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Abstract

We investigate the scattering phenomena in two dimensions produced by a
general finite-range nonseparable potential. This situation can appear either
in a Cartesian geometry or in a heterostructure with cylindrical symmetry.
Increasing the dimensionality of the scattering problem new processes as the
scattering between conducting channels and the scattering from conducting
to evanescent channels are allowed; for certain values of the energy, called
resonance energy, the transmission through the scattering region changes dra-
matically in comparison with an one-dimensional problem. If the potential
has an attractive character even the evanescent channels can be seen as dips
of the total transmission. The multi-channel current scattering matrix is de-
termined using its representation in terms of the R-matrix. The resonant
transmission peaks are characterized quantitatively through the poles of the
current scattering matrix. Detailed maps of the localization probability den-
sity sustain the physical interpretation of the resonances. Our formalism is
applied to a quantum dot in a two-dimensional electron gas and to a conical
quantum dot embedded inside a nanowire.

1 Introduction

There is a permanent requirement of shrinking the semiconductor devices in inte-
grated circuits [1]. As feature sizes shrink into the nanometer scale regime, the
device behavior becomes increasingly complicated since new physical phenomena at
short distances occur and limitations in material properties are reached. In order
to keep the good characteristics for transistors, new transistor architectures were
developed progressively in the last decade.
Nowadays, there are developments of planar MOSFETs (metal oxide semiconductor
field effect transistors) [2] as well as of gate-all-around (GAA) MOSFETs [3, 4, 5].
Both systems are also strongly related to more fundamental research structures de-
veloped in the last years, like in-plane-gate transistors [6], single-electron transistors
[7], silicon on insulator planar double-gate transistors [8], non-planar double-gate
FinFETs [9], non-planar trigate transistors [10], nanowire-based field-effect transis-
tors (FET) [11], nanowire resonant tunneling diodes [12, 13], nanowire lasers [14],
or nanowire qubits [15], whose maturity has still to be proven for industrial appli-
cations. Their structural complexity has also progressively increased, allowing for
double-barrier structures [12, 13], or multiple core-shell layers [16, 14]. The material
composition includes mainly III-V materials GaAs/AlGasAs [6, 7, 13], InAs/InP
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[12], GaN/InGaN [14], but also group IV materials Si [4, 17], and Si/Ge [11, 15],
predominant in the industry.
The transport phenomena in these mesoscopic devices go beyond the semi-classical
limit, and a quantum mechanical description of the current and charge densities [18]
is necessary. The most appropriate method for analyzing semiconductor devices with
an active region in the nanometer scale and which are almost open (i.e. showing a
strong coupling between the active region and contacts) is the scattering theory.
This paper is focused on systems for which the scattering process is a two-dimensional
one. Such systems can appear either in a Cartesian geometry, like for devices tai-
lored in a two-dimensional electron gas (2DEG) [6, 7], or in a cylindrical geometry,
like for nanowire-based devices [3, 4, 5, 12, 13]. In these systems there is a strong
confinement of the motion in one direction, called transversal direction, while the
transport occurs in the other direction, called longitudinal direction. The scattering
problem is a two-dimensional one because the scattering potential is nonseparable,
and also the incoming electrons can choose different energy channels for transport
which are mixed due to the scattering.
We present in this work a general method, valid within the effective mass approxi-
mation, for solving the two-dimensional (2D) Schrödinger equation with scattering
boundary conditions. Its solutions are found using the scattering theory and the
R-matrix formalism [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. This method is a
semi-analytical one, and it gives the scattering functions in each point inside and
outside the scattering area and for each energy as a function of the solutions of
the Wigner-Eisenbud problem. As known from the nuclear physics, the Wigner-
Eisenbud problem is the eigenvalue problem of the Hamilton operator for the closed
counterpart of the considered open quantum system [30]. The R-matrix formalism
is not only numerically very efficient, but it is also suitable for higher dimensional
nanostructures with complex geometry [20, 21, 22, 24, 25] and general nonseparable
scattering potential [31, 32]. It can also deal with more than two terminals [26, 29].
Using the scattering functions we analyze further the transport properties of the
open quantum structures, especially the conductance. Besides the low dimensional-
ity of such systems, the open character is also an essential feature which controls the
transport phenomena through the structure. When the quantum system becomes
open, its eigenstates yield resonance states which do not have an infinite life time
anymore and which are not strictly localized inside the quantum system. In this
paper we identify the signature of the resonance in each conductance peak and study
the influence of the nonseparable character of the potential on the resonances and
on the conductance through the system.
An interesting effect in a multi-channel scattering problem is that as soon as the
potential is not separable anymore, the channels get mixed. If furthermore the
scattering potential is attractive, then it leads to unusual scattering properties, like
resonant dips in the transmission coefficient just below the next channel minimum
energy. As it was shown analytically for a δ scattering potential [33] and later on for
a finite-range scattering potential [34, 35] the dips are due the to quasi-bound-states
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splitting off from a higher evanescent channel. So that evanescent channels can
not be neglected when analyzing scattering in two- or three-dimensional quantum
systems. These findings were recently confirmed numerically for a Gaussian-type
scatterer [36] and also for a quantum dot or a quantum ring [37] embedded inside
nanowires tailored in a two-dimensional electron gas (2DEG), or inside cylindrical
nanowires [31]. The high resolution maps for the "near field" scattering wave func-
tions presented in Refs. [36, 37, 31] show explicitly increased localization probability
around the scatterer for energies of the quasi-bound states, in agreement with the
resonant reflection or resonant back-scattering interpretation of these dips [33, 34].
The Cartesian and cylindrical geometries present different "selection rules" for the
intersubband transmission [31].

2 Model

The electronic states in mesoscopic systems are easily described within the effective
mass approximation whose validity requires that the envelope function Ψ(E,~r) must
be slowly varying over dimensions comparable to the unit cell of the crystal [38].
In the spherical effective mass approximation, the envelope function associated to
the energy E3D satisfies a Schrödinger-type equation[

− ~2

2m∗∆ + V (~r)
]
Ψ(~r) = E3DΨ(~r). (1)

The so-called scattering potential V (~r) contains the information about the confine-
ment in the transversal direction, and inside the allowed area it is a sum of the
heterojunction conduction band discontinuities, the electrostatic potential due to
the ionized donors and acceptors, the self-consistent Hartree and exchange poten-
tials due to free carriers, and external potentials. We use the symbol m∗ to denote
the effective mass of the electrons, while m denotes the magnetic quantum number.
For systems tailored in the 2DEG, the growth direction is chosen the z-direction,
while the plane of the 2DEG is (x, y). The wave function in the z-direction, ξ(z), is
taken as known (the simplest form is provided by Fang and Howard, [39]) so that
the three-dimensional (3D) wave function can be written as

