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1 Model equations, notation, and assumptions 1

Abstract

Our focus are energy estimates for discretized reaction-diffusion systems for a finite
number of species. We introduce a discretization scheme (Voronoi finite volume in
space and fully implicit in time) which has the special property that it preserves
the main features of the continuous systems, namely positivity, dissipativity and flux
conservation.

For a class of Voronoi finite volume meshes we investigate thermodynamic equi-
libria and prove for solutions to the evolution system the monotone and exponential
decay of the discrete free energy to its equilibrium value with a unified rate of decay
for this class of discretizations. The fundamental idea is an estimate of the free energy
by the dissipation rate which is proved indirectly by taking into account sequences of
Voronoi finite volume meshes. Essential ingredient in that proof is a discrete Sobolev-
Poincaré inequality.

1 Model equations, notation, and assumptions

Let Ω ⊂ RN be a bounded domain, Γ := ∂Ω. We consider m species Xi with initial
densities Ui. These species undergo chemical reactions and underly diffusion processes.
We assume Boltzmann statistics giving the relation between the densities ui of the species
Xi and the corresponding chemical potentials vi,

ui = uievi , i = 1, . . . ,m, (1.1)

where the reference densities ui may depend on the spatial position and express the possible
heterogeneity of the system under consideration. For the fluxes ji of the species Xi we
make the ansatz

ji = −µiui∇vi, i = 1, . . . ,m, (1.2)

with mobility coefficients µi. To describe chemical reactions we assume that R ⊂ Zm
+×Zm

+

is a finite subset. A pair (α, β) ∈ R represents the vectors of stoichiometric coefficients of
reversible reactions, usually written in the form

α1X1 + · · ·+ αmXm 
 β1X1 + · · ·+ βmXm.

According to the mass action law, the net rate of this pair of reactions is of the form
kαβ(aα − aβ), where kαβ is a reaction coefficient, ai := exp(vi) is the chemical activity
of Xi, and aα :=

∏m
i=1 aαi

i . The net production rate of species Xi corresponding to the
reaction rates for all reactions taking place is

Ri :=
∑

(α,β)∈R

kαβ(aα − aβ)(βi − αi). (1.3)

The m continuity equation can be written as follows:

∂ui

∂t
+∇ · ji = Ri in R+ × Ω, ν · ji = 0 on R+ × Γ,

ui(0) = Ui in Ω, i = 1, . . . ,m.
(1.4)
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Problem (1.4) has been investigated in various papers, see e.g. [15], [5, 6, 12, 13, 14] for
electrically charged species and [10] with different anisotropies for the different species.
The papers [5, 6, 10, 12] deal with more general state equations. In [9] the limit case of
partly fast kinetics is studied.

The aim of the present paper is to show that there are discretization schemes (Euler
backward in time and Voronoi finite volume meshes in space) for problem (1.4) such
that the discretized free energy along the discrete solutions decays exponentially to its
equilibrium value. The essential new result in this paper is to prove a uniform decay rate
for a class of meshes. In [8] we already proved dissipativeness of the scheme and established
the finite dimensional estimates for a fixed given mesh.

To obtain the uniform estimates for a class of Voronoi finite volume meshes we have to
translate the quantities from the finite dimensional discretized problems into expressions
of functions being defined on Ω and being constant on Voronoi boxes of the corresponding
meshes and we have to consider limits of such functions to find a contradiction in the
indirect proof of a Poincaré like estimate of the free energy by the dissipation rate (see
Theorem 3.2).

The paper is organized as follows. In Section 2 we give a weak formulation (P) of prob-
lem (1.4), formulate common assumptions and collect known results concerning energy
estimates for (P). Section 3 is the heard of the paper. First, we introduce the space dis-
cretization by Voronoi finite volume meshes, and give some notation used in the finite
volume context (Subsection 3.1). Subsection 3.2 contains the full discretization scheme
(PM) of the reaction-diffusion system (1.4). The finite dimensional discrete energy func-
tionals are introduced in Subsection 3.3. In Subsection 3.4 we give the steady states of the
discretized reaction-diffusion systems and discuss their relation to the steady state of (P).
The most important results are proven in Subsection 3.5, namely the uniform estimate
of the discretized free energy by the discretized dissipation rate (Theorem 3.2) and the
exponential decay of the discretized free energy to its equilibrium value with a decay rate
not depending on the mesh (Theorem 3.3). The paper ends with Section 4 where remarks
and open questions are formulated.

2 Continuous reaction-diffusion systems

2.1 Weak formulation

In the whole paper we assume

(A1) Ω is an open, bounded Lipschitzian domain in RN , N = 2, 3, Γ = ∂Ω;

µi, ui, Ui ∈ L∞+ (Ω), µi, ui ≥ δ > 0, qi ∈ Z, i = 1, . . . ,m;

R ⊂ Zm
+ × Zm

+ finite subset, kαβ ∈ L∞+ (Ω), kαβ ≥ δ > 0 for all (α, β) ∈ R.

If N = 3 then max(α,β)∈R max
{∑m

i=1 αi,
∑m

i=1 βi

}
≤ 3.

To give a weak formulation of the equations (1.4) we introduce the spaces

V := H1(Ω; Rm), W := V ∩ L∞(Ω, Rm),
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and the stoichiometric subspaces

S := span{α− β : (α, β) ∈ R}, S⊥ := orthogonal complement of S in Rm.

In addition to (A1) we assume that we are given an initial value U ∈ V ∗ such that

(A2) U =
(
U1, . . . , Um

)
,

m∑
i=1

λi〈Ui, 1〉 > 0 if λ = (λ1, . . . , λm) ∈ S⊥+\{0}.

