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Abstract

In this paper we present a dual representation for the multiple stopping problem,
hence multiple exercise options. As such it is a natural generalization of the method
in Rogers (2002) and Haugh and Kogan (2004) for the standard stopping problem
for American options. We consider this representation as the real dual as it is solely
expressed in terms of an infimum over martingales rather than an infimum over mar-
tingales and stopping times as in Meinshausen and Hambly (2004). For the multiple
dual representation we present three Monte Carlo simulation algorithms which require
only one degree of nesting.

1 Introduction

The key issue in valuation of financial derivatives with several exercise rights is solving a
multiple stopping problem. Such derivatives encounter, for example, in electricity markets
(swing options) and interest rate markets (chooser caps). Typically, the dimension of the
underlying financial object is rather high, for instance a Libor interest rate model, and
therefore Monte Carlo based methods are called for. In this respect the last decades have
seen several breakthroughs for standard American (or Bermudan style) derivatives, hence
the standard stopping problem. Among the most popular ones are the regression based
methods of Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999), and alternative
approaches by Andersen (1999), Broadie and Glasserman (2004) and others. These meth-
ods alow for computation of a lower approximation of the product under consideration by
straightforward (non-nested) Monte Carlo simulation when the underlying dimension is not
too high. More recently, Kolodko and Schoenmakers (2006) proposed a policy improvement
procedure and it is demonstrated in Bender et al. (2006) and Bender et al. (2008) that
this method can be effectively combined with Longstaff and Schwartz (2001) for very high-
dimensional products. In Bender and Schoenmakers (2006) this policy iteration method
is extended to multiple stopping problems. Evaluation of products with multiple exercise
rights (on a low dimensional underlying) is also possible by using trinomial forests (Jaillet
et al., 2004). In Carmona and Touzi (2006) a Malliavin related approach for the valuation
of swing options is presented.

In Rogers (2002) and Haugh and Kogan (2004) a dual approach is developed (inspired by
Davis and Karatzas (1994)) which allows for computing tight upper bounds for American
style products. Jamshidian (2007) proposed a multiplicative version of the dual represen-
tation, Belomestny and Milstein (2006), and Belomestny et al. (2006) proposed to compute
upper bounds based on the concept of consumption processes. Effective algorithms for dual
upper bounds are proposed in Andersen and Broadie (2004), Kolodko and Schoenmakers
(2004), and Belomestny et al. (2009). For products with multiple exercise possibilities
Meinshausen and Hambly (2004) found a dual representation for the marginal excess value
of the product due to one additional exercise right. In this representation an infimum over
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a family of stopping times and a family of martingales is involved. Generalizations of this
method to multiple exercise products under volume constraints are developed in Bender
(2008) and Aleksandrov and Hambly (2008). While the mentioned methods for multiple
exercise products have shown to be feasible in practice, the question whether a ’real’ dual
representation for the multiple stopping problem exists as a natural extension of the dual
representation for the single exercise case, in terms of an infimum over martingales (only),
was still open. The main result in this paper is such a dual representation and so fills
this gap. Moreover we present three Monte Carlo algorithms for this representation, which
require at most one degree of nesting, just as in the one-exercise case. The procedures are
spelled out in detail and, in particular, one of them (Algorithm 2) may be seen as a natural
generalization of the algorithm in Andersen and Broadie (2004). As such the presented
algorithms are natural extensions of the corresponding ones for the single exercise case.
So it is more or less obvious that their numerical potential is inherited from the numerical
qualities of simulation algorithms for the standard additive dual extensively documented
in the literature. Therefore, the author prefers to communicate the new multiple dual
representation together with the three respective simulation algorithms in this paper, and
considers an in depth numerical study to be more suitable for subsequent work. The main
result, Theorem 5, is derived in Section 2, and the corresponding algorithms are given in
Section 3.

2 The Multiple Stopping Problem and its Dual Representa-
tion

Let (Zi : i = 0, 1, . . . , T ) be a non-negative stochastic process in discrete time on a filtered
probability space (Ω,F, P ) adapted to some filtration F := (Fi : 0 ≤ i ≤ T ) which satisfies

T∑
i=1

E|Zi| <∞.

