
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Direct computation of elliptic singularities across
anisotropic, multi-material edges

Robert Haller-Dintelmann1, Hans-Christoph Kaiser2,

Joachim Rehberg3

submitted: September 14th, 2009

1 Technische Universität Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany
E-Mail: haller@mathematik.tu-darmstadt.de

2 Weierstrass Institute for
Applied Analysis and Stochastics
Mohrenstr. 39, 10117 Berlin, Germany
E-Mail: kaiser@wias-berlin.de

3 Weierstrass Institute for
Applied Analysis and Stochastics
Mohrenstr. 39, 10117 Berlin, Germany
E-Mail: rehberg@wias-berlin.de

No. 1439
Berlin 2009

2000 Mathematics Subject Classification. 35B65, 35J25, 35R05.

Key words and phrases. Elliptic transmission problems, mixed boundary problems, W 1,p

regularity.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Direct computation of elliptic singularities. . . 1
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Abstract : We characterise the singularities of elliptic div-grad operators at
points or edges where several materials meet on a Dirichlet or Neumann
part of the boundary of a two- or three-dimensional domain. Special em-
phasis is put on anisotropic coefficient matrices. The singularities can be
computed as roots of a characteristic transcendental equation. We establish
uniform bounds for the singular values for several classes of three- and four-
material edges. These bounds can be used to prove optimal regularity results
for elliptic div-grad operators on three-dimensional, heterogeneous, polyhe-
dral domains with mixed boundary conditions. We demonstrate this for the
benchmark L–shape problem.
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“However, one can find these eigenvalues very seldom,
[. . . ] even in the case of the Laplace operator.” [37, p. 36]

1 Introduction

Regularity for elliptic div-grad operators −∇·µ∇ on three-dimensional, het-
erogeneous, polyhedral domains is intimately connected with edge and vertex
singularities, see [34], [35], [45], [46], [23], [42], [14], [47], [16], [15]. The fo-
cus of this paper is on characterising these singularities as the roots of a
transcendental equation which is explicitly given in terms of the data. This
allows for a scheme to compute the singularities, but also for estimates of
these singularities. Despite the importance of appraising singularities, up to
now there are no results for the case of several anisotropic materials — apart
of [30], [18], and [24] for two materials. Ultimately, we aim at the integra-
bility of the gradient of the solution of elliptic equations in div-grad form to
an index larger than three. This property is very useful in the treatment of
nonlinear equations and systems, see for instance [27], [48], [21], [20]. Due to
a pioneering idea of V. Maz’ya it suffices to delimitate the edge singularities
in order to get optimal elliptic regularity, see [48], [18].

Since information about the singularity of solutions of elliptic equations is
crucial for the solution of these equations and in particular for the efficiency of
numerical solvers, there exist several numerical approaches to determine the
singularities of specific anisotropic problems, see [42], [13], [58] and references
cited there. For a more general numerical approach to heterogeneous elliptic
problems see for instance [9], [1], [60], [29].

Div-grad operators −∇·µ∇ are of significance in science and engineer-
ing. They abound in thermodynamics [55], [33], in electrodynamics [57],
[40], in acoustics [59], [41], neutron transport theory [2] and references cited
there, and mathematical biology [11], [5]. Moreover, such operators occur
in semiconductor and laser modeling [56], for instance in the description of
submicron devices by means of an effective mass Schrödinger operator in Ben
Daniel Duke form [4], [62], [17], [44], [61]. The coefficient function µ repre-
sents material properties as the context requires. It may be the dielectric
permittivity in a Poisson equation, or diffusivity in a transport equation (see
for instance [56, §2.2] for carrier continuity equations), or the effective elec-
tron mass in a Schrödinger equation (see for instance [36]). Let us emphasise
that it is in the nature of the coefficient function µ to be a tensor, though it
simplifies in some applications to scalars. For a reasoning in electrodynamics
see [54, Ch. IX], [40, Ch. XI], [39, §122], and for one in thermodynamics see
[55, Ch. I.5] or [33, Ch. 2.1] and references cited there.

In the majority of cases µ is discontinuous, if different materials meet at
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surfaces or edges. Increasingly, one becomes aware that it is often not ad-
missible to smooth out these discontinuities and to pass to smooth (or even
constant) coefficient functions. For acoustics of heterogeneous media it was
already pointed out by Tappert [59, p. 263] that the — formal — transforma-
tion of the reduced wave equation (in case of a time harmonic dependence)
to the classical Helmholtz equation is of limited value, if the density changes
abruptly. Analogous observations were made in mathematical biology [11],
[5] and references cited there. In many advanced semiconductor devices het-
erostructures essentially determine the functionality see for instance [31], [7],
[3]. Moreover, in semiconductor physics the effective mass theorem necessi-
tates parameter discontinuities at the interface [17, Ch. I.III.3]. In all these
contexts elliptic equations (for instance Poisson’s equation) play a role, often
as part of a compound model.

Information about the singularity of solutions of elliptic div-grad equa-
tions is encoded in a transcendental equation, see [14, Ch. 17] and [48, §3.4].
For edges, adjacent to two materials, this transcendental equation governing
the singular values is known explicitly even in the case of anisotropic ma-
terials, see [18] and the Appendix of [24]. On the other hand there is next
to nothing for multi-material edges notwithstanding their relevance in tech-
nology. The direct vision prism, for instance, features a three-material edge
[26], [6, Ch. 3.2], see also Figure 1. At a three-material edge, even for scalar
coefficients, the singular values in general have an arbitrarily small real part,
see [49] and references cited there.

P
•

Q
•

Figure 1: Direct vision prism composed of crown and flint glass (double Amici
prism). At the three-material edge PQ optical crown, flint, and again crown meet.

In contrast to stress calculations for anisotropic materials on three-dimen-
sional domains (see [64], [51]) the somewhat related problem of elliptic edge
singularities allows for an explicit, analytical treatment. We undertake this
for up to four materials meeting at an edge, but it could be done similarly
for an arbitrary number of materials.

In Section 2.1 the investigation of the edge singularities is reduced via
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partial Fourier transform along the edge to the dissection of the vertex sin-
gularities for an associated two dimensional elliptic problem. The compu-
tation of the vertex singularities follows the approach of Costabel, Dauge,
and Lafranche in [13], see also [12]. There elementary solutions of the asso-
ciated generalised Sturm-Liouville problem are used to calculate the elliptic
singularities. While Costabel et al. [13] describe a semi-analytic computa-
tion, here we explicitly get an analytic function, the roots of which are the
singular values, see Theorem 2.19. This allows to obtain explicit bounds for
the singularities in certain classes of material–geometric constellations. In
general the singular values are complex numbers. Here we prove for certain
classes that they are in fact real numbers. This rests on the way we derive the
transcendental equation. Indeed, we encode each anisotropy (including the
corresponding sectorial angle) in a scalar κ which enters the analytic func-
tion as a parameter. This parameter κ has the quality of an angle, and it
represents exactly the deviation from the isotropic case. Thus, it is possible
to emulate some results from the scalar coefficients case [52] in the case of
anisotropic coefficients.

Section 2 is devoted to the precise formulation and the proofs of our main
results concerning the analytic function whose zeros are the singular values.
Furthermore, an estimate for the size of the sector containing the singular
values is given in terms of the coefficient matrices. Then in Section 3 we give
bounds for the singular values in some special cases, in particular for three
materials meeting at an edge. In Section 4 we outline how to compute the
zeros of the analytic function characterising the singular values, but do not
expatiate on the numerical methods to do so since there is a vast specialised
literature, see e.g. [38], [22], and references cited there.

Finally, in Section 5 we apply our result to the three-dimensional L–shape
of different materials, see Figure 7 and Theorem 5.6, which was regarded in
[15, Fig. 2] and [50, Fig. 1]. This kind of structure really plays a role in
technology. Just have a look at a ridge waveguide multiple quantum well
laser Figure 2.

Our result generalises that by Nicaise and Sändig [50] to anisotropic co-
efficient functions. Moreover, we provide an optimal regularity result within
the scale of W 1,q spaces. This scale has the advantage — in contrast to the
mostly considered scale of Hs,2 spaces — that the space of optimal regular-
ity embeds into a Hölder space. Thus, it allows for a unified treatment of
quasi-linear parabolic equations, see [48], [27], and [25].

Summing up: With this investigation we would like to provide a tool to
appraise the singularities at a multi-material edge, including anisotropies.
Indeed it is well known in engineering that multi-material edges may cause
difficulties. Therefore one tries to avoid them, but, this is not always possible,
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Figure 2: Schema of a ridge waveguide quantum well laser (detail
3.2µm×1.5µm×4µm). A material interface (dark shaded) and a boundary part
(light shaded) carrying Neumann boundary conditions meet at an edge of the de-
vice domain. At the bottom and the top of the structure are contacts giving rise
to Dirichlet boundary conditions for the electrostatic potential in the electronic
simulation of the laser, while other parts of the device are insulated (Neumann
boundary conditions). A triple quantum well structure is indicated where the
light beam forms in the symmetry plane of the domain.

as the ridge waveguide laser design demonstrates.

2 Singularities

In this section we first briefly recall how singular values originate from the
elliptic equation on a two-dimensional domain. This exposition faithfully
follows the standard way by Mellin transform, see [34], [37, Ch. 6.1], compare
also [42, Ch. V.3]. Then we prove, after some preliminary work, our main
Theorem 2.19 on the location of the singular values.

2.1 Preliminaries

Let us define for any two complex numbers σ and λ the exponential by

σλ def
= exp(λ log |σ|+ iλ arg σ), arg σ ∈ ]−π, π] . (2.1)

For two real numbers τ and ν with τ < ν < τ + 2π we define the sector

Kν
τ

def
= {(r cos θ, r sin θ) : r > 0, θ ∈ ]τ, ν[}. (2.2)

Now we introduce the relevant div-grad operators on 2-dimensional do-
mains.
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θ0

θ1

θ2

θn−1

θn

Kθ1
θ0

Kθ2
θ1

Kθn
θn−1

ρ1

ρ2

ρn

Figure 3: Material sectors K
θj

θj−1
of the plane with corresponding coefficient

matrices ρj , j = 1, . . . , n. The thick lines bear Dirichlet or Neumann boundary
conditions. See also Definition 2.1.

