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Abstract

A continuum model for the growth of self-assembled quantum dots that
incorporates surface diffusion, an elastically deformable substrate, wetting in-
teractions and anisotropic surface energy is presented. Using a small slope ap-
proximation a thin film equation for the surface profile that describes facetted
growth is derived. A linear stability analysis shows that anisotropy acts to
destabilize the surface. It lowers the critical height of flat films and there
exists an anisotropy strength above which all thicknesses are unstable. A
numerical algorithm based on spectral differentiation is presented and simu-
lation are carried out. These clearly show faceting of the growing islands and
a logarithmically slow coarsening behavior.

1 Introduction

Epitaxial growth of quantum dots is a fascinating topic from many points of view.
The self-assembled patterning and the geometrical structure of the growing solid
film exhibits a natural beauty that alone may be worth studying (for pictures of
dots see references [1, 6, 18, 25]). However, apart from the interest it may raise due
to inherent structures and symmetries, the nano-crystals can be very valuable for
industrial applications, because their semiconducting properties make them useful
for electronic and optoelectronic devices. The blue laser is one of the main achieve-
ments which can be attributed to research on quantum dots [21]. LEDs with a wide
color spectrum and a small energy consumption are under consideration and even
quantum computing is of interest due to the two-state property of a quantum dot
[17]. Recently the photovoltaic industry tries to incorporate the zero-dimensional
structures - or ”artificial atoms” because of their discrete energy states - inside new
thin layers in order to increase the thermodynamic conversion efficiency [15, 22]. For
widespread applications, comparatively cheap, but controllable self-assembly growth
processes are needed.

We concentrate on the most common material combination, germanium crystals
grown on silicon (Ge/Si), for a review see Drucker [6] or the references therein.
Atoms of germanium are deposited on top of the silicon substrate in a hot chamber
(the effects we describe and simulate occur at about 500 degrees Celsius) and after a
pseudomorphic growth phase the Asaro-Tiller-Grinfeld (ATG) instability [5] leads to
formation of initially round structures (prepyramids) which in later stages morph to
tiny pyramids, the quantum dots. Further deposition leads to multi-faceted domes
and eventually dislocations that deteriorate the quality of the quantum dots.
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A main mechanism for the growth is the lattice mismatch. Both crystalline materials
have diamond cubic symmetry, but different lattice constants. The film is in the
Stranski-Krastanov growth mode. In the first stage it adjusts its lattice to the
prescribed width of the substrate’s crystal structure inducing elastic energy that
is competing with surface energy. In a layer by layer growth phase the surface
remains flat, but as the film thickness increases strain energy can be released by
the formation of quantum dots [28]. During the growth both materials undergo an
deformation and the observed dots are faceted after primary forming more rounded
prepyramids. Anisotropy is responsible for pyramidal shapes or multifaceted domes
that are visible at later times. We consider only the anisotropy of the surface
energy, though in principle also anisotropic elasticity coefficients may be significant
(see recent work of Pang and Huang [23]).

Different methods are used to model and simulate the growth described above [7].
Stochastic methods that act on atomic scales are very accurate. However, only small
domains with few dots can be simulated on short time-intervals. Monte Carlo sim-
ulations have been implemented, but are very time-consuming [16, 19]. To treat big
domains for longer times, continuum models are used. For the mesoscopic descrip-
tion of the elasticity problem finite element methods allow for the solution of the
Navier-Cauchy equations in three dimensions (e.g. Zhang et al. [37]). To avoid the
high computational costs it is common to simplify the governing equations. A small
slope approximation similar to lubrication theory in fluids is applied. For literature
see Atherton and Davis [2].

Based on Mullins’ diffusion model [20] many formulas incorporating different chem-
ical potentials have been proposed. Spencer and co-workers derived partial differ-
ential equations without wetting or anisotropy [30, 31, 32]. Later Golovin et al.
included wetting effects [13] and analyzed the linear stability of a more complete
model [14]. However, for simulations of reduced models the important effects of
stress and wetting were neglected. They used an anisotropy formula which Savina
et al. incorporated as the main mechanism for the evolution together with normal
growth from the vapor phase [27]. Inclusion of a cusped model for the anisotropic
surface energy has been accomplished by Eisenberg and Kandel [8, 9, 10], who ob-
tained promising 2D results. The anisotropy model is different to others in that
it uses a nonsmooth cusp for the minimum of the surface energy. This can be a
drawback since methods based on derivatives will have problems with the numerical
simulations.

Solving the elastic subproblem is one of the main tasks for the simulation of self-
assembled growth. Instead of working with full Navier-Cauchy equations on a 3D
domain, we use solution approximations based on small-slope reduction. Pang and
Huang [24] used the Cerruti solution for a semi-infinite solid that is subjected to a
point force. The resulting leading order equation is qualitatively the same as the
derived by Tekalign and Spencer [33, 34]. Here we present a consistent small-slope
reduction including anisotropy which results in a self-contained partial differential
equation. We let the surface energy be dependent on orientation such that it has
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local minima at the facets of the dots. This has been also proposed by Chiu and
Huang [4] who used a sum of exponentials depending on the surface’s normals to
describe preferred orientations. However, it is simple and sufficient to use a fourth
order polynomial in the slopes of the surface in x and y directions. Simulations
show how surfaces initially roughen, then facet and coarsen on a logarithmically
slow time-scale. The overall model we consider contains surface diffusion, linear
elasticity, anisotropic surface energy and wetting interactions.