V ∗ denotes the space dual to V , and 1 means the constant function on Ω taking the value
1. Note that (A2) is satisfied if the initial value of the vector function u := (u1, . . . , um)
fulfills Ui ≥ 0, Ui 6= 0, i = 1, . . . ,m. We define operators A, E : W → V ∗,

〈Av, v̂〉 :=
∫

Ω

m∑
i=1

µiuievi ∇vi · ∇v̂i dx +
∫

Ω

∑
(α,β)∈R

kαβ(aα − aβ)(α− β) · v̂ dx,

Ev :=
(
u1ev1 , . . . , umevm

)
, v ∈ W, v̂ ∈ V.

(2.1)

A weak formulation of the transient problem (1.4) with (1.1), (1.2), (1.3) is given by

u′(t) + Av(t) = 0, u(t) = Ev(t) f.a.a. t ∈ R+, u(0) = U,

u ∈ H1
loc(R+;V ∗), v ∈ L2

loc(R+;V ) ∩ L∞loc(R+;L∞(Ω, Rm)).

 (P)

2.2 Summary of results on energy estimates for the continuous problem

We collect results on energy estimates which should be carried over from the continuous
problem to a time and space discretized version of (P) in a unified manner for a class of
Voronoi finite volume meshes.

The dissipation rate corresponding to Problem (P), D(v) := 〈Av, v〉, v ∈ W , has the form

D(v) =
∫

Ω

m∑
i=1

µiuievi ∇vi · ∇vi dx +
∫

Ω

∑
(α,β)∈R

kαβ(ev·α − ev·β)(α− β) · v dx ≥ 0.

For u ∈ V ∗ ∩ L2
+(Ω)m the free energy F (u) is given by

F (u) =
∫

Ω

m∑
i=1

{
ui

(
ln

ui

ui
− 1
)

+ ui

}
dx.

Moreover, we define the subspaces

U := {u ∈ V ∗ : (〈u1, 1〉, . . . , 〈um, 1〉) ∈ S} ,

U⊥ :=
{

v ∈ V : 〈u, v〉 = 0 ∀u ∈ U
}

=
{

v ∈ V : ∇v = 0, v ∈ S⊥
}

.
(2.2)

If (u, v) is a solution to (P) then u(t)−U ∈ U for every t > 0. Therefore, if u∗ := lim
t→∞

u(t)
exists, then we have necessarily u∗ ∈ U + U .
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Theorem 2.1 We assume (A1) and (A2). Then there exists a unique solution (u∗, v∗) to

Av∗ = 0, u∗ = Ev∗, u∗ ∈ U + U , v∗ ∈ W. (S)

We define the set

A :=
{

a ∈ Rm
+ : aα = aβ for all (α, β) ∈ R, u ∈ U + U, where ui = uiai, i = 1, . . . ,m

}
and assume

(A3) A ∩ ∂Rm
+ = ∅.

Remark 2.1 We assume (A1). On the one hand, if (u, v) is a solution to (S) then
a = (ev1 , . . . , evm) ∈ A. On the other hand, if a ∈ A and ai > 0, i = 1, . . . ,m, then (u, v)
defined by vi := ln ai, ui := uievi , i = 1, . . . ,m, is a steady state of (P), that is a solution
to (S). If in addition (A2) and (A3) are fulfilled then A = {a∗}.

Theorem 2.2 Let (A1) – (A3) be fulfilled, let (u, v) be a solution to Problem (P), and let
(u∗, v∗) be the thermodynamic equilibrium (cf. Theorem 2.1). Then the free energy along
the solution (u, v) decays monotonously and there exists a λ > 0 such that

F (u(t))− F (u∗) ≤ e−λt(F (U)− F (u∗)) ∀ t ≥ 0.

The proof of Theorem 2.2 is mainly based on a Poincaré type inequality which gives an
estimate of the free energy by the dissipation rate as formulated in Lemma 2.1.

Lemma 2.1 Let (A1) – (A3) be fulfilled. Moreover, let (u∗, v∗) be the thermodynamic
equilibrium according to Theorem 2.1. Then for every ρ > 0 there exists a constant cρ > 0
such that

F (u)− F (u∗) ≤ cρD(v) (2.3)

for all v ∈ Nρ = {v ∈ W : F (Ev)− F (u∗) ≤ ρ, u = Ev ∈ U + U}.

For these results we refer to [10, Theorem 2.1, Theorem 3.1, Theorem 3.2], [15, Theorem 1,
Theorem 2, Corollary of Theorem 2] and [5, Theorem 7.1, Theorem 7.2].

3 Discretized reaction-diffusion systems

3.1 Space discretization

Although we work with boundary conforming Delaunay grids where the Voronoi boxes are
the dual grid our notation is basically taken from [1, 3] since we need results provided there
for more general finite volume meshes. Have in mind that Voronoi meshes are admissible
finite volume meshes in the sense of [3, Definition 9.1] (see [3, Example 9.2]).

Let Ω be an open, bounded, polyhedral subset of RN . A Voronoi mesh of Ω denoted by
M = (P, T , E) is formed by a family of grid points P in Ω, a family T of Voronoi control
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volumes and a family of parts of hyperplanes in RN denoted by E (which represent the
faces of the Voronoi boxes). For Voronoi meshes we use the following notation.

Let M denote the number of grid points, M = #P. For each grid point of the set {xK ∈ P}
the control volume K of the Voronoi mesh belonging to the point xK is defined by

K = {x ∈ Ω : |x− xK | < |x− xL| ∀xL ∈ P, xL 6= xK}, K ∈ T .

mes(K) denotes the measure of Voronoi box K ∈ T . The mesh size of M is defined by

size(M) = sup
K∈T

diam(K).

For K, L ∈ T with K 6= L either the (N − 1) dimensional Lebesgue measure of K ∩ L
is zero or K ∩ L = σ for some σ ∈ E . The symbol σ = K|L denotes the Voronoi surface
between K and L. We introduce the following subsets of E . The set of interior Voronoi
surfaces is denoted by Eint. Additionally, for every K ∈ T we call EK the subset of E such
that ∂K = K \K = ∪σ∈EK

σ. Then E = ∪K∈T EK .