Definition 2.1. Let real numbers

θ0 < θ1 < . . . < θn < θ0 + 2π

be given and, additionally, real, symmetric, positive definite 2×2 matrices
ρ1, . . . , ρn, see Figure 3. We define ρ as the matrix valued function on Kθn

θ0

which takes on the sector K
θj

θj−1
the value ρj. Let for any closed subspace

V ⊂ W 1,2(Kθn
θ0

) the following sesquilinear form be given:

V × V 3 (v, w) 7→
∫

Kθn
θ0

ρ∇v · ∇w dx. (2.3)

We give the name −∇·ρ∇ with Neumann boundary condition to the operator
corresponding to V = W 1,2(Kθn

θ0
) and the form (2.3), and we give the name

−∇·ρ∇ with Dirichlet boundary conditions to the operator corresponding to
V = W 1,2

0 (Kθn
θ0

) and the form (2.3).

Remark 2.2. We restrict this investigation to real, symmetric matrices ρ
because it makes use of results from [48] for such coefficient matrices. How-
ever, this case covers a lot of equations involving elliptic div-grad operators
from mathematical physics and engineering. For a detailed discussion see
[40, Ch. XI] and [39, §122].

Definition 2.3. Let θ0,. . . , θn and ρ1,. . . , ρn be as in Definition 2.1. We
introduce on ]θ0, θn[ \ {θ1, . . . , θn−1} three coefficient functions b0, b1 and
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b2, and the determinant D of ρ, whose restrictions to each of the intervals
]θj−1, θj[ are given by

b0(θ)
def
= ρj

11 cos2 θ + 2ρj
12 sin θ cos θ + ρj

22 sin2 θ,

b1(θ)
def
= (ρj

22 − ρj
11) sin θ cos θ + ρj

12(cos2 θ − sin2 θ),

b2(θ)
def
= ρj

11 sin2 θ − 2ρj
12 sin θ cos θ + ρj

22 cos2 θ,

D(θ)
def
= Dj

def
= det ρj = b2b0 − b21,

(2.4)

j = 1, . . . , n. If −∇·ρ∇ is complemented with Dirichlet conditions, then we
define the space H as W 1,2

0 (θ0, θn), while in the case of Neumann conditions
we set H = W 1,2(θ0, θn). For every λ ∈ C we then define the quadratic form
tλ on H by

tλ[ψ]
def
=

θn∫
θ0

b2 ψ
′ ψ′ + λb1ψ ψ′ − λb1ψ

′ ψ − λ2b0ψψ dθ

and Aλ is the operator which is induced by tλ on L2(θ0, θn).

Remark 2.4. It is easy to check that b2, restricted to the interval ]θj−1, θj[,
is bounded from below by the smallest eigenvalue of the matrix ρj. Indeed,

inf
θ∈]θj−1,θj [

b2(θ) = inf
θ∈]θj−1,θj [

(
ρj

11 ρj
12

ρj
12 ρj

22

)(− sin θ
cos θ

)
·
(− sin θ

cos θ

)
≥ inf

ξ∈R2, ‖ξ‖=1
ρjξ · ξ ≥ inf

ξ∈C2, ‖ξ‖=1
ρjξ · ξ

By the minimax principle, the last term equals the smallest eigenvalue of ρj,
which is easy to evaluate as

ρj
11+ρj

22

2
−
√

(ρj
11−ρj

22)2

4
+ (ρj

12)
2

and is greater than 0 due to the condition from Definition 2.1. Hence, the
form tλ is sectorial for every λ ∈ C. A fortiori the induced operator Aλ is
sectorial, see [32, Ch. VI].

Definition 2.5. We call 0 6= λ ∈ C with <λ ∈ [0, 1[ a singular value for
the operator −∇ · ρ∇ (including boundary conditions), iff the corresponding
operator Aλ, see Definition 2.3, has a nontrivial kernel.
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Indeed it is well known that, if λ is a singular value for −∇·ρ∇ and ψλ

is an element from kerAλ, then the function

h : R2 3 (x, y) 7→ (x2 + y2)
λ
2 ψλ

(
arg(x+ iy)

)
satisfies the equation −∇·ρ∇h = 0 on Kθn

θ0
in the sense that∫

Kθn
θ0

ρ∇h · ∇w dx = 0 for all w ∈ V with compact support,

see also (2.3). Since <λ < 1 the partial derivatives of h have a singularity in
0 ∈ R2.

Let us next briefly recall the connection between elliptic three-dimensional
edge singularities and two-dimensional vertex singularities.

x

y

z

θ0

θ2
θ1

•

•

P
•

Figure 4: Edge pencil, see Definition 2.6

Definition 2.6. Let Ω ⊂ R3 be a polyhedron which, additionally, is a Lip-
schitz domain (that means a domain of class C0,1) and let {Ωk}k be a finite,
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disjoint, polyhedral partition of Ω. Hence, the boundary ∂Ω is the disjoint
union of some faces, edges, and vertices of the polyhedra Ωk. Furthermore, µ
shall be a matrix function on Ω which is constant on each Ωk and takes real,
symmetric, positive definite 3×3 matrices as values. Moreover, the faces of
the sub-polyhedra Ωk, which are open sets with respect to the surface mea-
sure, are either in the interior of Ω, or carry Neumann boundary conditions,
or carry Dirichlet boundary conditions. We regard now the edges of the sub-
polyhedra Ωk, which are open sets with respect to the curve measure, thus
do not contain any vertex of Ωk. Let E be such an edge on the boundary of
Ω, and let P be an arbitrary inner point of this edge. Choosing a new or-
thogonal coordinate system (x, y, z) with origin at the point P such that the
direction of E coincides with the z-axis, we denote by ω the corresponding
orthogonal transformation matrix and by µω the piecewise constant matrix
function which satisfies in a neighbourhood O of the origin

µω(x, y, z) = ωµ
(
ω−1(x, y, z)

)
ω−1 for all (x, y, z) ∈ O,

µω(tx, ty, z) = µω(x, y, 0) for all (x, y, 0) ∈ O, z ∈ R, and t > 0.

Finally, we denote by µE the upper left 2×2 block of µω at z = 0.

Remark 2.7. The matrix µE is given on a sector (2.2) which coincides near
P with the intersection of the x-y-plane with the ω-image of the domain
Ω. There exist — uniquely determined — angles θ0 < θ1 < . . . < θn <
θ0 + 2π such that µE is constant on each of the sectors K

θj+1

θj
and takes real,

symmetric, positive definite 2×2 matrices as values. Obviously, µE and the
corresponding two-dimensional div-grad operator −∇·ρ∇ from Definition 2.1
do not depend on the choice of the point P . This justifies the following
definition of the edge singularity.

Definition 2.8. For any of the two-dimensional div-grad operators −∇·ρ∇
from Definition 2.1 we call the number

ð def
= inf{<λ : λ is a singular value for the operator −∇·ρ∇}

the vertex singularity. Now, we assume a constellation as in Definition 2.6,
and we define for a three-dimensional div-grad operator with the coefficient
matrix-function µ the edge singularity at E by the corresponding vertex
singularity of the operator ∇·µE∇ on the sector Kθn

θ0
, see [14] and references

cited there. If there is a (boundary) neighbourhood of the edge E belonging
to the Neumann boundary part of the three-dimensional problem, then we
take ∇·µE∇ with Neumann boundary condition on ∂Kθn

θ0
, see Definition 2.1.

This applies mutatis mutandis to a Dirichlet boundary condition.
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10 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

So, in order to find the edge singularities of a three-dimensional problem
as in Definition 2.6, one regards for each edge a two-dimensional problem
as in Definition 2.1, and looks for parameters λ such that the operators Aλ,
see Definition 2.3, induced by the two-dimensional problem have a nontrivial
kernel, see Definition 2.5.

Our Definition 2.8 of edge singularity corresponds to notions of singularity
at edges in physics. For instance, the singularity of the kinetic energy of an
acoustic wave at an edge only depends on the opening angle and the material
of the edge, see e.g. [63, §5.3.4].

2.2 Estimates for the imaginary part of the singulari-
ties

We show that the singular values (see Definition 2.5) of the two-dimensional
div-grad operators −∇·ρ∇ from Definition 2.1 lie in a sector of the complex
plane. It turns out that this sector is symmetric with respect to the real axis,
and its opening angle is explicitely determined by the coefficient matrices ρj,
j = 1, . . . , n. Actually, we already know from Remark 2.4 that the opera-
tor Aλ is sectorial. In Theorem 2.9 we give now an estimate of the sector
containing the singular values. Please note that the angles θ0, . . . , θn do not
enter into this estimate.

Throughout this section we write the complex number λ in the form
λ = λ1 + iλ2.

Theorem 2.9. All values λ from the right half plane, for which the kernel
of Aλ, see Definition 2.3 and Definition 2.5, is nontrivial, are located in the
sector

S def
=
{
λ1 + iλ2 : |λ2| ≤ λ1 max

1≤j≤n

tr ρj

2
√

det ρj

}
.

In particular, there are no singular values on the imaginary axis.

Proof. Let us first recall that b2, see Definition 2.3, is bounded from below
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by a positive constant, see Remark 2.4. Thus, we can estimate

<tλ[ψ] = <
θn∫

θ0

b2 ψ
′ ψ′ + λb1ψ ψ′ − λb1ψ

′ ψ − λ2b0ψ ψ dθ

≥
θn∫

θ0

b2 |ψ′|2 − 2 |λ2||b1||ψ′||ψ|+ (λ2
2 − λ2

1)b0|ψ|2 dθ

=

θn∫
θ0

(√
b2|ψ′| − |λ2| |b1|√

b2
|ψ|)2 +

(
λ2

2

b2b0 − b21
b2

− λ2
1b0
)|ψ|2 dθ.

Using b2b0 − b21 = D, see (2.4), we can further estimate

≥
θn∫

θ0

(
λ2

2

D

b2
− λ2

1b0
)|ψ|2 dθ =

θn∫
θ0

(
λ2

2 − λ2
1

b2b0
D

)D
b2
|ψ|2 dθ. (2.5)

Writing b2b0/D = 1 + b21/D and applying the inequality

sup
θ∈]θj−1,θj [

|b1| = sup
θ∈]θj−1,θj [

∣∣∣ρj
22−ρj

11

2
sin 2θ + ρj

12 cos 2θ
∣∣∣

≤
√

(ρj
22−ρj

11)2

4
+ (ρj

12)
2

we may estimate on each interval ]θj−1, θj[

b2b0
D

= 1 +
b21
D
≤ 1 +

(ρ22 − ρ11)
2/4 + ρ2

12

D
=

(ρ11 + ρ22)
2

4D
.

Hence, if λ /∈ S and ψ 6= 0, then (2.5) is strictly positive, thus, kerAλ must
be trivial.