In the rest of our paper we present first in Section 2 the general equations for the
model, such as a diffusion formula and terms of the chemical potential. We describe
the elasticity problem and an anisotropy formula to obtain the full equation for
the problem. Thereafter in Section 3 we use characteristic scales [33] to simplify
the equations. In this way we derive our model in two and three dimensions and
analyze it in Sections 4 and 5, respectively. The results of numerical simulations
using a pseudospectral method are presented. Stationary states are computed as
solutions of an ODE with a second method. These equal the shapes from long-run
simulations of the PDE and show tent-like or pyramidal shapes. A linear stability
analysis extends the isotropic theory. It shows that the critical thickness of a flat film
decreases and that the unstable regime grows with increasing anisotropy strength.
Above a certain value an infinite range of wave numbers is unstable. Using long-time
simulations with large numbers of pyramids we examine the logarithmic coarsening
in two and three dimensions. The results are reviewed in the last Section where we
also present an outlook for future plans.

2 Modeling the self-assembly of quantum dots

We consider the dislocation-free evolution of a thin solid film on a substrate as
sketched in Fig. 1. We denote the position of the film surface with z = h(x, y, t) at
time t and a point in the periodic spatial domain (x, y). We will refer to this case
as the three-dimensional one. Later the case when h = h(x, t) will be referred to as
two-dimensional. The interface between the materials is assumed to be at z = 0.

Based on surface diffusion [20], in the absence of deposition the film evolution sat-
isfies

ht =
√

1 + |∇h|2D∇2
sµ (2.1)

with the diffusion constant D = Ω2Dsσ/(kT ) . Here µ is the chemical potential, Ω
is the atomic volume, σ the surface density of atoms, Ds the diffusion coefficient, k
the Boltzmann constant and T the absolute temperature. The surface Laplacian is
defined as

∇2
s =

1

N2
((1 + h2

y)∂xx + (1 + h2
x)∂yy − 2hxhy∂x∂y − κN(hx∂x + hy∂y)) , (2.2)

where N =
√

1 + ‖∇h‖2 and κ is the mean curvature [32]. It is chosen here to have
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a positive sign in case of a standard parabola that is bounded below,

κ =
hxx(1 + h2

y) + hyy(1 + h2
x)− 2hxhyhxy

N3
. (2.3)

We consider a chemical potential µ that consists of two terms

µ = Esed + Esurf (2.4)

representing the competing contributions from elastic and surface energies, respec-
tively. The first term is the strain energy density evaluated at the surface

Esed =
1

2
σijεij |z=h (2.5)

with the stresses σij and strains εij related by Hooke’s law. As usual in elasticity
theory we use Einstein’s notation and sum over repeated indices i, j ∈ {1, 2, 3}.
The problem to be solved to compute the term (2.5) is described in Section 2.1 and
follows Tekalign and Spencer [33].

The other term in (2.4) is decomposed into three components by taking the func-
tional derivative of the surface free energy. The right-hand side of the following
equation is defined via the calculation of this derivative.

Esurf :=
δ

δh

∫
γ(h, hx, hy)dS = Eκ + Ewet + Eanis . (2.6)

The standard surface and wetting terms are

Eκ = −γκ (2.7)

and
Ewet = (∂hγ)n3 , (2.8)

where n3 = 1/N is the third component of the outward unit normal. Since the
surface energy also depends on orientation, an additional term arises

Eanis = − 2(
hxhxx + hyhxy

N
∂hxγ +

hyhyy + hxhxy

N
∂hyγ)

− N∂x(∂hxγ)−N∂y(∂hyγ) . (2.9)

Using a formula that depends only on the surface height, γ = γ(h), such as Spencer’s
boundary layer formula [29] (see later in Section 2.2, formula (2.19)) gives formally
the terms Eκ and Ewet. Including the third term Eanis is vital to correctly model
effects of surface energy anisotropy which is our main goal.

We continue with the elasticity problem, followed by the definition of a suitable
surface energy.
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Figure 1: Epitaxy setting: a film of thickness h grows on a substrate occupying an
infinite half-space.

