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Abstract. We consider the problem of scattering of time harmonic acoustic waves by
an unbounded sound soft surface which is assumed to lie within a finite distance of some
plane. The paper is concerned with the study of an equivalent variational formulation of
this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this
variational formulation in an energy space with weights which extends previous results in
the unweighted setting (Chandler-Wilde & Monk, SIAM J Math Anal 37 (2005), 598-618)
to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-
dimensional case, our approach covers the problem of plane wave incidence, whereas in the
3D case incident spherical and cylindrical waves can be treated. As a further application of
our results we analyse a finite section type approximation, whereby the variational problem
posed on an infinite layer is approximated by a variational problem on a bounded region.

1. Introduction

This paper is concerned with the analysis of problems of scattering by unbounded surfaces,
in particular with what are termed rough surface scattering problems in the engineering liter-
ature. By the phrase rough surface, we will denote throughout a surface which is a (usually
non-local) perturbation of an infinite plane surface such that the surface lies within a finite
distance of the original plane. Rough surface scattering problems in this sense arise frequently
in applications, for example in modeling acoustic and electromagnetic wave propagation over
outdoor ground and sea surfaces, and have been studied extensively in the physics and en-
gineering literature from the points of view of developing effective numerical algorithms
or asymptotic or statistical approximation methods (see e.g. Ogilvy [30], Voronovich [39],
Saillard & Sentenac [32], Warnick & Chew [40], DeSanto [18], and Elfouhaily and Guerin
[19]).

Despite this extensive practical interest, relatively little mathematical analysis of these prob-
lems has been carried out. In particular, only in the last four years have the first results
been obtained establishing well-posedness for three-dimensional rough surface scattering
problems, using integral equation methods (see Chandler-Wilde, Heinemeyer & Potthast
[13, 14], Thomas [36]) or variational formulations (see Chandler-Wilde, Monk & Thomas
[11, 15], Thomas [36]). The variational approach proposed in [11] for the sound soft acoustic
problem leads to explicit bounds on the solution in terms of the data and applies to a rather
general class of non-smooth unbounded surfaces. The approach in [11] is extended to more
general acoustic scattering problems in [36], including problems of scattering by impedance
surfaces and by inhomogeneous layers (and see [15]).

In contrast to the general case of a non-locally perturbed plane surface, there is already a vast
literature on the variational approach applied to periodic diffractive structures (diffraction
gratings) or to locally perturbed plane scatterers; see, e.g., Kirsch [25], Bonnet-Bendhia &
Starling [6], Elschner & Schmidt [20], Bao & Dobson [5], Elschner, Hinder, Penzel & Schmidt
[21], Ammari, Bao & Wood [1], and Elschner & Yamamoto [22]. The assumption made in
all of these papers leads to a variational problem over a bounded region, so that compact
imbedding arguments can be applied and the sesquilinear form that arises satisfies a G̊arding
inequality which simplifies the mathematical arguments considerably compared to the cases
studied in [11], [15] and [36].

In this paper we will rigorously analyze time harmonic acoustic scattering, seeking to solve
the Helmholtz equation with wave number k > 0,

∆u+ k2u = g ,
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in the perturbed half-plane or half-space D ⊂ Rn, n = 2, 3. The scattering surface Γ := ∂D
is assumed to lie within a finite distance of some plane; for example it may be the graph of
an arbitrary bounded continuous function. While the methods we use and results we derive
can be adapted to other boundary conditions, to keep things specific and to make use of
earlier results [11, 15], we will restrict our attention to the simplest case when a homogeneous
Dirichlet boundary condition u = 0 holds on Γ. The problem formulation is completed by a
suitable radiation condition, expressing that the wave scattered by the surface must radiate
away from the surface.

This paper is closest in its results to Chandler-Wilde & Monk [11], who studied the same
Dirichlet scattering problem. Following [11], we introduce an equivalent variational formu-
lation of this problem set in an infinite layer S0 of finite thickness between the surface Γ and
some plane Γ0 lying above that surface on which the solution is required to satisfy a non-local
boundary condition involving the exact Dirichlet to Neumann map T . This condition is often
used in a formal manner in the rough surface scattering literature (e.g. [18]), that, above
the rough surface Γ and the support of g, the solution can be represented in integral form as
a superposition of upward traveling and evanescent plane waves. This radiation condition
is equivalent to the upward propagating radiation condition proposed for two-dimensional
rough surface scattering problems in [10], and has recently been analyzed carefully in the 2D
case by Arens and Hohage [4]. Arens and Hohage also propose a further equivalent radiation
condition (a ‘pole condition’).

In Sections 2 and 3 we formulate the boundary value problem and its variational formulation
precisely, and give the details about our assumptions on D and about the radiation condition
we impose. Section 3 is also devoted to new continuity properties of the DtN map T in
weighted Sobolev spaces on Γ0.

In Section 4 we study the well-posedness of the variational formulation in an energy space
with weights which decay or increase polynomially as a function of radial distance within the
layer S0. Our main result, Theorem 4.1, is to show, for a range of increasing and decreasing
weights, that the problem is well-posed in the weighted space setting if and only if it is
well-posed in the unweighted space setting. This result depends on technical estimates
of the commutator of the DtN map T and the operation of multiplication by the weight
function; see Theorem 3.1. Combining this result with previous results on well-posedness in
the unweighted setting for sound soft scattering [11], we are able to show well-posedness in
a weighted space setting.

In Section 5, to illustrate the importance of these results, we make two applications. First,
in the two-dimensional case, we prove existence of solution to the problem of plane wave
scattering by an unbounded sound soft surface, extending previous results derived for the
case when the boundary is the graph of a sufficiently smooth function [17] to much more
general surface profiles. We note that, even in the well-studied case when the boundary is
periodic (is a diffraction grating) the uniqueness result we obtain is a significant extension of
the results known to date [22]. We briefly discuss why our methods do not extend to the case
of plane wave incidence in the three-dimensional case (indeed, why this problem may not
be well-posed), and apply our results to prove existence of solution to the three-dimensional
problems of scattering of incident spherical and cylindrical waves. In the second application
of our results we analyse approximation of the variational problem in the infinite layer S0

by a variational problem in a bounded region (to which finite element methods can then be
applied), this bounded region coinciding with the original layer S0 inside a ball of radius R.
We prove stability and convergence of this approximation procedure and use our weighted
space results to prove error estimates as a function of R.

2



The final Section 6 is concerned with the proof of our crucial commutator estimates stated
in Theorem 3.1. Note that the DtN map T is a pseudodifferental operator on Rn−1 with
a non-smooth symbol, so that the standard calculus of pseudifferential operators acting in
weighted Sobolev spaces (see, e.g., [31]) is not sufficient to obtain the result.

2. The Boundary Value Problem And Radiation Conditions

Let x = (x, xn) ∈ Rn (n = 2, 3) with x ∈ Rn−1, and let D ⊂ Rn be an unbounded domain
such that, for some b < 0,

U0 ⊂ D ⊂ Ub , Ub := {x : xn > b} .(2.1)

For h ∈ R, let Γh := {x : xn = h} and Sh := D\Uh. The variational problem will be posed
on the open set S0 which lies between the rough surface Γ = ∂D and the plane (or line) Γ0.
In addition to (2.1) we will assume that D satisfies the condition that

x ∈ D ⇒ x + sen ∈ D , for all s > 0 ,(2.2)

where en denotes the unit vector in direction xn. Condition (2.2) is satisfied if Γ is the graph
of a continuous function, but also allows more general domains.

We now introduce weighted L2 and Sobolev spaces. For % ∈ R, l ∈ N and a domain G ⊂ Rn,
define the Hilbert spaces

L2
%(G) := (1 + x2)−%/2L2(G) , H l

%(G) := (1 + x2)−%/2H l(G) ,

equipped with the corresponding canonical norm and scalar product. The space Vh,% is then
defined, for h ≥ 0, as the closure of {u|Sh

: u ∈ C∞
0 (D)} in the norm

‖u‖Vh,%
= ‖u‖H1

%(Sh) =

(∫
Sh

(∣∣(1 + x2)%/2u
∣∣2 +

∣∣∇((1 + x2)%/2u)|2
)
dx

)1/2

.(2.3)

We set V0,% = V% in the following, which is the energy space for our variational problem.
Moreover, we introduce

Hs
%(Γh) := (1 + x2)−%/2Hs(Γh) , s, % ∈ R ,

where Hs(Γh) is identified with the Sobolev space Hs(Rn−1) with norm

‖v‖Hs(Rn−1) =

(∫
Rn−1

(1 + ξ2)s|Fv|2dξ
)1/2

.

Here Fv denotes the Fourier transform of v defined by

Fv(ξ) = (2π)−(n−1)/2

∫
Rn−1

exp(−ix · ξ)v(x) dx , ξ ∈ Rn−1 ,

with the inverse transform given by

F−1w(x) = (2π)−(n−1)/2

∫
Rn−1

exp(ix · ξ)w(ξ) dξ , x ∈ Rn−1 .

Note that F is an isometry of L2(Rn−1) onto itself and also an isometry of L2
%(Rn−1) onto

H%(Rn−1) since

‖Fu‖2
H% =

∫
Rn−1

(1 + x2)%|F 2u|2dx =

∫
Rn−1

(1 + x2)%|u|2dx , u ∈ C∞
0 (Rn−1) .

More generally, F is an isomorphism of Hs
%(Rn−1) onto H%

s (Rn−1) for all s, % ∈ R; see [31]
and [38]. From time to time we will make use of the following lemma.
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Lemma 2.1. Suppose h ≥ 0 and % ∈ R. For u ∈ Vh,% let

‖u‖′ :=
(∫

Sh

(1 + x2)%

(∣∣u∣∣2 +
∣∣∇u|2)dx)1/2

.