Corollary 2.10. The singular values (see Definition 2.5) of the two-dimen-
sional div-grad operators −∇·ρ∇ from Definition 2.1 are uniformly bounded.

Remark 2.11. The term tr ρj/
√

4 det ρj does not change its value, when
the matrix ρj is multiplied by a positive scalar. Moreover, both the trace
and the determinant of a matrix are similarity invariant. Hence, scaling and
similarity transformations of the matrices ρj, j = 1, . . . , n leave the sector S
unchanged.

Remark 2.12. It would be highly satisfactory to have also an analogous
a priori bound for the number of singular values — in terms of the data.
Unfortunately, we did not succeed in finding such a bound. For the case of
interior edges see [30].
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12 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

2.3 Characterisation of the singularities

Now we want to characterise the edge singularities of the three-dimensional
problem, that means in view of Definitions 2.3 and 2.5 the parameters λ such
that the operators Aλ have a nontrivial kernel. We get that all these values
λ are roots of a characteristic analytic function.

Standard arguments show that any function u from the kernel of the
operator Aλ, see Definition 2.3, obeys the differential equation

(b2u
′)′ + λ(b1u)

′ + λb1u
′ + λ2b0u = 0 (2.6)

on each of the intervals ]θj−1, θj[, j = 1, . . . , n, and fulfils, additionally, the
transmission conditions

[u]θ = 0 and [b2u
′ + λb1u]θ = 0 (2.7)

in every point θ ∈ {θ1, . . . , θn−1}. Here, as usual, we have written

[w]θ
def
= limϑ↓θ w(ϑ)− limϑ↑θ w(ϑ).

Following [13] (see also [48, §3.6] for further details) we now regard the
elementary solutions

θ 7→ e−iλθ(ςe2iθ + 1)λ, θ 7→ eiλθ(ς̄e−2iθ + 1)λ

of the differential equation (2.6) on each of the intervals ]θj−1, θj[. Here, the
complex number ς = ςj for ]θj−1, θj[ is determined by

ςj
def
=
i(ρj

22 −
√
Dj)− ρj

12

i(ρj
22 +

√
Dj) + ρj

12

=
ρj

22 − ρj
11 + 2iρj

12

ρj
22 + ρj

11 + 2
√
Dj

, (2.8)

where Dj is the determinant of the matrix ρj, see (2.4).

Remark 2.13. In the sequel it is important that 0 ≤ |ςj| < 1. This is easily
verified using the positivity of ρj

22.

Definition 2.14. For each material sector K
θj

θj−1
we now define the charac-

teristic angle of anisotropy by

κj
def
= arg

ς̄je
−2iθj + 1

ς̄je−2iθj−1 + 1
, j = 1, . . . , n. (2.9)

By (2.1) we have −π < κj ≤ π.
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Remark 2.15. If the material in the sector K
θj

θj−1
is isotropic, that means, if

ρj is a positive multiple of the identity matrix, then ςj is zero and a fortiori
κj vanishes. The anisotropy of the material enters our considerations as a
shift of the sector’s opening angle θj − θj−1 by κj, that means the “material”
opening angle of the sector is θj − θj−1 + κj.

On each interval ]θj−1, θj[ the ansatz functions

uj(θ)
def
= ĉje

−iλθ(ςje
2iθ + 1)λ + čje

iλθ(ς̄je
−2iθ + 1)λ (2.10)

satisfy (2.6), see [13], also compare [48, §3.6]. The transmission conditions
(2.7) at θ1, . . . , θn−1 together with either the boundary conditions at θ0 and
θn lead to a 2n×2n homogeneous linear system for the coefficients ĉj, čj. The
determinant of this matrix is an analytic function in λ — the characteristic
function of the edge under consideration. The zeros of this function provide
all the values of λ for which the problem (2.6) with (2.7) has a nontrivial
solution, thus, Aλ has a nontrivial kernel.

In our setup of the transcendental equation for the singular values λ,
we need the following reformulation of the boundary conditions, and of the
transmission conditions.

Proposition 2.16. See [24, Lemma 20 and Corollary 21]. Let u be the
function on [θ0, θn] which coincides on ]θj−1, θj[, j = 1, . . . , n, with uj as
defined in (2.10).

1. For λ 6= 0 Neumann boundary conditions

(b2u
′ + λb1u)|θ=θ0 = 0, (b2u

′ + λb1u)|θ=θn = 0

equivalently can be expressed as

ĉ1e
−iλθ0(ς1e

2iθ0 + 1)λ = č1e
iλθ0(ς̄1e

−2iθ0 + 1)λ,

ĉne−iλθn(ςne2iθn + 1)λ = čneiλθn(ς̄ne−2iθn + 1)λ.

2. For λ 6= 0 the transmission conditions (2.7) at a point θ = θj, j =
1, . . . , n−1, for the function u equivalently can be expressed as

ĉje
−iλθ(ςje

2iθ + 1)λ + čje
iλθ(ς̄je

−2iθ + 1)λ

= ĉj+1e
−iλθ(ςj+1e

2iθ + 1)λ + čj+1e
iλθ(ς̄j+1e

−2iθ + 1)λ (2.11)

and√
Dj

(
ĉje

−iλθ(ςje
2iθ + 1)λ − čje

iλθ(ς̄je
−2iθ + 1)λ

)
=
√
Dj+1

(
ĉj+1e

−iλθ(ςj+1e
2iθ + 1)λ − čj+1e

iλθ(ς̄j+1e
−2iθ + 1)λ

)
, (2.12)

respectively.
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14 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

The next lemma justifies an algebraic manipulation which will be fre-
quently used in the treatment of the boundary and transmission conditions.

Lemma 2.17. Let us regard numbers χ ∈ C with |χ| < 1, ζ ∈ ]0, 2π] and
λ ∈ C with 0 < <λ < 1. Then

(χe−2iζ + 1)λ

(χ+ 1)λ

(χ+ 1)λ

(χe2iζ + 1)λ
=
(χe−2iζ + 1

χ+ 1

)λ( χ+ 1

χe2iζ + 1

)λ

= e2iλκ, (2.13)

where

κ = arg
χe−2iζ + 1

χ+ 1
∈ ]−π, π] .

Moreover, the values ζ and κ are related in the following way (see [24,
Lemma 26]):

Either ζ, ζ + κ ∈ ]0, π[ or ζ = ζ + κ = π or ζ, ζ + κ ∈ ]π, 2π[.

Proof. We first prove (2.13). Due to |χ| < 1, all the terms χe−2iζ + 1, χ+ 1,
χ+ 1, χe2iζ + 1 have positive real part. Thus, the first equality follows from
our definition (2.1) of the power function, and the supposition <λ ∈ ]0, 1[.
On the other hand, one has

χ+ 1

χe2iζ + 1
=
(χe−2iζ + 1

χ+ 1

)−1

.

This, together with (2.1), and the definition of κ, yields the second equality.
We now prove the second assertion. If ζ = π, then by definition κ = 0.

Also from the definition of κ we have a priori ζ + κ ∈ ]−π, 2π[ for ζ ∈ ]0, π[,
and ζ + κ ∈ ]0, 3π[ for ζ ∈ ]π, 2π[. Moreover, for ζ ∈ ]0, 2π[ \ {π} one has

ei(ζ+κ) = eiζ χe−2iζ + 1

χ+ 1

|χ+ 1|
|χe−2iζ + 1| =

(χe−iζ + eiζ)(χ+ 1)

|χ+ 1||χe−2iζ + 1|

=
|χ|2e−iζ + eiζ + 2<(χe−iζ

)
|χ+ 1||χe−2iζ + 1| . (2.14)

Thus,

=ei(ζ+κ) =
(1− |χ|2) sin ζ

|χ+ 1||χe−2iζ + 1|
and the sign of =ei(ζ+κ) only depends on ζ.

If we specify in Lemma 2.17

χ = ς̄je
−2iθj−1 and ζ = θj − θj−1, j = 1, . . . , n,

see Definition 2.1 and (2.8), then we get the following corollary.
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Corollary 2.18. For the numbers θj, ςj, and κj, see Definition 2.1, (2.8),
and (2.9), respectively, holds true

(ς̄je
−2iθj + 1)λ

(ς̄je−2iθj−1 + 1)λ

(ςje
2iθj−1 + 1)λ

(ςje2iθj + 1)λ
= e2iλκj , j = 1, . . . , n,

for all λ ∈ C with 0 < <λ < 1. Moreover,

θj − θj−1 ∈ ]0, π[ iff θj − θj−1 + κj ∈ ]0, π[ ,

θj − θj−1 = π iff θj − θj−1 + κj = π,

θj − θj−1 ∈ ]π, 2π[ iff θj − θj−1 + κj ∈ ]π, 2π[ .

(2.15)

Hence, for two adjacent sectors K
θj−1

θj−2
and K

θj

θj−1
we have

0 < θj − θj−2 + κj + κj−1 < 2π (2.16)

if both opening angles are smaller than π, or

π < θj − θj−2 + κj + κj−1 < 2π (2.17)

if one opening angle is π, or

π < θj − θj−2 + κj + κj−1 < 3π (2.18)

if one opening angle is greater or equal π. Nota bene, all but one of the
opening angles must be smaller than π.

2.4 The characteristic equation for four materials

From now on we specialise to the case of just four materials meeting at an
edge on the boundary of the three-dimensional domain Ω, see Definition 2.6.
More precisely, we regard a constellation as in Definition 2.1 and Figure 3
with angles θ0 < · · · < θ4 < θ0 + 2π, and Dirichlet or Neumann bound-
ary conditions. With respect to this constellation, and the corresponding
anisotropy shifts (2.9) we define the complex valued functions FN , GN , FD,
GD on C by

FN(λ)
def
= eiλ(θ2−θ0+κ1+κ2)

(
1−

√
D1−

√
D2√

D1+
√

D2
e−2iλ(θ1−θ0+κ1)

)
,

GN(λ)
def
= eiλ(θ4−θ2+κ3+κ4)

(
1 +

√
D3−

√
D4√

D3+
√

D4
e−2iλ(θ4−θ3+κ4)

)
,

FD(λ)
def
= eiλ(θ2−θ0+κ1+κ2)

(
1 +

√
D1−

√
D2√

D1+
√

D2
e−2iλ(θ1−θ0+κ1)

)
,

GD(λ)
def
= eiλ(θ4−θ2+κ3+κ4)

(
1−

√
D3−

√
D4√

D3+
√

D4
e−2iλ(θ4−θ3+κ4)

)
.