Moreover, for σ ∈ E we denote by mσ the (N − 1) dimensional Lebesgue measure of the
Voronoi surface σ. For σ = K|L ∈ Eint let dσ be the Euclidean distance of xK and xL, see
Figure 1, too.

K

LxK

xL

mσ

dσ

K ′

L′

xK′

xL′

σ′ = K ′|L′

Figure 1: Notion of Voronoi finite volume meshes M = (P, T , E).

Definition. Let Ω be an open, bounded, polyhedral subset of RN and M a Voronoi finite
volume mesh.

1. X(M) denotes the set of functions from Ω to R which are constant on each Voronoi
box of the mesh. For w ∈ X(M) the value at the Voronoi box K ∈ T is denoted by wK .

2. For w ∈ X(M) the discrete H1-seminorm of w, |w|1,M, is defined by

|w|21,M =
∑

σ∈Eint

mσ

dσ
(Dσw)2, Dσw = |wK − wL|, (3.1)

where σ = K|L and wK is the value of w on the Voronoi box K.
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For our considerations in Section 3 we use the additional assumptions

(A4) Let Ω ⊂ RN be a polyhedral domain and let Ω = ∪I∈IΩI be a finite disjoint
union of subdomains such that the discontinuities of ui, i = 1, . . . ,m, coincide
with subdomain boundaries. Let the over all (N−1) dimensional measure of all
internal subdomain boundaries be bounded by θ. There exists some γ ∈ (0, 1]
such that ui ∈ C 0,γ(ΩI) := {w|ΩI

, w ∈ C 0,γ(RN )}, i = 1, . . . ,m, I ∈ I.

If N = 3 then max(α,β)∈R max
{∑m

i=1 αi,
∑m

i=1 βi

}
< 3.

Let M be a Voronoi finite volume mesh of Ω, where P is a boundary conforming
Delaunay grid (see [2, 4]).

We introduce coefficient functions being constant on the Voronoi boxes K ∈ T ,

µiK = 1
mes(K)

∫
K

µi(x) dx, uiK = 1
mes(K)

∫
K

ui(x) dx, kαβK = 1
mes(K)

∫
K

kαβ(x) dx.

Note that the corresponding piecewise constant functions µ
i
, ui, kαβ can be estimated

from above and below by the upper and lower bounds of µi, ui, kαβ , respectively.

For K ∈ T we denote by u
(K)
i the mass of the i-th species in K and by uiK the constant

density on K, uiK = u
(K)
i

mes(K) . Associated to the grid points we have chemical potentials
viK , i = 1, . . . ,m. The discrete version of the state equations (1.1) then is

u
(K)
i = uiKeviKmes(K), k ∈ T , i = 1, . . . ,m. (3.2)

To vectors characterized by lower indices, wK , K ∈ T , we associate a function w ∈ X(M).

3.2 A discretization scheme for reaction-diffusion systems

(A5) Let Z = {t0, t1, . . . , tn, . . . } be a partition of R+ with t0 = 0, tn ∈ R+,

tn−1 < tn, n ∈ N, tn → +∞ as n →∞, h := supn∈N(tn − tn−1) < ∞.

We introduce the discrete initial values

U
(K)
i :=

∫
K

Ui dx, K ∈ T , i = 1, . . . ,m.

The space discrete version of the continuity equations (1.4) is obtained by testing the
corresponding equations with the characteristic function of K and using Gauss theorem
for the divergence terms. We obtain the following discrete reaction-diffusion system (PM)
where the time discretization is done fully implicitly

u
(K)
i (tn)−u

(K)
i (tn−1)

tn − tn−1
−

∑
σ=K|L∈EK

Y σ
i Zσ

i (tn)
(
viL(tn)− viK(tn)

)mσ

dσ
= R

(K)
i (tn),

u
(K)
i (tn) = uiK eviK(tn)mes(K), i = 1, . . . ,m, n ≥ 1,

u
(K)
i (0) = U

(K)
i , i = 1, . . . ,m, K ∈ T ,


(PM)
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where the source terms R
(K)
i have to be calculated by

R
(K)
i (tn) =

∑
α,β∈R

(βi − αi)kαβK

(
exp

{ m∑
j=1

αjvjK(tn)
}
− exp

{ m∑
j=1

βjvjK(tn)
})

mes(K),

Zσ
i (tn) =

eviK(tn) + eviL(tn)

2
, σ = K|L,

and Y σ
i represents some mean value of µiui associated to the face σ = K|L which is sym-

metric in K and L and fulfills ess infx∈Ω µi ess infx∈Ω ui ≤ Y σ
i ≤ ‖µi‖L∞‖ui‖L∞ . Possible

choices are e.g.

Y σ
i =

µiK + µiL

2
uiK + uiL

2
or Y σ

i =
1

mes(K) + mes(L)

∫
K∪L

µi(x)ui(x) dx, σ = K|L.

3.3 Discrete energy functionals

We use the notation

~u = (~u1, . . . , ~um), ~v = (~v1, . . . , ~vm), ~ui =
(
u

(K)
i

)
K∈T , ~vi =

(
viK

)
K∈T ,

~U = (~U1, . . . , ~Um), ~Ui =
(
U

(K)
i

)
K∈T , i = 1, . . . ,m.

The discrete dissipation rate D̂ : RMm → R corresponding to Problem (PM) is given by

D̂(~v) =
m∑

i=1

∑
σ=K|L∈Eint

Y σ
i Zσ

i |viK − viL|2
mσ

dσ

+
∑

(α,β)∈R

∑
K∈T

kαβK

(
exp

{ m∑
j=1

αjvjK

}
− exp

{ m∑
j=1

βjvjK

}) m∑
i=1

(αi − βi)viKmes(K).

Due to (A1) and the monotonicity of the exponential function this discrete dissipation
rate is nonnegative, D̂(~v) ≥ 0 for all ~v ∈ RMm.