The process Z may be seen as a (discounted) cash-flow, which an investor may exercise L
times, subjected to the additional constraint that it is not allowed to exercise more than
one right at the same date. The goal of the investor is to maximize his expected gain by
making optimal use of his L exercise rights. This goal may be formalized as a multiple
stopping problem. For notational convenience we extend the cash-flow process in a trivial
way by Zi = 0 and Fi = FT for i > T .

Let us define for each fixed 0 ≤ i ≤ T and L, Si(L) as the set of F-stopping vectors τ :=
(τ (1), . . . , τ (L)) such that i ≤ τ (1) and, for all l, 1 < l ≤ L, τ (l−1) + 1 ≤ τ (l). The multiple
stopping problem then comes down to find a family of stopping vectors τ∗i ∈ Si(L) such
that for 0 ≤ i ≤ T,

Ei

L∑
l=1

Zτ∗l
i

= sup
τ∈Si(L)

Ei

L∑
l=1

Zτ (l) (2.1)

with Ei := EFi
denoting conditional expectation with respect to the σ-algebra Fi, and sup

is to be understood as the essential supremum.

Remark 1. Henceforth the operators sup and inf are to be understood as ess.sup and
ess.inf, respectively, if they range over an uncountable family of random variables.
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The process on the right hand of (2.1) is called the Snell envelope of Z under L exercise
rights and we denote it by Y ∗L

i . In the case of one exercise right we usually write Y ∗
i := Y ∗1

i .
We recall from Bender and Schoenmakers (2006) that the multiple stopping problem can
be reduced to L nested stopping problems with one exercise right in the following way.
Y ∗0 := 0, Y ∗1 is the Snell envelope of Z. For general L, L ≥ 1, Y ∗L is the Snell envelope
of the process Zi +Ei Y

∗L−1
i+1 (seen as generalized cash-flow) under one exercise right. It is

thus natural to define (as in Bender and Schoenmakers (2006)) for each L = 1, 2, . . . , the
stopping family

σ∗Li = inf{j ≥ i : Zj + Ej Y
∗L−1
j+1 ≥ Y ∗L

j }, i ≥ 0, (2.2)

i.e. the first optimal stopping family for exercising the first of L exercise rights. The family
of optimal stopping vectors τ∗Li ∈ Si(L) for the multiple stopping problem with L exercise
rights and cash-flow Z is connected with (2.2) via

τ∗1,L
i = σ∗Li

τ∗l+1,L
i = τ∗l,L−1

σ∗L
i +1

, 1 ≤ l < L. (2.3)

The reduction (2.2), (2.3) is intuitively clear: It basically says, that the investor has to
choose the first stopping time of the stopping vector in the following way: Decide, at time
i whether it is better to take the cash-flow Zi and enter a new contract with L− 1 exercise
rights starting at j + 1, or to keep the L exercise rights. Then, after entering the stopping
problem with L− 1 exercise rights, he proceeds in the same (optimal) way.

2.1 Case L = 1 : The Standard Stopping Problem

In the case of one exercise right L = 1 we have the standard stopping problem. Let us
recall some well-known facts (e.g. see Neveu (1975)).

1. The Snell envelope Y ∗ of Z is the smallest super-martingale that dominates Z.

2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗
j }, 0 ≤ i ≤ T.

In particular, the above family is the family of first optimal stopping times if several
optimal stopping families exist.

2.2 Dual Representation for the Standard Stopping Problem

For the standard stopping problem, that is one exercise right L = 1, we have the (additive)
dual representation theorem which we state in a form suitable for our purposes:

Theorem 2. Rogers (2002), Haugh and Kogan (2004)
If M is the set of all F-martingales, it holds

Y ∗,1
i = Y ∗

i = inf
M∈M

Ei max
i≤j≤T

(Zj +Mi −Mj) (2.4)

= max
i≤j≤T

(
Zj +M∗

i −M∗
j

)
a.s. (2.5)

with M∗ being the unique Doob martingale of Y ∗, that is Y ∗ = Y ∗
0 +M∗ − A∗ where M∗

is a martingale, A∗ is predictable, and M∗
0 = A∗

0 = 0.
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For the results in this paper the almost sure statement (2.5) is very important. Therefore,
and because of its appealing simplicity, let us shortly recall the proof:

Proof. For any martingale M we have

Y ∗
i = sup

i≤τ≤T
EiZτ = sup

i≤τ≤T
Ei [Zτ +Mi −Mτ ]

≤ Ei max
i≤j≤T

(Zj +Mi −Mj) .

