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Abstract

We consider an equilibrium problem with equilibrium constraints (EPEC)
as it arises from modeling competition in an electricity spot market (under
ISO regulation). For a characterization of equilibrium solutions, so-called M -
stationarity conditions are derived. This requires a structural analysis of the
problem first (constraint qualifications, strong regularity). Second, the calm-
ness property of a certain multifunction has to be verified in order to justify
M -stationarity. Third, for stating the stationarity conditions, the co-derivative
of a normal cone mapping has to be calculated. Finally, the obtained necessary
conditions are made fully explicit in terms of the problem data for one typical
constellation. A simple two-settlements example serves as an illustration.

1 Introduction

In this article, we investigate a certain type of two-level game as it arises from a
specific spot market model in power production. On the upper level of this game
n players wish to minimize their objectives fi, by using a strategy xi from their
respective set of admissible strategies Xi ⊆ R

s. However, the value of fi is dependent
also on the solution z of a lower level optimization problem which is parameterized
by the whole set of decisions of all players. In this way, the players decisions are
coupled implicitly. We consider a setting where the solution z of the lower level
optimization problem is characterized by a generalized equation

0 ∈ F (x, z) + NC(z), (1)

where F ∈ C1(Rns+t; Rt) and C ⊆ R
t is a closed set. We use the common notation

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

for the vector of decisions of player i’s competitors. In order to simplify the notation,
we adopt the convention x = (x−i, xi) for all i.

Now, according to the previous remarks, each player i solves an optimization problem
of the type

min
xi∈Xi,z∈C

{fi (xi, z) |0 ∈ F (x−i, xi, z) + NC(z)} (i = 1, . . . , n) , (2)

where the competitors decisions x−i figure as an exterior parameter. These opti-
mization problems are not of standard type as they involve constraints which are
solutions of another optimization problem themselves. Therefore, (1) is also called
an equilibrium constraint and the whole problem a mathematical program with equi-
librium constraints or an MPEC for short (see e.g., [12] or [18]). The whole collection
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(2) of n mutually coupled MPECs is called an equilibrium problem with equilibrium
constraints or an EPEC for short. While the solution concept for an MPEC is ob-
vious from the optimization context, a solution of the EPEC has to be interpreted
in the sense of a Nash equilibrium. More precisely, we say that a vector (x̄, z̄) is a
(local) solution to (2), if for all i = 1, . . . , n, the pair (x̄i, z̄) belongs to the set of
(local) solutions to the MPEC

min
xi∈Xi,z∈C

{fi (xi, z) |0 ∈ F (x̄−i, xi, z) + NC(z)} .

It should be mentioned here that EPECs may have a more general form than pre-
sented here. For instance, the objectives could also depend on the decisions of the
competitors or (1) might represent some general equilibrium constraint, not just
the solution set of an optimization problem. Our setting here is inspired by the
application to the spot market model we have in mind.

The goal of this paper is to demonstrate how in a concrete application one can use
a certain type of stationarity conditions that EPEC solutions necessarily have to
satisfy. More precisely we are dealing with so-called M-stationary solutions which
rely on first order necessary optimality conditions derived via the limiting normal
cone as introduced by Mordukhovich [13]. The usefulness of M-stationarity in the
context of MPECs or EPECs has been widely demonstrated in the literature (e.g.,
[22],[16],[17],[13],[3]). We apply the methodology to an equilibrium problem in a so-
called ISO regulated oligopolistic power market. The model we are using is chosen
as to be suitable for our analysis and thus it is kept as simple and at the same time
as meaningful as possible. It is inspired by related work in [5], [9] and [10] and one
that has recently been investigated in [8].

The paper is organized as follows: after an introduing some basic concepts needed in
section 2, we present the spot market model in section 3 and analyze its basic struc-
tural properties in section 4. Section 5 then is devoted to M-stationarity conditions
in general and to the verification of the constraint qualification they require in the
concrete setting of the spot market model. In section 6 we show how, using a trans-
formation formula for the Mordukhovich coderivative, the M-stationarity conditions
can be made explicit. Concrete formulae are provided in a special case and for a
small example of two settlements the issue of one producer becoming inactive in an
equilibrium state is investigated. Finally, section 7 presents a calmness result for
a special non-ployhedral multifunction which is crucial for checking the constraint
qualification mentioned above, but which is taken apart as an independent result
there.