Referring to Definition 2.1 and Definition 2.5 we now can state our main
theorem.
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16 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

Theorem 2.19. The singular values λ of the operator −∇·ρ∇ with Neu-
mann boundary conditions are the solutions of the equation√

D3

(
FN(λ) + FN(−λ)

) (
GN(λ)−GN(−λ)

)
+
√
D2

(
FN(λ)− FN(−λ)

) (
GN(λ) +GN(−λ)

)
= 0. (2.19)

The singular values λ of the operator −∇·ρ∇ with Dirichlet boundary con-
ditions are the solutions of the equation√

D3

(
FD(λ)− FD(−λ)

) (
GD(λ) +GD(−λ)

)
+
√
D2

(
GD(λ)−GD(−λ)

) (
FD(λ) + FD(−λ)

)
= 0. (2.20)

Remark 2.20. The left hand sides of (2.19) and (2.20) are entire functions
in λ. We already know, see Corollary 2.10, that the imaginary parts of the
singular values are uniformly bounded, and the real parts of the singular
values are bounded by Definition 2.5. Hence, Theorem 2.19 implies that if
there are singular values at all, then there is a singular value λ0 such that
ð = <λ0, see Definition 2.8.

Proof of Theorem 2.19. We prove only the case of Neumann boundary con-
ditions explicitly. The case of Dirichlet boundary conditions requires only
obvious modifications pointed out at the end of the proof.

Let us introduce two more complex valued functions on C by

XN(λ)
def
= e−iλ(θ2−θ0+κ1+κ2)FN(λ) = 1−

√
D1−

√
D2√

D1+
√

D2
e−2iλ(θ1−θ0+κ1)

YN(λ)
def
= e−iλ(θ4−θ2+κ3+κ4)GN(λ) = 1 +

√
D3−

√
D4√

D3+
√

D4
e−2iλ(θ4−θ3+κ4)

(2.21)

We first prove that (2.19) is a necessary condition for λ to be a singular
value. According to the first part of Proposition 2.16 the Neumann boundary
conditions for the ansatz functions (2.10) in θ0 and θ4 provide

č1 = e−2iλθ0
(ς1e

2iθ0 + 1)λ

(ς̄1e−2iθ0 + 1)λ
ĉ1, ĉ4 = e2iλθ4

(ς̄4e
−2iθ4 + 1)λ

(ς4e2iθ4 + 1)λ
č4. (2.22)

Note that the denominators do not vanish thanks to Remark 2.13.
We now establish further relations between the coefficients of the ansatz

functions (2.10) by means of the transmission conditions (2.7) in θ1, θ2 and
θ3, that means at the interior material interfaces. First, it is clear from the
second part of Proposition 2.16, that, if at least one of the constants ĉ1, č1,
ĉ4, č4 vanishes, then the others and, additionally, ĉ2, č2, ĉ3, č3 also vanish.
Making use of (2.11) and (2.12) in θ1 we further get

2ĉ2(ς2e
2iθ1 + 1)λ = ĉ1

(
1 +

√
D1√
D2

)
(ς1e

2iθ1 + 1)λ

+ č1
(
1−

√
D1√
D2

)
e2iλθ1(ς̄1e

−2iθ1 + 1)λ, (2.23)
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2č2(ς̄2e
−2iθ1 + 1)λ = ĉ1

(
1−

√
D1√
D2

)
e−2iλθ1(ς1e

2iθ1 + 1)λ

+ č1
(
1 +

√
D1√
D2

)
(ς̄1e

−2iθ1 + 1)λ. (2.24)

Replacing č1 by means of (2.22) yields

ĉ2 =
ĉ1(ς1e

2iθ1 + 1)λ

2(ς2e2iθ1 + 1)λ

((
1 +

√
D1√
D2

)
+
(
1−

√
D1√
D2

)
e2iλ(θ1−θ0) (ς̄1e

−2iθ1 + 1)λ

(ς̄1e−2iθ0 + 1)λ

(ς1e
2iθ0 + 1)λ

(ς1e2iθ1 + 1)λ

)
and

č2 =
ĉ1(ς1e

2iθ1 + 1)λ

2(ς̄2e−2iθ1 + 1)λ

((
1−

√
D1√
D2

)
e−2iλθ1

+
(
1 +

√
D1√
D2

)
e−2iλθ0

(ς̄1e
−2iθ1 + 1)λ

(ς̄1e−2iθ0 + 1)λ

(ς1e
2iθ0 + 1)λ

(ς1e2iθ1 + 1)λ

)
.

We now apply Corollary 2.18. Thus, we get with (2.21)

ĉ2 = ĉ1
(ς1e

2iθ1 + 1)λ

2(ς2e2iθ1 + 1)λ

((
1 +

√
D1√
D2

)
+
(
1−

√
D1√
D2

)
e2iλ(θ1−θ0+κ1)

)
= ĉ1

(ς1e
2iθ1 + 1)λ

2(ς2e2iθ1 + 1)λ

√
D1+

√
D2√

D2
XN(−λ) (2.25)

and

č2 = ĉ1
(ς1e

2iθ1 + 1)λ

2(ς̄2e−2iθ1 + 1)λ
e2iλ(κ1−θ0)

((
1 +

√
D1√
D2

)
+
(
1−

√
D1√
D2

)
e−2iλ(θ1−θ0+κ1)

)
= ĉ1

(ς1e
2iθ1 + 1)λ

2(ς̄2e−2iθ1 + 1)λ
e2iλ(κ1−θ0)

√
D1+

√
D2√

D2
XN(λ). (2.26)

Analogously, the transmission conditions in the form (2.11) and (2.12) at θ3

first lead to

2ĉ3(ς3e
2iθ3 + 1)λ = ĉ4

(
1 +

√
D4√
D3

)
(ς4e

2iθ3 + 1)λ

+ č4
(
1−

√
D4√
D3

)
e2iλθ3(ς̄4e

−2iθ3 + 1)λ, (2.27)

2č3(ς̄3e
−2iθ3 + 1)λ = ĉ4

(
1−

√
D4√
D3

)
e−2iλθ3(ς4e

2iθ3 + 1)λ

+ č4
(
1 +

√
D4√
D3

)
(ς̄4e

−2iθ3 + 1)λ. (2.28)
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18 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

Replacing ĉ4 by means of (2.22) and making use of Corollary 2.18 we get
with (2.21)

ĉ3 = č4
(ς̄4e

−2iθ3 + 1)λ

2(ς3e2iθ3 + 1)λ
e2iλ(θ4+κ4)

((
1 +

√
D4√
D3

)
+
(
1−

√
D4√
D3

)
e−2iλ(θ4−θ3+κ4)

)
= č4

(ς̄4e
−2iθ3 + 1)λ

2(ς3e2iθ3 + 1)λ
e2iλ(θ4+κ4)

√
D3+

√
D4√

D3
YN(λ) (2.29)

and

č3 = č4
(ς̄4e

−2iθ3 + 1)λ

2(ς̄3e−2iθ3 + 1)λ

((
1 +

√
D4√
D3

)
+
(
1−

√
D4√
D3

)
e2iλ(θ4−θ3+κ4)

)
= č4

(ς̄4e
−2iθ3 + 1)λ

2(ς̄3e−2iθ3 + 1)λ

√
D3+

√
D4√

D3
YN(−λ). (2.30)

The transmission conditions in θ2 written according to the second part of
Proposition 2.16 are

ĉ2e
−iλθ2(ς2e

2iθ2 + 1)λ + č2e
iλθ2(ς̄2e

−2iθ2 + 1)λ

= ĉ3e
−iλθ2(ς3e

2iθ2 + 1)λ + č3e
iλθ2(ς̄3e

−2iθ2 + 1)λ (2.31)

and√
D2

(
ĉ2e

−iλθ2(ς2e
2iθ2 + 1)λ − č2e

iλθ2(ς̄2e
−2iθ2 + 1)λ

)
=
√
D3

(
ĉ3e

−iλθ2(ς3e
2iθ2 + 1)λ − č3e

iλθ2(ς̄3e
−2iθ2 + 1)λ

)
. (2.32)

Here we replace ĉ2, č2, ĉ3, and č3 by means of (2.25), (2.26), (2.29), and
(2.30), respectively, and get

ĉ1
√

D1+
√

D2√
D2

(ς1e
2iθ1 + 1)λ

((ς2e
2iθ2 + 1)λ

(ς2e2iθ1 + 1)λ
XN(−λ)e−iλθ2

+
(ς̄2e

−2iθ2 + 1)λ

(ς̄2e−2iθ1 + 1)λ
e2iλ(κ1−θ0)XN(λ)eiλθ2

)
= č4

√
D3+

√
D4√

D3
(ς̄4e

−2iθ3 + 1)λ
((ς3e

2iθ2 + 1)λ

(ς3e2iθ3 + 1)λ
e2iλ(θ4+κ4)YN(λ)e−iλθ2

+
(ς̄3e

−2iθ2 + 1)λ

(ς̄3e−2iθ3 + 1)λ
YN(−λ)eiλθ2

)
(2.33)
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and

ĉ1
(√

D1 +
√
D2

)
(ς1e

2iθ1 + 1)λ
((ς2e

2iθ2 + 1)λ

(ς2e2iθ1 + 1)λ
XN(−λ)e−iλθ2

− (ς̄2e
−2iθ2 + 1)λ

(ς̄2e−2iθ1 + 1)λ
e2iλ(κ1−θ0)XN(λ)eiλθ2

)
= č4

(√
D3 +

√
D4

)
(ς̄4e

−2iθ3 + 1)λ
((ς3e

2iθ2 + 1)λ

(ς3e2iθ3 + 1)λ
e2iλ(θ4+κ4)YN(λ)e−iλθ2

− (ς̄3e
−2iθ2 + 1)λ

(ς̄3e−2iθ3 + 1)λ
YN(−λ)eiλθ2

)
. (2.34)

This system is non-trivially solvable in ĉ1, č4 iff

0 =
√
D3

(
XN(−λ) + e2iλ(θ2−θ0+κ1)XN(λ)

(ς̄2e
−2iθ2 + 1)λ

(ς̄2e−2iθ1 + 1)λ

(ς2e
2iθ1 + 1)λ

(ς2e2iθ2 + 1)λ

)
×

×
(
YN(−λ)− e2iλ(θ4−θ2+κ4)YN(λ)

(ς̄3e
−2iθ3 + 1)λ

(ς̄3e−2iθ2 + 1)λ

(ς3e
2iθ2 + 1)λ

(ς3e2iθ3 + 1)λ

)
+
√
D2

(
XN(−λ)− e2iλ(κ1+θ2−θ0)XN(λ)

(ς̄2e
−2iθ2 + 1)λ

(ς̄2e−2iθ1 + 1)λ

(ς2e
2iθ1 + 1)λ

(ς2e2iθ2 + 1)λ

)
×

×
(
e2iλ(θ4−θ2+κ4)YN(λ)

(ς̄3e
−2iθ3 + 1)λ

(ς̄3e−2iθ2 + 1)λ

(ς3e
2iθ2 + 1)λ

(ς3e2iθ3 + 1)λ
+ YN(−λ)

)
.