Next, we define as a discrete version of E (cf. (2.1)) the operator Ê : RMm → RMm,

Ê~v =
((

uiKeviKmes(K)
)
K∈T

)
i=1,...,m

.

The equation ~u = Ê~v then contains the discretized state equations (3.2). Corresponding
to Ê, we obtain the discrete potential Ĝ : RMm → R, and introduce the discrete free
energy F̂ as the conjugate functional,

Ĝ(~v) =
m∑

i=1

∑
K∈T

uiK(eviK − 1)mes(K), F̂ (~u) = sup
~v∈RMm

{
〈~u,~v〉RMm − Ĝ(~v)

}
. (3.3)

Then F̂ : RMm → R is convex and lower semicontinuous. F̂ is differentiable in arguments
~u, where u

(K)
i > 0, K ∈ T , i = 1, . . . ,m. If ~u = Ê~v, then ~u = Ĝ′(~v) and ~v = F̂ ′(~u). In

particular we obtain for ~u = Ê~v, ~v ∈ RMm the inequality

F̂ (~w)− F̂ (~u) ≥ 〈~w − ~u, F̂ ′(~u)〉RMm ∀~w ∈ RMm, (3.4)
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which guarantees that the (Euler backward in time) discretization scheme (PM) is dissi-
pative. Moreover, for ~u = Ê~v we calculate

F̂ (~u) = 〈Ê~v,~v〉RMm − Ĝ(~v) =
m∑

i=1

∑
K∈T

(
u

(K)
i viK − u

(K)
i + uiKmes(K)

)
.

3.4 Steady states for the discretized reaction-diffusion system

In analogy to the continuous situation (see (2.2)) we define

Û =
{
~u ∈ RMm :

( ∑
K∈T

u
(K)
1 , . . . ,

∑
K∈T

u(K)
m

)
∈ S

}
and Û⊥ = {~v ∈ RMm : 〈~u,~v〉RMm = 0 ∀~u ∈ Û} which can be characterized by

Û⊥ =
{
~v ∈ RMm : viK = vi, K ∈ T , i = 1, . . . ,m, (v1, . . . , vm) ∈ S⊥

}
.

Any solution (~u,~v) to the discretized Problem (PM) fulfills

~u(tn)− ~U ∈ Û ∀n ∈ N. (3.5)

This invariance property follows by [8, Lemma 3.2]. Using the corresponding u(tn) ∈
X(M), the initial value U and the set U from the continuous setting we rewrite (3.5) as

u(tn)− U ∈ U ∀n ∈ N.

We are looking for steady states (~u,~v) of the discretized Problem (PM) fulfilling the
property ~u− ~U ∈ Û , and consider the problem

∑
σ=K|L∈EK

Y σ
i Zσ

i

(
viL − viK

)mσ

dσ
= R

(K)
i , K ∈ T , i = 1, . . . ,m,

~u = Ê~v, ~u− ~U ∈ Û .

 (SM)

Theorem 3.1 We assume (A1), (A2) and (A4). Then there is a unique solution (~u ∗, ~v ∗)
to Problem (SM). This solution satisfies ~v ∗ ∈ Û⊥.

Proof. The proof is a special case of [8, Theorem 3.1] if no anisotropies and no charged
species are taken into account. Have in mind that our coefficients ui, µi, kαβ now are L∞

functions in contrast to (A9) in [8]. But an inspection of the proof shows the validity of
the result for this situation, too. �

Corollary 3.1 We assume (A1) – (A4). Let the pair (u∗, v∗) be the solution to (S) (cf.
Theorem 2.1) and (~u ∗, ~v ∗) the solution to (SM) (see Theorem 3.1). Then the correspond-
ing piecewise constant functions u∗, v∗ and a∗ are related to the thermodynamic equilibrium
quantities of the continuous problem u∗, v∗ and a∗ by

u∗i =
ui

ui
u∗i , i = 1, . . . ,m, v∗ = v∗, a∗ = a∗.
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Proof. If (~u ∗, ~v ∗) is the solution to (SM) then D̂(~v ∗) = 0 which guarantees that v∗iK = v◦i ,
K ∈ T , (v◦1, . . . , v

◦
m) ∈ S⊥. The discrete chemical activities a∗i := ev◦i = ev∗iK = a∗iK ,

K ∈ T , then fulfill
a∗ ∈ Rm

+ , (a∗)α = (a∗)β ∀(α, β) ∈ R.

Since ~u∗ = Ê~v∗ ∈ ~U + Û we find that u∗ − U ∈ U . Thus, for all η ∈ S⊥

0 =
m∑

i=1

∫
Ω
(u∗i − Ui)ηi dx =

m∑
i=1

∫
Ω
(a∗i ui − Ui)ηi dx =

m∑
i=1

∫
Ω
(a∗i ui − Ui)ηi dx.

Therefore the constructed a∗ belongs to the set A. According to (A3) and Remark 2.1 we
have A = {a∗}. This ensures that a∗ = a∗. And thus v∗ = v∗ and u∗i = ui

ui
u∗i . �

3.5 Energy estimates for the discretized reaction-diffusion system

We start with some upper and lower estimates of F̂ (~u)− F̂ (~u ∗) by means of the piecewise
constant functions u and u∗.

Lemma 3.1 We assume (A1), (A2) and (A4). Let ~u = Ê~v ∈ ~U + Û and let (~u ∗, ~v ∗)
be the discrete thermodynamic equilibrium according to Theorem 3.1. Moreover, let u,
u∗ ∈ X(M) be the piecewise constant functions corresponding to ~u and ~u ∗. Then there
exist constants c1, c2 > 0 not depending on the mesh M such that

c1

m∑
i=1

‖√ui −
√

u∗i ‖
2
L2 ≤ F̂ (~u)− F̂ (~u ∗) ≤ c2

m∑
i=1

‖ui − u∗i ‖2
L2 .