For the martingale M∗ it then holds

Y ∗
i ≤ Ei max

i≤j≤T

(
Zj +M∗

i −M∗
j

)
≤ Ei max

i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)
≤ Y ∗

i + Ei max
i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

i ,

since for all j, 0 ≤ j ≤ T, Y ∗
i − EiY ∗

i+1 = A∗
i+1 −A∗

i ≥ 0, and thus

Y ∗
i = Ei max

i≤j≤T

(
Zj +M∗

i −M∗
j

)
. (2.6)

Moreover, by

max
i≤j≤T

(
Zj +M∗

i −M∗
j

)
= max

i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)
≤ Y ∗

i + max
i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

i

and (2.6) we have (2.5).

The corner stone for generalizing Theorem 2 to the multiple stopping problem is the fol-
lowing simple proposition which is a slight extension of (2.5) in a sense.

Proposition 3. Let (Zi : 0 ≤ i ≤ T ) be a nonnegative integrable cash-flow process with
Snell envelope Y ∗ and let Y ∗ = Y ∗

0 +M∗−A∗ be its Doob decomposition as in Theorem 2.
It then holds for each j, 0 ≤ j < T,

Ej max
j<l≤T

(
Zl −M∗

l +M∗
j

)
= max

j<l≤T

(
Zl −M∗

l +M∗
j

)
a.s.

Proof. For fixed 0 ≤ j < T, we have by (2.5) on the one hand

Y ∗
j+1 = max

j<l≤T

(
Zl −M∗

l +M∗
j+1

)
, (2.7)

and from the Doob decomposition of Y ∗ and using (2.7),

EjY
∗
j+1 = Y ∗

j+1 +M∗
j −M∗

j+1 = max
j<l≤T

(
Zl −M∗

l +M∗
j+1

)
+M∗

j −M∗
j+1

= max
j<l≤T

(
Zl −M∗

l +M∗
j

)
on the other hand.

Remark 4. It is not difficult to see that a further generalization of Proposition 3 is not
possible in the sense that in general

Ej max
p<l≤T

(
Zl −M∗

l +M∗
j

) a.s.
�= max

p<l≤T

(
Zl −M∗

l +M∗
j

)
if p > j.
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2.3 Dual Representation for the Multiple Stopping Problem

We are now ready for proving the following theorem which is a natural generalization of
Theorem 2 and Proposition 3 to the multiple exercise case.

Theorem 5. It holds for all 0 ≤ i ≤ T, L = 1, 2, ...

Y ∗L
i = inf

M (1),...,M (L)∈M
Ei max

i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)
(2.8)

= max
i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

)
a.s., (2.9)

with j0 := 0, and, in addition

Ei max
i<j1<···<jL≤T

L∑
k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

)
(2.10)

= max
i<j1<···<jL≤T

L∑
k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

)
a.s.

where for k = 1, ..., L, M∗k is the Doob martingale of the Snell envelope for k exercise
rights. That is

Y ∗k = Y ∗k
0 +M∗k −A∗k

with A∗ predictable, and M∗k
0 = A∗k

0 = 0. In particular, for each k, A∗k
i is nondecreasing

in i.

Proof. For any set of martingales M (1), ...,M (L) ∈ M we have,

Y ∗L
i = sup

i≤τ (1)<...<τ (L)≤T

Ei

L∑
k=1

Zτ (k)

= sup
i≤τ (1)<...<τ (L)≤T

Ei

L∑
k=1

(
Zτk

+M (k)
τk−1

−M (k)
τk

)

≤ sup
i≤τ (1)<...<τ (L)≤T

Ei max
i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)

= Ei max
i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)
,

from which it follows that Y ∗L
i is less than or equal to the right-hand-side of (2.8). We

will now show that this inequality is sharp and that moreover (2.9) and (2.10) hold, by
induction to the number of exercise rights L. For L = 1 the statements collapse to the
statements of Theorem 2 and Proposition 3 . Suppose the Theorem holds for L exercise
rights. By the Bellman principle,