Making use of Corollary 2.18 one ends up with√
D3

(
e2iλ(θ2−θ0+κ1+κ2)XN(λ)+XN(−λ)

)(
e2iλ(θ4−θ2+κ3+κ4)YN(λ)−YN(−λ)

)
+
√
D2

(
e2iλ(θ2−θ0+κ1+κ2)XN(λ)−XN(−λ)

)
×

×
(
e2iλ(θ4−θ2+κ3+κ4)YN(λ) + YN(−λ)

)
= 0,

which yields (2.19).
We proceed by showing that (2.19) is sufficient for λ to be a singular value.

By the preceding considerations it is clear that (2.19) implies the nontrivial
solvability of the linear system (2.33)-(2.34) in ĉ1 and č4. Let now ĉ1, č4
be any (nontrivial) solution of this system. If one defines č1, ĉ4 by (2.22),
then the Neumann boundary conditions are fulfilled. Further, if one defines
ĉ2, č2 by (2.23)-(2.24), then the transmission conditions in θ1 are satisfied.
Analogously, the transmission conditions in θ3 are satisfied if one defines ĉ3,
č3 by (2.27)-(2.28). With č1, ĉ2, č2, ĉ3, č3, ĉ4 thus specified, (2.33)-(2.34) are
equivalent to the transmission conditions (2.31)-(2.32).
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Let us now turn to the case of Dirichlet boundary conditions. These
conditions for the ansatz functions (2.10) in θ0 and θ4 provide

č1 = −e−2iλθ0
(ς1e

2iθ0 + 1)λ

(ς̄1e−2iθ0 + 1)λ
ĉ1 and ĉ4 = −e2iλθ4

(ς̄4e
−2iθ4 + 1)λ

(ς4e2iθ4 + 1)λ
č4, (2.35)

respectively. If one replaces č1 in (2.23)-(2.24) and ĉ4 in (2.27)-(2.28) accord-
ing to (2.35) and then proceeds as in the Neumann case, one ends up with
the condition (2.20).

3 Bounds for the singular values

Here we consider special cases of the constellation from Definition 2.1 treated
in Section 2. We aim at tightening the estimates from Section 2.2. First, as
in Section 2.4, we consider the case of four materials, and assume that for
two adjacent sectors K

θj

θj−1
and K

θj+1

θj
the determinants of the corresponding

coefficient matrices are equal: Dj = Dj+1. Second, we deal with the three-
material case as a specialisation of the four-material configuration from Sec-
tion 2.4 by supposing that the coefficient matrices ρ3 and ρ4 are equal, thus,
considering the two sectors Kθ3

θ2
and Kθ4

θ3
as one single-material sector.

3.1 Four materials and a determinant condition

We regard the four-material constellation of Section 2.4. Additionally, for two
adjacent sectors the determinants of the corresponding coefficient matrices
shall be equal. Without loss of generality we assume that the determinants
of the coefficient matrices ρ3 and ρ4 are equal. We use the notation of Defi-
nition 2.1 and Definition 2.3.

Theorem 3.1. If in the constellation of Definition 2.1 with n = 4 the ma-
terial determinants D3 and D4, see (2.4), are equal, then for the singular
values of Definition 2.5 holds true:

1. Every singular value λ which is not

λ = kπ
θ4−θ2+κ3+κ4

, k = 1, 2, (3.1)

satisfies the equation

i
√
D3

(
FN(λ) + FN(−λ)

)
+
√
D2

(
FN(λ)− FN(−λ)

)
cot
(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0 (3.2)
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in the case of Neumann boundary conditions, and the equation√
D3

(
FD(λ)− FD(−λ)

)
cot
(
λ(θ4 − θ2 + κ3 + κ4)

)
+ i
√
D2

(
FD(λ) + FD(−λ)

)
= 0 (3.3)

in the case of Dirichlet boundary conditions.
2. Suppose, additionally, D1 = D2. Then, every singular value λ which

is not (3.1) or
λ = kπ

θ2−θ0+κ1+κ2
, k = 1, 2, (3.4)

satisfies the equation√
D3 cot

(
λ(θ2 − θ0 + κ1 + κ2)

)
+
√
D2 cot

(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0 (3.5)

in the case of Neumann boundary conditions, and the equation√
D2 cot

(
λ(θ2 − θ0 + κ1 + κ2)

)
+
√
D3 cot

(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0 (3.6)

in the case of Dirichlet boundary conditions.

Proof. Due to Theorem 2.19 all singular values λ have to satisfy (2.19) or
(2.20), in the case of Neumann or Dirichlet boundary conditions, respectively.
Since D3 = D4 one has GN(λ) = GD(λ) = eiλ(θ4−θ2+κ3+κ4). Thus, (2.19)
simplifies to

2i
√
D3

(
FN(λ) + FN(−λ)

)
sin
(
λ(θ4 − θ2 + κ3 + κ4)

)
+ 2
√
D2

(
FN(λ)− FN(−λ)

)
cos
(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0. (3.7)

A singular value λ satisfies sin
(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0, iff the condition

(3.1) is fulfilled: Indeed, by Definition 2.5 a singular value is nonzero and
its real part belongs to the interval [0, 1[, while on the other hand one has
0 < θ4− θ2 +κ3 +κ4 < 3π, due to (2.16) and (2.18), since the opening angles
θ4 − θ3 and θ3 − θ2 cannot both be greater or equal than π. Thus, unless
(3.1) is fulfilled, (3.7) may be divided by sin(λ(θ4 − θ2 + κ3 + κ4)), and one
ends up with (3.2). The case of Dirichlet boundary conditions can be treated
similarly.

The supposition D1 = D2 implies FN(λ) = FD(λ) = eiλ(θ2−θ0+κ1+κ2).
Then (3.2) becomes

2i
√
D3 cos

(
λ(θ2 − θ0 + κ1 + κ2)

)
+ 2i

√
D2 sin

(
λ(θ2 − θ0 + κ1 + κ2)

)
cot
(
λ(θ4 − θ2 + κ3 + κ4)

)
= 0. (3.8)

If a singular value λ does not fulfil (3.4), then we can divide (3.8) by sin
(
λ(θ2−

θ0+κ1+κ2)
)

and end up with (3.5). In case of Dirichlet boundary conditions
the proof is analogous.
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Corollary 3.2. Suppose D1 = D2 and D3 = D4. Then for Neumann and
for Dirichlet boundary conditions all singular values are real, and there is
an interval ]0, 1

6
+ ε[, ε > 0, which does not contain singular values. If

additionally none of the opening angles θj − θj−1 exceeds π, then there is an
interval ]0, 1

4
+ ε[, ε > 0, which does not contain singular values.

Proof. We explicitly conduct the proof only for Neumann boundary condi-
tions. In case of Dirichlet boundary conditions one can proceed analogously.
Let us assume that there are non-real singular values. A singular value λ
with non-vanishing imaginary part satisfies (3.5). On the other hand the
imaginary part of (3.5) cannot vanish, if =λ 6= 0. Indeed, the formula

cot(ξ + iη) =
sin 2ξ − i sinh η

2 sinh2 η + 2 sin2 ξ

shows that both cotangent terms in (3.5) have a non-vanishing imaginary
part with equal sign, since, due to (2.16) and (2.18), θ2 − θ0 + κ1 + κ2 and
θ4 − θ2 + κ3 + κ4 are positive. Hence, there are only real singular values.

Due to (2.16) and (2.18), θ2−θ0 +κ1 +κ2 and θ4−θ2 +κ3 +κ4 are smaller
than 3π, and even smaller than 2π, if all the opening angles are smaller than
π. Consequently, the arguments of the cotangent in (3.5) are in ]0, π/2[ for
the asserted values of λ so that the left hand side of (3.5) is strictly positive.
Thus, these values of λ cannot be singular. Furthermore, the exceptional
cases (3.1) and (3.4) cannot occur for these values of λ.

3.2 Three materials

In this section we consider an edge where three materials meet. The direct vi-
sion prism, see Figure 1, exemplifies this constellation. The two-dimensional
configuration of Definition 2.1 corresponding to the direct vision prism in
Figure 1 by way of Definition 2.6 is depicted in Figure 5.

Here we regard the three-material edge as the special case of the four-
material configuration from Section 2.4 with equal coefficient matrices ρ3 and
ρ4. First we calculate how the angle of anisotropy, see Definition 2.14, for
the mono-material sector Kθ4

θ2
is related to the angles of anisotropy κ3 and

κ4 of the sectors Kθ3
θ2

and Kθ4
θ3

, respectively.

Lemma 3.3. In the constellation of Definition 2.1 with n = 4 for the quan-
tities (2.8) and (2.9) holds true: If ς4 = ς3, then

κ3 + κ4 = κ
def
= arg

ς̄3e
−2iθ4 + 1

ς̄3e−2iθ2 + 1
. (3.9)
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θ0

θ1θ2

θ3

crown
flint

crown

ρ1ρ2

ρ3

Figure 5: Edge pencil of the three-material edge in the direct vision prism of
Figure 1 composed of optical crown, flint, and crown again. For this constellation
the angles are approximately θ0 = 0, θ1 = 0.8, θ2 = 2.3, θ3 = π. Thus, the opening
angles of all sectors are smaller than π/2.

That means κ is the angle of anisotropy (see Definition 2.14) for the mono-
material sector Kθ4

θ2
. Moreover,

θ4 − θ2 ∈ ]0, π[ , iff θ4 − θ2 + κ ∈ ]0, π[ ,

θ4 − θ2 = π, iff θ4 − θ2 + κ = π,

θ4 − θ2 ∈ ]π, 2π[ , iff θ4 − θ2 + κ ∈ ]π, 2π[ .

