generated if there is some family (Ψt)t∈{0,...,T}
of mappings Ψt : X ∩ L0(Ω,Ft+1,P) → X ∩ L0(Ω, Ft, P) with FT+1 := F such that

ΨT = ΦT , and Φt = Ψt ◦ Φt+1 for t = 0, ..., T − 1.

In this case the mappings Ψt will be given the name generators of (Φt)t∈{0,...,T} .
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Let us introduce some further notations. Henceforth Tt will stand for the set of the finite
stopping times τ with τ ≥ t P−a.s., whereas H will denote the set of adapted processes
Z := (Zt)t∈{0,...,T} such that Zt ∈ X ∩ L0(Ω,Ft, P) for t ∈ {0, ..., T}.
The following conditions on (Φt)t∈{0,..,T} will play an important role in the context of
optimal stopping of DMU functionals studied later on.

(C1) Φt(X) ≤ Φt(Y ) P−a.s. for t ∈ {0, ..., T−1}, X, Y ∈ X with Φt+1(X) ≤ Φt+1(Y ) P−a.s.
(time consistency).

(C2) Φt(1AX) = 1AΦt(X) P−a.s. for t ∈ {0, ..., T}, A ∈ Ft, and X ∈ X (regularity).

(C3) Φt(X + Y ) = Φt(X) + Y P−a.s. for t ∈ {0, ...T}, and X, Y ∈ X with Y being
Ft−measurable (conditional translation invariance).

(C4) Φt = Φt ◦ Φt+1 P−a.s. for t ∈ {0, ..., T − 1} (recursiveness).

(C5) Φt(0) = 0 P−a.s. for t ∈ {0, ..., T} (normalization).

(C6) Φt(Y X) = Y Φt(X) P−a.s. for t ∈ {0, ..., T}, X ∈ X and Y ∈ X ∩ L0(Ω, Ft,P) with
Y ≥ 0 P−a.s. as well as XY ∈ X (conditional positive homogeneity)

(C7) For each X ∈ X with X ≥ 0 P−a.s. there exist a function g : [0,∞) → R+ such that
limε↓0 g(ε) = 0, and

Φt (X ∨ ε) ≤ Φt (X) + g(ε) for t ∈ {0, ..., T}. (2.1)

Remark 1. In this paper we frequently use one of the following implications. Their proofs
are simple and therefore omitted.

• Recursiveness implies that (Φt)t∈{0,..,T} is recursively generated, where the generators
are the restrictions Φt|X ∩ L0(Ω,Ft+1, P) for t = 0, ..., T.

• Let (Φt)t∈{0,..,T} be recursively generated by (Ψt)t∈{0,..,T}. Then,

– If Φt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X ∩ L0(Ω, Ft, P), then
(Φt)t∈{0,..,T} is recursive.

– If Ψt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X ∩ L0(Ω,Ft, P), then
(Φt)t∈{0,..,T} is recursive.

– iii) If for any X ∈ X and A ∈ Ft it holds Ψt(1AX) = 1AΨt(X), then Φ is regular.

Example 2. The functional Φ given by the conditional expectations Φt := E[· | Ft] is a
basic example for a DMU functional. It satisfies all the conditions (C1)-(C7).

It is natural to generalize the usual martingale concept to the notion of ”Φ−martingale”
for a given DMU functional Φ as defined below. The notion of Φ−martingales will be used
for different representations of optimal stopping problems in Sections 5,6.

Definition 3. M := (Mt)t∈{0,...,T} ∈ H is aid to be a Φ−martingale if Φt(Mt+1) =
Mt P−a.s. for every t ∈ {0, ..., T−1}. Note that for recursive Φ, M ∈ H is a Φ−martingale
if and only if Φt(Ms) = Mt P−a.s. for every s, t ∈ {0, ..., T − 1} with s > t.
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Let us discuss some further examples of DMU functionals. First of all we want to consider
the relationship with the so called dynamic risk measures.

Example 4. DMU functionals may be viewed as generalizations of dynamic risk measures.
Recall, a family (ρt)t∈{0,...,T} is a dynamic risk measure if and only if (−ρt)t∈{0,...,T} is a
conditionally translation invariant monetary utility functional. The property of translation
invariance suggests to restrict considerations to normalized functionals because of Φt(X −
Φt(X)) = 0. In the normalized case Φt(Y ) = Y P−a.s. for every t ∈ {0, ..., T} and any
Y ∈ X ∩ L0(Ω, Ft,P), and in view of Remark 1 Φ is recursively generated if and only if it
is recursive.

We shall call the normalized conditional translation invariant Φ to be convex/concave
if the mappings Φt (t ∈ {0, ..., T}) are simultaneously convex/concave. If Φ is con-
vex/concave, then

Φt : X → X ∩ L0(Ω, Ft,P), X 7→ −Φt(−X)

defines a concave/convex normalized conditional translation invariant DMU functional
called the conjugate of Φ. The conditions of recursiveness and regularity are satisfied
by Φ if and only its conjugate Φ fulfills them. Conditional translation invariance of con-
vex/concave Φ implies the regularity condition for the restriction of Φ to X ∩ L∞(Ω, F, P)
(cf. (21), where this restriction is essential for the proof). Moreover, regularity is even
valid on the entire space X if lim

n→∞Φt ((X − n)+) = 0 P−a.s. for every t ∈ {0, ..., T} and
any nonnegative X ∈ X. Indeed, one may conclude from Lemma 6.5 in (23) that

Φt(X) = ess inf
m∈N

ess sup
n∈N

Φt(X+ ∧ n−X− ∧m)

holds for t ∈ {0, ..., T} and X ∈ X.

In the context of dynamic risk measures the property of recursiveness plays an important
role. On the one hand it is intimately linked with the property of time consistency which
has a specific meaning in expressing dynamic preferences of investors. For a thorough
study the reader may consult e.g. (14) or (3). On the other hand optimal stopping with
dynamic risk measures may be related to specific financial applications.

The next large class of DMU functionals concerns the so called g-expectations. They
are prominent examples of nonlinear functionals satisfying martingale type properties like
recursiveness.