2 Concepts and Tools from Variational Analysis

In this section, we provide some concepts and definitions that facilitate the analysis
hereafter. We begin with some stability concepts for multifunctions. Let Φ : R

s
⇉

R
t be a multifunction, (x̄, z̄) ∈ gph Φ, where gph Φ := {(x, z) | z ∈ Φ(x)}. Then,

Φ is said to have the Aubin property at (x̄, z̄) provided there exists neighborhoods
U ⊆ R

s of x̄ and V ⊆ R
t of z̄, and a constant L > 0 such that

d(z, Φ(x′′)) ≤ L||x′ − x′′|| ∀z ∈ V ∩ Φ(x′) ∀x′, x′′ ∈ U .
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Here, d(z, Φ(x̄)) = infz′∈Φ(x̄) ||z−z′|| . A weaker Lipschitz property is obtained when
fixing one of the x-arguments as x̄. More precisely we say that Φ is calm at (x̄, z̄)
provided there exists neighborhoods U ⊆ R

s of x̄ and V ⊆ R
t of z̄, and a constant

L > 0 such that

d(z, Φ(x̄)) ≤ L||x′ − x̄||, ∀z ∈ V ∩ Φ(x′), ∀x′ ∈ U .

Next, let (x̄, z̄) be a solution to the generalized equation (1) and define the multi-
function Σ : R

t
⇉ R

t via a local partial linearization of (1)

Σ(ξ) :=
{
z ∈ R

t |ξ ∈ F (x̄, z̄) + ∇zF (x̄, z̄)(z − z̄) + NC(z)
}

.

Suppose now that there exist neighborhoods W of 0 ∈ R
t and V of z̄ such that the

map ξ 7→ Σ(ξ) ∩ V is single-valued and Lipschitz on W with modulus κ. Then (1)
is called strongly regular at (x̄, z̄), with Lipschitz modulus κ. Given the solution
mapping of (1)

S(x) :=
{
z ∈ R

t |0 ∈ F (x, z) + NC(z)
}

,

we know from Robinson ([19], Theorem 2.1) that if (1) is strongly regular at (x̄, z̄),
then for any ε > 0 there exist neighborhoods Uε of x̄ and Vε of z̄ such that the
mapping x 7→ S(x)∩Vε is single-valued and Lipschitz on Uε with Lipschitz modulus
(κ + ε)L, where L is the uniform Lipschitz modulus of F (·, z) on Uε for all z ∈ Vε.

In the following, we introduce the Mordukhovich coderivative of a multifunction.
Recall first that, for a closed set C ⊆ R

t and a point z̄ ∈ C, the contingent or
Bouligand cone to C at z̄ ∈ C is defined as

TC(z̄) := Lim sup
τց0

τ−1(C − z̄) =
{
d ∈ R

t |∃τk ց 0, ∃dk → d : ∀k, z̄ + τkdk ∈ C
}

.

Here, ‘Lim sup’ is to be understood as the upper limit of sets in the sense of Painlevé-
Kuratowski, (cf. [21]). Accordingly, the Fréchet normal cone to C at z̄ ∈ C comes
as the dual to the contingent cone:

N̂C(z̄) := [TC(z̄)]◦.

Then the limiting or Mordukhovich normal cone to C at z̄ ∈ C is derived from the
Fréchet normal cone in the following manner

NC(z̄) := Lim sup
z→z̄
z∈C

N̂C(z).