Then ‖ · ‖′ is a norm on Vh,% that is equivalent to the norm ‖ · ‖Vh,%
; precisely, for some

constants C1 and C2 depending only on %, ‖u‖Vh,%
≤ C1‖u‖′ ≤ C2‖u‖Vh,%

, for all u ∈ Vh,%,
and all h ≥ 0.

We now state our boundary value problem, formulated in a weighted space setting. As indi-
cated in the introduction, it is the study of this problem in weighted spaces, and application
of the new results this gives rise to, which is the object of this paper. Indeed a main result
of this paper will be to show that solvability of this boundary value problem in weighted
spaces, for the range of % indicated, is a consequence of its solvability without weights, i.e.
for the case % = 0. (And this is useful since solvability for the simpler case without weights
is already established in [11].) After stating the boundary value problem we will comment in
the remainder of this section on how the radiation condition is to be understood, in partic-
ular when % < 0. We will also comment on the restriction on the range of % (|%| < 1) in the
statement of the boundary value problem, explaining why this range is natural and sharp.
Precisely, we will point out that the radiation condition (2.4) does not make sense for all

u ∈ H
1/2
% when % ≤ −1, and will show that the boundary value problem is not, in general,

solvable for % ≥ 1.

The boundary value problem (BVP). Given g ∈ L2
%(D), with |%| < 1 and supp g ⊂ S̄0, find

u ∈ H1
loc(D) such that u|Sh

∈ Vh,% for every h > 0,

(∆ + k2)u = g in D ,

in a distributional sense, and the following radiation condition is satisfied:

u(x) = F−1 exp
(
−xn

√
ξ2 − k2

)
Fu0(ξ)

= (2π)−(n−1)/2

∫
Rn−1

exp
(
−xn

√
ξ2 − k2 + ix · ξ

)
Fu0(ξ) dξ , x ∈ U0 ,(2.4)

where u0 = u|Γ0 ∈ H
1/2
% (Γ0) (from the trace theorem) and

√
ξ2 − k2 = −i

√
k2 − ξ2 when

|ξ| < k.

We explain in this paragraph and the next in what sense (2.4) is to be understood and why in
the above formulation we restrict % to the range % > −1 (the restriction to % < 1 is explained
at the end of this section). For % ≥ 0 the integral (2.4) exists in the ordinary Lebesgue sense
since Fu0 ∈ L2(Rn−1). Further, for u0 ∈ L2(Γ0), the radiation condition (2.4) can be written
in the alternative form

u(x) = 2

∫
Γ0

∂Φ(x, y)

∂yn

u(y) ds(y) = 2

∫
Rn−1

∂Φ(x, y)

∂yn

u0(y) dy , x ∈ U0 ,(2.5)

where the fundamental solution Φ of the Helmholtz equation is given by

Φ(x, y) :=


1

4π

exp(ik|x− y|)
|x− y|

if n = 3

i

4
H

(1)
0 (k|x− y|) if n = 2 ,

for x = (x, xn), y = (y, yn) ∈ Rn, x 6= y. Here H
(1)
0 is the Hankel function of the first kind

of order zero. In the case n = 2, (2.5) is just the upward propagating radiation condition
(UPRC) proposed in [10], and we refer to [7, Chap. 5.1.1] for n = 3. For further discussion of
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the rationale for the radiation condition (2.4) and its relationship to other proposed radiation
conditions for rough surface scattering we refer the reader to [11].

For % < 0 we understand (2.4) by extending the mapping u0 7→ u(x), given by (2.4), to a

bounded linear functional on H
1/2
% (Γ0). The restriction % > −1 arises precisely because this

extension is possible only for the range % > −1. To see this we observe that, since F is an

isomorphism from H
1/2
% (Rn−1) to H%

1/2(R
n−1), the mapping u0 7→ u(x) given by (2.4) extends

to a bounded linear functional on H
1/2
% (Γ0) for % < 0 if and only if fx ∈ H−%

−1/2(R
n−1), where

fx(ξ) := exp
(
−xn

√
ξ2 − k2 + ix · ξ

)
. But this holds precisely for % > −1; in fact (this can

be deduced from (2.5) and Parseval’s theorem) the Fourier transform of fx is given by

Ffx(y) = 2(2π)(n−1)/2∂Φ(x, y)

∂yn

∣∣
yn=0

,

and straightforward explicit calculations (see [10] for the case n = 2) yield that

|Ffx(y)| ∼ cnxn|y|−(1+n)/2(2.6)

as |y| → ∞, where the constant cn depends only on k and on the dimension n. From this

one deduces that Ffx ∈ H
−1/2
−% (Rn−1), so that fx ∈ H−%

−1/2(R
n−1), if and only if % > −1.

For % > −1 the extension of the mapping u0 7→ u(x), given by (2.4), to a bounded linear

functional on H
1/2
% (Γ0) is given explicitly by (2.5), the asymptotics (2.6) guaranteeing the

existence of the integral (2.5). Thus (2.5) makes explicit the meaning of (2.4) in the case
−1 < % < 0.

Remark 2.2. We note (and this is important in our later applications) that there is a degree
of arbitrariness in our radiation conditions (2.4) and (2.5). By this we mean that one could
replace xn in (2.4) by xn − c, for any c > 0 (in fact for any c ∈ R such that supp g ⊂ S̄c

and Uc ⊂ D); the corresponding change to (2.5) would be to replace Γ0 by Γc. We will show
in Theorem 4.1 below that the boundary value problem is uniquely solvable. Clearly (by a
simple shift in the vertical direction of the axes), one can deduce from this that the above
boundary value problem with xn replaced by xn − c in (2.4) is also uniquely solvable. We
reassure the reader that these unique solutions are the same! This is demonstrated for the
case % = 0 in [11] and this result, together with the density of L2(S0) in L2

%(S0) for % < 0
and the stability results proved in Theorem 4.1, implies that the solutions are the same also
for |%| < 1.

We have explained above the restriction to % > −1 in the boundary value problem formu-
lation. We make the restriction % < 1 because we cannot, in general, expect the boundary
value problem to be solvable for % ≥ 1 (with the solution satisfying that u|Sh

∈ Vh,% for every
h > 0). To see this we consider the instructive case where D is a half-plane or half-space,
i.e. D = Uc, for some c ∈ (b, 0). Moreover, let us consider the case when g is compactly
supported in a ball centred on some point z ∈ S0 of radius ε > 0 sufficiently small so that
the ball lies in S̄0, and further let us assume that g(x) ≡ 1 inside the ball.

We have remarked already that it is shown in [11] that the boundary value problem is
uniquely solvable when % = 0. For the specific case we are considering the unique solution
to this boundary value problem can be written down very explicitly. Let Gc(x, y) denote the
Dirichlet Green’s function for Uc, given by

Gc(x, y) := Φ(x, y)− Φ(x, y′c),
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where y′c denotes the image of the point y in the plane yn = c. Then the solution to the
boundary value problem is

u(x) =

{
k−2(1 + Af(k|x− z|)), |x− z| ≤ ε,

Ck−2Gc(x, z), |x− z| > ε,
(2.7)

where the function f is defined by

f(r) :=

{
J0(r), n = 2,
sin r

r
, n = 3,

J0 is the Bessel function of the first kind of order zero, and the constants A and C are chosen
to ensure C1 continuity of u across the boundary of the ball; for example, in 3D,

A = Q−1(iκ− 1) and C = 4πQ−1 exp(−iκ)(κ cos(κ)− 1),

where Q = κ cos(κ)− 1 + sin(κ)(1− iκ) and κ = kε. It is easy to check that this expression
does satisfy ∆u+ k2u = g in D = Uc, and that u|Sh

∈ Vh,%, for all h > 0, if ρ = 0 (indeed for
all % < 1) follows from the asymptotics (2.8) below. To see that u, given by (2.7), does satisfy
the boundary value problem it remains to check that u satisfies the radiation condition; to
do this one can show that u satisfies the form (2.5) of the radiation condition by applications
of Green’s theorem to G0(x, ·) and u in U0.

A first observation is that this example demonstrates that, if g is chosen carefully enough,
then the above boundary value problem is solvable for all % ∈ R. For certainly it is true in
this example that g, being compactly supported, satisfies g ∈ L2

%(D) for all % ∈ R and, if ε
is chosen so that C = 0, then u is also compactly supported and so u|Sh

∈ Vh,%, for all h > 0
and % ∈ R. But the example, slightly more subtly, also illustrates that, in general, even if
g is compactly supported and so satisfies g ∈ L2

%(D) for all % > 0, one cannot expect that
u|Sh

∈ Vh,% for any h > 0 and % ≥ 1, since u|S0 6∈ V0,% for % = 1 if C 6= 0. To see that this is
true it is enough to examine the asymptotics of G(x, z) as x →∞ in S0. From [12, equation
(4.2)] in the 2D case, and by simple direct calculations in the 3D case, we see that (cf. (2.6))

|G(x, z)| ∼ c′nk
4−n(xn − c)(zn − c)(k|x|)−(1+n)/2, as |x| → ∞,(2.8)

uniformly in x ∈ S0, for some constant c′n > 0 depending only on n. From these asymptotics
it is an easy calculation to see that u|S0 ∈ L2

%(S0) for % < 1 but not for % = 1, so that
u|S0 6∈ V0,1. This example explains why the boundary value problem is not, in general,
solvable in the case % ≥ 1.

3. The Dirichlet to Neumann Map and Variational Formulation

We now consider a variational formulation in weighted Sobolev spaces of the above boundary
value problem, which involves the Dirichlet-to-Neumann operator on the artifical boundary
Γ0. As in [11] for % = 0, there exist continuous trace operators

γ− : V% → H1/2
% (Γ0) , γ+ : H1

%(U0\Ūh) → H1/2
% (Γ0) , h > 0 .

Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by (2.4), then

∂u

∂xn

∣∣∣
Γ0

= −Tγ+u ,

where the Dirichlet-to-Neumann map T is given by the pseudodifferential operator

Tv(x) := F−1t(ξ)Fv(ξ) , t(ξ) :=
√
ξ2 − k2 .(3.1)
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Note that the symbol t of T is not smooth which makes the study of (3.1) in weighted Sobolev
spaces more complicated than in the case % = 0 (which was treated in [11]). The following
commutator estimate is crucial for our analysis and its proof is carried out in Section 6.

Theorem 3.1. Consider the commutator

C := T − (a2 + x2)%/2T (a2 + x2)−%/2·(3.2)

with parameter a > 0. Then, for ka ≥ 1 and |%| < 1, the norm of C on L2(Rn−1) is bounded

by c(%)
√
k/a.

Here and in the following c(%) denotes a positive constant which only depends on %. We
remark (cf. the comments at the end of section 2) that the range |%| < 1 in this theorem
is optimal, i.e. this result does not hold for % = ±1. This follows in part from the duality
exhibited between positive and negative values of % in the proof of Theorem 4.1 in section
6 below, which shows that the statement in this theorem holds for % = −1 iff it holds for
% = 1. Further, if the above theorem were to hold for ρ = 1 then the proof of Theorem 4.1
below would extend to the case ρ = 1, which would contradict the example of a solution of
the boundary value problem with g ∈ L2

1(D) but u0 6∈ V0,1 at the end of section 2.

Sometimes the following weaker version of Theorem 3.1 is sufficient, the proof of which is
analogous but simpler.

Lemma 3.2. For fixed k > 0 and a = 1, the norm of (3.2) on L2(Rn−1) is bounded by some
constant c(%) for |%| < 1.

The following lemma describes the continuity properties of T .

Lemma 3.3. (i) For any s ∈ R, T : Hs(Rn−1) → Hs−1(Rn−1) is bounded.

(ii) For |%| < 1, 0 ≤ s ≤ 1, T : Hs
%(Rn−1) → Hs−1

% (Rn−1) is bounded.

Proof. (i) follows by taking Fourier transform and using the estimate |t(ξ)| ≤ c(1+ ξ2)1/2 on
Rn−1; see also [11]. To prove (ii) for % 6= 0, we apply the commutator estimate of Lemma
3.2 to get the continuity

C̃ := (1 + x2)−%/2T − T (1 + x2)−%/2· : L2(Rn−1) → L2
%(Rn−1) ,

and by the continuous imbeddings Hs
% ⊂ L2

% ⊂ Hs−1
% , the operator C̃ : Hs(Rn−1) →

Hs−1
% (Rn−1) is bounded. Moreover, by (i), (1 + x2)−%/2T : Hs(Rn−1) → Hs−1

% (Rn−1) is

bounded, so that T (1 + x2)−%/2· is bounded there, too. This implies the result. �

To state the variational formulation of (BVP), we use the notation

(u, v) :=

∫
S0

uv̄ dx,

and define the continuous sesquilinear form B : V% × V−% → C by

B(u, v) := (∇u,∇v)− k2(u, v) +

∫
Γ0

γ−v̄ Tγ−u ds(x) .(3.3)

Note that this sesquilinear form is well-defined and continuous on V% × V−% for |%| < 1 as a
consequence of Lemma 3.3 with s = 1/2.

The variational formulation (V). Given g ∈ L2
%(S0), |%| < 1, find u ∈ V% such that

B(u, v) = −(g, v) , ∀v ∈ V−% .(3.4)

7



As in [11], the equivalence of (BVP) and (V) follows from the following weighted version of
Lemma 3.2 in that paper.

Lemma 3.4. Let |%| < 1.

(i) If (2.4) holds with u0 ∈ H1/2
% (Γ0), then u ∈ H1

%(U0\Ūh) for every h > 0.

(ii) Furthermore, we have (∆ + k2)u = 0 in U0, γ+u = u0, and∫
Γ0

v̄ Tγ+u dx+ k2

∫
U0

uv̄ dx−
∫

U0

∇u · ∇v̄ dx = 0 ∀v ∈ C∞
0 (D) .

As in [11] (for % = 0), assertion (ii) is a consequence of (i). We will prove Lemma 3.4 (i) in
Section 6 applying our commutator estimates. Following [11], Lemma 3.4 then implies

Lemma 3.5. If u is a solution of (BVP), then u|S0 satisfies the variational problem (V).
Conversely, let w be a solution of (V). If we set u = w in S0 and define u in U0 to be the
right-hand side of (2.4) with u0 = γ−w, and extend the definition of g to D by setting g = 0
in U0, then u is a solution of (BVP).

Remark 3.6. We note that the equivalence of (BVP) and (V) stated in Lemma 3.5 holds
whenever (2.1) holds. In particular, the proof is not dependent on (2.2). Further, we note
that there is no requirement that Γ0 ⊂ S0; it may be the case, for example, that S0 is a
bounded open set, which need not necessarily be connected. In the case that Γ0 6⊂ S0,
the action of the trace operator γ− on V% in (3.3) should be understood by extending the
definition of the functions in V% by zero to the whole of the strip Ub \ Ū0, from S0 which is
their initial domain of definition. This implies that, for u ∈ V%, γ−u = 0 on Γ0 \ S0.

4. Existence and uniqueness results in weighted spaces

We shall establish that the boundary value problem (BVP) and the equivalent variational
problem (V) are uniquely solvable by using the result of [11, Thm. 4.1] in the non-weighted
case and a perturbation argument based on the commutator estimates. By Lemma 3.3 (ii)
the form (3.3) generates a continuous linear operator B% : V% → V ∗

−%, where V ∗
−% is the dual of

V−% (the space of continous anti-linear functionals on V−%) with respect to the scalar product
(·, ·) in L2(S0).

Theorem 4.1. Under the assumptions (2.1), (2.2) and |%| < 1, the operator B% is invertible.
In particular, (V) and hence (BVP) have a unique solution for all g ∈ L2

%(S0).

For % = 0, this was proved in [11, Thm. 4.1], using a Rellich identity and the generalized
Lax-Milgram theorem. Moreover, an explicit bound for the norm of B−1

0 in terms of k and
|b| was given there (using wave number dependent Sobolev norms on S0 and Γ0; see Remark
4.2 below). A significant idea in the proof of this theorem for the case % 6= 0 is the use of a
perturbation argument, reducing the proof of invertibility for % 6= 0 to that for % = 0. This
idea has been used previously to study rough surface scattering in 2D (n = 2) in weighted
spaces of continuous functions via integral equation methods in [2, 3]. A commutator result
for boundary integral operators (cf. Theorem 4.1) plays in [2] an important role, but the idea
there is to prove that the commutator is compact, or at least preserves Fredholmness, rather
than to show the stronger and more constructive result that the commutator is sufficiently
small in norm. (And it should be noted that the proof of properties of the commutator in
[2] is very much more straightforward than the proof of Theorem 3.1, not least because the
kernels of the boundary integral operators in [2] are absolutely integrable.) A key ingredient
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in our commutator estimate, Theorem 3.1, is the parameter a in the weight facto r. We note
that the idea of introducing such a parameter into commutator estimates goes back at least
to Shubin [33, Theorem 5.3], though we seem to be the first to use this idea in an estimate
of the commutator of a convolution operator with multiplication by a weight function in the
case when the convolution operator has a non-smooth symbol.

Proof for % 6= 0. Introduce equivalent norms ‖u‖L2
%

= ‖(a2+x2)%/2u‖L2 with parameter a > 0

and modify the norm (2.3) in V% correspondingly. We will choose a > 0 sufficiently large,
and set, for u ∈ V%, ϕ ∈ V−%,

v = (a2 + x2)%/2u ∈ V0 , ψ = (a2 + x2)−%/2ϕ ∈ V0 .

Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) ,(4.1)

where K = K1 +K2 with

K1(v, ψ) = (∇(a2 + x2)−%/2v,∇(a2 + x2)%/2ψ)− (∇v,∇ψ)

= (v∇(a2 + x2)−%/2, ψ∇(a2 + x2)%/2 + (∇v, ψ(a2 + x2)−%/2∇(a2 + x2)%/2)

+ (v(a2 + x2)%/2∇(a2 + x2)−%/2,∇ψ)

(4.2)

and

K2(v, ψ) =

∫
Γ0

{
(a2 + x2)%/2ψ̄ T (a2 + x2)−%/2v − ψ̄ Tv

}
dx = −

∫
Γ0

ψ̄ Cv dx(4.3)

with C defined in (3.2). For (4.2) we obtain the estimate

|K1(v, ψ)| ≤
(
|%|
2a

)2

‖v‖L2(S0)‖ψ‖L2(S0) +

(
|%|
2a

)(
‖∇v‖L2(S0)‖ψ‖L2(S0)

+ ‖v‖L2(S0)‖∇ψ‖L2(S0)

)
≤ |%|

2a
max

(
1,
|%|
2a

)
‖v‖V0‖ψ‖V0 .

(4.4)

Note that

sup
S0

∣∣∇(a2 + x2)|%|/2
∣∣(a2 + x2)−|%|/2 ≤ |%|/2a

and compare [15, Sec. 4].