(3.10)

Proof. By Definition 2.14 one has

ei(κ3+κ4) =
ς̄3e

−2iθ3 + 1

ς̄3e−2iθ2 + 1

|ς̄3e−2iθ2 + 1|
|ς̄3e−2iθ3 + 1|

ς̄3e
−2iθ4 + 1

ς̄3e−2iθ3 + 1

|ς̄3e−2iθ3 + 1|
|ς̄3e−2iθ4 + 1|

=
ς̄3e

−2iθ4 + 1

ς̄3e−2iθ2 + 1

|ς̄3e−2iθ2 + 1|
|ς̄3e−2iθ4 + 1| = eiκ.

Thus, θ4 − θ2 + κ3 + κ4 = θ4 − θ2 + κ + 2kπ, for some integer k. We show
that k must be zero.

If both opening angles θ3 − θ2 and θ4 − θ3 are strictly smaller than π,
then due to (2.16) we have 0 < θ4 − θ2 + κ3 + κ4 < 2π. On the other hand
Lemma 2.17 with χ = ς̄3e

−2iθ2 and ζ = θ4− θ2 provides 0 < θ4− θ2 +κ < 2π.
Hence, k = 0.

If one of the opening angles θ3 − θ2 or θ4 − θ3 is not smaller than π, then
according to (2.18) we have π < θ4 − θ2 + κ3 + κ4 < 3π, while Lemma 2.17
provides π < θ4 − θ2 + κ < 2π. Hence, again k = 0.

Now (3.10) immediately follows from Corollary 2.18 and the definition of
κ in (3.9).

By means of Lemma 3.3 one can now specialise Theorem 3.1.
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Theorem 3.4. Under the assumptions made in Theorem 3.1, and, addi-
tionally, assuming that the coefficient matrices ρ3 and ρ4 are equal, and that
κ = κ3 + κ4 is given by (3.9) the following holds true:

1. Every singular value λ 6= π/(θ4 − θ2 + κ) satisfies (3.2), if Neumann
boundary conditions are imposed, and obeys (3.3), if Dirichlet boundary con-
ditions are imposed.

2. Suppose additionally that the determinants D1 and D2 of the coefficient
matrices ρ1 and ρ2, respectively, are equal. Then all singular values are
real and every singular value which is not equal to π/(θ2 − θ0 + κ1 + κ2) or
2π/(θ2 − θ0 + κ1 + κ2) satisfies√

D3 cot
(
λ(θ2 − θ0 + κ1 + κ2)

)
+
√
D2 cot

(
λ(θ4 − θ2 + κ)

)
= 0 (3.11)

in case of Neumann boundary conditions and√
D2 cot

(
λ(θ2 − θ0 + κ1 + κ2)

)
+
√
D3 cot

(
λ(θ4 − θ2 + κ)

)
= 0 (3.12)

in case of Dirichlet boundary conditions.
3. If D1 = D2 = D3, then (3.11) and (3.12) are equivalent to

sin
(
λ(θ4 − θ0 + κ1 + κ2 + κ)

)
= 0, (3.13)

provided that λ is none of the values kπ/(θ2 − θ0 + κ1 + κ2), k = 1, 2 and
π/(θ4 − θ2 + κ).

Proof. The first assertion follows from the first part of Theorem 3.1 and
Lemma 3.3. Note that the second value, excluded by (3.1), is here larger
than 1, due to (3.10), hence, not a singular value by Definition 2.5.

As for the second assertion, from Corollary 3.2 immediately follows that
the singular values are real. Furthermore, (3.11) and (3.12) result from the
second part of Theorem 3.1 and Lemma 3.3.

Finally, to see that (3.13) is equivalent to (3.11) and (3.12), one uses the
angle sum formula for the cotangent.

Next, under the general assumptions ρ3 = ρ4 and D1 = D2, we state lower
bounds for the singular values, which are all real in this case, see Theorem 3.4.

Theorem 3.5. Under the assumptions made in Theorem 3.1, and, addition-
ally, assuming that the coefficient matrices ρ3 and ρ4 are equal, and that the
determinants D1 and D2 are equal, there is an ε > 0, such that the following
holds true:

1. If the opening angles θ1−θ0 and θ2−θ1 of the first two material sectors
do not exceed π, then all singular values are greater than 1/4 + ε both in the
case of Neumann and of Dirichlet boundary conditions.
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2. If the opening angles θ1− θ0, θ2− θ1, and θ4− θ2 of the three material
sectors are not greater than π, and if at least one of the sectors Kθ1

θ0
, Kθ2

θ1

has an opening angle not larger than π/2, and if the corresponding coefficient
matrix is scalar, then all singular values are greater than 1/3 + ε.

3. If D1 = D2 = D3, then the singular values are greater than 1/4+ ε. If,
additionally, no opening angle exceeds π, then the singular values are even
greater than 1/3 + ε.

Proof. To prove the first assertion we note that the values (3.4) are larger
than 1/3, since θ1−θ0 and θ2−θ1 do not both exceed π, see (2.18). Hence, it
suffices to prove that (3.11), (3.12) cannot be fulfilled for a λ ∈ ]0, 1/4 + ε].
(2.16) shows that 0 < θ2 − θ0 + κ1 + κ2 ≤ 2π, and 0 < θ4 − θ2 + κ < 2π.
Consequently, the left hand side of (3.11) and (3.12) cannot vanish for λ ∈
]0, 1/4 + ε] for some ε > 0.

As for the second assertion it suffices to prove that (3.11) and (3.12)
cannot be fulfilled for a λ ∈ ]0, 1/3 + ε]. If ρ1 or ρ2 is a multiple of the
identity matrix, then either ς1 = 0 or ς2 = 0, see (2.8). Hence, either κ1 = 0
or κ2 = 0, see (2.9). Thus, according to the supposition on the corresponding
opening angle, by (2.15) we have 0 < θ2− θ0 + κ1 + κ2 ≤ 3π/2. On the other
hand, 0 < θ4 − θ2 ≤ π, consequently, 0 < θ4 − θ2 + κ ≤ π by (3.10). Hence,
(3.11) and (3.12) cannot be zero as long as λ ∈ ]0, 1/3 + ε] for some suitable
ε > 0.

Since at most one opening angle can be greater or equal π, the third
assertion follows from the inequalities (2.15) and (3.10).

Remark 3.6. In order to pass from four to three sectors, one naturally also
can put ρ1 = ρ2 (or ρ2 = ρ3). Analogously to Lemma 3.3 one proves that the
angle of anisotropy, see Definition 2.14, for the mono-material sector Kθ2

θ0
(or

Kθ3
θ1

, respectively) is the sum of the angles of anisotropy of the two merged
sectors. This allows to proceed again as in the preceding considerations.

Let us now summarise the results for the three-material constellation.

Theorem 3.7. Let us regard the configuration of Definition 2.1 with n =
3. We assume D1 = D2 and that no opening angle of a sector exceeds π.
Additionally, one of the following conditions shall be satisfied:

(1 + |ς1|2) cos(θ1 − θ0) + 2<ς1 cos(θ0 + θ1)− 2=ς1 sin(θ0 + θ1) > 0, (3.14)

(1 + |ς2|2) cos(θ2 − θ1) + 2<ς2 cos(θ1 + θ2)− 2=ς2 sin(θ1 + θ2) > 0. (3.15)

Then all singular values, see Definition 2.5 are real and not smaller than
1/3 + ε for some ε > 0. This holds for Neumann as well as for Dirichlet
boundary conditions.
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Proof. It suffices to show that θ2 − θ0 + κ1 + κ2 <
3π
2

. Since, according to
(2.15), 0 < θ1 − θ0 + κ1 ≤ π and 0 < θ2 − θ1 + κ2 ≤ π this is the case if
θ1 − θ0 + κ1 < π/2 or θ2 − θ1 + κ2 < π/2. Thus, it suffices to prove that
<ei(θ1−θ0+κ1) > 0 or <ei(θ2−θ1+κ2) > 0. Let us first assume that (3.14) is
fulfilled. By means of (2.14) with ζ = θ1 − θ0 and χ = ς̄1e

−2iθ0 one obtains

<ei(θ1−θ0+κ1) = (1+|ς1|2) cos(θ1−θ0)+2<ς1 cos(θ0+θ1)−2=ς1 sin(θ0+θ1)

|ς̄1e−2iθ0+1| |ς̄1e−2iθ1+1| > 0.

In case of (3.15) one similarly gets <ei(θ2−θ1+κ2) > 0.

Remark 3.8. The inequality (3.14) (or (3.15)) is satisfied under the following
condition: The sector Kθ1

θ0
(or Kθ2

θ1
, respectively) does not intersect neither

the x-axis nor the y-axis, and the coefficient matrix ρ1 (or ρ2, respectively)
is diagonal.

Indeed, if ρ1 is diagonal, then ς1 is real (see (2.8)) and (3.14) is equivalent
to the condition

cos(θ1 − θ0) +
2ς1

1 + ς21
cos(θ0 + θ1) ≥ 0.

Thus, since 2ς1/(1 + ς21 ) ≤ 1, we conclude that <ei(θ1−θ0+κ1) is nonnegative if
cos(θ1 − θ0) ≥ | cos(θ1 + θ0)|. This can be readily verified since Kθ1

θ0
does not

intersect a coordinate axis. The case of the sector Kθ2
θ1

and the matrix ρ2 is
analogous.

4 Computation of singular values

The computation of the singular values for a constellation as in Definition 2.1
— here specialised to just four materials — is based upon Theorem 2.19. One
has to find the zeros of the characteristic function

fN(λ)
def
=
√
D3

(
FN(λ) + FN(−λ)

) (
GN(λ)−GN(−λ)

)
+
√
D2

(
FN(λ)− FN(−λ)

) (
GN(λ) +GN(−λ)

)
, λ ∈ C (4.1)

in case of Neumann boundary conditions, and of

fD(λ)
def
=
√
D3

(
FD(λ)− FD(−λ)

) (
GD(λ) +GD(−λ)

)
+
√
D2

(
GD(λ)−GD(−λ)

) (
FD(λ) + FD(−λ)

)
, λ ∈ C (4.2)

in case of Dirichlet boundary conditions. We only sketch how to proceed
to determine these zeros. For computing the zeros of analytic functions in
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general we refer to the specialised literature, see e.g. [38] and references cited
there. The handling of clusters of zeros, in particular, was treated in [22].

First we note that λ = 0 is a zero of both fN and fD, but is by Def-
inition 2.5 not a singular value. Indeed, in the case of Dirichlet boundary
conditions kerA0 is trivial, and it contains only the constant functions in the
case of Neumann boundary conditions. Thus, λ = 0 does not correspond
to singular solutions of the elliptic operators from Definition 2.1. Hence, we
start our consideration by separating the case λ = 0.