Using the Mordukhovich normal cone, we can lastly define the following coderivative
for a set-valued function Φ

D∗Φ (x̄, z̄) (v∗) = {x∗ ∈ R
s| (x∗,−v∗) ∈ Ngph Φ (x̄, z̄)} ∀v∗ ∈ R

t,

where (x̄, z̄) ∈ gph Φ.
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3 An EPEC Modeling Competition in an Electricity

Spot Market

We now present the spot market EPEC. Assume that the electricity network of
interest is represented by a connected oriented graph with m edges (transmission
lines) and N nodes. Throughout this paper, B ∈ R

N×m is used to represent the
incidence matrix of the electricity network, with entries

bij =






1 if edge j enters node i

−1 if edge j leaves node i

0 otherwise

We assume that at each node, an electricity producer is located. In contrast, we
allow zero demands at the nodes but insist on the trivial requirement that the total
demand at all nodes together is strictly positive. The satisfaction of demand in each
node of the network can be modeled as

q + By ≥ d + L(y). (3)

Here, y ∈ R
m denotes the oriented flow vector of electricity along the edges of the

graph, and d, q ∈ R
N represent the vectors of demand and electricity generated at

each node. The vector L(y) collects the amount of electricity lost at the different
nodes due to transmission. Then, q + By − L(y) provides the vector of electricity
available at the given nodes ( = production + transmission - losses) explaining the
relation (3). As noted in [5], it is reasonable to use the following explicit form for
the loss function:

L(y) =
(

1
2

∑m

j=1 |b1j |ρjy
2
j , . . . ,

1
2

∑m

j=1 |bNj |ρjy
2
j

)T
. (4)

Here, ρj ≥ 0 is the loss coefficient of line j, for all j = 1, . . . , m. In this paper
we are going to investigate both the case of positive losses - which is more realistic
but requires numerical procedures for the identification of EPEC solutions - and the
loss-free case - which might be a good approximation only in networks with short
transmission lines but which allows to identify some explicit qualitative relations for
EPEC solutions. Additionally, we impose the following bounds on production and
flow

0 ≤ qi ≤ q̂i (i = 1, . . . , N) − ŷj ≤ yj ≤ ŷj (j = 1, . . . , m).

Electricity spot market models are structured in such a way so that each of the
competing generators bids a certain cost function to an independent system operator
(ISO). In real spot markets, these cost functions are typically step functions which
are difficult to cope with analytically. Therefore, we follow the simplified idea of
quadratic cost functions as presented in [9],[10]:

ci(αi, βi, qi) = αiqi + βiq
2
i (i = 1, . . . , N).

Nevertheless, the bidded linear and quadratic cost coefficients αi and βi may in re-
ality differ from the true cost coefficients γi and δi, respectively. Yet it is assumed
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that neither the ISO nor the other generators know the competitors true cost coef-
ficients, hence, the ISO determines generation and flow such that demand is met in
each node of the network and that the overall costs are minimized given the bidded
cost functions ci(αi, βi, qi)

min
q,y

{
N∑

i=1

ci(αi, βi, qi) | (q, y) ∈ G

}
, (5)

where

G :=
{
(q, y) ∈ R

N+m | q + By ≥ d + L(y), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.

The vector (α, β) appears only as a perturbation parameter in (5) and is therefore not
considered a decision variable on this level. This parametric optimization problem
is referred to as the ISO problem. For β ∈ R

N with βi ≥ 0 for i = 1, . . . , N , the
objective function is convex. In such cases, we know that the corresponding optimal
solutions (q′, y′) are characterized as solutions of the following generalized equation
arising from the KKT conditions of (5)

0 ∈

(
α + 2[diag β]q

0

)
+ NG(q, y). (6)

Here, we use [diag β] to denote the diagonal matrix with entries βi along the diagonal
and NG to denote the normal cone in the sense of convex analysis.

In order to derive each generator’s profit function, we need to know the clearing
prices πi = αi + 2βiqi which are the derivatives of the corresponding cost function
with respect to qi. Now, the profit of generator i calculates as the product of price
with produced quantity of electricity minus production costs:

fi(αi, βi, q, y) = πiqi − γiqi − δiq
2
i = (αi − γi)qi + (2βi − δi)q

2
i .