Y ∗L+1
i = max

[
Zi +EiY

∗L
i+1, EiY

∗L+1
i+1

]
,
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hence Y ∗L+1
i may be seen as the Snell envelope of the cash-flow Zi + EiY

∗L
i+1 under one

exercise right. So by the standard dual representation Theorem 2,

Y ∗L+1
i = max

i≤j1≤T

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

)
, (2.11)

where M∗L+1 is the Doob martingale of Y ∗L+1
i satisfying M∗L+1

0 = 0. By the induction
hypothesis it now follows using (2.9) and (2.10) respectively,

Y ∗L+1
i = max

i≤j1≤T

(
Zj1 +M∗L+1

i −M∗L+1
j1

+Ej1 max
j1+1≤p1<···<pL≤T

L∑
k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))
= max

i≤j1≤T

(
Zj1 +M∗L+1

i −M∗L+1
j1

+ max
j1<p1<···<pL≤T

L∑
k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))

= max
i≤j1<j2<···<jL+1≤T

L+1∑
k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)
, (2.12)

hence (2.9) for L + 1 rights. Next, using (2.12), (2.11), and applying (2.5) of Theorem 2,
Proposition 3, and again the induction hypothesis for L exercise rights yields

Ei max
i<j1<···<jL+1≤T

L+1∑
k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)
= EiY

∗L+1
i+1

= Ei max
i<j1≤T

(
Zj1 +Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

)
a.s.= max

i<j1≤T

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

)
= max

i<j1≤T

(
Zj1 +M∗L+1

i −M∗L+1
j1

+Ej1 max
j1+1≤p1<···<pL≤T

L∑
k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))
= max

i<j1≤T

(
Zj1 +M∗L+1

i −M∗L+1
j1

max
j1+1≤p1<···<pL≤T

L∑
k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))

= max
i≤j1<···<jL+1≤T

L+1∑
k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)
,

hence (2.10) for L+ 1 rights. Finally, A∗L+1 is nondecreasing as it is the predictable part
of the Snell envelope of the generalized cashflow Zi + EiY

∗L
i+1.
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3 Monte Carlo Algorithms for the Multiple Dual

In this section we show how well known dual algorithms for the one exercise case such
as the primal-dual algorithm of Andersen and Broadie (2004) may be generalized to the
multiple exercise cases. In this context we assume that the cash-flow process Z is of the
form (with slight abuse of notation)

Zi = Zi(Xi) 0 ≤ i ≤ T, (3.13)

for some underlying (possibly high-dimensional) Markovian process X. Moreover it is as-
sumed that we are given approximations Y (k)

i of Y ∗k
i , k = 1, ..., L, which are of the form

Y
(k)
i = Y

(k)
i (Xi), 0 ≤ i ≤ T, 1 ≤ k ≤ L. (3.14)

Remark 6. An immediate consequence of (3.13) is that for the Snell envelopes

Y ∗k
i = Y ∗k

i (Xi), k = 1, ..., L, (3.15)

so (3.14) is a quite natural assumption.

It is meanwhile industrial standard to obtain approximations of the form (3.14) by regres-
sion methods. For the single exercise case (Bermudan derivatives for example) the methods
of Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (1999) are quite popular, and
for the multiple exercise case (e.g. swing options) one may apply these methods recur-
sively as explained in Section 3.1. One generally obtains in this way sub-optimal exercise
strategies, hence lower bounds for the optimal value. In Section 3.2 it is described how to
incorporate (e.g. regression based) approximations for the Snell envelope in a Monte Carlo
algorithm for dual upper bounds.