Proof. Using the assumptions of the lemma, 〈~u− ~u ∗, ~v ∗〉RMm = 0 and (3.3) we evaluate

F̂ (~u)− F̂ (~u ∗) = 〈~u,~v〉RMm − Ĝ(~v)− 〈~u ∗, ~v ∗〉RMm + Ĝ(~v ∗)

= 〈~u,~v − ~v ∗〉RMm − Ĝ(~v) + Ĝ(~v ∗)

=
m∑

i=1

∑
K∈T

uiKmes(K)
(
eviK (viK − v∗iK)− eviK + ev∗iK

)
=

m∑
i=1

∫
Ω

ui

(
evi(vi − v∗i )− evi + ev∗i

)
dx

=
m∑

i=1

∫
Ω

(
ui ln

ui

u∗i
− ui + u∗i

)
dx.

Using the estimates x ln x
y −x+y ≥ (

√
x−√y)2 and x ln x

y −x+y ≤ 1
y (x−y)2 for x, y > 0

in the arguments x = ui, y = u∗i and taking into account that u∗i = ui
ui

u∗i , and that ui, ui

are bounded (uniformly for all M) we find the desired estimates. �

Next, we want to prove a Poincaré type inequality (similar to Lemma 2.1 for the contin-
uous case) which gives for the discretized situation an estimate of the free energy by the
dissipation rate. This estimate is desired to be independent on the underlying mesh M.
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In [8, Theorem 3.2] we presented an indirect proof for one given mesh. But we could not
show that the constant is universal for a certain class of meshes.

To establish this qualitative new result, we have to formulate some additional assump-
tions on the geometry and the meshes:

(A6) We assume that Ω ⊂ RN is star shaped with respect to some ball B(y0, R).

Let % be the function % : RN → [0, 1],

%(y) =

{
exp

{
− R2

R2−|y−y0|2
}

if |y − y0| < R,

0 if |y − y0| ≥ R.

We introduce piecewise constant approximations %M ∈ X(M) by

%MK (x) = min
y∈K

%(y) for x ∈ K. (3.6)

Let κ0, κ1, κ2 ∈ R with 0 < κ0 <
∫

RN %(x) dx, κ1 > 0 and κ2 ≥ 1
2 be given. For all

finite volume meshes M under consideration we additionally suppose the following two
properties:

(A7) Let M = (P, T , E) be a Voronoi finite volume mesh of Ω with
∫
Ω %M(x) dx ≥ κ0

and with the property that EK ∩ Eext 6= ∅ implies xK ∈ ∂Ω.

(A8) The geometric weights fulfill

0 < diam(σ) ≤ κ1 dσ for all σ ∈ Eint and

max
σ∈EK∩Eint

|xK − xσ| ≤ κ2 min
σ∈EK∩Eint

dσ for all xK ∈ P.

These additional assumptions guarantee the validity of a discrete Sobolev-Poincaré in-
equality for functions with arbitrary boundary values (see [11, Theorem 2.2]) which is
needed in the proof of Theorem 3.2.

Theorem 3.2 We assume (A1) – (A4) and (A6) and consider Voronoi finite volume
meshes M fulfilling (A7) and (A8). Let for M the pair (~u ∗, ~v ∗) be the thermodynamic
equilibrium of (PM) according to Theorem 3.1. Then for every ρ > 0 there exists a mesh
size κρ > 0 and a constant cρ > 0 such that for all these Voronoi finite volume meshes M
with size(M) ≤ κρ and all ~v ∈ N̂ρ :=

{
~v ∈ RMm : F̂ (Ê~v)− F̂ (~u ∗) ≤ ρ, ~u = Ê~v ∈ ~U + Û

}
the inequality

F̂ (~u)− F̂ (~u ∗) ≤ cρD̂(~v) (3.7)

is fulfilled.

Proof. In this proof we denote by c (possibly different) positive constants depending only
on the data but not depending on the mesh.
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1. Let ρ > 0 be arbitrarily given. For ~v ∈ RMm we can estimate

D̂(~v) ≥ c

m∑
i=1

∑
σ∈Eint

Zσ
i |Dσvi|2

mσ

dσ
+ c

∑
(α,β)∈R

∫
Ω

(
exp

{ m∑
i=1

vi

αi

2

}
− exp

{ m∑
i=1

vi

βi

2

})2
dx

=: D1(~v).

Here we used (A1), (A4), (3.1) and the inequality (x− y) ln x
y ≥ |

√
x−√

y|2 for x, y > 0.
Therefore it suffices to prove the inequality

F̂ (~u)− F̂ (~u ∗) ≤ CD1(~v) ∀~v ∈ N̂ρ (3.8)

with some constant C > 0 not depending on the mesh M (if size(M) ≤ κρ).

2. If (3.8) would be false, then we would find a sequence of Voronoi finite volume meshes
Mn with size(Mn) → 0 and corresponding ~vn ∈ N̂ρ, ~un = Ê~vn ∈ ~U + Û , n ∈ N, such
that

F̂ (~un)− F̂ (~u ∗
n) = CnD1(~vn) > 0, (3.9)

and limn→∞ Cn = +∞. Clearly, for each Mn we have to use the corresponding quantities
M , ~U , Ê, F̂ , D1,... and sets Eint, Û , N̂ρ. But we don’t write them with an index Mn.
Let aniK = evniK , K ∈ Tn. By uni, vni, ani ∈ X(Mn), i = 1, . . . ,m, we denote the
corresponding piecewise constant functions.

Since

‖√ani −
√

a∗ni‖
2
L2 ≤ c‖√uni −

√
u∗ni‖

2
L2 ≤

c

c1

(
F̂ (~un)− F̂ (~u∗n)

)
≤ c(ρ) (3.10)

by assumption and Lemma 3.1 and because of a∗ni = a∗i (see Corollary 3.1) we find

‖√ani‖L2 ≤ c(ρ), i = 1, . . . ,m, for all n (3.11)

with a suitable constant c depending only on ρ.