Example 5. Let (Gs)s≥0 be the augmented filtration on Ω associated with the filtration
generated by a standard d−dimensional Brownian motion (Bs)s≥0 with B0 := 0, and let
for S > 0 the function g : Ω× [0, S]× R× Rd → R satisfy

(i) There is some constant C > 0 such that

|g(·, t, y1, z1)− g(·, t, y2, z2)| ≤ C (|y1 − y2|+ ‖z1 − z2‖) P−a.s.
for every t ∈ [0, S] and arbitrary (y1, z1), (y2, z2) ∈ R × Rd, where ‖ · ‖ denotes an
arbitrary norm on Rd;

(ii) (g(·, s, y, z))s∈[0,S] is an adapted P−square integrable process for (y, z) ∈ R× Rd;

(iii) g(·, s, y, 0) = 0 P−a.s. for s ∈ [0, S] and y ∈ R.
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Such a function g can be used as driver of a backward stochastic differential equation
(abbreviated: BSDE)

Ys = X +

S∫

s

g(·, r, Yr, Zr) dr −
S∫

s

Zr dBr for s ∈ [0, S],

where X ∈ L2(Ω,GS , P). As shown is (25) there always exists a unique couple
(
Y X

s

)
s∈[0,S]

and
(
ZX

s

)
s∈[0,S]

of adapted respectively 1− and d−dimensional processes satisfying

EP




S∫

0

|Y X
s |2 ds


 , EP




S∫

0

‖ZX
s ‖2 ds


 < ∞,

and solving the BSDE. Now it is natural to define the family (Eg[·|Gs])s∈[0,S] via

Eg[· | Gs] : L2(Ω,GS ,P) → L2(Ω, Gs,P), X 7→ Y X
s ,

known as (a family of) conditional g-expectations, where Eg[· | G0] is just called g-
expectation. For g ≡ 0 we retrieve the usual (conditional) expectation of a square
integrable random variable. For applications of conditional g-expectations in finance the
reader is referred to (12) and (26).

Let us now pick some observation times 0 =: s0 < s1 < ... < sT := S, and define(
Ω, (Ft)t∈{0,...,T}, F, P

)
and Φ := (Φt)t∈{0,...,T} by Ft := Gst , F := FT , and Φt := Eg[· | Gst ].

Drawing on basic properties of conditional g-expectation as derived by Peng in (25), Φ is
always a regular recursive DMU functional fulfilling Φt(X) = X P−a.s. for t ∈ {0, ..., T}
and Ft−measurable X.

Furthermore Φ is conditional translation invariant if and only if g(ω, s, ·, z) is constant for
every ω ∈ Ω, s ∈ [0, S] and z ∈ Rd (for the if part see (25), for the only if part cf. (19)). In
this case Φ is even a convex normalized conditionally translation invariant DMU functional
if and only if in addition

g(·, ·, ·, λz1 + (1− λ)z2) ≤ λg(·, ·, ·, z1) + (1− λ)g(·, ·, ·, z2) P⊗dt− a.s.

for z1, z2 ∈ Rd and λ ∈ [0, 1] (cf. (19)).

We shall finish the section with some nonstandard examples.

Examples 6. Let X = L∞(Ω, F,P).

1. For strictly increasing U1, ..., UK : R→ R with U1(0) = ... = UK(0) = 0 and positive
α1, ..., αK , let Φ be recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑

k=1

αkU
−1
k (EP[Uk(X) | Ft]) for t ∈ {0, ..., T} and X ∈ L∞(Ω, Ft, P).

Obviously the functional Φ is regular. Moreover, if
K∑

k=1

αk = 1, it satisfies Φt(X) =

X P−a.s. for t ∈ {0, ..., T} and X ∈ L∞(Ω, Ft, P), hence Φ is recursive. In the case
of K = α1 = 1, Φt is defined in literally the same way as its generator Ψt.
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2. For nonvoid sets Q1, ...,QK of probability measures on F which are equivalent with
P, and positive α1, ..., αK , let Φ be recursively with generators (Ψt)t∈{0,...,T} defined
by

Ψt(X) :=
K∑

k=1

αk ess sup
Q∈Qk

EQ[X|Ft] for t ∈ {0, ..., T}.

Similar as in the previous example Φ is regular by construction, and is recursive if in

addition
K∑

k=1

α1 = 1. Further, Φ is conditionally translation invariant, conditionally

positively homogeneous, and convex. Moreover, if K = α1 = 1, and if the set Q1

is stable under pasting (see (15) for the concept), Φt is defined in literally the same
way as its generator Ψt (cf. (15), Theorem 6.53).

3 The optimal stopping problem

We will study the following stopping problem

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ), t ∈ {0, ..., T}, (3.2)

for Z ∈ H. We refer to the process Y ∗ as the (Φ−)Snell envelope of Z. Below we consider
two important aspects. Firstly, we investigate the existence of optimal stopping times and
secondly, we try to find Bellman principles. The crucial step to guarantee optimal stopping
times is provided by thHorst, U*e following Lemma.

Lemma 7. Let Z := (Zt)t∈{0,...,T} ∈ H, let for some fixed t ∈ {0, ..., T − 1} exist
some τ∗t+1 ∈ Tt+1 such that Φt+1(Zτ∗t+1

) = ess sup
τ∈Tt+1

Φt+1(Zτ ). Defining the event Bt :=
[
Φt(Zt)− Φt(Zτ∗i+1

) ≥ 0
]
and τ∗t := t1Bt + τ∗i+11Ω\Bt

, we obtain Bt ∈ Ft, τ∗t ∈ Tt, and
under the conditions of time consistency and regularity

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt(Zτ∗t+1
).

Proof:
Bt ∈ Ft, τ∗t ∈ Tt follows from Ft−measurability of the outcomes of Φt. Furthermore we
may observe Zτ∗t = 1BtZt + 1Ω\Bt

Zτ∗i+1
. Then the application of (C1) yields

Φt(Zτ∗t ) = 1BtΦt(Zτ∗t ) + 1Ω\Bt
Φt(Zτ∗t )

(C2)
= Φ(1BtZt) + Φ(1Ω\Bt

Zτ∗t+1
)

(C2)
= 1BtΦt(Zt) + 1Ω\Bt

Φt(Zτ∗t+1
)

= Φt(Zt) ∨ Φt(Zτ∗t+1
).

Next let us define the mapping σ : Tt → Tt+1 by σ(τ) := (t + 1)1[τ=t] + τ1[τ>t]. Then we
obtain for τ ∈ Tt

Φt(Zτ ) = Φt(1[τ=t]Zt +1[τ>t]Zσ(τ))
(C2)
= 1[τ=t]Φt(Zt)+1[τ>t]Φt(Zσ(τ)) ≤ Φt(Zt)∨Φt(Zσ(τ)).