Ψ(E3D;~r) = ξ(z)ψ(x, y). (2)
The total energy

E3D = E2DEG + E, (3)
where E2DEG is the energy of the 2DEG level, and E is the energy associated with
the motion in the plane of the 2DEG. The 3D Schrödinger type equation reduces to
a two-dimensional Schrödinger equation [32][
− ~2

2m∗

(
∂2

∂x2 + ∂2

∂y2

)
+ V (x, y)

]
ψ(x, y) = E ψ(x, y),

x ∈ (−∞,∞), y ∈ [−dy, dy]. (4)
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In the transversal direction the electron motion is limited at the interval [−dy, dy] by
a confining potential that we have considered as infinite. The nonseparable potential
V (x, y) varies strongly with the position only inside a small domain (|x| ≤ dx,
|y| ≤ dy) which is usually called scattering region and is quasi-constant outside this
domain.
For cylindrical nanowires, the azimuthal symmetry suggests to use cylindrical coor-
dinates, with z axis along the nanowire [31]. As long as there are not split gates on
the surface of the nanowire, the potential energy V (~r) is rotational invariant

V (~r) = V (r, z) (5)

and nonseparable inside the scattering region. A scattering potential which does not
explicitly depend on the azimuthal angle θ imposes the eigenfunctions of the orbital
angular momentum operator Lz as solutions of Eq. (1)

Ψm(E3D; r, θ, z) = ζm(θ)ψm(r, z), (6)

where
ζm(θ) = eimθ√

2π
, (7)

and m = 0,±1,±2, ... is the magnetic quantum number. This is an integer number
due to the requirement that the function eimθ should be single-valued. The functions
ψm(r, z) are determined from the equation
[
− ~2

2m∗

(
∂2

∂r2 + 1
r

∂

∂r
− m2

r2 + ∂2

∂z2

)
+ V (r, z)

]
ψm(r, z) = Eψm(r, z),

z ∈ (−∞,∞), r ∈ [0, R], (8)

where E denotes here the kinetic energy associated with the 3D motion of the elec-
tron inside the nanowire, E = E3D. We have also considered an infinite potential
outside the nanowire. In such a way, every magnetic quantum number m defines a
two-dimensional (2D) scattering problem. Furthermore, these 2D scattering prob-
lems can be solved separately if the scattering potential is rotational invariant. How
many of these problems have to be solved, depends on the specific physical quantity
which has to be computed.

2.1 Scattering problem for two dimensions

We consider the following Schrödinger type equation in two dimensions, (x‖, x⊥),
denoting generically the longitudinal and the transversal direction, respectively,[
− ~2

2m∗∆x‖,x⊥ + V (x‖, x⊥)
]
ψ(E;x‖, x⊥) = Eψ(E;x‖, x⊥),

x⊥ ∈ Ω, x‖ ∈ (−∞,∞). (9)
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One could consider here different effective masses in the longitudinal and transversal
directions and also, for a layered heterostructure, a position-dependent effective
mass. These effects can be incorporated in the formalism, but within this paper we
neglect them for the simplicity of the exposure.
For the Cartesian geometry [32], in comparison with Eq. (4) we have

x‖ = x, x⊥ = y,Ω = [−dy, dy],

∆x‖,x⊥ = ∂2

∂x2 + ∂2

∂y2 , (10)

E = E3D − E2DEG,

while for the cylindrical geometry [31], in comparison with Eq. (8) we have

x‖ = z, x⊥ = r,Ω = [0, R],

∆x‖,x⊥ = ∂2

∂r2 + 1
r

∂

∂r
− m2

r2 + ∂2

∂z2 , (11)

E = E3D,

which depends on the magnetic quantum number m.
The analogy between the both geometries appears more evident considering for
the cylindrical geometry the unitary transformation U : L2([0, R] × R, rdrdz) →
L2([0, R]×R, drdz), with Uf(r, z) = g(r, z) =

√
rf(r, z). The inverse transformation

is U † : L2([0, R] × R, drdz) → L2([0, R] × R, rdrdz), with U †g(r, z) = f(r, z) =
(1/
√
r)g(r, z). In such a way, the Schrödinger operator becomes

H̃r,z = UHr,zU
† = U

[
− ~2

2m∗∆z,r + V (z, r)
]
U †

= − ~2

2m∗

[
∂2

∂r2 −
m2 − 1/4

r2 + ∂2

∂z2

]
+ V (z, r). (12)

In turn, the term which contains 1/r2 and which is specific for the cylindrical ge-
ometry plays the role of a potential, and the Laplace operator appears as known
for two dimensions in Cartesian coordinates. The current scattering matrix and
the localization probability distribution density of an electron in a scattering state
remain unchanged under this unitary transformation.

Figure 1: The generic geometry of the 2D scattering problem.
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Due to the localized character of the scattering potential it is appropriate to solve
Eq. (9) within the scattering theory. The potential energy which appears in Eq. (9)
has generally two components:

V (x‖, x⊥) = V⊥(x⊥) + Vscatt(x‖, x⊥). (13)

The first one, V⊥(x⊥), describes the lateral confinement of the electrons and is trans-
lation invariant along the parallel direction x‖. We consider a hard wall potential

V⊥(x⊥) =

0, x⊥ ∈ Ω
∞, x⊥ 6∈ Ω

, (14)

which defines a quantum wire for the Cartesian geometry and a cylindrical nanowire
for the second considered geometry. A parabolic wall like in Ref. [36, 37] may also
be considered.
The scattering potential energy inside the nanowire, Vscatt(x‖, x⊥), has generally
a nonseparable character in a domain of finite-range and is constant outside this
domain. We consider here the nonseparable potential localized within the area
Ω× [−d‖, d‖], see Fig. 1,

Vscatt(x‖, x⊥) =


V1, x⊥ ∈ Ω, x‖ < −d‖
W (x‖, x⊥), x⊥ ∈ Ω,−d‖ ≤ x‖ ≤ d‖

V2, x⊥ ∈ Ω, x‖ > d‖

. (15)

There are not material definitions for the interfaces x‖ = ±d‖. Usually, they are cho-
sen inside the highly doped regions of the heterostructure characterized by a slowly
variation of the potential in the longitudinal direction, practically by a constant
potential. These regions play the role of the source and drain contacts.