Applying Theorem 3.1 to (4.3), we get

|K2(v, ψ)| ≤ c(%)
√
k/a ‖γ−v‖L2(Γ0) ‖γ−ψ‖L2(Γ0) ,(4.5)

and since ‖γ−v‖L2(Γ0) ≤ ‖γ−v‖H1/2(Γ0) ≤ c‖v‖V0 , (4.4) and (4.5) then imply that the norm of
the operator K0 : V0 → V ∗

0 generated by the form K tends to zero as a→∞. Finally, from
(4.1) we have

B% = (a2 + x2)−%/2(B0 +K0)(a
2 + x2)%/2 · .(4.6)

Since B0 is invertible, this operator is invertible provided that a is sufficiently large. �
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Remark 4.2. Introducing norms dependent on the wave number k and/or the parameter
a > 0, defined by

|||v|||H1/2(Γ0) =

(∫
Rn−1

(k2 + ξ2)|Fv|2 dξ
)1/2

,

|||u|||V% =

(∫
S0

(
k2|(a2 + x2)%/2u|2 + |∇

(
(a2 + x2)%/2u

)
|2) dx

)1/2

,

|||g|||L2
%(Sh) =

(∫
Sh

(
|(a2 + x2)%/2g|2 dx

)1/2

on H1/2(Γ0), V%, and L2
%(Sh), respectively, we can obtain a bound of the norm ‖B−1

% ‖ of

B−1
% : V ∗

−% → V% in terms of κ = k|b|, provided that the parameter a > 0 is chosen sufficiently
large. From (4.4) we see that

|K1(v, ψ)| ≤ |%|
2ka

(
1 +

|%|
2ka

)
|||v|||V0|||ψ|||V0 ,

and since (cf. [11])

‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,

(4.5) implies that

|K2(v, ψ)| ≤ c(%)√
ka
|||v|||V0|||ψ|||V0 .

Thus we have, for ka ≥ 1 and |%| < 1,

|K0(v, ψ)| ≤
(
|%|
2ka

(
1 +

|%|
2ka

)
+
c(%)√
ka

)
|||v|||V0|||ψ|||V0 ≤

|%|+ c(%)√
ka

|||v|||V0|||ψ|||V0 ,

so that ‖K0‖ ≤ (|%|+ c(%))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2

from [11, Thm. 4.1] and using (4.6), we obtain the norm estimate

‖B−1
% ‖ ≤ 2γ,(4.7)

provided that

‖K0‖ ≤ (|%|+ c(%))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,

which holds for a ≥ 4γ2(|%| + c(%))2/k. Since (V) written in operator form is the equation
B%u = g̃, where g̃ ∈ V ∗

−% is defined by g̃(v) = (g, v), v ∈ V−%, this implies that the solution u
of (V) satisfies

|||u|||V% ≤ 2γ|||g̃|||V ∗−%
≤ 2γk−1|||g|||L2

%(S0),(4.8)

provided ka ≥ max(1, 4γ2(|%|+ c(%))2).
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5. Applications

5.1. Plane Wave Incidence, Diffraction Gratings, and Other Scattering Problems.
As an application of Theorem 4.1, the problem of plane wave incidence in the 2D case (n = 2)
can be treated. That is, it can be shown, in appropriate function spaces, that the scattering
problem for plane wave incidence has exactly one solution in 2D (for a brief discussion of
what goes wrong in the 3D case, see Remark 5.5 below, and see Remark 5.6 for details of
3D scattering problems which can be tackled by Theorem 4.1). The incident plane wave has
the form

vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,

where θ is the angle of incidence, with |θ| < π/2. In this problem we look for the total field
v = vsc + vin, vsc being the unknown scattered field, such that

(∆ + k2)v = 0 in D , v = 0 on Γ ,(5.1)

and vsc satisfies an appropriate radiation condition.

This 2D rough surface scattering problem with plane wave incidence has been treated before,
by integral equation methods, in [17] where it is shown that there exists exactly one solution
v ∈ C2(D) ∩ C(D̄) such that v is bounded in Sh, for every h > 0, and vsc satisfies the
radiation condition in the form (2.5) (termed the upwards propagating radiation condition
(UPRC) in [17]). However, the proof in [17] is only for the case where ∂D is the graph of
a sufficiently smooth (C1,1) function (this, or at least a restriction to Lyapunov surfaces, is
an essential restriction due to the compactness arguments in the existence proofs in [17]).
In this section we will establish unique existence of solution for much more general surfaces,
with only the constraints (2.1) and (2.2) on ∂D that we impose throughout the paper.

To use the results of the previous section which are formulated in a Sobolev space setting,
including the results of Remark 4.2 which are formulated in terms of wave number dependent
norms, we will replace the assumption that v is bounded in Sh by an assumption that
v|Sh

∈ V ∞
h , for all h > 0, where

V ∞
h := {w ∈ Vh,−1 : |||w|||V∞h <∞}.

In this definition the (wave number dependent) norm |||w|||V∞h on V ∞
h is defined by

|||w|||V∞h := sup
m∈Z

|||w|Sm
h
|||H1(Sm

h ) , Sm
h := {x = (x1, x2) ∈ Sh : Am < x1 < A(m+ 1)} ,

A > 0 is a parameter at our disposal, and ||| · |||H1(Sm
h ) (cf. Remark 4.2) is a wave number

dependent norm on H1(Sm
h ), equivalent to the usual norm, defined by

|||w|||H1(Sm
h ) :=

(∫
Sm

h

(
k2|w|2 + |∇w|2) dx

)1/2

.

It is easy to see that V ∞
h is a Banach space and that the different choices of A > 0 in the

definition of ||| · |||V∞h provide a family of equivalent norms on V ∞
h .

In terms of V ∞
h our formulation of the plane wave scattering problem is as follows:

Plane Wave Scattering Problem (PW). Given k > 0 and θ ∈ (−π/2, π/2), find v ∈ H1
loc(D)∩

C2(D) such that v|Sh
∈ V ∞

h , for every h > 0,

∆v + k2v = 0 in D,

and such that vsc := v − vin satisfies the UPRC (2.5).
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Our main result in this subsection is the following, which is an immediate consequence of
Theorem 5.3 below.

Theorem 5.1. The plane wave scattering problem has exactly one solution. Moreover, for
every h > 0 there exists a constant Cp > 0, depending only on κ = k|b|, kh, and kA, such
that |||v|Sh

|||V∞h ≤ Cp.

An interesting application of this result is to the much-studied diffraction grating case where
D is periodic in the horizontal direction with some period A > 0, i.e.

x = (x1, x2) ∈ D ⇔ (x1 + A, x2) ∈ D.(5.2)

The standard formulation of the problem of plane wave scattering in the diffraction grating
case is the following (e.g. [20, 22]). In this formulation the function space V qp,θ

h denotes the
set of functions in H1

loc(Sh) that vanish on ∂D and are quasi-periodic in the x1-direction with
the same period and phase shift as the incident wave; more precisely

V qp,θ
h := {w ∈ V ∞

h : w((x1 + A, x2)) = w(x) exp(ikA sin θ), x ∈ Sh}.

Note that, for w ∈ V qp,θ
h , the norm |||w|||V∞h simplifies to

|||w|||V∞h = |||w|S0
h
|||H1(S0

h) .

Diffraction Grating Plane Wave Scattering Problem (DGPW) (e.g. [22]). Given k > 0 and

θ ∈ (−π/2, π/2), find v ∈ H1
loc(D) ∩ C2(D) such that v|Sh

∈ V qp,θ
h , for every h > 0,

∆v + k2v = 0 in D,

and such that vsc := v − vin satisfies the Rayleigh expansion radiation condition, that

(5.3) vsc(x) =
∑
m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0,

where the um are complex constants, αm := sin θ + 2πm/(kA), and

βm :=

{ √
1− α2

m, |αm| ≤ 1,

i
√
α2

m − 1, |αm| > 1.

It is shown in [22] that (DGPW) has exactly one solution in the case that ∂D is the graph of
an (A-periodic) Lipschitz function, by extending well-known arguments (see e.g. [25]), which
apply in the case when ∂D is the graph of a smooth function, to the non-smooth Lipschitz
case. The following corollary of Theorem 5.1 extends that result further to the much more
general case where ∂D is only required to satisfy (2.1), (2.2), and (5.2).

Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exactly one solution, and this
is the unique solution of (PW).

Proof. Suppose that v satisfies (DGPW). Then it is clear that v satisfies (PW), provided we
can show that v satisfying the Rayleigh expansion radiation condition implies that v satisfies
the UPRC (2.5). But this is shown in [8]. Conversely, suppose that v satisfies (PW). Then

v((x1 + A, x2)) = v(x) exp(ikA sin θ), x ∈ D,(5.4)

for otherwise w, defined by w(x) = v((x1 + A, x2)), is another, distinct solution of (PW),
which contradicts Theorem 5.1. Thus v satisfies (DGPW) provided that (5.3) holds. But, in
the case that (5.4) is satisfied, it is shown in [8] that (2.5) can be written in the form (5.3).

Thus v satisfies (PW) iff v satisfies (DGPW), and the corollary follows from Theorem 5.1. �
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We will prove Theorem 5.1 by applications of Theorem 4.1 and the observations in Remark
4.2. To apply these results we introduce the function u ∈ H1

loc(D) ∩ C1(D), related to the
solution v of (PW) by the formula

u(x) := vin(x)χ(x2) + vsc(x) = v(x) + (χ(x2)− 1)vin(x), x ∈ D ,(5.5)

where χ ∈ C1(R) is defined by

χ(t) :=


1, t < |b|,

cos2

(
π(t− |b|)

2|b|

)
, |b| ≤ t ≤ 2|b|,

0, t > |b|.
Moreover, define gP ∈ L∞(D) by

gP (x) = (χ′′(x2)− 2ik cos θ χ′(x2)) v
in(x), x ∈ D,(5.6)

so that (∆ + k2)u = gP in a distributional sense in D, supp gP ⊂ S−b, and gP ∈ L2
%(D) for

% < −1/2. Then Theorem 5.1 is an immediate consequence of the following result whose
proof is largely applications of Theorem 4.1.