3.1 Recap of Regression Based Approaches

Let us recap briefly how well-known regression methods such as the method of Longstaff
and Schwartz (2001) and Tsitsiklis and Van Roy (1999) may be recursively applied to the
multiple exercise problem. As these methods are broadly known, we do not explain them
here in detail but merely recall that for the single exercise case, both methods end up with
an expansion of the continuation function in terms of a properly chosen and ’rich enough’
system of basis functions on the state space. That is, for an approximation of the (single
exercise) Snell envelope one obtains formally

C∗
i (Xi) := EiY

∗
i+1(Xi+1) ≈

R∑
r=0

βirψr(Xi) =: Ci(Xi), 0 ≤ i < T,

where (ψr : R
d → R

d, r = 0, 1, 2, ...) is a (countable) set of basis functions and R some
number which determines the number of basis functions involved in the regression. (Note
that due to our conventions in Section 2, CT :≡ 0.) The coefficients (βir) are obtained by a
regression procedure applied to a Monte Carlo sample of trajectories of X. In Clement et
al. (2002) it is analyzed that for a suitable set of basis functions under suitable conditions
Ci → C∗

i , when the number of trajectories and the number of basis functions involved go
to infinity in a suitable relationship.
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Application of the above regression method to the multiple exercise problem is described
by the following inductive scheme:

• Step 1 : Construct with our favorite regression method for 0 ≤ i ≤ T the (approxi-
mative) continuation functions C(1)

i (·) of the single exercise problem.

• Step k : Let the continuation functions C(p)
i (·), 0 ≤ i ≤ T, of the (approximative)

multiple exercise problem for p exercise rights be constructed, for all 1 ≤ p ≤ k ≤ L,
that is,

C∗p
i (Xi) := EiY

∗p
i+1(Xi+1) ≈

R∑
r=0

β
(p)
ir ψr(Xi) =: C(p)

i (Xi)

(with C(p)
T :≡ 0). Then,

– If k < L, define the cash-flow process

Z̃i(Xi) := Zi(Xi) + C
(k)
i (Xi)

with C
(k)
T :≡ 0, and apply our favorite regression method to obtain the (ap-

proximative) continuation function C̃i(Xi) corresponding to the Snell envelope
of Z̃i under one exercise right. Then set

C
(k+1)
i (Xi) := C̃i(Xi), 0 ≤ i ≤ T.

– if k = L, then stop.

Inductive application of the above scheme thus yields a system of (approximative) continu-
ation functions C(k)

i (·), 1 ≤ k ≤ L, 1 ≤ i ≤ T. At this stage one may take as approximations
for the Snell envelopes (Y ∗k

i : 1 ≤ i ≤ T, 1 ≤ k ≤ L),

Y
(k)
i (Xi) := max[Zi(Xi) + C

(k−1)
i (Xi), C

(k)
i (Xi)] (3.16)

with C(0) :≡ 0.

It is important to note that while approximations (3.16) may be accurate, they can be
biased from above or below. Nonetheless, (3.16) can be used for constructing upper bounds
via Theorem 5 as explained below. For bounding the Snell envelopes from above and below
we also need lower bounds however. For this we construct for each k, 1 ≤ k ≤ L, a system of
(sub-optimal) exercise policies (τp,k

i : 1 ≤ i ≤ T, 1 ≤ p ≤ k) as follows. Define τ0,k
i := i−1,

and

τp,k
i = inf{j : τp−1,k

i < j ≤ T, Zj(Xj) + C
(k−p)
j (Xi) ≥ C

(k−p+1)
j (Xj)}. (3.17)

Then the process defined by

Y
(k)
i := Ei

k∑
p=1

Z
τp,k
i

(3.18)
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due to the stopping family (3.17) is Xi measurable and is a lower bound process, i.e.
Y

(k)
i (Xi) ≤ Y ∗k

i (Xi). Obviously, the stopping family τ1,k
i satisfies for each k the consistency

relation
τ1,k
i > i =⇒ τ1,k

i = τ1,k
i+1. (3.19)

Because of (3.19) we additionally have

Y
(k)
i 1

τ1,k
i >i

= 1
τ1,k
i >i

Ei

k∑
p=1

Z
τp,k
i

= 1
τ1,k
i >i

Ei1τ1,k
i >i

k∑
p=1

Z
τp,k
i

= 1
τ1,k
i >i

Ei

k∑
p=1

Z
τp,k
i+1

= 1
τ1,k
i >i

EiEi+1

k∑
p=1

Z
τp,k
i+1

= 1
τ1,k
i >i

EiY
(k)
i+1. (3.20)

which is in the case L = 1 a corner stone of the primal-dual algorithm (Andersen and
Broadie, 2004). The lower bounds Y may be constructed by a standard (non-nested)
Monte Carlo simulation using (3.17).