By assumption Φt+1(Zσ(τ)) ≤ Φt+1(Zτ∗t+1
) P−a.s. so that condition (C1) implies

Φt(Zτ ) ≤ Φt(Zt) ∨ Φt(Zσ(τ))
P≤ Φt(Zt) ∨ Φt(Zτ∗t+1

) = Φt(Zτ∗t ),

which completes the proof.
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Since τ :≡ T is always the optimal stopping time in FT , we may apply sequentially Lemma
7 to obtain the following result concerning the existence of optimal stopping times.

Theorem 8. Let Z := (Zt)t∈{0,...,T} ∈ H. Then under conditions of time consistency and
regularity there exists for any t ∈ {0, ..., T} some τ∗t ∈ Tt such that

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zt).

The sequence (τ∗t )t∈{0,...,T} of optimal stopping times may be chosen such that τ∗T = T, and

1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}.

Let us now turn over to recursively generated DMU functionals.

Corollary 9. Let (Φt)t∈{0,...,T} be recursively generated with generators (Ψt)t∈{0,...,T} sat-
isfying the property Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T − 1} and X,Y ∈ X ∩
L0(Ω,Ft+1,P) with X ≤ Y P−a.s.. Then Theorem 8 may be restated under regularity
only.

Proof:
The assumptions on the generators (Ψt)t∈{0,...,T} imply the time consistency condition
(C1).

In order to construct optimal stopping times a recursive relationship between the optimal
values of the stopping problems at different dates will turn out to be very useful. For this
reason we shall restrict ourselves to recursively generated DMU functionals generated by
the functionals (Ψt)t∈{0,...,T} .

The following theorem is a direct consequence of Lemma 7 and Corollary 9.

Theorem 10. Let (Φt)t∈{0,...,T} be regular and recursively generated with generators satisfy-
ing the property Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T−1} and X, Y ∈ X∩L0(Ω, Ft+1, P)
with X ≤ Y P−a.s. Then we have the Bellman principle: It holds:

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨Ψt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)

for any Z ∈ H and every t ∈ {0, ..., T − 1}.

For a recursive DMU functional (Φt)t∈{0,...,T} the generators are just the restrictions Φt|X∩
L0(Ω,Ft+1,P) for t ∈ {0, ..., T − 1}, and the Bellman principle may be strengthened in the
following way.

Corollary 11. Let (Φt)t∈{0,...,T} be a DMU functional which is regular and recursive,
and whose generators Φt|X ∩ L0(Ω, Ft+1, P), t ∈ {0, ..., T − 1}, satisfy the monotonicity
assumption in Corollary 9. It then holds,

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)

for any Z ∈ H and every t ∈ {0, ..., T − 1}.
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Example 12. Let us consider the issue of pricing and hedging American contingent claims
in an incomplete arbitrage free financial market with reference probability measure P and
the set Q of equivalent martingale measures, and let X consist of all X ∈ L0(Ω, F, P) such
that sup

Q∈Q
EQ[|X|] < ∞. Then the functional

Φt : X → X ∩ L0(Ω,Ft, P), X 7→ ess sup
Q∈Q

EQ[X | Ft],

and its conjugate Φ
Φt(X) = ess inf

Q∈Q
EQ[X | Ft]

are recursive (e.g. see (15), Proposition 6.45, Theorem 6.53) and play a key role in the
following sense: For any Z ∈ H the stopping problems (3.2) according to Φ and Φ corre-
spond to the upper and lower Snell envelopes of Z w.r.t. Q respectively. Moreover, the
initial value of the lower and upper snell envelope are just the lower and upper hedging
price, respectively. Further, the optimal stopping time according to the lower hedging
prices corresponds to optimal exercise strategy for the buyer of the option. For details see
for example (15), Theorems 7.13, 7.14.

Example 13. Let Φ be a finite subfamily of conditional g-expectations. Then in view
of Example 5 combined with Corollaries 9, 11 we may find for any Z ∈ H some family
(τ∗t )t∈{0,...,T} of stopping times τ∗t ∈ Tt satisfying τ∗T = T as well as 1[τ∗t >t]τ

∗
t = 1[τ∗t >t]τ

∗
t+1,

and

Φt(Zτ∗) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
τ∈Tt+1

Φt+1(Zτ )

)
= Φt(Zt) ∨ Φt(Zτ∗t+1

)

for t ∈ {0, ..., T − 1}.
Example 14. The DMU functionals introduced in Examples 6 admit families of optimal
stopping times as in Corollary 9 and satisfy the Bellman principle due to Theorem 10.

4 Iterative solution of optimal stopping problems

Throughout this section we fix a recursively generated regular DMU functional (Φt)t∈{0,...,T}
with generators (Ψt)t∈{0,...,T} satisfying Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T} and
X, Y ∈ X ∩ L0(Ω, Ft+1, P) with X ≤ Y P−a.s.. Then in view of Corollary 9, for any
Z ∈ H there exists a family (τ∗t )t∈{0,...,T} of stopping times τ∗t ∈ Tt with

τ∗T = T, and 1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}, (4.3)

such that
Y ∗

t = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zτ∗t ) for every t ∈ {0, ..., T}. (4.4)

Our goal is to develop an iterative procedure which converges to (4.4). In fact we shall
generalize the policy iteration method in (22) for classical optimal stopping with conditional
expectations to optimal stopping of regular recursive DMU functionals.
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Let us define (τt)t∈{0,...,T} to be a time consistent stopping family if

τt ∈ Tt, τT = T, and 1[τt>t]τt = 1[τt>t]τt+1 for t ∈ {0, ..., T − 1}.

The policy iteration step starts with any time consistent stopping family (τt)t∈{0,...,T}
and corresponding process (Yt)t∈{0,...,T} with Yt := Φt(Zτt), being an approximation of

(Y ∗
t )t∈{0,...,T} . In order to improve this approximation we consider the process

(
Ỹt

)
t∈{0,...,T}

defined by Ỹt := maxt≤s≤T Φt(Zτs), and the new stopping family

τ̂T := T, τ̂t := inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max
s+1≤u≤T

Φs(Zτu)}, 0 ≤ t ≤ T − 1. (4.5)

Obviously, the stopping family (τ̂t)t∈{0,...,T} is also time consistent . By the next theorem,

a generalization of Theorem 3.1 in (22) in fact, the process
(
Ŷt

)
t∈{0,...,T}

, defined by

Ŷt := Φt(Zτ̂t), improves the initial approximation (Yt)t∈{0,...,T} of (4.4).