2.1 The strain energy density

The lattice mismatch is crucial for the self-assembly of quantum dots and results in
stresses in film and substrate. These are represented in the strain energy density
(2.5) evaluated on the free surface. The displacements in all spatial dimensions are
denoted by ui, i = 1, 2, 3. Using linear elasticity the strains are the symmetric part
of the displacement gradient tensor

(εij)i,j∈{1,2,3} =
1

2
(∇u +∇uT ) (2.10)

and are related to the stress tensor by Hooke’s law for isotropic materials

σij =
E

1 + ν
εij +

Eν

(1 + ν)(1− 2ν)
εkkδij i, j ∈ {1, 2, 3} . (2.11)

Here ν is Poisson’s ratio and E is the elastic modulus. Mechanical equilibrium
is assumed to be reached on a much faster time-scale than the thermodynamic
equilibrium. This condition requires

∇ · σ = 0 , (2.12)

and together with (2.10) and (2.11) results in the Navier-Cauchy equations of
isotropic linear elasticity theory

(1− 2ν)∆u +∇(∇ · u) = 0 . (2.13)

Once boundary conditions are defined and the displacements are computed, one
obtains the strains, the stresses and finally the strain energy density using (2.5).

At the film free surface we assume the pressure to be negligible, so that there the
boundary condition is

σ · n = 0 at z = h . (2.14)

Deep inside the substrate the stresses vanish, so that

us
i → 0 for z → −∞ . (2.15)
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Throughout the document we use superscript f to indicate a quantity belongs to
the film and s if it is related to the substrate. The origin of variables without
superscripts are supposed to be known from the context, so that most of the time
they may be omitted.

At the interface between the two crystalline materials it is assumed that the displace-
ments of the film are equal to those of the substrate with an additional correction
in x and y directions arising from lattice mismatch

uf
i = us

i + ε[x, y, 0]T at z = 0 , (2.16)

where the lattice mismatch parameter is defined as ε = (af − as)/af . Here as and
af are the lattice spacings in the substrate and in the film, respectively.

As last condition continuity of the normal component of the stress tensor at the
film-substrate interface gives

(σf
i3)|z=0 = (σs

i3)|z=0 . (2.17)

The overall elasticity problem is governed by the equations (2.11)-(2.17).
For a flat film that has adjusted its lattice spacing to that of the undeformed sub-
strate, one can easily compute the strain energy density

Ebase
sed =

Ef

1− νf
ε2 . (2.18)

However Esed is more difficult to derive for non-flat surfaces. When the ratio of thick-
ness to characteristic spatial length is small, this parameter allows for asymptotic
expansions of the displacements. This model reduction will be discussed in Section
3.

2.2 Anisotropic surface energy

Spencer [29] proposed a boundary layer model for the smooth transition of the
surface energy from the substrate’s value to the film’s

γ(h) =
1

2
(γf + γs) + (γf − γs)

1

π
arctan(h/b) , (2.19)

where b is the transition length scale and γp, p ∈ {f, s} are material constants. We
generalize (2.19) by letting γf be anisotropic, but leave the surface energy density
of the substrate unchanged. We let γf depend on the slopes of the surface such that
we can assign different energies to different orientations of the free surface

γ(h, hx, hy) =
1

2
(γf (hx, hy) + γs) + (γf (hx, hy)− γs)

1

π
arctan(h/b) . (2.20)

We use a simple formula for the anisotropic surface energy

γf (hx, hy) = γ0(1 +W(hx, hy)) . (2.21)
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Here W could be chosen in various ways. Chiu and Huang [4] applied a sum of
Gaussians that defines minima at prescribed orientations. We choose a simpler,
though less flexible model, a ’double double-well’ (or ’quadruple-well’)

W(hx, hy) = G̃(h4
x + h4

y)− 2G(h2
x + h2

y), G̃, G > 0 , (2.22)

that could be extended to arbitrary polynomials in the lateral derivatives of the
free surface. However, this function will be sufficient to describe the pyramidal
structures with {1 0 5} facets of quantum dots observed in experiments [6]. These
define a characteristic slope s. For a flat film it has the value γ0 and we will choose
the dimensionless, positive parameters G and G̃ such that (2.21) has minima at
(±s, s), (s,±s) and a local maximum at (0, 0). Other orientations that are not
preferred are punished by the character of the polynomial, as γf →∞ for hx, hy →
±∞.

The terms ∂hxγ and ∂hyγ appearing in the chemical potential (2.9) can be obtained
easily

∇∇h
γ :=

(
∂hx

∂hy

)
γ = γ0Ψ(b, h)∇∇h

W , (2.23)

with the transition function

Ψ(b, h) =
1

2
+

1

π
arctan(h/b) , (2.24)

and the derivative

∇∇h
W = 4

(
G̃h3

x −Ghx

G̃h3
y −Ghy

)
. (2.25)

At this point we have obtained all equations that define a full model for the evolution
of self-assembled quantum dots. However, since the displacements, which define
stress and strain and hence the strain energy density (2.5), are given only as solution
of a 3D elasticity problem, the whole system is hardly solvable without reducing it
to simpler equations. A popular method to do so is using characteristic scales to
identify small terms that can be neglected.