3. We write for σ = K|L ∈ Eint, i = 1, . . . ,m,

(
√

aniK −
√

aniL)2 =
(e

vniK
2 − e

vniL
2

vniK − vniL

)2 2
evniK + evniL

Zσ
i |Dσvni|2.

Using the generalized mean value theorem we estimate(e
vniK

2 − e
vniL

2

vniK − vniL

)2 2
evniK + evniL

≤ 1
4
e2max{ vniK

2
,
vniL

2
} 2
emax{vniK ,vniL}

=
1
2
.

Therefore we conclude that
m∑

i=1

|√ani|21,Mn
=

m∑
i=1

∑
σ∈Eint

|Dσ
√

ani|2
mσ

dσ
≤ cD1(~vn) → 0.

Applying the discrete Poincaré inequality for functions with general boundary values (see
[7, Lemma 4.2] or [11, Theorem A.1]) we find for the functions √ani ∈ X(Mn) that

√
ani −mΩ(

√
ani) → 0 in L2(Ω) where mΩ(

√
ani) :=

1
mes(Ω)

∫
Ω

√
ani dx,
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i = 1, . . . ,m.

Moreover, applying to the function √ani ∈ X(Mn) the discrete Sobolev-Poincaré inequal-
ity (see [11, Theorem 2.2, Corollary 2.1]) we obtain that

‖√ani −mΩ(
√

ani)‖Lq ≤ cq|
√

ani|1,Mn → 0 (3.12)

with a constant cq > 0 not depending on Mn for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6) if
N = 3.

Since mΩ(√ani) mes(Ω) = ‖√ani‖L1 ≤ c‖√ani‖L2 ≤ c(ρ) by (3.11) for all Mn we find (for
a subsequence, and we restrict our further investigations to this subsequence) mΩ(√ani) →√

âi in R. Using that

|√ani −
√

âi| ≤ |√ani −mΩ(
√

ani)|+ |mΩ(
√

ani)−
√

âi|

we conclude that

√
ani →

√
âi in Lq(Ω), i = 1, . . . ,m, (3.13)

for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6) if N = 3. From

ani − âi = (
√

ani −
√

âi)(
√

ani +
√

âi) = (
√

ani −
√

âi)2 + 2
√

âi(
√

ani −
√

âi)

we find that

‖ani − âi‖L2 ≤ ‖√ani −
√

âi‖2
L4 + 2

√
âi‖

√
ani −

√
âi‖L2 → 0. (3.14)

Moreover, taking into account the restriction of the order of the reactions if N = 3 (see
(A4)) and (3.13) we have for (α, β) ∈ R∫

Ω

( m∏
i=1

(ani)
αi/2 −

m∏
i=1

(ani)
βi/2
)2

dx →
∫

Ω

( m∏
i=1

â
αi/2
i −

m∏
i=1

â
βi/2
i

)2
dx.

Because of

0 ≤
∫

Ω

( m∏
i=1

(ani)
αi/2 −

m∏
i=1

(ani)
βi/2
)2

dx ≤ cD1(~vn) → 0

we have for â := (â1, . . . , âm) necessarily that

âα = âβ ∀(α, β) ∈ R. (3.15)

4. For y ∈ K where K ∈ Tn with K ⊂ ΩI for some I ∈ I we estimate by (A4)

|uni(y)− ui(y)| ≤ 1
mes(K)

∫
K
|ui(x)− ui(y)|dx ≤ c

mes(K)

∫
K
|x− y|γ dx

≤ c size(Mn)γ .

For y ∈ K with mes(K ∩ ΩI) 6= 0 and mes(K ∩ ΩJ) 6= 0 for some I 6= J we estimate
|uni(y)− ui(y)| by 2 times the L∞(Ω)-bound of ui (see (A1)). For each n the measure of
the set

{y ∈ Ω : y ∈ K ∈ Tn with mes(K ∩ ΩI) 6= 0, mes(K ∩ ΩJ) 6= 0, I 6= J for some I, J ∈ I}
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can be estimated by 2θsize(Mn), where θ is a bound for the over all (N − 1) dimensional
measure of the internal subdomain boundaries (see (A4)). Since size(Mn) → 0 for n →∞
we conclude by the arguments of Step 4 that

‖uni − ui‖L2 ≤ c size(Mn)γ + cθ size(Mn) → 0 (n →∞). (3.16)

We introduce
ûi := ui âi, i = 1, . . . ,m, (3.17)

and estimate by (3.14) and (3.16)

‖uni − ûi‖L2 = ‖aniuni − âiui‖L2

≤ ‖ani − âi‖L2‖uni‖L∞ + âi‖uni − ui‖L2 → 0 (n →∞).

5. We set û := (û1, . . . , ûm). Because of ~un − ~U ∈ Û we obtain un − U ∈ U . And the
convergence uni → ûi in L2(Ω), i = 1, . . . ,m, from Step 4 gives û−U ∈ U . Thus, together
with (3.15) we find â ∈ A, and according to (A3) and Remark 2.1 we obtain that â = a∗.
By the definition of û this yields û = u∗.

6. Because of Lemma 3.1, u∗ni = uni
ui

u∗i (see Corollary 3.1) and due to the convergences
uni → u∗i in L2(Ω) and (3.16) we have

λ2
n := F̂ (~un)− F̂ (~u ∗

n) ≤ c2

m∑
i=1

‖uni − u∗ni‖2
L2

≤ 2c2

m∑
i=1

(
‖uni − u∗i ‖2

L2 + ‖u∗i − u∗ni‖2
L2

)
≤ 2c2

m∑
i=1

(
‖uni − u∗i ‖2

L2 + ‖u∗i
ui
‖2

L∞‖ui − uni‖2
L2

)
→ 0 as n →∞.

(3.18)

Additionally (according to (3.9)) we find

1
Cn

=
1
λ2

n

D1(~vn) → 0 as n →∞. (3.19)

7. For all n we introduce

y
ni

:=
1
λn

(uni − u∗ni) ∈ X(Mn), bni :=
1
λn

(√ani

âi
− 1
)
∈ X(Mn), i = 1, . . . ,m.