3.2 Dual Algorithms for the Multiple Exercise Problem

For constructing dual upper bounds we have two options: the first one is the multiple dual
based on (3.16) and the second is the dual based on (3.18). For any set of approximations
Y (k), for example (3.16), we may construct the Doob martingale M (k) of Y (k), via

M
(k)
i −M

(k)
i−1 = Y

(k)
i − Ei−1Y

(k)
i

and consider the upper bound

Y up,L
i := Ei max

i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+M
(L−k+1)
jk−1

−M
(L−k+1)
jk

)

= Ei max
i≤j1<···<jL≤T

L∑
k=1

⎛⎝Zjk
−

jk∑
r=jk−1+1

Y (L−k+1)
r +

jk∑
r=jk−1+1

Er−1Y
(L−k+1)
r

⎞⎠
= Ei max

i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+ Y
(L−k+1)
jk−1

− Y
(L−k+1)
jk

+
jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)⎞⎠
= Y

(L)
i + Ei max

i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

(3.21)

+
jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)⎞⎠
(note that Y (0) ≡ 0). We now have the following proposition which provides an estimate
for the gap between the lower and upper bound.
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Proposition 7. If the approximate solution satisfies Zj + EjY
(k)
j+1 ≤ Y

(k+1)
j for all j and

k, it then holds,

Y up,L
i − Y

(L)
i ≤ Ei

L∑
k=1

T−1∑
r=i

(
ErY

(k)
r+1 − Y (k)

r

)+
,

with equality if Y (k) = Y ∗k for all k.

Proof. From (3.21) we obtain by rearranging terms,

Y up,L
i − Y

(L)
i = Ei max

i≤j1<···<jL≤T

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+
j1−1∑
r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L∑
k=1

(
Y

(L−k)
jk

− Ejk
Y

(L−k)
jk+1

)
L∑

k=2

(
Ejk−1

Y
(L−k+1)
jk−1+1 − Y

(L−k+1)
jk−1

)
+

L∑
k=2

jk−1∑
r=jk−1+1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)⎞⎠
= Ei max

i≤j1<···<jL≤T

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+
j1−1∑
r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L−1∑
k=1

jk−1∑
r=jk−1+1

(
ErY

(L−k)
r+1 − Y (L−k)

r

)⎞⎠ ,

and then the statement easily follows.

Proposition 7 may be considered as a generalization of a similar result for the case L = 1
in Andersen and Broadie (2004) and Kolodko and Schoenmakers (2004).

Obviously, the implementation of (3.21), based on (3.16) for instance, generally leads to a
(one-degree) nested Monte Carlo simulation. Just as in the single exercise case it is effective
to simulate the term Y

(L)
0 in (3.21) accurately with a standard (non-nested) Monte Carlo

simulation and a relatively large sample size. As a rule in the case L = 1, this takes out
about 90% of the variance depending on the quality of the approximation of course. What
is left is the simulation of the gap term

Δ(L)
i := Y up,L

i − Y
(L)
i .

This can be carried out by the following algorithm (we take i = 0 w.l.o.g.).

Algorithm 1.

• for n = 1 to N do:

– Simulate and store an ’outer’ trajectory (nXr : 0 ≤ r ≤ T ) which starts in x0

say. Hence nX0 = x0.

10



– Simulate for each r, 0 ≤ r < T, independently a set of M ’one-step inner
trajectories’ (mn Xr+1 : 1 ≤ m ≤ M) which start at nXr. That is, each inner
simulation m

n Xr+1 is independently distributed according to Pr(Xr+1 ∈ dx |
nXr).

– for r = 0 to T − 1 do :
∗ for l = 1 to L do: Evaluate and store[

ErY
(l)
r+1

]
(nXr) ≈ 1

M

M∑
m=1

Y
(l)
r+1(

m
n Xr+1) =: nE

(l)
r ,

where the Y (l)
r (·) are given by (3.16) for example.