3 Thin-film scaling

Drucker [6] reports that pyramidal Ge/Si quantum dots have {1 0 5} facets before
before they start to become dome-like and create dislocations. Hence the horizontal
length scale (the base length of a facet) is large in comparison to the vertical scale
(its height). The crystals have small slopes which can be used to neglect small
terms - such as powers of gradients - in the evolution equation. If H0 is a small
characteristic thickness scale and L is a bigger scale for the substrate directions x
and y, then the parameter α = H0/L � 1 can be used for asymptotic expansions
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[30, 33]. A generic scaling of the variables is

h = H0H = αLH, z = αLZ, (x, y) = (LX, LY )

t = τT, ui(x, y, z) = LUi(X, Y, Z) .

Furthermore we scale the transition thickness

b = Lα3b̄ , (3.1)

so that the leading order of the wetting term Ewet will be of the same order as
the surface energy term Eκ. To guarantee that the overall reduced leading order
PDE that we will derive is well posed in terms of the anisotropy, the double-well
character of the anisotropy must remain in the leading order term of Eanis. Therefore
we assume

G = O(1) and G̃ = G/α2 ,

such that W = α2W with

W (HX , HY ) := G[(H4
X + H4

Y )− 2(H2
X + H2

Y )] . (3.2)

These assumptions correspond to the theory from Chiu and Huang [3] who chose
the minimum of the facets to be only 1.2% smaller than γ0.

We choose the characteristic length and time scales

L =
γ0

Ebase
sed

and τ =
L4

Dγ0

, (3.3)

respectively. These result from the nondimensionalization of the chemical potential

µ =
γ0

L
µ̄, µ̄ = Ēsed + Ēκ + Ēwet + Ēanis (3.4)

which arises from the natural scalings

σij = Ebase
sed σ̄ij, κ = Lκ̄, γ = γ0γ, ∇2

s = L2∇̄2
s . (3.5)

The evolution equation (2.1) in nondimensional form becomes

HT =
√

1 + α2(H2
X + H2

Y )∇̄2
s(Ēsed + Ēκ + Ēwet + Ēanis) , (3.6)

The constituent terms are

Ēsed =
1

2
σ̄ijεij

Ēκ = −γ̄κ̄

Ēwet =
(γf − γs)αb̄

γ0π(α4b̄2 + H2)
√

1 + α2‖∇H‖2
(3.7)

Ēanis = −2α
(HXHXX + HXHXY )∂HX

W + (HY HY Y + HY HXY )∂HY
W

(1 + α2(H2
X + H2

Y ))1/2
(3.8)

− 1

α
(1 + α2(H2

X + H2
Y ))1/2 (∂X [Ψ∂HX

W ] + ∂Y [Ψ∂HY
W ]) ,
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where in the last expression we used the transition function with rescaled arguments
Ψ = Ψ(Lα3b̄, H0H).

Now we expand the nondimensionalized chemical potential

µ̄ = µ̄(0) + αµ̄(1) +O(α2)

and determine the leading order terms. Derivative operators such as the nabla
operator ∇ = (∂X , ∂Y )T or the Laplacian ∆ = ∇2 are from now on defined in the
new variables. The surface Laplacian ∇̄2

s can be expanded

∇̄2
s = ∆ +O(α2) (3.9)

so that to order α the evolution equation can be written as

HT = ∆(µ̄(0) + αµ̄(1)). (3.10)

The aim of the following paragraphs will be to derive the leading order terms of the
chemical potential that can be inserted into the above equation (3.10).

The strain energy density terms Ē (0)
sed, Ē

(1)
sed:

With expansions for the strains and stresses

σ̄ij = σ̄
(0)
ij + ασ̄

(1)
ij + α2σ̄

(2)
ij +O(α3), εij = ε

(0)
ij + αε

(1)
ij + α2ε

(2)
ij +O(α3) (3.11)

one can find an expansion for the strain energy density

Ēsed = Ē (0)
sed + αĒ (1)

sed +O(α2) . (3.12)

By using (3.11) and the Navier-Cauchy equations in the film and substrate one
obtains

Ē (0)
sed = 1 and Ē (1)

sed = F−1(−eku) (3.13)

with k =
√

k2
1 + k2

2 the length of the wave vector (k1, k2) which is composed of the
wave numbers k1 and k2 for two dimensions, and where

e =
2µf (1 + νf )(1− νs)

µs(1− νf )
. (3.14)

Here µp = Ep/(2(1 + νp)), p ∈ {f, s} is the shear modulus of film and substrate,
respectively, and u now denotes the 2D Fourier transform F(H). Its inverse is

H(X, Y, T ) = F−1(u) =

∫
[−∞,∞]2

u(k1, k2, T )e−ik1X−ik2Y dk1 dk2 .

A detailed derivation of these terms is given by Tekalign and Spencer [33].