Theorem 15. We have the inequalities

Yt ≤ Ỹt ≤ Ŷt ≤ Y ∗
t , t ∈ {0, ..., T}.

The proof of Theorem 15 is similar to the proof in (22). However, it has to be focussed
that it is sufficient that the DMU functional under consideration is regular and recursively
generated. For the convenience of the reader the proof is therefore provided in Appendix
A (while also comprising the structure of argumentation in (22) slightly).

In view of Theorem 15 the idea is to construct recursively a sequence of pairs
(
(τ (m)

t )t∈{0,...,T}, (Y
(m)
t )t∈{0,...,T}

)
m∈N0

where (τ (m)
t )t∈{0,...,T} is a time consistent stopping family for any m ∈ N0 such that Y

(m)
t =

Φt(Zτ
(m)
t

), and τ
(m+1)
t = inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτ

(m)
u

)} for t ∈ {0, ..., T−
1}.
Next we start with some time consistent stopping family (τ (0)

t )t∈{0,...,T}, for example, a
canonical choice is τ0

t := t. Then due to Theorem 15, we have

Y
(0)
t ≤ Y

(m)
t ≤ Ỹ

(m+1)
t ≤ Y

(m+1)
t ≤ Y ∗

t for m ∈ N0, t ∈ {0, ..., T}, (4.6)

where Ỹ
(m+1)
t := max

t≤s≤T
Φt(Zτ

(m)
s

).

The iteration procedure may be stopped after at most T iterations, yielding an optimal
stopping family.

Proposition 16. For t ∈ {0, ..., T} we have

Y
(m)
t = Y ∗

t if m ≥ T − t.

Hence τ
(m)
t is an optimal stopping time for the corresponding stopping problem at time t,

if m ≥ T − t, and in particular (τ (m)
t )t∈{0,...,T} is an optimal stopping family for m ≥ T.

9



Proof:
The proof may be done by adapting the proof of Proposition 4.4 in (22) in a similar way
as is done for proving Theorem 15 and therefore omitted. Indeed, a closer inspection of
the proof of Proposition 4.4 (in (22)) shows that only regularity, the fact that the DMU
functional is recursively generated by a monotonic system (Ψt), and the Bellman principle
(see Theorem 10) is essential.

Examples 17.

1. Referring to Example 12, Proposition 16 guarantees that the proposed iteration
method provides a scheme to calculate super hedging prices and optimal exercises of
discounted American options.

2. In view of Example 5 and Examples 6 the associated stopping problems may be solved
iteratively by the introduced method. In particular we have a numerical scheme for
optimal stopping with g-expectations.

5 Additive dual upper bounds

In this section the DMU functional Φ is assumed to be regular, conditional translation
invariant, and recursive. In fact, regularity implies normalization (take A = ∅), which
implies by conditional translation invariance Φt(Z) = Z for Ft−measurable Z, hence recur-
siveness. For clearness we will underline recursiveness nonetheless. For such a Φ we propose
an additive dual representation for the stopping problem (3.2), in terms of Φ−martingales
introduced in Definition 3. As such this generalization may be seen as a generalization of
the representation of (29), and (17) for the standard stopping problem. We first extend
the classical additive Doob decomposition theorem.

Lemma 18. Let Φ be a regular, conditional translation invariant, and recursive DMU
functional. Then for any Z := (Zt)t∈{0,...,T} ∈ H there exists a unique pair (M, A) ∈ H×H

of a Φ−martingale M and a predictable process A, such that M0 = A0 = 0, and

Zt = Z0 + Mt + At for t ∈ {0, ..., T}, P−a.s. (5.7)

Proof:
Define A recursively by A0 := 0, and At+1 := At + Φt(Zt+1) − Zt for t ∈ {0, ..., T − 1}.
Then of course A ∈ H and A is predictable. Next define M ∈ H via Mt := Zt − Z0 − At

for t ∈ {0, ..., T}. Obviously M0 = 0, and by conditional translation invariance (property
(C3)),

Φt(Mt+1)
3)
= Φt(Zt+1)−Z0−At+1 = Φt(Zt+1)−Z0−(At+Φt(Zt+1)−Zt) = Zt−Z0−At = Mt.

So M is a Φ−martingale and (5.7) holds. Now let (M ′, A′) ∈ H ×H be another pair as
stated. Then for t ∈ {0, ..., T − 1} we may conclude by conditional translation invariance,

0 = Φt(M ′
t+1 −M ′

t) = Φt(Zt+1)− Zt + A′t −A′t+1,

in particular A′t+1 = A′t +Φt(Zt+1)−Zt. Hence by induction A′ = A, and so M ′ = M.

10



The next lemma may be regarded as a generalization of Doob’s optional sampling theorem.
It is proved in Appendix A.

Lemma 19. Let Φ be a regular, conditional translation invariant, and recursive DMU
functional, and let M be any Φ−martingale. Then for every Z := (Zt)t∈{0,...,T} ∈ H, each
t ∈ {0, ..., T}, and each stopping time τ ∈ Tt, we have

Φt(Zτ ) = Φt(Zτ + MT −Mτ ).

Remark 20. Under the assumptions of Lemma 19 the statement

Φt(Zτ ) = Φt(Zτ + Mτ )−Mt,

that one might expect at a first glance, does not hold.

The Doob type Lemmas 18,19, and the Bellman principle Theorem 10, provide the ingre-
dients to establish the following additive dual representation.

Theorem 21. Let Φ be a regular, conditional translation invariant, and recursive DMU
functional, and MΦ

0 be the set of all Φ−martingales M with M0 = 0. For Z := (Zt)t∈{0,...,T} ∈
H let M∗ ∈ MΦ

0 be the Φ−martingale of the decomposition of Y ∗ in (3.2) according to
Lemma 18. Then

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) = ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)

= Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )

)
for t ∈ {0, ..., T}.