2.2 Scattering states

In the asymptotic regions, |x‖| > d‖ i.e. source and drain contacts, the potential
energy is separable in the transversal (i.e. confinement) and the longitudinal (i.e.
transport) direction, i.e. V (x‖, x⊥) = V⊥(x⊥) + Vs, s = 1, 2, and Eq. (9) can be
directly solved using the separation of variables method

ψ(E;x‖, x⊥) = φ(x⊥)ϕ(x‖). (16)

The function φ(x⊥) satisfies the transversal equation[
− ~2

2m∗∆x⊥ + V⊥(x⊥)
]
φ(x⊥) = E⊥φ(x⊥), x⊥ ∈ Ω (17)

where
∆x⊥ =

{
d2

dy2 , Cartesian geometry
d2

dr2 + 1
r
d
dr
− m2

r2 , cylindrical geometry
. (18)
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The hard wall confinement potential requires Dirichlet boundary condition at the
boundaries ∂Ω of the interval Ω, φ(∂Ω) = 0. As a remark, for the cylindrical
geometry, the boundary r = 0 is an artificial one introduced in order to use the
cylindrical symmetry. At this boundary it is sufficient that φ(x⊥) remains finite.
Due to the electron confinement in the transversal direction x⊥ the solutions of Eq.
(17) define the transversal modes, φn(x⊥), with the corresponding transversal ener-
gies E⊥n, n ≥ 1. The eigenfunctions φn(x⊥) depend on the geometry (Cartesian or
cylindrical) and on the confinement potential. In the case of a hard wall confine-
ment, the transversal modes are given for the Cartesian geometry by sine functions
[32], while for the cylindrical geometry they are expressed in terms of the Bessel
functions of the first kind [31]. The transversal modes form an orthonormal and
complete system of functions.
The function ϕ(x‖) satisfies the one-dimensional Schrödinger type equation called
longitudinal equation− ~2

2m∗
d2

dx2
‖

+ Vs

ϕ(x‖) = (E − E⊥)ϕ(x‖), x‖ ∈ (−∞,−d‖) ∪ (d‖,∞), (19)

where s = 1 stays for the source contact (x‖ < −d‖) and s = 2 for the drain contact
(x‖ > d‖). In the case of different effective masses in transversal and longitudi-
nal direction, one can use the corresponding effective mass in each of the above
equations.
Every transversal mode together with the associated motion on the transport direc-
tion defines a scattering channel on each side of the scattering area. The scattering
channels are indexed by (sn), n ≥ 1, s = 1, 2 for each E. In contradistinction to
the Cartesian geometry, in the case of a cylindrical geometry there is a set of 2D
scattering problems, indexed by the magnetic quantum number m, that have to be
solved. Consequently the scattering channels should be also indexed by m. For
simplicity we omit the index m in this section, but we keep in mind that we solve
here a 2D scattering problem and obtain the scattering functions for a fix value of
m.
If the total energy E and the lateral eigenenergy E⊥n are fixed, there are at most
two linearly independent solutions of Eq. (19). In the asymptotic region they are
given as a linear combination of exponential functions

ϕsn(x‖) =

Ase
ik1nx‖ +Bse

−ik1nx‖ , x‖ < −d‖
Cse

ik2nx‖ +Dse
−ik2nx‖ , x‖ > d‖

(20)

where As, Bs, Cs and Ds are complex coefficients depending on n and E for each
value of s = 1, 2. The wave vector is defined for each scattering channel (sn) as

ksn(E) = k0

√
(E − E⊥n − Vs)/u0, (21)

where k0 = π/2d‖ and u0 = ~2k2
0/2m∗. In the case of the conducting or open

channels
E − E⊥n − Vs ≥ 0, (22)
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ksn are positive real numbers and correspond to propagating plane-waves. For the
evanescent or closed channels

E − E⊥n − Vs < 0, (23)

ksn are given from the first branch of the complex square root function, ksn =
i|ksn|, and describe exponentially decaying functions away from the scattering region.
Thus, the number of the conducting channels, Ns(E), s = 1, 2, is a function of energy,
and for a fixed energy E this is the largest value of n, which satisfies the inequality
(22) for given values of s.
Each conducting channel corresponds to one degree of freedom for the electron mo-
tion through the system and, consequently, there exists only one independent solu-
tion of Eq. (9) for a fixed channel (sn) associated with the energy E, ψ(s)

n (E;x‖, x⊥).
For describing further the transport phenomena in the frame of the scattering the-
ory it is convenient to consider this solution as a scattering state, i.e. as a sum of
an incoming component on the channel (sn) and a linear combination of outgoing
components on each scattering channel. One can write the scattering wave functions
in a compact form [32]

ψ(s)
n (E;x‖, x⊥) = θ(Ns(E)− n)√

2π

×


δs1e

ik1n(x‖+d‖)φn(x⊥) +
∞∑
n′=1

S1n′,sn(E)e−ik1n′ (x‖+d‖)φn′(x⊥), x‖ < −d‖

δs2e
−ik2n′ (x‖−d‖)φn(x⊥) +

∞∑
n′=1

S2n′,sn(E)eik2n′ (x‖−d‖)φn′(x⊥), x‖ > d‖
(24)

The step function θ in the above expressions, with θ(x ≥ 0) = 1 and θ(x < 0) = 0,
assures that the scattering functions are defined only for the conducting channels.
Writing explicitly the position of the interfaces ±d‖ at the exponent has advantages
for the analytical treatment of the scattering problem [22, 40]. As it is discussed
in Refs. [26, 31], it is necessary to consider the sum until infinity in the second
term of the above expression, in order to keep the mathematical completeness of the
transversal channels.
The physical interpretation of the expressions (24) is that, due to the nonsepara-
ble character of the scattering potential, a plane-wave incident onto the scattering
domain is reflected on every channel - open or closed for transport - on the same
side of the system and transmitted on every channel - open or closed for transport
- on the other side. The reflection and transmission amplitudes are described by
the complex coefficients Ssn′,sn and Ss′n′,sn with s 6= s′, respectively, and all of them
should be nonzero. These coefficients define a matrix with N1(E) + N2(E) infinite
columns. For an elegant solution of the scattering problem we extend S(E) to an
infinite square matrix and set at zero the matrix elements without physical meaning,
Ss′n′,sn(E) = 0, n > Ns(E), s = 1, 2. In this way we define the wave transmission
matrix or wave-function amplitudes matrix [33]. It is also called generalized scatter-
ing matrix [41]. This is not the well-known scattering matrix (current transmission
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matrix) whose unitarity reflects the current conservation. The generalized scatter-
ing matrix is a non-unitary matrix, which has the advantage that it allows for a
description of the scattering processes not only in the asymptotic region but also
inside the scattering area.
The three-dimensional scattering states, solutions of Eq. (1) can be now written as

Ψ(s)
n (E;x‖, x⊥, x3) = ω(x3)ψ(s)

n (E;x‖, x⊥), (25)

where ω(x3) stays for ξ(z) in the case of the Cartesian geometry and for ζm(θ) in
the case of the cylindrical geometry. Being eigenfunctions of an open system, the
scattering states are ortho-normalized in the general sense [27]

∫
Ω
dΩ

∫ ∞
−∞

dx‖ ψ
(s)
n (E;x‖, x⊥)ψ(s′)

n′ (E ′;x‖, x⊥)∗ = δss′δnn′
δ(E − E ′)
gsn(E) , (26)

where gsn(E) = m∗/[~2ksn(E)] is the 1D density of states. We have to mention that
for the Cartesian coordinates [32], the measures are dΩ = dy, dx‖ = dx, while for
the cylindrical geometry [31] they are dΩ = rdr, dx‖ = dz.