Theorem 5.3. Define gP ∈ L∞(D) by (5.6). Then v satisfies (PW) if and only if v and u are
related by (5.5) and u satisfies the following boundary value problem: given % ∈ (−1,−1/2),
find u ∈ H1

loc(D) such that u|Sh
∈ Vh,%, for every h > 0,

(∆ + k2)u = gP in D ,

in a distributional sense, and u satisfies the radiation condition (2.4) with xn(= x2) replaced
by x2 − b. Moreover, for every h > 0 there exists a constant C ′

p > 0, depending only on
κ = k|b|, kh, and kA, such that |||u|Sh

|||V∞h ≤ C ′
p.

Proof. It is almost immediate from the observations immediately above the theorem that if v
satisfies (PWSC) then u, defined by (5.5), satisfies the above boundary value problem. The
only difficulty is to show the radiation condition. To see this we note that vsc satisfies the
radiation condition (2.5), from which it follows (see [9] and cf. Remark 2.2) that vsc satisfies
(2.5) with Γ0 replaced with Γc, for all c > 0, in particular with c = −b. Since u = vsc in Uc it
is immediate that v satisfies (2.5) with Γ0 replaced by Γ−b, which is equivalent (see Remark
2.2) to (2.4) with x2 replaced by x2 + b.

We next observe that it follows from Theorem 4.1 that the boundary value problem for u
has exactly one solution (u satisfies exactly a boundary value problem of the form of Section
2 after vertical translation of the axes by a distance |b|). The theorem is thus proved if
we can show that this solution satisfies that u|Sh

∈ V ∞
h , for every h > 0, and the bound

|||u|Sh
|||V∞h ≤ C ′

p.

To see this we make the following construction. Given h > 0 set h̃ := max(|b|, h) and, for
j ∈ Z, define Dj, gj ∈ L∞(Dn), and uj ∈ H1

loc(Dj), by

Dj := {(x1 + jA, x2 − h̃) : x = (x1, x2) ∈ D},

gj(x) := gP ((x1 − jA, x2 + h̃)) , uj(x) := u((x1 − jA, x2 + h̃)) , x ∈ Dj .

Then uj satisfies (BVP), with D replaced by Dj and g replaced by gj in (BVP). (Since u
satisfies (2.4) with x2 replaced by x2− b, it follows in the first instance that uj satisfies (2.4)

with x2 replaced with x2 − b − h̃, but this implies that (2.4) holds as written, by Remark
2.2.) Thus Theorem 4.1 and Remark 4.2 apply for % ∈ (−1,−1/2). In particular, choosing
ka sufficiently large (by Remark 4.2, how large is sufficient depends only the values of κ and

%), it follows from (4.8) that, for some constant cκ > 0 depending only on κ̃ := k(|b| + h̃)
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and %, |||uj|||V j
%
≤ cκk

−1|||gj|||L2
%(S0,j), for j ∈ Z, where S0,j and V j

% denote S0 and V%, respectively,

in the case D = Dj. Since, for some constant c > 0 depending only on %,

|||gj|||L2
%(S0,j) ≤

(∫
S0,j

(a2 + x2
1)

% dx

)1/2

‖gj‖L∞(S0,j) ≤ c|b|1/2a%+1/2‖gP‖L∞(S−b) ,

we see that

|||uj|||V j
%
≤ c′κ|b|−1/2a%+1/2, j ∈ Z,

for some constant c′κ depending only on κ̃ and %. Careful calculations yield that, again for
some constant c > 0 depending only on %, and where S0

0,j denotes S0
0 in the case D = Dj,

|||uj|S0
0,j
|||H1(S0

0,j)
≤ c(a2 + A2)−%/2|||uj|||V j

%
, j ∈ Z,

Thus

|||u|Sh
|||V∞h ≤ |||u|Sh̃

|||V∞
h̃

= sup
j∈Z

|||uj|S0
0,j
|||H1(S0

0,j)
≤ c′′κ

(
1 + A2/a2

)|%|/2
(ka)1/2,

where c′′κ > 0 depends only on κ̃ and %. Now this bound holds for all ka sufficiently large,
but how large is sufficient depends only on κ̃ and %. Thus, choosing such a sufficiently large
ka and choosing (say) % = −3/4, we see that the theorem is proved. �

Remark 5.4. Theorem 5.3 explains how, in the 2D case, the plane wave scattering problem
(PW) is equivalent to an instance of (BVP). This enables us to prove solvability of (PW) via
the reformulation of (BVP) in variational form as (V). This is convenient for the purpose of
proving Theorem 5.1 above, but, as a starting point for numerical computation (cf. Section
5.2 below), one would choose rather to reformulate (PW) directly in variational form. Argu-
ing analogously to the proof of Lemma 3.5, in particular using Lemma 3.4 which applies to
vsc, one can show that v satisfies (PW) if and only if, for some % ∈ (−1,−1/2), v|S0 satisfies
the variational problem: find v ∈ V% such that

B(u,w) = G(w) , ∀w ∈ V−% .(5.7)

where G ∈ V ∗
−% is defined by

G(w) =

∫
Γ0

γ−w̄

(
∂vin

∂x2

+ Tγ−v
in

)
ds(x) , w ∈ V−% .(5.8)

The restriction to the range % < −1/2 arises since vin ∈ V% for % < −1/2 but not for % =
1/2. Having solved this variational problem to determine v|S0 , v is determined throughout
D through (2.5) satisfied by vsc. Of course this variational formulation is well-posed, by
Theorem 4.1.

Remark 5.5. The above results show that the problem of plane wave incidence is well
posed in the 2D case. In the 3D case it seems to us likely that a solution to the problem
of plane wave incidence does not exist for every choice of domain D satisfying (2.1) and
(2.2). Certainly, the methods of argument above do not extend to the 3D case, for, in the
3D case, gP in Theorem 5.3 is in L2

%(D) only for % < −1, and G given by (5.8) is in V ∗
−%

only for % < −1, so that Theorem 4.1 does not apply. Further, even the formulation of the
3D plane wave problem appears problematic in 3D. Precisely, just as the radiation condition

(2.4) does not extend to a bounded linear functional on H
1/2
% (Γ0) for % < −1, it does not

extend to a bounded linear functional on L∞(Γ0) (which would require that the integral in
(2.5) be absolutely convergent for every u0 ∈ L∞(Γ0), which is true in 2D but not in 3D, as
a consequence of the asymptotics (2.8)). Thus it is difficult to envisage that the radiation
condition (2.4) or (2.5) can hold in general in the case of 3D plane wave incidence.
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Remark 5.6. In the 3D case, the above approach does apply to prove unique existence of
solution in weighted spaces in the cases of incoming spherical or cylindrical waves. That is,
it applies to the cases, respectively, where

vin(x) := Φ(x, z) =
1

4π

exp(ik|x− z|)
|x− z|

, x ∈ R3 \ {z},(5.9)

for some z ∈ D, and

vin(x) = H
(1)
0

(
k
√
x2

1 +H2

)
, x ∈ R3 \ ΣL,(5.10)

for some H ∈ R such that ΣL := {(0, x2, H) : x2 ∈ R} ⊂ D. This second case is the case of
an incident cylindrical wave generated by a line source occupying the line ΣL which, without
loss of generality we choose to lie in the plane x1 = 0. The problem in each case is to find
the unknown scattered field vsc and the total field v = vsc + vin, such that

(∆ + k2)vsc = 0 in D , v = 0 on Γ ,

and vsc satisfies an appropriate radiation condition.

One way to make use of Theorem 4.1 to study these scattering problems is to formulate
each scattering problem as an instance of (BVP) in section 2. To do this one can adapt the
construction already used around equation (2.7). Precisely, in the spherical wave case one
chooses ε > 0 such that dist(z, ∂D) > ε and replaces vin by ṽin which coincides with vin

except within distance ε of the source z, given by

ṽin(x) :=

{
vin(x), |x− z| > ε,

A+B
sin kr

r
, |x− z| ≤ ε,

where the constants A and B are chosen to ensure that ṽin ∈ C1(R3) (which is possible
provided that ε is chosen sufficiently small, e.g. if kε < 1). Then ṽin ∈ H2

loc(R3) with
(∆ + k2)vin = gS, where gS(x) := Ak2, |x − z| < ε, gS(x) := 0, otherwise. Similarly, in the
cylindrical wave case one chooses ε > 0 such that dist(ΣL, ∂D) > ε and replaces vin by ṽin

which coincides with vin except within distance ε of the source ΣL, given by

ṽin(x) :=

{
vin(x),

√
x2

1 + (x3 −H)2 > ε,

A+BJ0

(
k
√
x2

1 + (x3 −H)2
)
,
√
x2

1 + (x3 −H)2 ≤ ε,

where the constants A and B are chosen to ensure that ṽin ∈ C1(R3) (again this is possible
provided ε is chosen sufficiently small). Then ṽin ∈ H2

loc(R3) with (∆ + k2)vin = gC , where

gC(x) := Ak2,
√
x2

1 + (x3 −H)2 < ε, gC(x) := 0, otherwise. We observe that gS is compactly
supported so that gS ∈ L2

%(D) for every % ∈ R. Further, it is an easy calculation to see that

gC ∈ L2
%(D) for % < −1/2, but not for % = −1/2.