Proof:
Let A∗ := (A∗t )t∈{0,...,T} denote the predictable part of the decomposition of Y ∗ according
to Lemma 18. Since M∗ is a Φ−martingale, we have for t ∈ {0, ..., T}

0 = Φt(M∗
t+1)−M∗

t
(C3)
= Φt(M∗

t+1 −M∗
t )

(C3)
= Φt(Y ∗

t+1)− Y ∗
t −

(
A∗t+1 −A∗t

)
.

This implies A∗t+1 −A∗t = Φt(Y ∗
t+1)− Y ∗

t ≤ 0 due to the Bellman principle. Hence A∗ has
nonincreasing paths. Furthermore, by the Bellman principle Φt(Zt) = Zt ≤ Y ∗

t holds for
every t ∈ {0, ..., T}. We thus have

Zt −M∗
t + M∗

T = Zt + Y ∗
T − Y ∗

t + A∗t −A∗T ≤ Y ∗
T + A∗t −A∗T for t ∈ {0, ....T}.

Since A∗ is nonincreasing, Φ is conditional translation invariant and recursive, and M∗ is
a Φ−martingale, it follows that

Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )

)
(C3)

≤ Φt (Y ∗
T −A∗T )+A∗t

(C3)
= Y ∗

0 +Φt(M∗
T )+A∗t = Y ∗

0 +M∗
t +A∗t = Y ∗

t

(5.8)
for t ∈ {0, ..., T}. Finally, using Lemma 19 and (5.8) we have for any t ∈ {0, ..., T} and
M ∈ MΦ

0 ,

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ + MT −Mτ ) ≤ ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)

≤ Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )

)
≤ Y ∗

t .
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Example 22. Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-
free financial market, and let Z := (Zt)t∈{0,...,T} be a nonnegative adaptive process satis-
fying sup

t∈{0,...,T}
sup
Q∈Q

EQ[Zt] < ∞. The process Z may be viewed as a discounted American

Option. Then both the DMU functional Φ defined by Φt(·) := ess sup
Q∈Q

EQ[· | Ft] and its

conjugate Φt(·) = ess inf
Q∈Q

EQ[· | Ft], t ∈ {0, ..., T}, are regular, translation invariant, and

recursive. Let us further denote by X0 the set of X ∈ ⋂
Q∈Q

L1(Ω, FT ,Q) which satisfy

sup
Q∈Q

EQ[X] = 0. Then by Theorem 21 the superhedging price and the lowest arbitrage-free

price of Z may be represented by

inf
X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
and inf

X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
,

respectively.

Examples 23. Theorem 21 may be applied immediately to the following regular, trans-
lation invariant, and recursive functionals (see also Remark 1).

1. Let Φ be a family of g-expectations as in Example 5 with driver g : Ω× [0, S]×R×
Rd → R such that g(ω, s, ·, z) is constant for (ω, s, z) ∈ Ω× [0, S]× Rd.

2. The DMU functional Φ recursively defined as in Examples 6, 2..

6 Multiplicative dual upper bounds

The additive dual representation for the standard stopping problem has a multiplicative
version which is due to (20). We will develop in this section a multiplicative dual rep-
resentation for the stopping problem (3.2) when the DMU functional Φ is recursive and
positively homogeneous. Note that from any positively homogeneous recursively generated
DMU functional we may obtain a recursive one, by multiplication with a constant. To our
aim we need an extension of the multiplicative Doob decomposition theorem.

As we do not want to burden the presentation with too much technicalities, we restrict our
selves in this section to the case where X = L∞(Ω, F, P).

Lemma 24. Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional.
Let δ > 0, and Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ δ P−a.s. for any t ∈ {0, ..., T}. Then
there exists a unique pair (N,U) ∈ H × H of some Φ−martingale N and a predictable
process U such that N0 = U0 = 1 and

Zt = Z0NtUt P a.s.

for t ∈ {0, ..., T}.

Proof:
Define processes U and N recursively by U0 := N0 := 1 and

Ut+1 := Ut
Φt(Zt+1)

Zt
, Nt+1 := Nt

Zt+1

Φt(Zt+1)
for t ∈ {0, ..., T − 1}.

12



Observe that U and N are well defined since by assumption Φt(Zt) ≥ Φt(δ) = δ due to
monotonicity of Φ. Obviously, U is predictable, N is a Φ−martingale, and it follows easily
by induction that Zt = Z0NtUt for all t ∈ {0, ..., T}.
Now let (N ′, U ′) ∈ H ×H be another pair as stated. We will show that N ′

t = Nt, U
′
t =

Ut P−a.s. for t ∈ {0, ..., T} by induction. The case t = 0 is trivial. So let t ∈ {0, ..., T −1}
such that N ′

t = Nt, U
′
t = Ut P−a.s.. Firstly, Φt(Nt+1) = Nt = N ′

t = Φt(N ′
t+1) P−a.s.

since N,N ′ are Φ−martingales. Therefore by conditional positive homogeneity (C6)

Z0Ut+1Nt = Z0Ut+1Φt(Nt+1)
(C6)
= Φt(Zt+1)

(C6)
= Z0U

′
t+1Φt(N ′

t+1) = Z0U
′
t+1Nt.

Thus U ′
t+1 = Ut+1 P−a.s. due to Z0Nt > 0 P−a.s., and

Z0Ut+1Nt+1 = Zt+1 = Z0U
′
t+1N

′
t+1 = Z0Ut+1N

′
t+1 P−a.s..

Since Z0Ut+1 > 0 P−a.s. we have Nt+1 = N ′
t+1 P−a.s.

The next Lemma is a multiplicative version of Lemma 19. For a proof see Appendix A.

Lemma 25. Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional,
and let Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ 0 P−a.s. for any t ∈ {0, ..., T}. If N :=
(Nt)t∈{0,...,T} denotes any Φ−martingale satisfying Nt > 0 P−a.s., then

Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
for t ∈ {0, ..., T} and τ ∈ Tt.

Obviously, under the assumptions of this section Φ satisfies the Bellman principle (see
Theorem 10), which allows us to establish a multiplicative dual representation for the
stopping problem (3.2).