2.3 R-matrix formalism for two dimensions

The scattering functions inside the scattering region are determined using the R-
matrix formalism, i.e. they are expressed in terms of the eigenfunctions correspond-
ing to the closed counterpart of the scattering problem [19, 20, 21, 22, 23, 24, 25,
26, 29]. In our opinion this is a more appropriate method than the common mode
space approach which implies the expansion of the scattering functions inside the
scattering area in the basis of the transversal modes φn(x⊥). As it is shown in Refs.
[35, 42] the mode space approach has limitations for structures with abrupt changes
in the potential or sudden spatial variations in the widths of the wire; it breaks
even down for coupling operators that are not scalar potentials, like in the case of
an external magnetic field. In the R-matrix formalism the used basis contains all
the information about the scattering potential, and this type of difficulties can not
appear.
Thus, the scattering functions inside the scattering region are given as

ψ(s)
n (E;x‖, x⊥) =

∞∑
l=1

a
(s)
ln (E)χl(x‖, x⊥), (27)

with x⊥ ∈ Ω and x‖ ∈ [−d‖, d‖].
The so-called Wigner-Eisenbud functions, χl(x‖, x⊥), firstly used in the nuclear
physics [30, 43], satisfy the same equation as ψ(s)

n (x‖, x⊥), Eq. (9), but with dif-
ferent boundary conditions in the transport direction. Since the scattering function
ψ(s)
n (x‖, x⊥) satisfies energy dependent boundary conditions derived from Eq. (24)

due to the continuity of the scattering function and its derivative at x‖ = ±d‖, the
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Wigner-Eisenbud function χl(x‖, x⊥) has to satisfy Neumann boundary conditions
at the interfaces between the scattering region and leads

∂χl
∂x‖

∣∣∣∣∣
x‖=±d‖

= 0, l ≥ 1. (28)

The hard wall confinement potential requires Dirichlet boundary condition at ∂Ω
also for the Wigner-Eisenbud functions, χl(∂Ω, x‖) = 0. As already mentioned for
the scattering states, for the cylindrical geometry it is sufficient that the Wigner-
Eisenbud function remains finite at r = 0. The functions χl, l ≥ 1, build a basis
which verifies the orthogonality relation∫

Ω
dΩ

∫ d‖

−d‖
dx‖ χl(x⊥, x‖)χl′(x⊥, x‖) = δll′ (29)

and the closure relation
∞∑
l=1

χl(x⊥, x‖)χl(x′⊥, x′‖) = δ(x⊥ − x′⊥)δ(x‖ − x′‖). (30)

Note that for the cylindrical geometry δ(x⊥−x′⊥) in the relation (30) means δ(r − r′)/r.
The corresponding eigenenergies to χl are denoted by El and are called Wigner-
Eisenbud energies. Since the Wigner-Eisenbud problem is defined on a closed volume
with self-adjoint boundary conditions, the eigenfunctions χl and the eigenenergies
El can be chosen as real quantities. The Wigner-Eisenbud problem is, thus, the
closed counterpart of the scattering problem.
In the case of the one-dimensional system without spherical symmetry, it was re-
cently proven mathematically rigorous that the R-matrix formalism allows for a
proper expansion of the scattering matrix on the real energy axis [28]. In this sec-
tion we present an extension of the R-matrix formalism for 2D scattering problem.
To calculate the expansion coefficients a(s)

ln (E) we multiply Eq. (9) by χl(x‖, x⊥) and
the equation satisfied by the Wigner-Eisenbud functions by ψ(s)

n (E;x‖, x⊥). The
difference between the resulting equations is integrated over Ω × [−d‖, d‖], with
the corresponding measures, and one obtains on the right-hand side the coefficient
a

(s)
ln (E). After using the Green’s theorem and the boundary conditions one finds
a

(s)
ln (E) and feeds in it into Eq. (27). So, the scattering functions inside the scattering

region (x‖ ∈ [−d‖, d‖], x⊥ ∈ Ω) are obtained in terms of their derivatives at the edges
of this domain,

ψ(s)
n (E;x‖, x⊥) = 1

k0

∫
Ω
dx′⊥

R(E;−d‖, x′⊥, x‖, x⊥)
∂ψ(s)

n (E;x′‖, x′⊥)
∂x′‖

∣∣∣∣∣∣
x′‖=−d‖

− R(E; d‖, x′⊥, x‖, x⊥)
∂ψ(s)

n (E;x′‖, x′⊥)
∂x′‖

∣∣∣∣∣∣
x′‖=d‖

 ,
(31)
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where the R-function is defined as

R(E;x‖, x⊥, x′‖, x′⊥, ) ≡
u0

k0

∞∑
l=1

χl(x‖, x⊥)χl(x′‖, x′⊥)
E − El

. (32)

The functions ∂ψ(s)
n /∂x‖ at x‖ = ±d‖ are calculated from the asymptotic form (24)

based on the continuity conditions for the derivatives of the scattering functions on
the interfaces between the scattering region and leads.
With these results the scattering functions inside the scattering domain are expressed
in terms of the wave transmission matrix S

~Ψ(E;x‖, x⊥) = i√
2π

Θ(E)[1− ST (E)]K(E)~R(E;x‖, x⊥), (33)

where the component (sn) of the vector ~Ψ is the scattering function ψ(s)
n (E;x‖, x⊥),

n ≥ 1, s = 1, 2 and ST denotes the matrix transpose. The diagonal matrix K has
on its diagonal the wave vectors (21) of each scattering channel

Ksn,s′n′(E) = ksn(E)
k0

δnn′δss′ , (34)

n, n′ ≥ 1, s, s′ = 1, 2, and the vector ~R(E;x‖, x⊥) is given as

~R(E;x‖, x⊥) = u0√
k0

∞∑
l=1

χl(x‖, x⊥)~χl
E − El

, (35)

where ~χl has the components

(~χl)sn = 1√
k0

∫
Ω
χl(x⊥, (−1)sd‖)φn(x⊥)dΩ, (36)

n ≥ 1, s = 1, 2. The diagonal Theta-matrix, Θsn,s′n′(E) = θ(Ns(E)−n) δss′ δnn′ , n ≥
1, s = 1, 2, assures non-zero values only for the scattering functions corresponding
to the conducting channels.
Using further the continuity of the scattering functions on the surface of the scatter-
ing area and expanding ~R(E;±d‖, x⊥) in the basis {φn(x⊥)}n≥1 we find the relation
between the matrixes S and R