The surface energy terms Ē (0)
κ , Ē (1)

κ :
The curvature can be expanded in terms of α to

κ̄ = ακ̄(1) +O(α3) (3.15)
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with the leading order coefficient

κ̄(1) = ∆H . (3.16)

This gives

Ēκ = −
{

1

2

γ0 + γs

γ0

− γ̃

b̄
arctan

(
H

α2b̄

)}
κ̄(1)α +O(α3) (3.17)

= −ακ̄(1) +O(α2) , (3.18)

with γ̃ = b̄(γ0 − γs)/(γ0π), where typically γ̃ > 0, so that a film covering the
substrate is favorable. We derived

Ē (0)
κ = 0 and Ē (1)

κ = −∆H (3.19)

and remark that the anisotropy does not have any influence on the surface term Ēκ

to leading order.

The wetting energy terms Ē (0)
wet, Ē

(1)
wet:

For the expansion of the wetting term

Ēwet = Ē (0)
wet + αĒ (1)

wet +O(α2) (3.20)

the coefficients are determined by expanding (3.7) to

Ēwet = α
γ̃

H2
(1− α2‖∇H‖2

2
) +O(α4) .

We read off the wetting coefficients

E (0)
wet = 0 and E (1)

wet = − ∆γ

LH2
. (3.21)

The anisotropy terms Ē (0)
anis, Ē

(1)
anis:

Finally we also expand the anisotropy term

Ēanis = Ē (0)
anis + αĒ (1)

anis +O(α2) (3.22)

and determine the leading order expressions. Therefore we expand the fractions and
the transition function in (3.8)

Ēanis = − 2α(1−α2H2
X + H2

Y

2
)(1−α2 b̄

H
) {(HXHXX + HXHXY )∂HX

W

+ (HY HY Y + HY HXY )∂HY
W}+O(α3)

− 1

α
(1+α2H2

X + H2
Y

2
)

(
∂X

[
(1−α2 b̄

H
)∂HX

W
]

+ ∂Y

[
(1−α2 b̄

H
)∂HY

W
])

.
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Due to our choice of W (3.2), the leading order of this expression is

αĒ (1)
anis = − 1

α
∇ · ∇∇HW(HX , HY ) = −α∇ · ∇∇HW (HX , HY ) . (3.23)

The reduced evolution equation:
Using ∆µ(0) = 0 the evolution equation (3.10) becomes

HT = ∆(Ē (1)
sed + Ē (1)

κ + Ē (1)
wet + Ē (1)

anis) . (3.24)

Insertion of the derived terms (3.13), (3.19), (3.21) and (3.23) into (3.24) gives the
final evolution equation

HT = ∆[F−1(−eku)−∆H − γ̃

H2
−∇ · ∇∇HW (HX , HY )] (3.25)

The character of the above PDE is changed from semilinear in the isotropic case
G = 0 to quasilinear when G > 0 and it is well-posed as long as G is not too big.
This is supported by the linear stability analysis part which will be presented in the
next Section together with the numerical method for the two-dimensional case and
results on stationary solutions and coarsening.

4 Evolution in one lateral and one time dimension

(2D)

Now we consider only one lateral dimension X, so that the film is described by
H = H(X, T ). Here island profiles represent long parallel ridges in 3D. Evolution
equation (3.25) then simplifies to

HT =∂XX [F−1(−e|k|u) + (4G− 12GH2
X − 1)HXX −

γ̃

H2
] . (4.1)

The elasticity term is reduced from (3.13), where k =
√

k2
1 + k2

2 ≥ 0. Note that
now k = k1 is a wave number in one dimension and we have to take its absolute
value inside the inverse Fourier transform. We see, qualitatively the isotropic model
[33] is extended by adding one nonlinear term ∂XX [H2

XHXX ]. Simulations may be
carried out with the following semi-implicit method.

4.1 The numerical method

We simulate equation (4.1) using a pseudospectral method. In Fourier space, with
u = F(H), the evolution equation becomes

uT = −k2(−e|k|u + k2u− γ̃F [
1

H2
]− ikF [w′(HX)]) (4.2)

= L(u) + k2N (k,H,HX) (4.3)
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Figure 2: Dispersion relation for the isotropic (G = 0) and the anisotropic cases
G = 0.05 and G = 0.15 with H̄ = 0.8. On the left are magnifications of the wave
number regime near where the minimum is adopted.

with the linearity
L(u) = Lu = (ek2|k|+ (4G− 1)k4)u (4.4)

and the nonlinearity

N (k,H,HX) = 4GikF(H3
X) + γ̃F [

1

H2
] .

For a backward Euler scheme with implicitly treated linear term, explicit nonlinear-
ity and the discrete vectors U ∈ Rn ≈ u(k)k∈K, K is a set of wave numbers, the fast
Fourier transform (FFT) is used to compute N and its inverse to plot the surfaces.
The update scheme is

U+(k) =
U(k)−∆tk2N

1−∆tL
, k ∈ K , (4.5)

where superscript + indicates the new time-step. We were able to analyze stationary
shapes of single quantum dots and the coarsening behavior of large arrays of two-
dimensional dots - or ridges/wires - with a Matlab code.