Theorem 26. Let the DMU functional Φ be as in Lemma 24, let MΦ
+1 be the set of all

Φ−martingales N with N > 0 and N0 = 1, and let Z ∈ H with Z ≥ 0. We then may state
for every t ∈ {0, ..., T} the following:

(i)

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) ≤ inf
N∈MΦ

+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(ii) If Φ satisfies in addition condition (C7), we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(iii) If Z is as in Lemma 24 we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjN
∗
T

N∗
j

)
= Φt

(
max

t≤j≤T

ZjN
∗
T

N∗
j

)
,

where N∗ ∈ MΦ
0 is the Φ−martingale in the multiplicative decomposition of Y ∗ in

(24).
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Proof:
Statement (i) is an immediate consequence of Lemma 25.
For the proof of statement (ii) let us consider an arbitrary ε > 0. The process Zε, defined by
Zε

t := Zt∨ε induces the process Y ε∗ via Y ε∗
t := ess sup

τ∈Tt

Φt(Zε
τ ) which fulfills the assumptions

of Lemma 24. Therefore we may find a pair (U ε, N ε) consisting of a predictable process
U ε and a Φ−martingale N ε ∈ MΦ

+1 satisfying

Y ε∗
t = Y ε∗

0 N ε
t U ε

t P a.s. for t ∈ {0, ..., T}.

Due to conditional positive homogeneity of Φ, the predictability of U ε, and since N ε is a
Φ−martingale we may conclude

1 = Φt

(
N ε

t+1

N ε
t

)
= Φt

(
Y ε∗

t+1U
ε
t

Y ε∗
t U ε

t+1

)
=

U ε
t

U ε
t+1

Φt(Y ε∗
t+1)

Y ε∗
t

for t ∈ {0, ..., T − 1}.

In view of the Bellman principle this implies

U ε
t+1

U ε
t

=
Φt(Y ε∗

t+1)
Y ε∗

t

≤ 1 for t ∈ {0, ..., T − 1}.

Hence U ε has nonincreasing paths. Furthermore Zε
t = Φt(Zε

t ) and so in particular, Zε
t ≤

Y ε∗
t due to the Bellman principle. Combining, we obtain for t ∈ {0, ..., T},

Φt

(
max

t≤j≤T

Zε
j N

ε
T

N ε
j

)
≤ Φt

(
max

t≤j≤T

Y ε∗
j N ε

T

U ε
j

)
= Φt

(
max

t≤j≤T

Y ε∗
T U ε

j

U ε
T

)

≤ U ε
t Φt

(
Y ε∗

T

U ε
T

)
= U ε

t Φt (Y ε∗
0 N ε∗

T ) = U ε
t Y ε∗

0 Φt (N ε∗
T ) = Y ε∗

t .(6.9)

Now let a common function g satisfy (2.1) in condition (C7) for all Zε
j , j = 0, ..., T. By

regularity and condition (C7) it then holds

Y ε∗
t := ess sup

τ∈Tt

T∑

j=t

1[τ=j]Φt(Zε
τ ) = ess sup

τ∈Tt

T∑

j=t

1[τ=j]Φt(Zε
j )

≤ ess sup
τ∈Tt

T∑

j=t

1[τ=j] (Φt(Zj) + g(ε)) = Y ∗
t + g(ε).

Hence with (6.9) we obtain

Y ∗
t + g(ε) ≥ ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
(i)

≥ Y ∗
t for every t ∈ {0, ..., T}.

The proof of (ii) is completed by sending ε → 0.

Now let Z and δ > 0 be as in Lemma 24 and take ε such that 0 < ε < δ. We so have
Zε = Z and then statement (iii) follows from statement (i) and using (6.9) in the proof of
(ii) (which holds independently of condition (C7)).

Examples 27. Theorem 26 may be applied in the following situations.
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1. Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free
financial market, and let Z := (Zt)t∈{0,...,T} be a nonnegative adaptive process sat-
isfying sup

t∈{0,...,T}
sup
Q∈Q

EQ[Zt] < ∞. The process Z may be viewed as a discounted

American Option with respect to the recursive conditional positive homogeneous
DMU functional Φt(·) := ess sup

Q∈Q
EQ[· | Ft]. Furthermore, let us denote by X+1 the

set of X ∈ L∞(Ω, FT , P) with X > 0 P−a.s. such that sup
Q∈Q

EQ[X] = 1. Then the

superhedging price and the lowest arbitrage-free price of Z may be represented by

inf
X∈X+1

Φ0

(
max

t∈{0,...,T}
ZtX

Φt(X)

)
and inf

X∈X+1

Φ0

(
max

t∈{0,...,T}
ZtX

Φt(X)

)
,

respectively (see also Example 22).

2. As another application of Theorem 26 we may consider the DMU functionals in
Examples 6, 2, since they are obviously recursive and positively homogeneous.

7 Consumption based representation

Throughout this section, Φ is a regular conditional translation invariant recursive DMU
functional. For such a functional we will propose a representation for the stopping problem
(3.2) which can be seen as generalization of the consumption upper bound in (4) and (5).
Due to the fact that Φ satisfies the Bellman principle we can proof the following theorem.

Theorem 28. For any Z ∈ H we have

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ) = Φt


ZT +

T−1∑

j=t

(Zj − Φj(Y ∗
j+1))

+


 , t ∈ {0, ..., T},

with empty sums being defined zero.

Proof:
We shall proceed by backward induction over t. The case t = T is trivial. So let us assume

for any t ∈ {1, ..., T} that Y ∗
t = Φt

(
ZT +

T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+

)
is valid. Then due to

Bellman principle Y ∗
t−1 = (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1 (Y ∗
t ) , which implies by assumption

and recursiveness property (C4)

Y ∗
t−1 = (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1


Φt


ZT +

T−1∑

j=t

(Zj − Φj(Y ∗
j+1))

+







= (Zt−1 − Φt−1(Y ∗
t ))+ + Φt−1


ZT +

T−1∑

j=t

(Zj − Φj(Y ∗
j+1))

+



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Then the application of conditional translation invariance yields

Y ∗
t−1 = Φt−1


(Zt−1 − Φt−1(Y ∗

t ))+ + ZT +
T−1∑

j=t

(Zj − Φj(Y ∗
j+1))

+




= Φt−1


ZT +

T−1∑

j=t−1

(Zj − Φj(Y ∗
j+1))

+


 ,

which completes the proof. The interesting feature of the representation in Theorem 28 is
that if we replace Y ∗ on the right-hand-side by a lower (upper) approximation we obtain
an upper (lower) bound for Y ∗ on the left-hand-side.