Since vin = ṽin, except in neighbourhoods of z or ΣL which do not intersect ∂D, so that,
in particular, vin = ṽin in a neighbourhood of ∂D, the substitution of vin by ṽin does not
change the scattered field vsc. Further, since ṽin ∈ H2

loc(R3), the scattering problem with this
modified incident field can be formulated as an instance of (BVP). Precisely, in the spherical
wave case, we can formulate the scattering problem as seeking the total field ṽ = ṽin + vsc

which satisfies (BVP) for some % ∈ (−1, 1), with g := gS ∈ L2
%(D) (and if supp g 6⊂ S0 one

needs to replace xn by xn − a in (2.4), for some a > 0 such that supp g ⊂ Sa). Theorem
4.1 tells us that there is exactly one solution to this boundary value problem, and that this
solution ṽ satisfies ṽ|Sh

∈ V h
% , for every h ≥ 0 and % ∈ (−1, 1). In the cylindrical wave case,

we seek the total field ṽ = ṽin + vsc which satisfies (BVP) for some % ∈ (−1,−1/2), with
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g := gC ∈ L2
%(D) (again, if supp g 6⊂ S0 one needs to replace xn by xn − a in (2.4), for some

a > 0 such that supp g ⊂ Sa). Theorem 4.1 again tells us that there is exactly one solution,
and that this solution ṽ satisfies ṽ|Sh

∈ V h
% , for every h ≥ 0 and % ∈ (−1,−1/2).

5.2. Analysis of a finite section method for the variational formulation. An ob-
vious approach to computing the solution to (BVP) numerically is to solve the variational
formulation (V) by a finite element method. This is a standard approach for the numerical
treatment of the diffraction grating problem (DGPW) [20, 22], but in that case the corre-
sponding variational formulation, thanks to the periodicity, reduces to one on S0

0 , a single
period of S0. In the case of (V) the region of integration is the whole infinite region S0. Thus
a necessary first step towards solving (V) numerically is to approximate (V) by a variational
formulation on a domain of finite size, to which standard FEMs can then be applied.

We are not aware of any analysis of such an approximation for the variational formulation
(V), or for any similar variational formulations for rough surface scattering problems. How-
ever, the analogous approximation when boundary integral equation methods are applied to
(BVP), namely truncation of the region of integration, which is the infinite boundary ∂D, to
a finite part of that boundary (a so-called finite section approximation) has been analysed
in both the 2D case [27] (and see [28, 23]) and, very recently, in the much more difficult 3D
case [24]. In [27, 24] convergence and stability of modifications of the finite section method
are proved. In the theses [28, 23] (cf. [16]), for the easier 2D case, convergence rates are also
established, via results on stability and convergence of the finite section method in weighted
spaces of continuous functions.

In this section we prove stability and convergence of an approximation method in the same
spirit for (V). This approximation method consists simply in replacing S0 by a finite region
S(R) ⊂ S0 which coincides with S0 in the region |x| < R + 1, and making the same ap-
proximation for D, so that D is replaced by D(R) ⊂ D, with S(R) = D(R) \ Ū0. The only
constraint on the choice of S(R) is that (2.1) and (2.2) should apply to D(R); this is the case,
for example, for the simple explicit choice S(R) := {x = (x, xn) ∈ S0 : |x| < R+ 1}. In addi-
tion to proving stability and convergence, we also establish rates of convergence for the error
measured in weighted spaces. In the case when g, the source of the acoustic waves, is com-
pactly supported, these results imply that, locally in the energy norm, the error converges
at a rate O(Rε−2), for every ε > 0. This convergence rate is consiste nt with those obtained
previously by methods specific to the 2D case for boundary integral equation formulations
[28, 16, 23]. For example, the results in [28], in the case when the boundary Γ is the graph of
a function which is sufficiently smooth, imply a convergence rate R−2 locally in the uniform
norm for the solution of a boundary integral formulation when the source of the acoustic
waves is compactly supported and the finite section that is taken coincides with Γ inside a
ball of radius R.

Given g ∈ L2
%(S0), with |%| < 1, let u ∈ V% be the unique solution of the variational problem

(V), so that

B(u, v) = −(g, v) , ∀v ∈ V−% .(5.11)

For R > 0, we approximate problem (5.11) by a corresponding variational equation on the

bounded domain S(R). For % ∈ R and R > 0 let V
(R)
% denote the Hilbert space V% in the case

that we replace D by D(R); explicitly V
(R)
% denotes the completion of {u|

S
(R)
0

: u ∈ C∞
0 (D(R))}
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in the norm

‖u‖
V

(R)
%

=

(∫
S

(R)
0

(∣∣(1 + x2)%/2u
∣∣2 +

∣∣∇((1 + x2)%/2u)|2
)
dx

)1/2

.(5.12)

We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
%

, % ∈ R, are equivalent

since S
(R)
0 is bounded, so that, as linear spaces, for % ∈ R, V

(R)
% = V (R) := V

(R)
0 . The

approximating variational problem is the following: find u(R) ∈ V (R) such that

B(R)(u(R), v) = −(g, v) , ∀v ∈ V (R) .(5.13)

Here B(R) is the continuous sesquilinear form on V (R)×V (R) defined by (3.3) with D replaced
by D(R), i.e. defined by

B(R)(u, v) :=

∫
S

(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫
Γ

(R)
0

γ−v̄ Tγ−u ds(x) ,(5.14)

where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this case).

Making the observation that we can view V
(R)
% as a closed subspace of V% (the elements of

V
(R)
% become elements of V% if we extend them by zero from S

(R)
0 to S0), the analysis of the

error in approximating u by u(R) follows the usual pattern for analysing the Galerkin method
for variational problems via a generalized Céa’s lemma. Precisely, if ũ ∈ V (R) ⊂ V%, then,
for v ∈ V (R), applying (5.11),

B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v)− (g, v) .

Subtracting this equation from (5.13) we see that

B(R)(ũ− u(R), v) = B(ũ− u, v) , ∀v ∈ V (R) .(5.15)

Now recall from Section 4 that B% : V% → V ∗
−% is our notation for the bounded linear operator

induced by the continuous sesquilinear form B. Similarly, let B(R)
% : V

(R)
% → V

(R)
−%

∗
denote

the operator induced by the sesquilinear form B(R); in other words B(R)
% is just B% in the case

that D is replaced by D(R). From Theorem 4.1 it is clear that B(R)
% is invertible for every

R > 0 and % ∈ (−1, 1). From Remark 4.2 it is clear, moreover, that ‖(B(R)
% )−1‖ is bounded

uniformly for R > 0, with a bound which depends only on |b|, k, and %. Thus from (5.15) it
follows that, for %1 ∈ (−1, 1),

‖ũ− u(R)‖
V

(R)
%1

≤ c‖ũ− u‖V%1
,

where the constant c > 0, which depends only on |b|, k, and %1, is an upper bound for

‖B%1‖ supR>0 ‖(B
(R)
%1 )−1‖. Thus

‖u− u(R)‖V%1
≤ (1 + c) inf

ũ∈V
(R)
%1

‖ũ− u‖V%1
.(5.16)

To obtain a more concrete error estimate, choose a cut-off function χR ∈ C∞
0 (Rn−1) such

that, for all R > 0,

χR(x) := 1 for |x| < R ,χR(x) := 0 for |x| > R + 1 , sup
Rn−1

{|χR|+ |∇χR|} ≤ c1 ,

for some constant c1 > 0 independent of R. Defining ũ ∈ V (R)
%1 by ũ(x) := u(x)χR(x), x ∈ S0,

we see using Lemma 2.1 that, for −1 < %1 ≤ %, where S̃R
0 := {x ∈ S0 : |x| > R} and c2, c3,
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and c4 denote further constants dependent only on % and |b|,
‖ũ− u‖V%1

= ‖(1− χR)u‖V%1

≤ c2

(∫
S̃R

0

(1 + x2)%1
(
|u|2 + |∇u|2

)
dx

)1/2

≤ c3R
%1−%

(∫
S̃R

0

(1 + x2)%
(
|u|2 + |∇u|2

)
dx

)1/2

≤ c4R
%1−% ‖u‖V% .

We see that we have proved the following result:

Theorem 5.7. Suppose g ∈ L2
%(S0), with |%| < 1, and let u ∈ V% be the unique solution of

the variational problem (V). Choose, for R > 0, approximating domains D(R) ⊂ D which
satisfy (2.1) and (2.2), and are such that S(R) ⊂ S0 is bounded and S(R) ⊃ ΩR := {x ∈ S0 :
|x| < R + 1}. Then the approximating variational problem (5.11) on the finite region S(R)

has exactly one solution u(R) for every R > 0. Further, for some constant c > 0 dependent
only on k, %, %1, and |b|, it holds for −1 < %1 < % that

‖u− u(R)‖
V

(R)
%1

≤ cR%1−% ‖u‖V% .

As a consequence, for every R1 > 0, it holds that ‖u− u(R)‖H1(ΩR1
) = O(R%1−%) as R→∞.

In particular, if g ∈ L2
%(S0) for every % < 1, which holds for example if g is compactly

supported, then, for every ε > 0 and R1 > 0,

‖u− u(R)‖H1(ΩR1
) = O(Rε−2) as R→∞ .

6. Commutator estimates

This section is devoted to the proofs of Theorem 3.1 and Lemma 3.4 (i). Let k > 0, a > 0,
and consider the pseudodifferential operator Ta on Rm, m = n− 1 = 1, 2, with symbol ta(ξ):

Tau(x) = F−1ta(ξ)Fu(ξ) , ta(ξ) := a−1
√
ξ2 − k2a2 .(6.1)

Here and in the following the square root is chosen so that its argument lies in [−π/2, 0]:

ta(ξ) = (−i/a)
√
k2a2 − ξ2, |ξ| ≤ ka; ta(ξ) = (1/a)

√
ξ2 − k2a2, |ξ| > ka .(6.2)

We have T1 = T , t1 = t, where T and t are defined in (3.1).