For our simulations we take material constants corresponding to a germanium film on
a silicon substrate. For Ge we use µf = 0.41×105 J/cm3, νf = 0.27, γ0 = 0.19×10−5

J/cm2 [33] and for the Si substrate µs = 0.80 × 105 J/cm 3, νs = 0.28, [36]. The
characteristic length in this system is L ≈ 8 nm. The resulting elasticity parameter
e = 2µf (1 + νf )(1− νs)/(µs(1− νf )) ≈ 1.28, and the wetting parameter γ̃ = 0.05.

4.2 Linear stability analysis and stationary solutions

A linear stability analysis of equation (4.1) with the normal mode ansatz

H = H̄ + δeσt+ikX

for δ � H̄ gives the characteristic equation

σ = (4G− 1)k4 + ek2|k| − 2γ̃

H̄3
k2 (4.6)
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Figure 3: Stability regime plots, left: varying anisotropy strength versus wave num-
bers depicting kc(G) as dashed line. By increasing G the unstable region grows and
becomes infinite for G = 0.25. Right: stability diagram for G = 0, G = 0.05 and
G = 0.15 and varying k and H̄. The vertical lines are the corresponding values of
the critical wave number kc(G).

for the growth of small disturbances to a uniform film of thickness H̄. This dis-
persion relation is plotted in Fig. 2. We remark that it is valid for more arbitrary
polynomials than (2.22) with 4G replaced by −W ′′(HX), so that this result holds
also for a more general case. Two stable regimes surround an unstable interval of
wave lengths as in the isotropic case. However, we see that the parameter G dic-
tates the sign of the highest power of the polynomial (4.6). For growing values of
G ∈ (0, 1/4) the maximal value is attained at larger wave lengths and higher mod-
ulus. Anisotropy destabilizes any flat film if G is strong enough as indicated in Fig.
3. Bigger values of the anisotropy decrease the critical height

Hc = Hc(G) = 2

(
γ̃(1− 4G)

e2

)1/3

below which all films are stable (Fig. 3 on the right). Furthermore for each
anisotropy strength there is a critical wave number kc above which the film is stable

kc = kc(G) =
e

1− 4G
.

Since kc → ∞ for G → 1/4 (Fig. 3, left), films are unstable above this critical
anisotropy strength for an infinite range of wave numbers.

A uniform film of thickness H̄ is unstable for a range of wave numbers less than kc.
This relation is described in Fig. 3 (left) and we observe that the stability region
grows with decreasing G. For the above parameter, in the isotropic case Hc(0) = 0.63
and for the anisotropic values it decreases to Hc(0.05) = 0.58 and Hc(0.15) = 0.46,
respectively. During a slow epitaxial deposition process we anticipate growth of
pyramids shortly after the deposited film exceeds this critical thickness.

Fig. 4 shows results of a typical simulation, starting from an initial profile H(X, 0) =
0.7, plus a small random perturbation with amplitude 0.0001 on a domain of length

13



Figure 4: Evolution of a solid film governed by (4.1) from a nearly-uniform initial
profile and anisotropy strength G = 0.1. At long times, triangular shaped islands
form, collapse, and the shifted profile approaches that given by the steady state
solution described in Section 4.2 (dashed curve).

4π. By t = 15 the perturbations have grown somewhat, forming three oscillations.
They merge to form two islands, separated by a wetting layer, by t = 50. These show
distinct facets, surfaces with relatively constant slope HX ≈ ±1. At longer times,
they collapse to form a single faceted island. By t = 200 the numerical method
produces film profiles which are stationary in the sense that successive iterates Hk

and Hk+1 differ by less than a small threshold δ times the time step

‖Hk+1 −Hk‖
‖Hk‖

< δ∆t .

The long-time profiles may be compared to the steady solutions obtained by setting
HT = 0 in (4.1). In this case the chemical potential is a constant, µ0, so that

−HXX − eF−1(|k|F(H))− γ̃

H2
−F−1(ikF(w′(HX))) = µ0 (4.7)

with w′(HX) = 4G(H3
X −HX) being the derivative of the one-dimensional double-

well. We solve (4.7) using a pseudospectral approach in which a Newton-type
method is used to satisfy (4.7) at each mesh point. We treat the value of µ0 as
an unknown, assume periodic boundary conditions, and impose the additional re-
quirements that the volume of the film is fixed, that is,∫ L

0

H dX = V = H̄L (4.8)

where H̄ is a constant. Furthermore the solution is supposed to be symmetric around
X = 0.

In Fig. 4 a solution to (4.7) is shown for the same parameters as in the time-
dependent solution obtained by the scheme (4.5). The agreement is very good, with
the time dependent solution being a translation of the stationary shape. These
results were computed with N = 128 mesh points; results for N = 64 and N = 256
are almost indistinguishable, indicating the convergence of the method under mesh
refinement.
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(a) (b)

Figure 5: Steady profiles for periodic solutions. (a) Increasing surface energy
anisotropy strength G, with fixed film volume V . (b) Increasing V from V = 2.6π
to V = 4.8π; for G = 0.1, leads to a family of facetted islands (solid lines). With
constant surface energy, width remains approximately constant (dashed lines).