8 Numerical approaches for optimal stopping of some specific
DMU functionals

In this section we sketch how the different representations developed in Sections 4-7 may be
utilized for constructing (upper and/or lower) approximations of the of the optimal value
of stopping problem (3.2). In order to enable a feasible algorithm or simulation procedure
for optimal stopping of a particular DMU functional we naturally presume that we have
a feasible algorithm or simulation procedure for the functional itself at hand. In this
respect we underline that numerical (simulation) methods for specific DMU functionals
is an interesting issue in it’s own right but considered to be beyond the scope of this
article. Another natural assumption is that we have some underlying process with some
kind of Markovian structure which can be simulated straightforwardly. More specifically,
we assume that we are in the following setting.

Setting for solving general optimal stopping problems by simulation

i) The filtration (Ft)t∈{0,...,T} is generated by some underlying stochastic process S :=
(St)t∈{0,...,T} in some multi-dimensional state space, e.g. Rd.

ii) The process Z := (Zt)t∈{0,...,T} under consideration satisfies Zt = h(t, St) for some
known nonnegative measurable function h. For ease of exposition, h is assumed to
be bounded.

iii) The DMU functional Φ = (Φt)t∈{0,...,T} is regular, recursively generated by (Ψt)t∈{0,...,T}
with generators satisfying Ψt(X) = X if X ∈ Ft, for any t ∈ {0, ..., T}. Hence in
particular Φ is recursive with Φt(X) = X of X ∈ Ft for t ∈ {0, ..., T}.

iv) For any t ∈ {0, ..., T} we have Φt(X) being σ{St}−measurable if X is σ{St, ...ST }−measurable
(We might think of S being Markovian w.r.t. the functional Φ). This condition is
e.g. guaranteed in the case that for any u, t ∈ {0, ..., T} with u ≤ t we have Ψt(X)
is σ{Su, ..., St}−measurable whenever X is σ{Su, ..., St+1}−measurable.

v) For any t ∈ {0, ..., T}, we may compute Φt(X) ∈ σ{St} if X ∈ σ{St, ...ST } by some
kind of simulation method.
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In the standard case, where Φ represents the ordinary conditional expectation and S is
Markovian in the ordinary sense, iii), iv), and v) are obviously fulfilled. A canonical way
of evaluating conditional expectations is (Monte Carlo) simulation from a particular state
(t, St) (particularly in higher dimensions). In general there are many interesting examples,
for instance, within the class of g−expectations:
Example 29. Let Φ be a family of g−expectations as in example 5 with Brownian motion
B = (Bs)s≥0 and driver g : Ω × [0, S] × R × Rn → R being of the form g(ω, s, y, z) :=
f(Ss, y, z). Here f : Rn × R × Rd → R is any Lipschitz function with f(·, 0) ≡ 0, and
(Ss)s≥0 is an n−dimensional diffusion process with dynamics given by the SDE,

dSs = µ(Ss) dt + σ(Ss) dBs.

Under some further conditions of regularity for µ, σ and f, it may be verified that Φ satisfies
assumption iv) (cf. (18), Theorem 6.2). Furthermore simulation algorithms as required in
assumption v) are already available (see e.g. (16), (27)).

Moreover, if f does not depend on y, and is sublinear in z, then there is some set Q of
probability measures which are absolutely continuous w.r.t. P such that Φ admits the
following robust representation

Φt(X) = ess sup
Q∈Q

EQ [X | σ{S1, ..., St}] ,

where the essential supremum is attained (see (7), proof of Theorem 3.1).

Below we will outline the implementation of the above simulation setting for different
solution representations proposed in Sections 4-7.

Policy iteration

The policy iteration method in Section 4 may be readily applied if the time consistent
stopping family (τt) we start with is such that {τt = t} ∈ σ{St}. For example we just take
the trivial family τt = t, t ∈ {0, ..., T}. Then the iteration procedure will be analogue to
the one spelled out in (22). In short, given an input stopping family (τt), simulate a set
of N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T. Determine on each outer
trajectory S(n), the improved stopping time τ̂0. For this, one needs to simulate for each
time s = 0, 1, .. a set of M (inner) trajectories (mS

(n)
u )u=s,...,T , m = 1, ..., M to check by

simulation whether the event
{

Φs(Zs) ≥ max
s+1≤u≤T

Φs(Zτu)
}

in (4.5) is true. If s(n) is the first time where (5) is valid, we put τ̂
(n)
0 = s(n) on trajectory

n. Finally we compute Φ0(Zbτ0) from the sample Z
(n)
bτ0 , n = 1, ..., N.

Dual upper bounds

We consider the construction of an additive dual upper bound for a regular, recursive
DMU functional, which is translation invariant. Let us assume that we are given a proxy
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Yt = U(t, St) of the Snell envelope Y ∗
t = U∗(t, St). Note that the Snell envelope is indeed

of this form due to assumptions i), ii), and iv). For instance, for the DMU functional in
Example 12, a proxy may be constructed by approximating the Snell envelope with respect
to a more simple functional, replacing the representing set Q of probability measures by a
smaller subset or even a singleton. Let MY be the Doob Φ-martingale of Y and consider
the upper bound

Y up
0 = Φ0( max

0≤t≤T

(
Zt + MY

T −MY
t

)
)

= Φ0

(
max

0≤t≤T

(
h(t, St) +

T−1∑
s=t

[U(s + 1, Ss+1)− Φs (U(s + 1, Ss+1))]

))
.

Similar as in (1) we are going to construct an approximation of this upper bound by a
nested simulation. We simulate N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T,
and for each outer trajectory n, and time s, s < T, a set of M (inner) two step trajectories
(mS

(n)
u )u=s,s+1, m = 1, ..., M. On a fixed outer trajectory S(n) we then construct for each

s an approximation of Φ(n)
s (U(s + 1, Ss+1)) by the inner sample U(s+1, 1S

(n)
s+1), ..., U(s+

1, MS
(n)
s+1), and next determine

ζ(n) := max
0≤t≤T

(
h(t, S(n)

t ) +
T−1∑
s=t

[
U(s + 1, S

(n)
s+1)− Φ(n)

s (U(s + 1, Ss+1))
])

.

We thus end up with the sample ζ(1), ..., ζ(N) of the random variable ζ : =
max

0≤t≤T

(
Zt + MY

T −MY
t

)
, from which finally Y up

0 = Φ0(ζ) may be estimated.