S(E) =
[
1− 2 (1 + iR(E)K(E))−1

]
Θ(E), (37)

with the R-matrix given by means of a dyadic product

R(E) = u0

∞∑
l=1

~χl ~χ
T
l

E − El
. (38)

According to the above relation, R is an infinite-dimensional symmetrical real matrix
and its elements defined by Eq. (38) are dimensionless. The above form allows for
a very efficient numerical implementation for computing the R-matrix.
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The expression (37) of the S-matrix in terms of the R-matrix is the key relation for
solving 2D scattering problems using only the eigenfunctions and the eigenenergies of
the closed quantum system. They contain the full information about the scattering
potential and carry it over to the R-matrix. The matrix K characterizes the contacts
and can be constructed using only the information about the potential in these
regions. On the base of Eq. (37) the wave transmission matrix is calculated and
after that the scattering functions in each point of the system are obtained using
Eqs. (24) and (33). Further on, each transport property of the open quantum system
can be derived from the scattering function in terms of the scattering matrix.

2.4 Reflection and transmission coefficients

Using the density current operator

~j(~r) = ~
2im∗

(
Ψ(~r)∇Ψ(~r)∗ −Ψ(~r)∗∇Ψ(~r)

)
, (39)

one can define, as usually, the transmission and reflection probabilities [44]. Here
Ψ(~r)∗ denotes the complex conjugate of the scattering wave function (25).
The transversal component of the density current j⊥(x⊥, x‖, x3) is zero in leads, be-
cause φn(x⊥) are real functions. The component x3 of the incident density current
is also zero, either due to the confinement in the third direction, like in Cartesian
geometry [32], or due to the symmetry reasons like for the cylindrical geometry
[31]. What remains is the longitudinal component of the particle density current
j‖(x⊥, x‖, x3), which provides after the integration over the cross section of the lead
with the corresponding measure, dΩ, the very well-known relations for the transmis-
sion and reflection probabilities. The probability for an electron incident from the
source, s = 1, on the channel n to be reflected back into the source on the channel
n′ is

R
(1)
nn′ =

k1n′

k1n
|ST1n,1n′|2, (40)

and the probability to be transmitted into the drain, s = 2, on the channel n′ is

T
(1)
nn′ =

k2n′

k1n
|ST1n,2n′ |2. (41)

The reflection and transmission probabilities for the evanescent (closed) channels
are zero. The total transmission and reflection coefficients for an electron incident
from reservoir s = 1 are defined as

T (1) =
∑
n,n′

T
(1)
nn′ , R(1) =

∑
n,n′

R
(1)
nn′ . (42)

More detailed properties of the many-channel tunneling and reflection probabilities
are given in Ref. [44], but note that our indexes are interchanged with respect to
the definitions used there.
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2.5 Current scattering matrix

Further, we define the energy dependent current scattering matrix as

S̃(E) = K1/2(E)Θ(E)S(E)K−1/2(E), (43)

so that its elements give directly the reflection and transmission probabilities

|S̃1n′,1n(E)|2 = R
(1)
nn′(E), |S̃2n′,2n(E)|2 = R

(2)
nn′(E),

|S̃2n′,1n(E)|2 = T
(1)
nn′(E), |S̃1n′,2n(E)|2 = T

(2)
nn′(E).

(44)

The diagonal Θ-matrix assures that the matrix elements of S̃ are nonzero only for the
conducting channels, for which the transmitted flux is nonzero. Using the R-matrix
representation of S, Eq. (37), we find from the above relation

S̃(E) = Θ(E)
[
1− 2(1 + iΩ(E))−1

]
Θ(E), (45)

with the infinite dimensional matrix Ω

Ω(E) = K1/2(E)R(E)K1/2(E) = u0

∞∑
l=1

~αl ~α
T
l

E − El
(46)

and the column vector
~αl(E) = K1/2(E) ~χl, (47)

with l ≥ 1.
Further we express the total tunneling coefficient in terms of the current transmission
matrix,

T (E) = Tr[σ(E)σ†(E)], (48)
where σ denotes the part of S̃ which contains the transmission, σnn′(E) = S̃2n′,1n(E),
n = 1, N1(E) and n′ = 1, N2(E).
According to the definition (46) the matrix Ω is a symmetrical one, Ω = ΩT , and
from Eq. (45) it follows that S̃ also has this property, S̃ = S̃T . On this basis one can
demonstrate that the tunneling coefficient characterizes one pair of open channels
irrespective of the origin of the incident flux T

(1)
nn′ =

∣∣∣S̃2n′,1n

∣∣∣2 =
∣∣∣S̃1n,2n′

∣∣∣2 = T
(2)
n′n.

This is a well-known property of the transmission through a scattering system and
it shows that the current scattering matrix used here is properly defined. The
restriction of S̃-matrix to the open channels is the well known current scattering
matrix [20, 22, 23], commonly used in the Landauer-Büttiker formalism. For a
given energy E this is a (N1 + N2) × (N1 + N2) matrix which has to satisfy the
unitarity condition, according to the flux conservation.
In the numerical computations, the matrixes S, R, Ω, S̃ and Θ have the dimension
2N×2N , and the vectors ~χl, ~αl(E) have 2N components, where N is the number of
scattering channels (open and closed) taken numerically into account. The number
of the Wigner-Eisenbud functions and energies computed numerically establishes
the maximum value for the index l.
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2.6 Resonances

The relation (45) is the starting point for a resonance theory of the transmission
through a structure with a scattering region [22, 32]. The singularities of the current
scattering matrix S̃ which satisfy the equation

det [1 + iΩ(E)] = 0 (49)