The relation

(
bniK − bniL

)2 =

(√aniKbai
−
√

aniLbai

vniK − vniL

)2
2

evniK + evniL
Z

K|L
i

(vniK − vniL)2

λ2
n

and the estimate(√aniKbai
−
√

aniLbai

vniK − vniL

)2
2

evniK + evniL
≤ 1

âi

(√
aniK −√

aniL

vniK − vniL

)2
2

evniK + evniL
≤ 1

2âi
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(compare Step 3, too) guarantee that

m∑
i=1

|bni|21,Mn
=

m∑
i=1

∑
σ∈Eint

|Dσbni|2
mσ

dσ
≤ c

D1(~vn)
λ2

n

→ 0.

Applying to the function bni ∈ X(Mn) the discrete Sobolev-Poincaré inequality [11, The-
orem 2.2 and Corollary 2.1] we obtain that

‖bni −mΩ(bni)‖Lq ≤ cq|bni|1,Mn → 0, i = 1, . . . ,m, (3.20)

with cq > 0 not depending on Mn for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6) if N = 3.

Using âi = a∗i = a∗ni, (3.10) and (3.18) we obtain

|mΩ(bni)|mes(Ω) ≤ 1
λn

√
âi

∫
Ω
|√ani −

√
âi|dx ≤ 1

λn

√
a∗i
‖√ani −

√
a∗ni‖L1

≤ c

λn
‖√ani −

√
a∗ni‖L2 ≤

c

λn
(F̂ (~un)− F̂ (~u ∗

n))1/2 ≤ c

λn
λn = c

for all Mn. Thus we find (for a subsequence) mΩ(bni) → b̂i in R. By

|bni − b̂i| ≤ |bni −mΩ(bni)|+ |mΩ(bni)− b̂i|

we conclude that

bni → b̂i in Lq(Ω), i = 1, . . . ,m, (3.21)

for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6) if N = 3.

8. We define ŷi := 2b̂iu
∗
i = 2b̂iâiui, i = 1, . . . ,m. Since

y
ni

=
1
λn

(uni − u∗ni) =
uni

λn
(ani − âi) =

uni

λn
(
√

ani −
√

âi)(
√

ani +
√

âi)

= unibni(
√

ani +
√

âi)
√

âi

we can estimate

‖y
ni
− ŷi‖L2 = ‖unibni(

√
ani +

√
âi)
√

âi − 2b̂iâiui‖L2

≤ ‖uni(
√

ani +
√

âi)
√

âi‖L4‖bni − b̂i‖L4

+ ‖b̂i‖L∞‖uni(
√

ani +
√

âi)
√

âi − 2âiui‖L2 .

According to ‖bni − b̂i‖L4 → 0,

‖uni(
√

ani +
√

âi)
√

âi‖L4 ≤ ‖uni‖L∞
√

âi

(
‖√ani −

√
âi‖L4 + 2‖

√
âi‖L4

)
≤ c,

‖uni(
√

ani +
√

âi)
√

âi − 2âiui‖L2 ≤ 2âi‖uni − ui‖L2 + ‖uni‖L∞
√

âi‖
√

ani −
√

âi‖L2 → 0

for n →∞ we conclude that

y
ni
→ ŷi in L2(Ω), i = 1, . . . ,m, (n →∞).
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9. In view of un−U ∈ U , u∗n−U ∈ U we have y
n

= 1
λn
{(un−U)− (u∗n−U)} ∈ U . Passing

to the limit we find that ŷ ∈ U , thus

(〈ŷ1, 1〉, . . . , 〈ŷm, 1〉) ∈ S. (3.22)

By the definition of bni and â we obtain for all (α, β) ∈ R,

â−α

(
m∏

i=1

(ani)
αi/2 −

m∏
i=1

(ani)
βi/2

)2

=
( m∏

i=1

(λnbni + 1)αi −
m∏

i=1

(λnbni + 1)βi

)2

=
(
λn

m∑
i=1

bni(αi − βi)
)2

+ Qn,

(3.23)

where
|Qn| ≤ cλ3

n(|bn|+ 1)p0 ,

0 ≤ p0 ≤ 2 max
(α,β)∈R

max
{ m∑

i=1

αi,

m∑
i=1

βi

}
.

Assumption (A4) ensures p0 < 6 if N = 3. Taking into account that λn → 0 as n → ∞
(see (3.18)), we find

1
λ2

n

‖Qn‖L1 ≤ cλn

∫
Ω
(|bn|+ 1)p0 dx → 0 as n →∞.

This together with (3.19) and (3.23) gives

lim
n→∞

∫
Ω

( m∑
i=1

bni(αi − βi)
)2

dx = 0 ∀(α, β) ∈ R.

Therefore,
b̂ = (̂b1, . . . , b̂m) ∈ S⊥. (3.24)

By the definition of ŷi in Step 8 and exploiting (3.22) and (3.24) we end up with

0 =
m∑

i=1

〈ŷi, b̂i〉 = 2
m∑

i=1

u∗i b̂
2
i .

Thus b̂ = 0, and ŷ = 0.

10. By the definition of λn (see (3.18)) and Lemma 3.1 we find

1 =
1
λ2

n

(
F̂ (~un)− F̂ (~u ∗

n)
)
≤ c2

m∑
i=1

‖y
ni
‖2

L2 → 0.

This contradiction shows that the assumption made at the beginning of Step 2 of the proof
was wrong, i.e., (3.8) holds, and the proof is complete. �

Finally, we are able to prove the main result of the paper which concerns the (monotone
and) uniform exponential decay of the free energy on solutions to the discretized Problems
(PM) for all Voronoi finite volume meshes fulfilling the properties (A4), (A7) and (A8).
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Theorem 3.3 We assume (A1) – (A8). For M, let (~u ∗, ~v ∗) be the solution to (SM).
1. Then the (fully implicit in time) discretization scheme (PM) is dissipative, i.e. solu-
tions (~u,~v) to (PM) fulfill

F̂ (~u(tn2)) ≤ F̂ (~u(tn1)) ≤ F̂ (~U) for all tn1 ≤ tn2 .