Multiplicative and consumption upper bounds

From the simulation methods sketched above it will be clear in principle how to construct
a multiplicative upper bound for a positively homogeneous DMU functional, and how to
construct an upper (lower) bound due to the consumption representation in Theorem 28
for a translation invariant functional when a lower (upper) bound of the Snell envelope is
given.

Concluding remark

In this article different representations for the optimal stopping problem with respect to
general DMU functionals are presented. It is shown that these representations allow for
a numerical treatment of the generalized stopping problem. A detailed analysis of the
numerical algorithms sketched in Section 8, which will depend on particular properties of
the functional under consideration, remains to be done in future work.

A Appendix

Proof of Theorem 15:
The inequalities Yt ≤ Ỹt and Ŷt ≤ Y ∗

t are obvious for any t ∈ {0, ..., T}. So inequality
Ỹt ≤ Ŷt is left to show. We shall use backward use induction.
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Due to the definition of Ỹ and Ŷ , we have ỸT = ŶT = ΦT (ZT ). Suppose that Ỹt ≤ Ŷt

holds for any t ∈ {1, ..., T}. We then have to show that Ỹt−1 ≤ Ŷt−1. For this we first show
sequentially

(1) 1[τ̂t−1=t−1]Ŷt−1 = 1[τ̂t−1=t−1]Φt−1(Zt−1).

(2) 1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs).

(3) Φt−1(Zτt−1) ≤ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs)
}

.

Due to the definition of τ̂t−1 we have on the set {τ̂t−1 = t−1}, Φt−1(Zt−1) ≥ max
t≤s≤T

Φt−1(Zτs),

and on the set {τ̂t−1 > t − 1}, Φt−1(Zt−1) < max
t≤s≤T

Φt−1(Zτs). Thus we may conclude im-

mediately from (1)-(3)

Ŷt−1 ≥ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs)
}
≥ max

{
Φt−1(Zτt−1), max

t≤s≤T
Φt−1(Zτs)

}
= Ỹt−1,

as required.

proof of (1):
By regulation condition (C2) we may find sequentially

1[τ̂t−1=t−1]Ŷt−1 = Φt−1(1[τ̂t−1=t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1=t−1]Zt−1) = 1[τ̂t−1=t−1]Φt−1(Zt−1),

which proves (1).

proof of (2):
1[τ̂t−1>t−1]Zτ̂t−1 = 1[τ̂t−1>t−1]Zτ̂t due to time consistency of (τ̂t)t∈{0,...,T}. Hence the regu-
larity condition implies

1[τ̂t−1>t−1]Ŷt−1 = Φt−1(1[τ̂t−1>t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1>t−1]Zτ̂t) = 1[τ̂t−1>t−1]Φt−1(Zτ̂t)

= 1[τ̂t−1>t−1]Ψt−1(Ŷt).

By the induction hypothesis we have Ŷt ≥ Ỹt, so we may conclude by monotonicity of Ψt−1,

1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1]Ψt−1(Ỹt) ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Ψt−1(Φt(Zτs))

= 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs).

Thus (2) is shown.

proof of (3):
Using regularity condition (C2) we obtain

Φt−1(Zτt−1) = 1[τt−1=t−1]Φt−1(Zτt−1) + 1[τt−1>t−1]Φt−1(Zτt−1)
= Φt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt−1).

1[τt−1>t−1]Zτt−1 = 1[τt−1>t−1]Zτt due to time consistency of (τt)t∈{0,...,T}. Hence the appli-
cation of regularity again yields

Φt−1(Zτt−1) = sdarticleΦt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt)
= 1[τt−1=t−1]Φt−1(Zt−1) + 1[τt−1>t−1]Φt−1(Zτt),

obviously implying (3), and hence completing the proof.
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Proof of Lemma 19:
We shall show the statement of Lemma 19 via backward induction. The case t = T is
trivial since TT = {T}. So let us assume that for any t ∈ {1, ..., T}, we have Φt(Zσ) =
Φt(Zσ + MT −Mσ) for every σ ∈ Tt. Let us fix an arbitrary τ ∈ Tt−1, and define σ(τ) :=
t1[τ=t−1] +τ1[τ>t−1] ∈ Tt. Then by assumption Φt(Zσ(τ)) = Φt(Zσ(τ) +MT −Mσ(τ)), which
implies via regularity and recursiveness,

1[τ>t−1]Φt−1(Zτ ) = 1[τ>t−1]Φt(Zσ(τ)) = 1[τ>t−1]Φt−1 ◦ Φt(Zσ(τ))
= 1[τ>t−1]Φt−1

(
Φt(Zσ(τ) + MT −Mσ(τ))

)

= 1[τ>t−1]Φt−1(Zσ(τ) + MT −Mσ(τ))
(C2)
= 1[τ>t−1]Φt−1(Zτ + MT −Mτ ).

Moreover, by regularity, conditional translation invariance, and the Φ−martingale property
of M we have,

1[τ=t−1]Φt−1(Zτ + MT −Mτ )
(C2)
= 1[τ=t−1]Φt−1(Zt−1 + MT −Mt−1)

(C3)
= 1[τ=t−1] (Zt−1 −Mt−1 + Φt−1(MT ))
= 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zt−1).

which completes the proof.

Proof of Lemma 25:
We shall show the statement of the lemma by backward induction. The case t = T is trivial

since TT = {T}. Let us assume that for t ∈ {1, ..., T} the equality Φt(Zτ ) = Φt

(
ZτNT

Nτ

)

is valid for every τ ∈ Tt.

Consider an arbitrary τ ∈ Tt−1, and define σ(τ) := 1τ=t−1t+1τ>tτ ∈ Tt. By the induction

assumption we have Φt

(
Zσ(τ)NT

Nσ(τ)

)
= Φt(Zσ(τ)), so that regularity condition (C2) and

recursiveness imply

1[τ>t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ>t−1]Φt−1

(
Zσ(τ)NT

Nσ(τ)

)
= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)NT

Nσ(τ)

))

= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)

))
= 1[τ>t−1]Φt−1

(
Zσ(τ)

)

(C2)
= 1[τ>t−1]Φt−1 (Zτ ) .

Moreover, by regularity (C2), conditional positive homogeneity (C6), and the fact that N
is a Φ−martingale, it holds

1[τ=t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ=t−1]Φt−1

(
Zt−1NT

Nt−1

)

(C6)
= 1[τ=t−1]

Zt−1

Nt−1
Φt−1(NT ) = 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zτ ).
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