are usually classified as bound states and resonances. The bound states are char-
acterized by real negative energies while the resonance energies, Ē0l = E0l − iΓl/2,
l ≥ 1, lie in the complex energy plane below the real positive axis according to
the causality [45]. The scattering matrix S̃ and consequently the total transmission
T (E) are defined only for energies in the continuum spectrum (E real positive) of
the scattering problem and they are analytical functions over the whole domain. Al-
though they have no singularities in the definition domain, their energy dependence
is determined by the resonances, especially by those ones which lie in the vicinity
of the real axis. In the resonance domain, i.e. inside a circle of radius Γl around
Ē0l, the elements of the current scattering matrix S̃ vary strongly with the energy.
In turn, T (E) has also an important variation for the real energies included in the
resonance domain. Thus the resonances appear usually as peaks in the tunneling
coefficient and can be directly seen in the transport properties of the structure.
While in the case of a 1D scattering potential the peaks are light asymmetric max-
ima [22], for a 2D scattering potential the peak shapes cover all ranges of the Fano
lines, from asymmetric maxima through "S-type" Fano lines up to antiresonances.
These profiles have been already seen experimentally for example in the conduc-
tance of a single-electron transistor [7]. In the next section we demonstrate that
the two-dimensional character of the scattering potential and the strong coupling of
the quantum system to the contacts allow for the transmission profiles which are far
from Breit-Wigner lines.
The representation of the S̃-matrix in terms of Ω, Eq. (45) allows for an efficient
numerical procedure to determine its poles and the resonances. When the quantum
system, for example a quantum dot, is coupled to the contacts it becomes open, and
the real eigenenergies of the closed problem, El, migrate in the lower part of the
complex energy plane, becoming resonant energies, Ē0l = E0l− iΓl/2, l ≥ 1. On the
base of this correspondence we fix an energy Eλ of the isolated dot and determine
the resonance energy Ē0λ as a solution of Eq. (49) in the complex energy plane. The
matrix Ω contains contributions from all Wigner-Eisenbud functions and energies,
i.e. χl and El, and from all scattering channels, i.e. all matrix elements of K. Thus
the resonance energy Ē0λ can strongly differ from Eλ, and only in the case of a very
low coupling of the dot to the contacts the eigenenergies of the isolated system, Eλ,
can properly approximate the real part of the resonance energy.
The resonance theory presented above is general and can be applied to a variety of
structures with a 2D scattering potential, regardless if the geometry of the system is
Cartesian or cylindrical. The information about the geometry is contained only in
the Wigner-Eisenbud functions and energies. After solving the eigenvalue problem
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of the closed counterpart of the scattering system one can construct the scattering
matrix and analyze it without bearing in mind the geometry of the system.
The expression (45) of the S̃-matrix shows that all matrix elements of S̃ are sin-
gular at the resonance energy. That means that all transmission coefficients Tnn′
between different scattering channels have a similar dependence on energy around
a resonance, and it is enough to analyze the total transmission which is a sum of
them in order to characterize the resonance.

3 Model systems

Further we analyze the total tunneling coefficient T (E) for a large energy interval
in the case of a quantum dot isolated inside of a 2DEG (Cartesian geometry) and in
the case of a conical quantum dot in a cylindrical nanowire (cylindrical geometry).
The transmission peaks are directly connected to the resonances and they have
different profiles depending on the coupling strength between the quantum system
and contacts, but also between resonances.

3.1 Quantum dot in two-dimensional electron gas

We consider here a quite simple dot, a square dot, isolated inside a quantum wire
by the constant barriers V0 as seen in Fig. 2. The smaller barriers Vb1 and Vb2
characterize the coupling between the quantum dot and contacts, and the strength of
this coupling can be varied individually. Although our model allows for an arbitrary
form of the potential, we have chosen this square dot in order to compare the
scattering functions at the resonant energies with the eigenfunctions of an isolated
dot (V0, Vb1, Vb2 →∞).

Figure 2: Potential energy in the 2D quantum wire: constant potential energy in
the source and drain contacts, V1 ' V2, and position-dependent potential energy in
the dot-region. The quantum dot is isolated inside the quantum wire by the barrier
with the height V0. The coupling between dot and contacts is set by the potential
energy in the aperture regions, Vb1 and Vb2. The electrons inside the dot experience
the potential energy Vd.

For the numerical calculations we have set dx = dy = 50 nm, and the width of all
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barrier 20 nm. Thus the region where the electrons are localized is about 60×60 nm.
The barrier which isolates the quantum dot inside the quantum wire has been taken
as V0 = 0.4 eV, and the potential energy in the aperture regions Vb1 = Vb2 = 0.005
eV. In the source and drain contacts the potential energy has been considered as the
energy reference, V1 = V2 = 0 eV. The Fermi energy of the electrons has been taken
as EF = 12 meV. For this quantum dot there are four open channels, N1(EF ) =
N2(EF ) = 4, and the closed channels do not have a significant contribution to the
conductance.
The quantum dot described above is strongly coupled to the source and drain con-
tacts because the potential energy in the aperture regions lies under the Fermi
energy. For explaining the transport phenomena through the dot it is necessary
to take properly into account the open character of the system and to analyze the
transport properties in terms of the resonances. The eigenstates which characterize
the closed counterpart of the open dot have an infinite life time and can not explain
the broaden peaks which are experimentally measured in the conductance of an open
quantum dot [7].
The resonance energies of the considered dot, solutions of Eq. (49), are presented
in Fig. 3. For comparison, the Wigner-Eisenbud energies, i.e. the eigenenergies of
the corresponding isolated dot are also given. Due to the coupling of the quantum
dot to the contacts the resonance energies migrate in the lower part of the complex
energy plane and have different widths. There are very narrow resonances, which
can be associated with the modes of the dot that are not so strongly coupled to the
contacts, and broad resonances, which describe modes strongly perturbed by the
interaction with the reservoirs. For a better understanding of the resonance modes
we will examine the localization probability distribution density of the electrons for
the energies given by the real part of the resonance energy Ē0l.

Figure 3: Resonance energies Ē0l (empty circles) of the open quantum dot given in
Fig. 2 and the real eigenenergies El (filled triangles) of the isolated counterpart of
the considered quantum dot.

The potential energy felt by the electrons inside the dot is Vd. This energy can
be modified continuously by varying the voltage of a plunger gate [20, 22, 23], and
the conductance through the dot is measured as a function of Vd. In the linear
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regime experiments, i.e. small source drain biases, and for very low temperatures
the conductance G can be directly connected to the total tunneling coefficient at
the Fermi energy [7, 22, 32],

G(Vd) = 2e2
h
T (EF ;Vd). (50)

In the above relation the potential energy Vd appears as a parameter in the expression
of the total tunneling coefficient. A new value of Vd means a new scattering potential
and a new scattering matrix. But there is no analytic dependence of T on Vd, so
that the scattering matrix and after that the conductance have been numerically
computed for each value of Vd. In Figs. 4 and 5 the conductance is plotted as a
function of EF − Vd. This fact has the great advantage that the position of the
maxima in conductance are given with respect to the bottom of the quantum well,
and in this way a direct comparison with an infinite quantum well is possible. There
are narrow and broad peaks in the conductance and in order to understand why
they have different profiles we have also plotted the electron probability distribution
density Pn(x, y) = |ψ(1)

n (E;x, y)|2 for E = EF and Vd = V0l, for the eight peaks
considered here, l = 1, 8. In principle the potential energy V0l is associated with the
maximum of the conductance peak, but the conductance curve shows also a "S-type"
Fano line, and a rigorous method to fix V0l is necessary.
Using the R-matrix representation of the S-matrix, Eq. (45) we can provide an
approximative relation for T (EF , Vd) around a resonance