Using a scaling argument, we reduce the assertion of Theorem 3.1 to a corresponding estimate
for the commutator defined by

Ca := Ta − (1 + x2)%/2Ta(1 + x2)−%/2 · .(6.3)

With Sau(x) := u(ax) we obtain FSau = a−mS1/aFu, and the same relation holds with F
replaced by F−1. Hence

amSaF
−1tFu = F−1(S1/at)S1/aFu = amF−1(S1/at)FSau ,

giving SaTu = TaSau, where Ta is the operator (6.1) with the symbol t(ξ/a) = ta(ξ). From
(3.2) and (6.3) we then have

SaC = TaSa − (1 + x2)%/2Ta(1 + x2)−%/2Sa = CaSa .(6.4)

Using the relation ‖Sau‖L2(Rm) = a−m/2‖u‖L2(Rm) and (6.4), we now observe that Theorem
3.1 is equivalent to the following
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Theorem 6.1. For ka ≥ 1 and |%| < 1, the commutator Ca defined in (6.3) has norm

≤ c(%)
√
k/a on L2(Rm).

It is enough to consider % ∈ (0, 1) since the case of negative % then follows by duality (with
respect to the scalar product on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1− χ(|ξ|)) ta(ξ) ,(6.5)

where χ is a suitable cut-off funtion (see below), and consider the corresponding decompo-
sition of Ta,

Ta = T (0) + T (1) ,(6.6)

where T (j) is defined by (6.1) with t(j) in place of ta. Then the commutator Ca takes the
form

Ca = C(0) + C(1) =:
(
T (0) − (1 + x2)%/2T (0)(1 + x2)−%/2 ·

)
+
(
T (1) − (1 + x2)%/2T (1)(1 + x2)−%/2 ·

)
.

(6.7)

We will estimate the norm of the operators

N := (1 + x2)−%/2C(0) : L2(Rm) → L2
%(Rm) ,(6.8)

N̂u := FNF−1u, N̂ : L2(Rm) → H%(Rm) ,(6.9)

T̂ := t(1)(ξ)· : H%(Rm) → H%(Rm) .(6.10)

In view of (6.7)–(6.10), and recalling that F is an isometry of L2
%(Rm) onto H%(Rm) for every

% ∈ R, Theorem 6.1 then follows from

Theorem 6.2. (i) For % ∈ (0, 1], the norm of N̂ is bounded by c(%)
√
k/a.

(ii) For % ∈ [0, 1), the norm of T̂ is bounded by c(%)
√
k/a, too.

We now choose the cut-off function χ ∈ C∞[0,∞) with 0 ≤ χ ≤ 1 and

χ(r) = 0 on |r − ka| ≤ 1/3 , χ(r) = 1 on |r − ka| ≥ 2/3 ,(6.11)

and such that, for some c > 0 independent of ka ≥ 1.

|∂rχ(r)| ≤ c on R+ .(6.12)

Note that (6.11) implies

∂rχ(r) = 0 on {|r − ka| ≤ 1/3} ∪ {|r − ka| ≥ 2/3} .(6.13)

To prove Theorem 6.2, we need some auxiliary results.

Lemma 6.3. For ka ≥ 1, where r = |ξ|, we have |∂rt
(0)(ξ)| ≤ c

√
k/a on R+.

Proof. Setting h(r) := ata(ξ) = (r − ka)1/2(r + ka)1/2 for r > ka and h(r) := iata(ξ) =
(ka− r)1/2(r + ka)1/2 for r < ka, we obtain

∂rh =

{
r/h, r > ka,
−r/h, 0 ≤ r < ka,

∂2
rh = −k2a2/h3 , r 6= ka ,

which implies that ∂j
rh (j = 1, 2) do not change sign on (0, ka) and (ka,∞). Therefore, the

maximum of h on 1/3 ≤ |r − ka| ≤ 2/3 is attained at r = ka − 2/3 or r = ka + 2/3, while
the maximum of |∂rh| on |r − ka| ≥ 1/3 is attained at r = ka − 1/3 or r = ka + 1/3, and

both maxima are bounded above by c
√
ka. Together with (6.11)–(6.13), this easily implies

the result. �
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To prove Theorem 6.2 (i), we write (cf. (6.7)–(6.9))

N̂Fu(ξ) =
∫

Rm b%(ξ − η) (t(0)(η)− t(0)(ξ))Fu(η)dη , u ∈ C∞
0 (Rm) ,(6.14)

with b% := F (1 + x2)−%/2. Here the integral in (6.14) is well defined since Fu is rapidly
decreasing and b% ∈ L1(Rm) for % > 0 (see the next lemma), and we have used the relation
F (1 + x2)−%/2v = b% ∗ Fv for a function v of rapid decay, with ∗ denoting convolution.

Lemma 6.4. For any % > 0, the functions b% and |ξ|∇ξb% are rapidly decreasing as |ξ| → ∞
and belong to L1(Rm).

For the proof of this, we refer to [29, Chap. 8.1]; see also [34, Chap. 5.3].

Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥∥∥∥∫

Rm

|b%(ξ − η)| |ξ − η| sup
R+

|∂rt
(0)| |Fu(η)| dη

∥∥∥∥
L2(Rm)

≤ c
√
k/a ‖ |ξ|b%‖L1(Rm) ‖Fu‖L2(Rm)

(6.15)

using the mean value theorem and Young’s inequality. Moreover, since

∇ξN̂Fu(ξ) =

∫
Rm

(
t(0)(η)− t(0)(ξ)

)
∇ξb%(ξ − η) Fu(η) dη

+

∫
Rm

b%(ξ − η) (−∇ξt
(0)(ξ)) Fu(η) dη ,

we obtain analogously

‖∇N̂Fu‖L2(Rm) ≤ c
√
k/a

(
‖ |ξ|∇b%‖L1(Rm) + ‖b%‖L1(Rm)

)
‖Fu‖L2(Rm) .(6.16)

Together with Lemma 6.4, (6.15) and (6.16) imply that for any % ∈ (0, 1] the operators N̂ :

L2(Rm) → L2(Rm) and N̂ : L2(Rm) → H1(Rm) have norm ≤ c(%)
√
k/a. By interpolation,

we then get the result. �

Proof of Theorem 6.2 (ii). We have to show that the multiplication operator

T̂ v = (1− χ(|ξ|)) a−1
√
ξ2 − k2a2 v : H%(Rm) → H%(Rm) , 0 ≤ % < 1 ,(6.17)

has norm ≤ c(%)
√
k/a. Note that the support of 1−χ is contained in the setR := {|r−ka| ≤

2/3}, r = |ξ|; see (6.11). By localization, (6.17) can be reduced to an estimate of the form

‖qv‖H%(Rm) ≤ c(%)
√
k/a ‖v‖H%(Rm) , 0 ≤ % < 1 ,(6.18)

where

q(ξ) := a−1
√
ξm (ξm + 2ka)1/2 ψ(ξm)(6.19)

with ψ ∈ C∞
0 (−2/3, 2/3) fixed and

√
ξm = −i|ξm|1/2 for ξm < 0. This reduction is clear for

m = 1, where one has to localize near ξ1 = ka and ξ1 = −ka. For m = 2, we parametrize
the annulus R by ξ2 := r − ka and arclength ξ1 on |ξ| = r = ka and need two local charts
again to cover R. Note that the Jacobians of the corresponding coordinate transformations
(with respect to the original ξ-coordinates) are uniformly bounded from above and below for
ka ≥ 1. We omit the details since we present an alternative approach in the 3D case below.

To prove (6.18), we first observe that the operator of multiplication by q1 := a−1(ξm +
2ka)1/2 ψ has norm

sup
R
|q1| ≤ c

√
k/a and ≤ sup

R
|q1|+ sup

R
|∂mq1| ≤ c

√
k/a
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in L2(Rm) and H1(Rm), respectively. Note that ka ≥ 1 implies 1/a ≤ k and

a−1(ξm + 2ka)−1/2 |ψ| ≤ ca−1/
√
ka ≤ c

√
k/a .

By interpolation, the norm of this multiplication operator in H%(Rm) is then bounded by

c(%)
√
k/a. It remains to show that

‖
√
ξm ϕ(ξm) v‖H%(Rm) ≤ c(%) ‖v‖H%(Rm) , 0 ≤ % < 1 ,(6.20)

where ϕ is a smooth function with somewhat larger support and ϕψ = ψ.

Let first m = 1. Then (6.20) follows for % ∈ (1/2, 1) since
√
ξ1 ϕ ∈ H%(R) for % < 1 (but not

for % = 1) and H%(R) is a Banach algebra. Since (6.20) is obvious for % = 0, we obtain the
result by interpolation. Note that the constant c(%) blows up as %→ 1.

For m = 2, the proof of (6.20) can easily be reduced to the case m = 1 by using the relation
(cf. [26, Chap. 1])

H%(R2) = L2(R;H%(R)) ∩H%(R;L2(R))

and the fact that the function (6.19) is independent of ξ1. �

Remark 6.5. An alternative proof of Theorem 6.2 (ii) for m = 2 can be given by the
following more direct reduction to the case m = 1. Let (r, θ) be polar coordinates in R2,
and consider a multiplication operator M := q· on H%(R2), % ∈ (0, 1], with a continuous
function q = q(r) only depending on the radial variable, supp q ⊂ [1/3, 2/3], and such that
q· considered as a multiplication operator on H%(R) is bounded with norm ‖q · ‖%. Then the
norm of M on H%(R2) is bounded by a positive constant c(%). Applying this to the operator

T̂ defined in (6.17) and using Theorem 6.2 (ii) for m = 1, we get the result for m = 2.