Lemma 4.1. The functions fN and fD, see (4.1) and (4.2), respectively, are
entire and vanish at zero of order 1.

Proof. We explicitly verify the assertion only for fN , but, one can analogously
do so for fD. The first derivative of fN in λ = 0 is

f ′N(0) = 4
√
D3FN(0)G′

N(0) + 4
√
D2GN(0)F ′

N(0)

= 4
√
D3

2
√

D2√
D1+

√
D2

(
i(θ4 − θ2 + κ3 + κ4)

2
√

D3√
D3+

√
D4

− 2i(θ4 − θ3 + κ4)
√

D3−
√

D4√
D3+

√
D4

)
+ 4
√
D2

2
√

D3√
D3+

√
D4

(
i(θ2 − θ0 + κ1 + κ2)

2
√

D2√
D1+

√
D2

+ 2i(θ1 − θ0 + κ1)
√

D1−
√

D2√
D1+

√
D2

)
= 16i

√
D2D3

(
√

D1+
√

D2) (
√

D3+
√

D4)

4∑
j=1

(θj − θj−1 + κj)
√
Dj.

According to (2.15), this expression can never vanish.

Based upon the bounds for the singularities one can determine the rele-
vant zeros of the functions fN and fD by means of the following generalisation
of Cauchy’s argument principle, see e.g. [28, Ch. 1, §9].

Proposition 4.2. Let Υ ⊂ C be a bounded domain whose boundary ∂Υ is
a closed, piecewise C1 curve. If f is an analytic function on Υ which does
never vanish on ∂Υ, then

∑
`

zk
` =

1

2πi

∫
∂Υ

zk f
′(z)
f(z)

dz, (4.3)

where k is a nonnegative integer, and the {z`} are the roots of f within Υ
repeated according to multiplicity.
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T

C

0
• •

1

i•

•r0

Figure 6: A triangle T , see (4.4),
encloses all singular values. More
precisely, the thick line already does
so, since the disc |λ| ≤ r0 does
not contain roots of the characteristic
function apart of λ = 0.

Now we outline an algorithm to determine the zeros of the functions (4.1)
and (4.2). In the following f is fN or fD, respectively.

1. By Definition 2.5 and according to Theorem 2.9 all singular values of
the problem are in the interior of a triangle

T def
=
{
λ1 + iλ2 : |λ2| ≤ λ1

(
ε+ max

1≤j≤n

tr ρj

2
√

det ρj

)
, 0 < λ1 < 1

}
(4.4)

for any ε > 0, see Figure 6. Please note that, due to Theorem 2.19, outside
T there are no zeros of f with real part in ]0, 1[. Since f is entire, see
Lemma 4.1, its roots have no finite limit point such that there is only a finite
number of singular values.

2. According to Lemma 4.1 the zeros of f cannot accumulate at zero.
Hence, there is a disc |λ| ≤ r0 which does not contain zeros of f apart of
λ = 0, see Figure 6. Using (4.3) with k = 0 and Υ given by discs with centre
zero, one can compute r0 as the radius where (4.3) — regarded as a function
of the disc radius — jumps between one (inside |λ| < r0) and an integer
greater than one. Thus, by nesting intervals one easily gets an approximate
of r0.

3. The total number of singular values is given by (4.3) with k = 0 and
Υ = T \{|λ| ≤ r0}. By nesting intervals one now can split up this domain Υ
into a finite number of sub-domains Υ` such that each sub-domain contains
exactly one root of f . Moreover, the multiplicity of each root is finite. Please
note that again (4.3) — regarded as a function of such sub-domains — is a
step function, thus, well suited for an algorithm of nested intervals.

4. Finally, to compute the zeros of f themselves, one makes use of the
finite partition Υ = int(∪` cl Υ`) from the previous step, and applies (4.3)
with k = 1 and Υ = Υ` to get the single zero λ` of f inside Υ`.

A difficulty in the implementation of the procedure outlined above is
to be struck by zeros of f on the boundary of prospective domains for the
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application of Proposition 4.2. In particular zeros of f with real part 1 pose
a problem. Since f is entire, see Lemma 4.1, there is only a finite number of
roots on the boundary of (4.4). Thus, ultimately, one can split off all roots
on the boundary of T with real part 1 very much in the same way as we have
split off the root λ = 0.

5 Application: L–shape of different materials

In this section we apply our results exemplarily to an elliptic div-grad opera-
tor −∇·µ∇, acting on a three dimensional polyhedral Lipschitz domain, and
we assume that the coefficient function µ is constant on sub-polyhedra, see
Definition 2.6. There is a vast literature on such transmission problems, and
in particular about the aspects of (almost) optimal regularity and anisotropy
of the coefficient matrices µ. We only just quote a few in lieu of many others.

The case of a layered structure was treated long ago in [10], but compare
also [8], [43], and [53]. In [18] and [19] more general structures were regarded
with Dirichlet boundary conditions, and the continuity of −∇·µ∇ : W 1,q

0 →
W−1,q for some q > 3 was obtained. In the spatially three-dimensional case,
the spaces W−1,q(Ω) with q > 3 are adequate for elliptic equations with right
hand sides which include for instance measures concentrated on a surface
within the three-dimensional basic domain Ω. Think of surface charges in
electrostatics; they cause a jump of the conormal derivative of the electro-
static potential across the surface bearing the charge. This is not coinciden-
tal, but generally the adaequatio of the mathematical model and the under-
lying physics also shows up in the regularity of solutions and corresponding
entities in nature.

The three-dimensional L–shape of two different materials, see Figure 7,
which was regarded in [15, Fig. 2] and [50, Fig. 1] may be viewed as a local
part of a polyhedral Lipschitz domain composed of sub-polyhedra of differ-
ent homogeneous — but, possibly anisotropic — materials, see Definition 2.6.
For an example of such a domain look at the ridge waveguide multiple quan-
tum well laser of Figure 2. The crucial point is that the material interface
can meet the boundary in a region where localisation intrinsically fails to
provide a convex domain.

We regard elliptic div-grad operators −∇·µ∇ with mixed boundary con-
ditions on the L–shape domain. Since Dirichlet boundary conditions were
treated in [18] we regard Neumann boundary conditions in the corner. How-
ever, Theorem 3.4 also allows to treat again the optimal regularity problem
with Dirichlet boundary conditions in the corner.

Our result for the L–shape of different materials generalises that of [50] to

Preprint 1439, Weierstrass Institute for Applied Analysis and Stochastics, Berlin 2009



30 R.Haller-Dintelmann, H.-Chr.Kaiser, J. Rehberg

coefficient functions µ which are anisotropic material tensors. Moreover, we
get an optimal regularity result within the scale of W 1,q spaces. On this scale
— in contrast to the scale of Hs,2 spaces — the space of optimal regularity
embeds into a Hölder space. Thus, our optimal regularity result fits into a
unified treatment of quasi-linear parabolic equations, see [48] or [27].

First we define the relevant function spaces and elliptic div-grad opera-
tors. We regard the constellation of Definition 2.6.

Definition 5.1. If Ω ⊂ R3 is a bounded Lipschitz domain and Γ ⊂ ∂Ω is an
open part of its boundary, then we denote by W 1,p

Γ (Ω) the closure of{
v|Ω : v ∈ C∞(R3), supp v ∩ (∂Ω \ Γ) = ∅}

in the Sobolev space W 1,p(Ω). W−1,p′
Γ (Ω) with p′ = p/(p − 1) denotes the

dual to W 1,p
Γ (Ω).

We now define an elliptic div-grad operator on Ω with Neumann boundary
conditions on Γ and Dirichlet boundary conditions on ∂Ω \ Γ. According to
Definition 2.6 Γ is the interior of the closure of a finite union of faces of
sub-polyhedra Ωk.

Definition 5.2. If Ω ⊂ R3 and µ are as in Definition 2.6, and Γ is accordingly,
then we define −∇ · µ∇ : W 1,2

Γ (Ω) → W−1,2
Γ (Ω) by

〈−∇ · µ∇v, w〉 def
=

∫
Ω

µ∇v · ∇w dx, v, w ∈ W 1,2
Γ (Ω),

where 〈u,w〉 indicates the dual pairing of a function w ∈ W 1,2
Γ (Ω) with a

functional u ∈ W−1,2
Γ (Ω). We denote the maximal restriction of −∇·µ∇ to

any of the spaces W−1,p
Γ (Ω), p > 2, by the same symbol.

Definition 5.3. Referring again to the constellation of Definition 2.6, we
call E a mono-material edge of Ω, if E ⊂ ∂Ω and E belongs to the closure
of exactly one sub-polyhedron Ωk. Analogously, we call E a bi-material
edge of Ω, if E ⊂ ∂Ω and E belongs to the closure of exactly two sub-
polyhedra. Hence, n in Remark 2.7 specialises to one or two, respectively.
That means for every bi-material edge there exist uniquely determined angles
θ0 < θ1 < θ2 < θ0 + 2π such that µE corresponding to µ by Definition 2.6 is
constant on each of the sectors Kθ1

θ0
and Kθ2

θ1
, and takes there real, symmetric,

positive definite 2×2 matrices as values. Mutatis mutandis we speak of three-
material edge and a multi-material edge.

Next we precisely define the three-dimensional L–shape of two different
materials.
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Figure 7: Three-dimensional L–shape Π of two different materials. The material
interface is darkly shaded, and the boundary part Γ carrying Neumann bound-
ary conditions is lightly shaded. Π is the Cartesian product of ]−1, 1[ with the
quadrangles ¤1 and ¤2 in R2.

Definition 5.4. Let ¤1 and ¤2 in R2 be two open, disjoint, convex quadran-
gles with one common vertex Q. Assume that one side of ¤1 with endpoints
Q and P is a proper part of a side QR of ¤2. We denote the interior of
the closure of ¤1 ∪ ¤2 by ¯ and define the prism Π

def
= ¯×]−1, 1[. If PS

is the second side of ¤1, ending in P , we define Γ ⊂ ∂Π by the Cartesian
product of ]−1, 1[ with the interior of the piecewise linear curve SPR. As
in Definition 5.1 Γ is the (open) part of ∂Π where Neumann boundary con-
ditions are imposed. Furthermore, µ is a coefficient function on Π with the
values µ1 and µ2 on ¤1×]−1, 1[ and ¤2×]−1, 1[, respectively, and µ1 and µ2

are real, symmetric, positive definite 3×3 matrices. We name Π with this
material–geometric constellation three dimensional L–shape of two materials
with mixed boundary conditions or simply L–shape.