– Evaluate and store

ξn := max
0≤j1<···<jL≤T

L∑
k=1

(
Zjk

(nXjk
) + Y

(L−k)
jk

(nXjk
) − Y

(L−k+1)
jk

(nXjk
)

+
jk−1∑

r=jk−1

( nE
(L−k+1)
r − Y (L−k+1)

r (nXr))

⎞⎠ .

– Give the memory used for intermediate quantities other than ξn (outer trajec-
tory, inner trajectories, etc.) free.

• Evaluate

Δ̂(L)
0 :=

1
N

N∑
n=1

ξn ≈ Δ(L)
0 .

Finally, if Ŷ (L)
0 is a Monte Carlo estimate of Y (L)

0 , we set Ŷ up,L
0 = Ŷ

(L)
0 + Δ̂(L)

0 .

Since for any (finite) set of random variables (ςi : i ∈ I) it holds Emaxi∈I ςi ≥ maxi∈I Eςi,
it follows analogously to Andersen and Broadie (2004) (and also Kolodko and Schoenmakers
(2004)) that Ŷ up,L

0 is a Monte Carlo estimate of Y up,L
0 which is biased up, hence an upper

bound. We underline that Algorithm 1 is essentially different from the one in Meinshausen
and Hambly (2004) as it may be applied to any set of approximations to (Y ∗k

i ) and so
may be regarded as ’stopping time free’ in this respect. In contrast, the Meinshausen
and Hambly (2004) method always involves a set of ’good’ stopping times for the multiple
stopping problem besides a set of ’good’ martingales.

As an alternative we may consider the dual based on (3.18) and extend the primal-dual
algorithm of Andersen and Broadie (2004) to the dual representation in Theorem 5. We
thus construct the Doob martingale M (k) of Y (k), via

M
(k)
i −M

(k)
i−1 = Y

(k)
i − Ei−1Y

(k)
i

and analogue to (3.21) we consider the upper bound

Y up,L
i := Y

(L)
i + Ei max

i≤j1<···<jL≤T

L∑
k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

(3.22)

+
jk−1∑

r=jk−1

1
τ1,L−k+1
r =r

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)⎞⎠ ,
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using (3.20).

Similar as for (3.21) the implementation of (3.22) leads to a nested upper biased Monte
Carlo algorithm as spelled out below. The lower bound Y

(L)
i in (3.22) can be accurately

computed using a standard (non-nested) Monte Carlo simulation using stopping rule (3.17)
and a relatively large sample size. Typically, as in Algorithm 1, the gap term

Δ(L)
i := Y up,L

i − Y
(L)
i .

has relatively low variance, and may be computed by the following algorithm (we take
i = 0 w.l.o.g.).

Algorithm 2.

• for n = 1 to N do

– Simulate and store an ’outer’ trajectory (nXr : 0 ≤ r ≤ T ) which starts in x0

say. Hence nX0 = x0.

– Simulate and store for each fixed r, 0 ≤ r < T, independently a set of M ’inner
trajectories’ (mn Xs : r ≤ s ≤ T, 1 ≤ m ≤ M) which all start at nXr. That is,
each inner simulation (mn Xs : r ≤ s ≤ T ) is independently distributed according
to Pr(X· ∈ B | nXr) with B ⊂ R

d being an arbitrary Borel set.

– for r = 0 to T − 1 do

∗ for l = 1 to L do evaluate and store

Y (l)
r (nXr) ≈ 1

M

M∑
m=1

l∑
p=1

Zm
n τp,l

r
(Xm

n τp,l
r

) =: y(l)
n,r.

∗ for l = 1 to L do evaluate and store

Booln,r,l :=
[
Zr(nXr) + C(l−1)

r (nXr) ≥ C(l)
r (nXr)

]
= [nτ1,l

r = r]

where the functions C(p)
r (·) are constructed by the regression procedure in

Section 3.1.

∗ for l = 1 to L do if Booln,r,l then evaluate and store[
ErY

(l)
r+1

]
(nXr) −

[
Y (l)

r

]
(nXr) ≈

−y(l)
n,r +

1
M

M∑
m=1

l∑
p=1

Zm
n τp,l

r+1
(Xm

n τp,l
r+1

) =: ϑ(l)
n,r

else ϑ
(l)
n,r := 0.