To prove the above norm estimate for M, we first note that L2(R2) is the orthogonal sum
of the subspaces

Hj := {v ∈ L2(R2) : v = f(r) exp(ijθ) ,

∫ ∞

0

|f(r)|2 r dr <∞} , j ∈ Z ,

and the Fourier transform leaves each space Hj invariant; see [35, Chap. 4.1]. Therefore, it
is sufficient to verify that

‖qf exp(ijθ)‖H%(R2) ≤ c(%) ‖f exp(ijθ)‖H%(R2)(6.21)

for each j ∈ Z and f ∈ C∞
0 (0,∞). Furthermore we have, uniformly in j,

‖qf exp(ijθ)‖L2(R2) ∼ ‖r1/2qf‖L2(R) ,

‖qf exp(ijθ)‖H1(R2) ∼ ‖qf exp(ijθ)‖L2(R2) + ‖∂rqf exp(ijθ)‖L2(R2) + ‖qfr−1∂θ exp(ijθ)‖L2(R2)

∼ ‖r1/2qf‖H1(R) + (1 + |j|) ‖r−1/2qf‖L2(R)

and thus by interpolation,

‖qf exp(ijθ)‖H%(R2) ∼ ‖r1/2qf‖H%(R) + (1 + |j|)% ‖r1/2−%qf‖L2(R) ,(6.22)

where ∼ means equivalence of norms. Here we used standard interpolation of Sobolev norms
and the interpolation theorem for weighted L2 spaces (see [37, Chap. 1.18.5]). Now (6.22)
and the boundedness of q· on H%(R) imply the estimates

‖qf exp(ijθ)‖H%(R2) ≤ c(%)
{
‖qr1/2f‖H%(R) + (1 + |j|)% ‖qr1/2−%f‖L2(R)

}
≤ c(%) max(‖q · ‖% , sup |q|)

{
‖r1/2f‖H%(R) + (1 + |j|)% ‖r1/2−%f‖L2(R)

}
≤ c(%) max(‖q · ‖% , sup |q|) ‖f exp(ijθ)‖H%(R2)
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giving (6.21).

Remark 6.6. (i) Repeating the above proofs with a fixed cut-off function χ vanishing in a
neighbourhood of |ξ| = k, we obtain the norm estimate of Lemma 3.2 for the commutator
T − (1+x2)%/2T (1+x2)−%/2·. Here we need not take care of the dependence of the constants
on a and k.

(ii) Note that the symbol t(0) = χt of the pseudodifferential operator T (0) = F−1t(0)F is a
smooth function satisfying |t0| ≤ c(1 + ξ2)1/2 and |∇t0| ≤ c on Rm, and this is enough to
obtain the boundedness of the commutators T (0) − (1 + x2)%/2T (0)(1 + x2)−%/2·, |%| ≤ 1, on
L2(Rm); see the estimates (6.15) and (6.16).

Applying this to the operator Λ := F−1(1 + ξ2)1/2F which is an isomorphism of H1(Rm)
onto L2(Rm), we observe that Λ is also an isomorphism of H1

%(Rm) onto L2
%(Rm), and F is

an isomorphism of H1
%(Rm) onto H%

1 (Rm), at least for |%| ≤ 1. This is also true for arbitrary
% ∈ R; see [31] and [38].

(iii) Let σ(ξ) be a smooth symbol satisfying the estimates |σ| ≤ c, |∇ξσ| ≤ c(1 + ξ2)−1/2 on
Rm. Then, for A := F−1σF and |%| ≤ 1, the commutator

A− (1 + x2)%/2A(1 + x2)−%/2· : L2(Rm) → H1(Rm)

is bounded. This follows from (ii) applied to the operator B = ΛA with the symbol (1 +
ξ2)1/2σ(ξ) and the relation

Λ−1B − (1− x2)%/2Λ−1B(1 + x2)−%/2· = Λ−1
(
B − (1 + x2)%/2B(1 + x2)−%/2 ·

)
+
(
Λ−1 − (1 + x2)%/2Λ−1(1 + x2)−%/2 ·

)
(1 + x2)%/2B(1 + x2)−%/2 · .

(6.23)

Note that B is bounded on L2
%(Rm).

More general results on pseudodifferential operators with smooth symbols in weighted Sobolev
spaces can be found in [31] and [38].

Finally, we proceed to

Proof of Lemma 3.4 (i). From (2.4) we have, for u0 ∈ C∞
0 (Γ0),

u(x, xn) = F−1 exp(−xnt(ξ))Fu0 =: M0u0 , t(ξ) :=
√
ξ2 − k2 ,

∇xu(x, xn) = F−1iξ exp(−xnt(ξ))Fu0 =: M1u0 = ∇xM0u0 ,(6.24)

∂nu(x, xn) = F−1(−t(ξ)) exp(−xnt(ξ))Fu0 =: M2u0 = −TM0u0 .

We have to prove the estimates, for |%| < 1 and h > 0,

‖u‖H1
%(U0\Ūh) ≤ c(h, %)‖u0‖H

1/2
% (Γ0)

, u0 ∈ C∞
0 (Γ0) ,

or equivalently, with m = n− 1,∫ h

0

∫
Rm

(1 + x2)%

2∑
j=0

|Mju0|2 dx dxn ≤ c(h, %) ‖(1 + x2)%/2u0‖2
H1/2(Rm) .(6.25)

This was proved in [11] for % = 0 by taking Fourier transform. To verify (6.25) for % 6= 0, it
is then sufficient to show that the commutators

Mj − (1 + x2)%/2Mj(1 + x2)−%/2· , j = 0, 1, 2 ,
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are uniformly bounded on L2(Rm) with respect to xn ∈ (0, h); compare the proof of Lemma
3.3 (ii). We can write (cf. relation (6.23))

AM0 − (1 + x2)%/2AM0(1 + x2)−%/2· = A
(
M0 − (1 + x2)%/2M0(1 + x2)−%/2 ·

)
+
(
A− (1 + x2)%/2A(1 + x2)−%/2 ·

)
(1 + x2)%/2M0(1 + x2)−%/2· ,

(6.26)

where A is one of the operators ∂j = ∂/∂xj, 1 ≤ j ≤ m, and T . Therefore it is enough to
prove the uniform boundedness of

M0 : L2
%(Rm) → L2

%(Rm) , |%| < 1 ,(6.27)

M0 − (1 + x2)%/2M0(1 + x2)−%/2· : L2(Rm) → H1(Rm) ,(6.28)

since ∂j, T : H1(Rm) → L2(Rm) are bounded, the commutators ∂j−(1+x2)%/2∂j(1+x2)−%/2·
are obviously bounded on L2(Rm), while the commutator T − (1 + x2)%/2T (1 + x2)−%/2· is
bounded there by Lemma 3.2.

By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates

‖m(xn, ξ) v‖H%(Rm) ≤ c(h, %)‖v‖H%(Rm) , v ∈ C∞
0 (Rm) , xn ∈ (0, h) ,(6.29)

where m(xn, ξ) = exp(−xnt(ξ)). Consider a decomposition t = t(0) + t(1) as in (6.5), with
a = 1, t(0) = χt, t(1) = (1−χ)t and a cut-off function χ vanishing near |ξ| = k, so that t(0) is
a smooth symbol. We introduce the multiplication operators M = m(xn, ξ)· = M(1)M(0),
M(j) = exp(−xnt

(j)(ξ))·, xn ∈ (0, h), and check the uniform boundedness of

M(0) : H%(Rm) → H%(Rm) , |%| ≤ 1 ,(6.30)

M(1) : H%(Rm) → H%(Rm) , |%| < 1 .(6.31)

Since we have, for xn ∈ (0, h) and m0(xn, ξ) = exp(−xnt
(0)(ξ)),

|m0(xn, ξ)| ≤ c(h) , |∇ξm0(xn, ξ)| ≤ c(h)(1 + ξ2)−1/2 on Rm ,(6.32)

the norm of (6.30) is bounded by some constant c(h). To get a bound for (6.31), we write

exp(−xnt
(1)) =

∑
j≥0

xj
n(−t(1))j/j!(6.33)

and apply the proof of Theorem 6.2 (ii) to estimate the norm of (6.31) by∑
j≥0

hjc(%)j/j! = exp(hc(%)) .

This finishes the proof of (6.27).

To prove the uniform boundedness of (6.28), we write

M0 − (1 + x2)%/2M0(1 + x2)−%/2· = M (1)
(
M (0) − (1 + x2)%/2M (0)(1 + x2)−%/2 ·

)
+
(
M (1) − (1 + x2)%/2M (1)(1 + x2)−%/2 ·

)
(1 + x2)%/2M (0)(1 + x2)−%/2· ,

(6.34)

where M (j) = F−1 exp(−xnt
(j)(ξ))F , j = 0, 1. By (6.32) and Remark 6.6 (iii), we obtain the

uniform boundedness of

M (0) − (1 + x2)%/2M (0)(1 + x2)−%/2· : L2(Rm) → H1(Rm) .

Moreover, M (1) is obviously bounded on H1(Rm) since its symbol is uniformly bounded. In
view of (6.30) and the isometry F : L2

%(Rm) → H%(Rm), it is then sufficient to verify that

the last commutator in (6.34) is uniformly bounded from L2(Rm) into H1(Rm), and for this
it is enough to show the uniform boundedness of

N (1) = M (1) − I : L2
%(Rm) → H1

%(Rm) , |%| < 1 , xn ∈ (0, h) ,(6.35)
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where I is the identity operator, and the symbol of N (1) is n1(xn, ξ) = exp(−xnt
(1)(ξ))− 1.

Taking Fourier transform and using Remark 6.6 (ii), (6.35) is then equivalent to the uniform
boundedness of

n1(xn, ξ)· : H%(Rm) → H%
1 (Rm) , |%| < 1 .(6.36)

Consider the multiplication operatorN (1) = (1+ξ2)1/2n1(xn, ξ)·. Then, using relation (6.33),
estimate (6.31) can be proved (in the same way) for N (1) in place of M(1); recall that t(1)

has compact support. This easily implies (6.36), which finishes the proof of (6.28). Thus
Lemma 3.4 (i) is proven. �
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