We explored the effect of the anisotropy strength by computing stationary profiles
for G between 0 and 0.1, shown in Fig. 5(a). The islands develop a more faceted
appearance for larger values of G. As G increases, the sides of the islands take on
slopes closer to ±1, corresponding to the minima of the one-dimensional version of
W in (3.2).

We then fixed G = 0.1 and increased the film volume. The resulting family of
steady profiles are shown in Fig. 5(b) for V from 2.6π to 4.8π. For constant film
surface energy (G = 0), islands have approximately constant width as V increases
[26, 33]; For the largest volume profile shown there the free surface slopes are up
to 2.7. For G > 0 the family of shapes are significantly different; instead as V
increases, the island base widens, while the wetting layer region shrinks. Slopes
remain moderate, reaching 1.33 for V = 1.2L. This family of “tent-like” solutions
is more representative of real quantum dot behavior as dots grow while preserving
their facets.

4.3 Coarsening behavior

We studied coarsening of large two-dimensional quantum dot arrays using (4.5).
Simulations began with small random perturbations of a flat state above the critical
thickness of the film. On a grid with 2048 points and time-steps ∆t = 0.0001 for the
Ge/Si system parameters we observed a behavior that is already suggested by the
computed stationary solutions from the previous Section. The disturbance grows
into many small rounded humps that are connected by a thin layer. They morph
into faceted islands that are similar to those presented in Section 4.2. Bigger islands
survive and retain a faceted form, while smaller ones are ”eaten”. One such run is
visualized in Fig. 6, where again brighter shades are bigger film thicknesses. We
can see the Ostwald ripening process (survival of the fattest) and collapses of dots.
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Although in early stages some of the structures tend to approach each other, no
collisions between islands are observed. Before they collide they collapse - they are
absorbed by the thin film. The evolution plotted in Fig. 6 reminds us of coarsening
in liquid films [12].

Figure 6: Simulation of coarsening of the 2D Ge/Si system. White shades correspond
to thicker regions. Below the shape H(X, 500) at T = 500 is shown. It corresponds
to a line one would draw in the above black and white plot through the same time
point.

With the presented pseudospectral method we analyzed coarsening rates. Therefore
we use the value < N >=< N > (t) which is the island density at time t - here
this is the number of dots divided by the domain length parameter M for a domain
of length 2πM . We average the number of dots over four different runs for the
isotropic case G = 0 and the two anisotropy strengths G = 0.05 and G = 0.15.
The results are shown in Fig. 7 where the time on a logarithmic scale is plotted
against the characteristic density number < N >. There appear to be two phases
in the evolution, one where the island-structures form - being larger for smaller
values of G - and a second where actually coarsening takes place. Surface energies
that depend on orientation lead to more islands in the first stage of evolution.
This is confirmed by the linear stability analysis from the last Section which has
shown that for bigger values of G the most unstable wave number increases. For
G = 0.15 the fast coarsening regime sets in quickly, while in the isotropic case this
coarsening phase begins at much later times. Once dots start to collapse, isotropic
coarsening is faster than for non-zero values of G. At long times the number of dots
decreases like − log(t). This differs from power-law behavior < N >∼ t−β, β ∈ Q+

seen in somewhat similar liquid systems [12]. However, Cahn-Hilliard type systems
describing binary systems of solid materials may display logarithmic coarsening at
late time [35].
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Figure 7: Coarsening diagram for the 2D Ge/Si system comparing dot densities for
the isotropic (G = 0) and two anisotropic trials (G = 0.05 and G = 0.15). For each
trial we averaged the island density over four runs; the t-axis is logarithmic.

5 Surface evolution in 3D

In this Section we first explain the changes one has to apply to the pseudospectral
method described above, before approximately solving the 3D evolution equation
(3.25). The free surface depends again on two lateral variables X and Y , so that H =
H(X, Y, T ). We then discuss the results obtained with this method - typical Ostwald
ripening behavior and coarsening of faceted nano-islands. Numerical simulations
can be carried out in the same manner as in Section 4.1, extended to two lateral
dimensions. Equation (3.25) in Fourier space becomes

uT = L(u) + k2N (k1, k2, H,HX , HY ) (5.1)

with the formally unchanged linearity (4.4) and nonlinearity

N (k1, k2, H,HX , HY ) = ik1F [4GH3
X ] + ik2F [4GH3

Y ] + γ̃F [
1

H2
] .

For a FFT-based spectral implementation with a backward Euler scheme with im-
plicitly treated linear term, explicit nonlinearity and the discrete vectors U ≈ u, we
use update formula (4.5), where instead of k the pair (k1, k2) serves as argument.
As before we use parameters for the Ge/Si system and two different anisotropy
strengths G.