Remark 5.5. For the sake of the name we have build up the L–shape in
Definition 5.4 from two disjoint, convex quadrangles ¤1 and ¤2 in R2. In
particular, one or both of these quadrangles ¤1 and ¤2 may degenerate to a
triangle 41 and 42, respectively, see also Figure 8.
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P
•Q

•

•S

•R

¤1

¤2

Figure 8: Cut through an L–shape by
the x-y-plane, see Definition 5.4. The
dashed line QP is the trace of the ma-
terial interface, and the bold, piecewise
linear curve SPR is the trace of the sur-
face area Γ where a Neumann bound-
ary condition is imposed. The dark and
fair shaded areas are triangles 41 and
42 for an alternative build-up of an L–
shape, see Remark 5.5.

Finally, we state our result about the three-dimensional L–shape of two
different materials and mixed boundary conditions. The proof of our theorem
rests upon Theorem 3.5, and additionally requires nontrivial results from [48],
see also [18] and [24].

Theorem 5.6. If Π is an L–shape in the sense of Definition 5.4, then there
is a p > 3 such that

−∇ · µ∇ : W 1,p
Γ (Π) → W−1,p

Γ (Π)

is a topological isomorphism.

Proof. The optimal regularity statement of Theorem 5.6 is invariant under
bi-Lipschitz mappings, see [24, Prop. 16]. Hence, in a first step of the proof
we can transform the L–shape accordingly. We begin with a constellation as
in Definition 5.4, see also Figure 8.

Transformation 1: Without loss of generality we may suppose that the
point P is the origin of the coordinate system. We perform a rotation in the
x-y-plane such that the upper left 2×2 block of the matrix µ2, associated
to ¤2×]−1, 1[, diagonalises. Then we dilate the x-axis (or the y-axis) such
that the resulting upper left 2×2 block becomes a multiple of the identity
on R2. Next we again rotate in the x-y-plane such that the transformed line
PS becomes a part of the negative x-axis. If the quadrangle ¤1 is situated
in the lower half of the x-y-plane, we additionally reflect at the x-axis in the
x-y-plane. Thus, we end up with a transformed constellation, see Figure 9,
where the image of the line PS is part of the negative x-axis, the image of
¤1 lies in the upper half of the x-y-plane, and the left upper block of the
transformed matrix µ2 is a multiple of the identity on R2. We denote this
transformation by Θ1 and the image and the pre-image of Θ1 by the same
symbol.
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P
•

•R

Q•
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x

y

H1

H2
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Figure 9: Cut through an L–shape by the x-y-plane after Transformation 1, see
the proof of Theorem 5.6. The dark and fair shaded area are the image of the
correspondingly shaded parts of ¤1 and ¤2 in Figure 8. The dashed line PQ is
the trace of the material interface. The line L in R2 through the origin P splits
R2 into half spaces H1 and H2 in such a way that the (transformed) quadrangle
¤1 is fully in H1 and that moreover, L has an angle strictly between 0 and π/2
with PQ. The bold, piecewise linear curve SPR is the trace of the surface area Γ
where a Neumann boundary condition is imposed.

Let L be a line in R2 through the origin P , which does not intersect ¤1

and cuts through ¤2 in such a way that the angle in ¤2 between L and PQ
is strictly between 0 and π/2. We denote the component of R2 \ L which
contains ¤1 by H1, the other by H2.

Transformation 2: Now we define a linear mapping Θ: R2 → R2 which
is the identity on L and maps the point R onto a point of the positive x-axis
in such a way that the determinant of Θ has the absolute value 1. Figure 10
shows the constellation of Figure 9 after transformation by Θ. Then

Θ2(x, y, z)
def
=

{
(x, y, z) if (x, y) ∈ H1 ∪ L,

(Θ(x, y), z) if (x, y) ∈ H2

(5.1)

provides a bi-Lipschitzian mapping of R3 onto itself. The resulting object
after applying Θ1 and Θ2 to the L–shape is the Cartesian product of the
interval ]−1, 1[ of the z-axis with the image of ¯, see Definition 5.4. On the
interior of the side SR×]−1, 1[ — a rectangle in the x-z-plane — Neumann
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T •
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Figure 10: Cut through an L–shape by the x-y-plane after the Transformations 1
and 2, see the proof of Theorem 5.6. The dashed line PQ is the trace of the original
material interface. After Transformation 2 there is a new material interface PT on
the line L separating the half-planes H1 and H2. The transformation Θ, see (5.1),
is the identity on H1 ∪L. The Θ-image of the fair shaded area in Figure 9 is not a
triangle anymore. On each of the differently shaded areas the coefficient matrix is
constant. The union of all shaded areas is the image of all shaded areas in Figure 9.
In particular, the fair and medium shaded areas have the same coefficients as the
corresponding shades indicate in Figure 9. The bold segment SR is the trace of
the surface area Γ where a Neumann boundary condition is imposed.

boundary conditions are imposed. The edge E = P×]−1, 1[ is a three-
material edge, and its edge pencil, see Definition 2.6 and Definition 2.1 has
the following properties: The opening angle θ2 − θ1 of the middle sector is
smaller than π/2 and the corresponding matrix ρ2 is a positive multiple of
the identity matrix. Moreover, det ρ2 = det ρ1 since |det Θ| = 1; nota bene
the transformation rule for coefficient matrices of div-grad operators under
bi-Lipschitz transforms, see [24, Prop. 16]. Hence, by the second statement
of Theorem 3.5 all singular values of the edge pencil E are real and greater
than 1/3 + ε for some ε > 0.

Transformation 3: We now treat the L–shape Π, already transformed by
Θ1 and Θ2, by reflection at the x-z-plane, see [24, Prop. 17]. Please note in
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particular the rule [24, Eq. 22] of material reflection:

ρ(x, y)
def
=



(
ρj

11 ρj
12

ρj
12 ρj

22

)
if (x, y) ∈ Kθj

θj−1
,(

ρj
11 −ρj

12

−ρj
12 ρj

22

)
if (x,−y) ∈ Kθj

θj−1
.

Thus, we end up with an elliptic problem on a polyhedral domain with Dirich-
let boundary conditions and constant coefficient matrices on polyhedral sub-
domains, more precisely we are in the constellation which was regarded in
[18, §2.2]. Here the edges of this constellation are the interior edge E and
mono– and bi-material edges on the boundary.

Conclusion: We now show that for all edges the real part of any singu-
larity, see Definition 2.5, is greater than 1/3 + ε for some ε > 0. Then the
assertion of Theorem 5.6 follows by means of [18, Thm. 2.2].

The mono-material edges of our transformed problem do not have edge
singularities with real part smaller or equal than 1/2, see [24, Thm. 24]. The
edge pencils at bi-material edges intersecting L only have opening angles not
greater than π by construction. Hence, [24, Thm. 25] implies that the real
part of these edge singularities is greater than 1/2. The bi-material edge
through the point Q is the result of Transformation 1. Since the pre-images
¤1 and ¤2 are convex, see Definition 5.4, the edge pencil at Q has opening
angles smaller than π. Thus, again [24, Thm. 25] applies and the real part
of these edge singularities too is greater than 1/2. The same holds true for
the reflected edge. As for the interior edge E the assertion follows from
Theorem 3.5 and the following Proposition 5.7.

Proposition 5.7. Let us assume the constellation of Definition 2.1 and in
particular θ0 = 0 and θn = π. Moreover, we define functions b0, b1, and b2
almost everywhere on ]−π, π] by

b0(−θ) def
= b0(θ)

def
= ρj

11 cos2 θ + 2ρj
12 sin θ cos θ + ρj

22 sin2 θ,

−b1(−θ) def
= b1(θ)

def
= (ρj

22 − ρj
11) sin θ cos θ + ρj

12(cos2 θ − sin2 θ),

b2(−θ) def
= b2(θ)

def
= ρj

11 sin2 θ − 2ρj
12 sin θ cos θ + ρj

22 cos2 θ

for θj−1 < θ < θj, j = 1, . . . , n. Further, we define for every λ ∈ C the
quadratic form

π∫
−π

b2 ψ
′ ψ′ + λb1ψ ψ′ − λb1ψ

′ ψ − λ2b0ψψ dθ,

ψ ∈ W 1,2(−π, π) ∩ {ψ : ψ(−π) = ψ(π)}.
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Then for every λ ∈ C with <λ > 0 the operator induced by this quadratic
form on L2(−π, π) has a nontrivial kernel iff Aλ with Dirichlet boundary
conditions has a nontrivial kernel and Aλ with Neumann boundary conditions
has a nontrivial kernel, see Definition 2.3.

Proposition 5.7 was proved in [24, Lemma 22] for the case 0 = θ0 < θ1 <
θ2 = π, that means for two sectors in the half plane y > 0. This proof mutatis
mutandis carries over to the case of multiple sectors.

6 Concluding remarks

In this paper we have investigated the singularities of div-grad operators at
a multi-material edge on a Dirichlet or a Neumann boundary part of the
domain, see Definition 2.1. Analogously, it is possible to deal with the case
of mixed boundary conditions which change from Dirichlet to Neumann at
the edge. This can be done by specifying the space H in Definition 2.3 ap-
propriately between W 1,2

0 (θ0, θn) and W 1,2(θ0, θn). We have omitted to treat
this case here explicitly, because it is well known that for this constellation
even for bi-material edge examples there are arbitrarily small singular values,
see [49] and [24, Rem. 28]. Nota bene, however, the model problems in [24]
including mixed boundary conditions and material heterogeneities meeting
at a point on the surface. On the other hand the analogon of Theorem 2.19
for a multi-material edge with mixed boundary conditions would allow to cal-
culate the roots of the characteristic equation for every specific constellation.
But then one already has the well established procedure from [13].

We have restricted our considerations here to the case of up to four mate-
rials meeting at an edge. Based upon the characterisation of singularities in
Section 2.3 it is possible to derive transcendental equations for the singular
values analogously to Section 2.4 also for other multi-material edges. How-
ever, this is cumbersome and one might be better off with using techniques
from [13] right from the beginning then. Moreover, for more than four ma-
terials one cannot obviously delimitate constellations which allow uniform
estimates of the real part of singularities from below.

In Section 3 we have characterised classes of multi-material problems with
uniformly bounded singularities. The equivalence relation for classification
is the equality of the determinant of the coefficient matrix for two or more
materials at a multi-material edge. Thus, if there is no anisotropy, the multi-
material edges under consideration in a specific class, actually, are edges with
less materials around. In this sense we here have dealt with the generically
anisotropic case.
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