T (EF , Vd) = T (EF , V0l + δV ) ' T (EF − δV, V0l) (51)

where V0l is the value of Vd for which the real part of the resonance energy (Ē0l =
E0l − iΓl/2) matches the Fermi energy, E0l = EF , and δV is a small variation with
values in the interval (−Γl,Γl). For a detailed discussion of this approach see Ref.
[22], Appendix A. The expression (51) of the total tunneling coefficient allows for a
direct connection to the resonances. We can simultaneously plot the conductance
as a function of EF − δV , δV ∈ (−Γl,Γl) and the resonances with the real energies
in the interval (EF − Γl, EF + Γl). These plots are given in Figs. 4 and 5. The
dashed vertical lines correspond in each picture to δV = 0, i.e. Vd = V0l in the
plots in the middle part and E = EF in the plots in the lower part. From the
simultaneous analysis of these graphics it is evident that we can associate each peak
in the conductance with a resonance l. At the resonance energy the electrons show
a strong localization in the dot region, shown in the upper part of the figures. A
narrow peak corresponds to a resonance energy with a very small imaginary part
and to a resonance state that is almost decoupled from the contacts, i.e the electron
probability distribution density is nearly zero in the aperture regions. These are
the resonances denoted by (3), (4), (6) and (8) in Figs. 4 and 5. The other peaks
are broaden and they correspond to resonances with a larger imaginary part and to
states which are strongly coupled to the contacts. Generally, the peaks for which
the resonance states have a maximum at y = 0 couple strongly to the contacts
and become broaden. These are the peaks (1), (2), (5) and (7) in Figs. 4 and 5.
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Figure 4: (Middle part) Conductance (solid line) as a function of the potential
energy in the dot region, Vd. The vertical dashed lines give the position of the
potential energy V0l, l = 1, 3, 4. (Upper part) The space dependence of the electron
probability distribution density Pn(x, y)/Pmax, Pn(x, y) = |ψ(s)

n (E;x, y)|2, Pmax =
max[Pn(x, y)], n = 1 or n = 2, for E = EF and Vd = V0l, l = 1, 2, 3, 4. For the peaks
l = 1, 2 we have considered the channel number n = 1, while for the peaks l = 3, 4,
n = 2. (Lower part) Resonance energies in the complex energy plane with the real
part around EF . The vertical dashed lines correspond to the Fermi energy.

But there is an exception which does not depend on the parameters of the system:
the peak denoted by (6) in Fig. 5. Although the probability distribution density
has a maximum in the central region of the dot, this state is strongly localized
inside the dot, and the corresponding peak is very narrow. But this peak is not an
asymmetric maximum anymore, it has a "S-type" Fano line shape. This behavior
can be explained only taking into account the interaction between resonances. The
state which corresponds to the peak (5) has three maxima in the x-direction and
one maximum in the y-direction, while the peak (6) has one maximum on x- and
three maxima on y-direction. They are states with the same symmetry in the both
directions and they influence each other. As a result, there are two hybrid modes, one
of them very strongly coupled to the contacts and the other one almost isolated. This
interaction between resonant states with the same symmetry in the lateral direction
is a general phenomenon which has at the origin the scattering between different
energy channels due to the nonseparable character of the scattering potential. For
systems with an effective 1D scattering potential the interaction between resonances
is weak and the strong asymmetric Fano line shapes ("S-type" or antiresonance) do
not appear. Also the hybrid modes do not exist in this case.
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Figure 5: (Middle part) Conductance (solid line) as a function of the potential energy
in the dot region, Vd. The vertical dashed lines give the position of the potential
energy V0l, l = 6, 8. (Upper part) The space dependence of the electron probability
distribution density Pn(x, y)/Pmax, Pn(x, y) = |ψ(s)

n (E;x, y)|2, Pmax = max[Pn(x, y)]
for E = EF and Vd = V0l, l = 5, 6, 7, 8. For the peaks l = 5, 6, 7 we have considered
the channel number n = 1, while for the peaks l = 8, n = 2. (Lower part) Resonance
energies in the complex energy plane with the real part around EF . The vertical
dashed lines correspond to the Fermi energy.

Besides the potential energy in the dot region Vd, the confinement potential of the dot
V0 can be also modified by the top gates. Decreasing the strength of the confinement
the coupling of the resonance states to the contacts increases, and the conductance
peaks become broader. We present in Fig. 6 the evolution of the conductance peaks
(7) and (8) when the potential V0 decreases. The width of the two peaks increases,
and the maximum of each peak migrates to higher energies. But the shift in energy
is different. The state (7) which is strongly coupled to the contacts in the aperture
regions is much less influenced by the variation of V0. The state which corresponds
to the peak (8), with nearly zero probability distribution density in the region of the
apertures, can have a coupling to the contacts only in the case of a rather transparent
confinement barrier V0. This explains the significant broadening of the line shape
and also the larger shift of the peak energy.
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Figure 6: Conductance as a function of the potential energy in the dot region, Vd,
for different values of the lateral confinement potential, V0.

3.2 Conical quantum dot inside a cylindrical nanowire

We consider a conical quantum dot, embedded in an infinite cylindrical nanowire
with the same radius, as is sketched in Fig. 7(a). The parameters considered are the
height of the dot h = 5nm, the radius of the nanowire R = 5nm and the effective
mass m∗ = 0.19m0. We set in our computations d‖ = dz = 16nm and the total
number of channels (open and closed) N = 8. In our calculations, the results do not
change if more channels are added.
Depending on the band-offsets between the dot material and the host material the
potential produced by the dot can be repulsive, yielding a quantum barrier, or
attractive, yielding a quantum well. We consider here that the dot yields an at-
tractive potential V (z, r), represented in Fig. 7(b) by a quantum well of depth
Wb = −0.125eV.
The total tunneling coefficient T (1) versus the incident energy E is plotted in Fig.
8, for different magnetic quantum numbers m. The transmission increases with a
unity, every time a new channel E(m)

⊥,n becomes available for transport, i.e. becomes
open. The length of the plateaus is given by the difference between two successive
transversal mode energies, and this length increases with m. Due to the presence
of the quantum well, deviations appear from the step-like transmission. Just before
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Figure 7: (a) Sketch of a conical quantum dot embedded into a nanowire with the
same radius. The dot yields an attractive potential V (z, r), represented in (b) by a
quantum well of depth Wb = −0.125eV.

a new channel gets open there is a dip, i.e. sharp drop, in the tunneling coeffi-
cient. These dips are owing to modification of the tunneling coefficient due to the
evanescent (closed) channels [33]. This is a multichannel effect that was also put in
evidence in Cartesian coordinates for quantum wires tailored in a two-dimensional
electron gas [33, 34, 35, 36, 37].
The dips can be understood considering the simple couple-mode model [33, 34, 35,
31]. For a dot surrounded by the host material, the scattering potential V (z, r) is
not anymore separable, so that the scattering mixes the channels [33, 34, 35, 31]. As
soon as the scattering potential is attractive, the diagonal coupling matrix element