5.1 3D results

In Fig. 8 we show the collapse of a dot. Two initially Gaussian humps close-by each
other with different sizes first evolve to small pyramids. Higher regions are denoted
by whiter shades and flat regions are colored black. Contour lines help to visualize
how the dots change from round to nearly square as an effect of the anisotropy. The
smaller pyramid is ”eaten” by T = 15, its material is absorbed by the thin layer, and
only one bigger faceted dot remains. Again this is reminiscent of Ostwald ripening
which is well studied for different problems.
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Figure 8: Collapse of a Ge/Si dot. Bright colors show bigger values of the surface
height. The initial condition for these two islands were two round, exponential
humps that initially evolve to faceted structures. The bigger dot ”eats” the smaller
one and survives. The simulation has been carried out with G = 0.2. Time and
space are given here and in the other figures in dimensionless units.

In Fig. 9 a surface is monitored from above during evolution with the same color
to surface height relation as before. An initially flat film was perturbed by small
random noise with mean zero. Initially ridge-like structures form that are more
pronounced for larger G. These evolve to arrays of round dots that are connected
through a thin layer. After some time the faceting sets in. Bigger dots have a faceted
shape resembling the pyramids seen in experiments for the Ge/Si system [6], or also
for the GeSi films on Si [11].

As in the 2D case stronger anisotropy parameters lead to more oscillatory surfaces
in the first stages and the facets are more pronounced. A linear stability analysis as
in Section 4.2 for the 3D equation leads to qualitatively the same result of a growing
interval of unstable wave numbers for larger values of G. The initial perturbations
evolve to surfaces with higher spatial frequencies and result in more small dots. Fig.
10 shows the effect of anisotropy. At the same point in time simulation results for
G = 0, G = 0.1 and G = 0.25 are plotted. A few dots are enlarged for G = 0 and
G = 0.25 to accent the effect of anisotropy. For the bigger value of G the facets are
sharper and also the small islands have more rectangular bases.

To analyze coarsening rates, we computed solutions on a n × n grid with n = 256
and used the measure

<N >=<N > (t) =
N(t)

M2

for monitoring the dot density. Here N(t) is the number of dots at time t and M
is the domain length in one dimension divided by 2π. In Fig. 11 we see, that the
onset of coarsening is fast and behaves proportional to − log(t) for a nonzero value
of G. The curve for the isotropic case G = 0 shows that after formation of a bumpy
surface nothing happens in early stages of evolution. Once coarsening sets in, it is
faster than with anisotropy. It seems that the lower energy state for faceted islands
slightly stabilizes the islands.
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Figure 9: Simulation of the Ge/Si system. An initially randomly perturbed surface
first evolves into round dots that coarsen in time and during their growth change
their shape to small pyramids.

Figure 10: Anisotropy effect on the 3D Ge/Si system. All pictures show the same
time-point after evolution from the same initial condition (random perturbation
of a flat state). The upper left shows a simulation with isotropic surface tension
(G = 0) and the dots have round tips. In the other two upper pictures (G = 0.1 and
G = 0.25) we observe faceting which is stronger for the bigger anisotropy coefficient
G. The two lower pictures are magnifications for G = 0 and G = 0.25, where
the changed perspective shows the transition from bell shapes to pyramids when
increasing G.

6 Summary and outlook

We presented a partial differential equation that properly describes the evolution of
self-assembled quantum dots above a critical thickness. It was obtained by incor-
poration of a surface diffusion formula and a chemical potential that includes terms
from linear elasticity, anisotropic surface energy and intermolecular forces at the
film-substrate interface. A consistent small slope reduction results in self-contained
evolution equations in two and three dimensions. It extends the model from Tekalign
and Spencer [33] by adding anisotropic surface energy, which enters as an additional
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Figure 11: Coarsening diagram for the 3D case. No (G = 0), weak (G = 0.1) and
strong (G = 0.25) anisotropy. The solid line is the negative logarithm of the time
with a vertical shift. The t-axis is in log scale.

nonlinear term. Our numerical studies show that this nonlinearity can sufficiently
model the anisotropy. The structure of the term - a quadruple well slope-potential
- allows for an efficient numerical implementation based on spectral differentiation.
Although the choice of the anisotropy function (2.22) has W unbounded for large
slopes, these remain not much larger than the chosen facet orientations during our
simulations. Other choices for W are also possible, so that e.g. the formation of
tetrahedra as observed in Ge/Si(111) epitaxy can be simulated.

We investigated stationary solutions in two dimensions confirming the faceted shapes
resulting from long runs of the PDE simulations. Coarsening of these shapes in two
and three dimensions was found to occur logarithmically slowly; in two dimensions
the triangular islands remain similar to those of the stationary solutions. As the
linear stability analysis shows, stronger anisotropy leads in early times to creation
of more dots. These coarsen slower than in the isotropic model once the coarsening
regime is reached. More systematic studies on stationary solutions and coarsening
rates are ongoing. Another challenge that has not been addressed here is the addition
of an atomic flux to the evolution equations. For realistic simulations of epitaxial
growth this must not be neglected for comparison with experiments.
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