2. Moreover, there exists a λ > 0 not depending on the mesh M such that

F̂ (~u(tn))− F̂ (~u ∗) ≤ e−λtn
(
F̂ (~U)− F̂ (~u ∗)

)
∀n ≥ 1.

Proof. 1. We use the steps 1 to 3 of the proof of [8, Theorem 3.3] and obtain that

~u(tn)− ~U ∈ Û , n ≥ 1,

and for n2 > n1 ≥ 0 and λ ≥ 0

eλtn2

(
F̂ (~u(tn2))− F̂ (~u ∗)

)
− eλtn1

(
F̂ (~u(tn1))− F̂ (~u ∗)

)
≤

n2∑
r=n1+1

eλtr−1 (tr − tr−1)
{

eλhλ
(
F̂ (~u(tr))− F̂ (~u ∗)

)
− D̂(~v(tr))

}
.

(3.25)

2. Since D̂(~v) ≥ 0 for ~v ∈ RMm, we obtain by setting λ = 0 in (3.25) that

F̂ (~u(tn2)) ≤ F̂ (~u(tn1)) ≤ F̂ (~U) ∀n2 ≥ n1 ≥ 0.

3. Due to the proof of Lemma 3.1 and Corollary 3.1 we estimate

F̂ (~U)− F̂ (~u ∗) ≤ c2

m∑
i=1

‖U i − u∗i ‖2
L2

≤ c2

m∑
i=1

max{‖U i‖2
L∞ , ‖u∗i ‖2

L∞}mes(Ω)

≤ c2

m∑
i=1

max{‖Ui‖2
L∞ , ‖u∗i ‖2

L∞}mes(Ω) =: ρ.

The ρ defined in this way does not depend on the mesh M and we find F̂ (~u(tr))−F̂ (~u ∗) ≤
ρ, ~u(tr) = Ê~v(tr) ∈ ~U + Û . This means ~v(tr) ∈ N̂ρ for r ≥ 1. Theorem 3.2 supplies a
cρ > 0 such that (3.7) is fulfilled for all admissible meshes M. Choosing now λ > 0 such
that λeλ hcρ < 1 which again is independent of the mesh M (see (A5), too) and n1 = 0,
the estimate (3.25) proves the second part of the theorem. �

4 Remarks and open questions

Remark 4.1 The results of Theorem 3.2 and Theorem 3.3 remain valid if instead of (A6)
and (A7), Ω is assumed to be a finite union of (suitably overlapping) star shaped domains,
more precisely, if one supposes that
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(A9) Ω is a finite union of open, polyhedral Ωi, i = 1, . . . , J , and there

are δ̃ > 0, R > 0, and points zi ∈ Ω such that Ωi as well as the set

Ω
ieδ := Ωi ∪ ∪j 6=i{x ∈ Ωj : dist(x,Ωi) < δ̃} are star shaped with respect

to the ball B(zi, R), i = 1, . . . , J .

We introduce the functions

%i : Rn → [0, 1], %i(y) =

{
exp

{
− R2

R2−|y−zi|2
}

if |y − zi| < R,

0 if |y − zi| ≥ R,

and their piecewise constant approximations %Mi ∈ X(M). Concerning the mesh we
assume

(A10) Let M = (P, T , E) be a Voronoi finite volume mesh of Ω with size(M) < δ̃,

with
∫
Ω %Mi (x) dx ≥ κ0, i = 1, . . . , J , and with the property that

EK ∩ Eext 6= ∅ implies xK ∈ ∂Ω.

Then the discrete Sobolev inequality holds true, too (see [11, Theorem 4.1]), and the
arguments in the proof of Theorem 3.2 remain valid.

Remark 4.2 Let N = 3. In the continuous situation also for reactions of order three
the results of Section 2 in Theorem 2.2 and Lemma 2.1 are true. For a fixed mesh we can
prove a corresponding result for the resulting finite dimensional problem, too. But if we
are interested in estimates which are independent of the mesh we needed in the indirect
proof of Theorem 3.2 a discrete Sobolev-Poincaré inequality (for functions with general
boundary conditions) for the discrete square roots of the chemical activities) for q equal
to two times the maximal order of the reactions.

Note that the discrete Sobolev inequality for functions with zero boundaries values for
N = 3 in the references [1, 3] allows for q ∈ [1, 6]. But the technique used there fails
in the case of more general boundary values. In [11] Sobolev’s integral representation is
adapted to the discretized setting to prove the discretized Sobolev inequality for functions
with general boundary values. And this method (also in the continuous case) gives only
the result for q ∈ [1, 6). Therefore our results Theorem 3.2 and Theorem 3.3 concern only
reactions of order less than three. A unified decay rate of the free energy for problems
involving reactions of order three in three space dimensions remains an open problem.

Remark 4.3 Let N = 2. If one takes into account charged species and problem (1.4) is
extended by a Poisson equation for the electrostatic potential, for N = 2 the results of
Theorem 2.2 and Lemma 2.1 remain true (see [10, Theorem 3.1, Theorem 3.2]). Here an
essential tool in the indirect proof of [10, Theorem 3.1] is a boundedness result of Gröger
[16] for the solution to elliptic boundary value problems with nonsmooth data and right
hand side f fulfilling f ln f ∈ L1(Ω).

For a fixed mesh we can prove corresponding results for the finite dimensional problem,
too (see [8, Theorem 3.2]). But if we are interested in uniform estimates with respect to a
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class of meshes a discrete variant of Grögers boundedness result would be needed. This,
up to now is an open question, too.
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12. A. Glitzky, K. Gröger, and R. Hünlich, Free energy and dissipation rate for reaction
diffusion processes of electrically charged species, Applicable Analysis 60 (1996), 201–
217.
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