12



– Evaluate and store (with y(0) ≡ 0)

ξn :=

max
0≤j1<···<jL≤T

L∑
k=1

⎛⎝Zjk
(nXjk

) + y
(L−k)
n,jk

− y
(L−k+1)
n,jk

+
jk−1∑

r=jk−1

ϑ(l)
n,r

⎞⎠ .

– Give the memory used for intermediate quantities other than ξn (outer trajec-
tory, inner trajectories, etc. ) free.

• Evaluate

Δ̂
(L)

0 :=
1
N

N∑
n=1

ξn ≈ Δ(L)
0 = Y up,L

0 − Y
(L)
0 .

Similar to Algorithm 1, it can be seen by the same argument that replacing the inner con-
ditional expectations with their Monte Carlo estimates leads to un upper biased estimator
for Y up,L

0 (X0) (when i = 0).

Remark 8. For L = 1 (and i = 0) representation (3.22) and Algorithm 2 collapses to
the well-known Andersen-Broadie representation and Andersen-Broadie algorithm, respec-
tively (note that j0 := 0). Indeed, for L = 1 we get

Y up,L
0 (X0) = Y 0(X0) + E0 max

i≤j≤T

(
Zj − Y j +

j−1∑
r=0

1τ=r

(
ErY r+1 − Y r

))
(3.23)

with the well demonstrated advantage that the term Y 0(X0) may be computed using an
accurate non-nested Monte Carlo simulation, and that the remaining gap term has typically
low variance.

It would be interesting to investigate a comparison between Algorithm 2 and Algorithm 1.
For the case L = 1 however, it is generally known that Algorithm 2, carried out with a stop-
ping family generated from (3.16) via (3.17), usually gives better bounds than Algorithm 1,
although the latter procedure may require less computational costs.

Algorithm 3. If approximations Y (k) (for example (3.16)) of the Snell envelopes satisfy
the condition in Proposition 7 we may modify Algorithm 1 in an obvious way to obtain an
algorithm which estimates the gap

Δ̃(L)
0 := E0

L∑
k=1

T−1∑
r=0

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)+ ≥ Δ(L)
0

and therefore a detailed description is omitted. If the condition in Proposition 7 is not
fulfilled one may take recursively from k = 1 up to L (with Ỹ (0)

i ≡ 0),

Ỹ
(k)
i := max(Zi + EiỸ

(k−1)
i+1 , Y

(k)
i ), 0 ≤ i < T,

instead of the Y (k). Clearly, in this algorithm no maximization procedure is involved. The
price one may have to pay however is a larger gap, but, nonetheless, due to Proposition
7 this gap may be still small if the input approximations of the Snell envelopes are good
enough.
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Remark 9. Given the success of the dual representation in the single exercise case as
reported in the literature, it will be obvious that the analogue algorithms for the multiple
case presented here are potentially promising as well. A meaningful extensive numerical
study and comparison with the method of Meinshausen and Hambly (2004), for example,
should be carried out for a complex enough product. However, we already note that it is
not difficult to see that the complexity of Algorithms 1–3 is comparable with the complexity
of the procedure in Meinshausen and Hambly (2004) while the implementation of these
algorithms looks more transparent and straightforward.

Remark 10. In the case where the process X is adapted to a Brownian filtration it looks
feasible to construct a linear Monte Carlo algorithm for the multiple dual in a similar way
as presented in Belomestny et al. (2009). This might be done in future work.

Remark 11. One may wonder whether it is possible to generalize, like in this article,
also the multiplicative dual approach of Jamshidian (2007) to the multiple exercise case.
In this respect we found a multiplicative dual representation for the multiple exercise
problem indeed, but, this representation consists of nested conditional expectations where
the degree of nesting is equal to the number of exercise possibilities. As such this is of
no practical use of course. In particular the construction of the additive multiple dual
as in this article relies on the nice almost sure properties of the standard additive dual
representation when the optimal martingale is plugged in. The multiplicative dual fails
to have this property, see also the discussion in Chen and Glasserman (2007) on this. It
therefore seems not possible to find a multiplicative dual representation for the multiple
stopping problem which allows in general for Monte Carlo simulation with only one degree
of nesting.
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