Vnn(z) =
∫ R

0
φn(r)V (z, r)φn(r)rdr < 0 (52)

acts for every channel n as an effective one-dimensional (1D) attractive potential
[34], which always allows for at least one bound state [46, 47] below the threshold of
the continuum spectrum. By mixing the channels, this bound state becomes a quasi-
bound state or resonance, i.e with complex energy, whose real part gets embedded
into continuum spectrum of the lower channel and the imaginary part describes the
width of the resonance. These resonances can be seen now as dips in the tunneling
coefficient. The energy difference between the position of the dips and the next
subband minima E

(m)
⊥,n gives the quasi-bound state energy. The positions of the

dips, i.e. the quasi-bound state energy, depend on the channel number n and on the
magnetic quantum number m and, of course, on the detailed system parameters. In
Cartesian coordinates the specific symmetry of the channels (odd and even) do not
allow for dips in the first plateau [36]. In the cylindrical geometry this symmetry is
broken, so that we obtain a dip in front of every plateau. Our numerical method
allows for a high energy resolution in computing the tunneling coefficient, so that
we were able to find the dips also in front of the higher-order plateaus.
Further insight about the quasi-bound states of the evanescent channels can be
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Figure 8: Total tunneling coefficient as a function of incident energy E for the
scattering potential represented in Fig. 7(b) for different magnetic quantum numbers
m (continuous line for m = 0, dashed line for |m| = 1) and for the well depth
Wb = −0.125eV.

gained looking at the wave functions, whose square absolute value |ψ(s)
n (E; z, r)|2

gives the localization probability distribution density.
The R-matrix formalism allows us to produce high resolution maps of the wave
functions inside the scattering region, see Eq. (33). In Figs. 9(a), 9(b) the localiza-
tion probability distribution density is represented in arbitrary units, for an electron
incident from source (s = 1) and with a total energy corresponding to the dips in
Fig. 8. The total energy E and the channel n, on which the electron is incident, are
specified at every plot. Let discuss Fig. 9(a). The total energy E = 0.199eV is less
than the energy of the second transversal mode, E(0)

⊥,2 = 0.244eV , so that only the
first channel is open. Thus the incident wave from the source contact is node-less in
r-direction. But, as it can be seen in Fig. 9(a), the scattering wave function inside
the scattering region has a node in the r-direction, i.e. position in r where the wave
function is zero. This means that the wave function corresponds to the quasi-bound
state splitting off from the second transversal mode, which is an evanescent one.
The quasi-bound state is reachable now in a scattering formulation due to channel
mixing. The scattering wave function has a pronounced peak around the scattering
potential, i.e. z ∈ [0, 5]nm, and decreases exponentially to the left and to the right.
On the left side of the scattering potential one observes the interference pattern pro-
duced by the incident and the reflected waves, while on the right side there exists
only the transmitted wave.
The scattering wave function considered in Fig. 9(b) has the energy less than the
third transversal channel, E(0)

⊥,3 = 0.6006eV , so that the incident part of the scatter-
ing state on the second mode n = 2 has one node in r-direction. But the scattering
function shows inside the scattering region two nodes in the r-direction, so it corre-
sponds to a quasi-bound state splitting off from the above evanescent channel, the
third one.
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Figure 9: Localization probability distribution density, |ψ(1)
n (E; z, r)|2, for an elec-

tron with m = 0, incident from the reservoir s = 1 into the channel n and with the
total energy E, both indicated in the captions. The energies are the dips in Fig. 8.

One gets similar pictures for all m-values, with the difference that for m 6= 0 the
wave functions are zero for r = 0. In Fig. 9(a) and 9(b) one can observe that
the transmitted part of the scattering wave function is zero, in agreement with
the resonant back-scattering specific to the quasi-bound states of the evanescent
channels [33, 34]. Increasing the strength of the attractive potential one can see
more dips [36, 31] in the tunneling coefficient. Another systems embedded inside
the cylindrical nanowire, like a cylindrical dot, a quantum ring or a double barrier
heterostructure, which also show a similar behavior, were studied in Ref. [31].
We have analyzed until now only the classical allowed energy domain, with a contin-
uous, double degenerated spectrum. The wave functions of the electrons for these
energies are extended states, presented here as scattering states. The classically
forbidden spectrum contains the bound states or the localized states. The R-matrix
formalism presented here can provide also these states, as long as the boundary
points ±dz are far enough from the quantum dot, so that the bound states fulfill the
Neumann boundary condition (28). In such a way, the energies of the bound states
are the negative Wigner-Eisenbud energies and the wave functions for the bound
state are the corresponding Wigner-Eisenbud functions. For the conical dot pre-
sented here, there is only a bound state represented by the lowest Wigner-Eisenbud
energy, Eb = E1 < 0 and ψb(Eb; z, r) = χ1(z, r).
In Fig. 10(a) we present the energy value Eb of the bound state together with a
cut of the potential energy along r = 0. The corresponding wave function, namely
the absolute value square, is represented in Fig. 10(b). One can see that the bound
state is mainly localized inside the quantum dot.
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Figure 10: The bound state for for a conical quantum dot inside the nanowire, as in
Fig. 7. (a) Value of the bound energy Eb = −0.013eV (dashed line). The potential
energy along r = 0 is represented by the solid line. (b) The absolute value square
of the wave function corresponding to the bound state, |ψb(Eb; z, r)|2.

4 Summary and discussion

We have presented a general theory for computing the scattering matrix and the
scattering wave functions for a general finite-range extended scattering potential
in two dimensions. The theory is based on the R-matrix formalism, which allows
a semi-analytical treatment of the scattering problem, yielding in such a way a
powerful and efficient numerical method.
This formalism was applied to a quantum dot defined inside a two-dimensional elec-
tron gas, as well to a conical quantum dot embedded inside a cylindrical nanowire.
It is pointed out the role of the evanescent channels, which for a nonseparable
attractive scattering potential in a multi-channel nanowire produces resonant dips
in the tunneling coefficient. Furthermore, the cylindrical symmetry does not yield
the same "selection rules" for tunneling coefficient as the Cartesian symmetry.
It is also presented a general resonance theory, which shows that the two-dimensional
character of the scattering potential and the strong coupling of the quantum system
to the contacts allow for the transmission profiles which ranges from asymmetric
Fano line shapes through "S-type" Fano lines up to antiresonances.
Detailed maps of localization probability distribution density sustain the physical
interpretation of the resonances (dips and peaks) found in the studied heterostruc-
tures.
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