In order to define our EPEC solution as a classical non-cooperative or Nash-Cournot
equilibrium, we require that each generator i solves the following mathematical
program with equilibrium constraints (MPEC), which is formed from (6) by fixing
the decisions of all other competitors

max
(αi,βi)∈R

2

q,y

{
fi(αi, βi, q, y)

∣∣∣∣0 ∈

(
ζ(αi, βi, q)

0

)
+ NG(q, y)

}
(i = 1, . . . , N),

where ζ(αi, βi, q) := (ᾱ−i, αi)+2[diag (β̄−i, βi)]q. Then the coupled system of MPECs
sharing the same equilibrium constraint represents an equilibrium problem with
equilibrium constraints (EPEC)

min
(αi,βi)∈R

2

q,y

{
−fi(αi, βi, q, y)

∣∣∣∣0 ∈

(
α + 2[diag β]q

0

)
+ NG(q, y)

}
(i = 1, . . . , N).

Defining

F (α, β, q, y) :=

(
α + 2[diag β]q

0

)
,
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we can rewrite our spot market EPEC in the compact form

min
(αi,βi)∈R

2

q,y

{−fi(αi, βi, q, y) |0 ∈ F (α, β, q, y) + NG(q, y)} (i = 1, . . . , N). (7)

In order to unburden our analysis from technical difficulties in very specific situa-
tions, we introduce a restricted class of solutions to (7). More precisely, we consider
solutions (ᾱ, β̄, q̄, ȳ) such that

ᾱi, β̄i > 0 i = 1, . . . , N
q̄i > 0 i = 1, . . . , l
q̄i = 0 i = l + 1, . . . , N

−ŷj < ȳj < ŷj j = 1, . . . , k
ȳj = ŷj j = k + 1, . . . , m

(8)

As in [8], we only consider strictly positive bidding coefficients. Disregarding zero
coefficients allows us to avoid economically nonsensical or pathological situations. In
addition to the types of solutions analyzed in [8], we consider cases wherein certain
transmission lines become congested, electricity is lost due to resistance, and some
producers may not be participating at equilibrium. These considerations add a new
level of diffculty to the analysis.

More precisely, we assume without loss of generality that only the first l ≥ 1 gen-
erators are active (note that l = 0 is excluded beacause we insisted on a positive
total demand implying that at least one producer is active). The identification of
situations where certain market participants are forced to become non-active seems
to be of economic and at the same time of mathematical interest because it is here
where the nonsmooth character of the problem emerges. It would only add to no-
tational, not mathematical, difficulty to consider generation reaching the respective
upper bound. Things are similar as far as congestion is concerned. Here we assume
that the first k transmission lines are uncongested, whereas the transmission along
the remaining ones reaches the upper capacity. Again, the consideration of lower
capacities would just increase the notational complexity.

4 Structural Properties of the ISO problem

In this section, we compile some structural properties of the ISO problem (5) that are
required in order to apply results on stationarity conditions from the later Section
5. To start,

For convenience, we partition q = (q(1), q(2)) ∈ R
l × R

N−l and y = (y(1), y(2)) ∈
R

k ×R
m−k. Given the feasible set G from the ISO-Problem (5) it is easy to see that

near solutions satisfying (8), G can be described by

G =
{
(q, y) ∈ R

N+m |H(q, y) ≤ 0
}

. (9)

Here, H : R
N+m → R

2N−l+m−k is the twice continuously differentiable mapping
defined by the inequalities that are active near solutions of the type given in (8)

H(q, y) :=




d + L(y) − q − By

−q(2)

y(2) − ŷ(2)



 . (10)
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In what follows, we will need some auxiliary statements, which easily follow from
what is well known in the literature and which we compile into the next lemma.

Lemma 4.1. Let B be any (N, m)-incidence matrix of some oriented connected
graph. Then the following properties hold (with ŷ referring to the vector of upper
transmission bounds):

1. ker BT = R(1, . . . , 1)T

2. For any integer p such that 1 ≤ p ≤ N , each (N − p, m)-submatrix of B has
rank N − p.

3. ∀ε > 0 ∃∆′ > 0 ∀ρj ∈ [0, ∆′) ∀y ∈ [−ŷ, ŷ] : ‖∇L(y)‖ < ε.

4. ∃∆′′ > 0 ∀ρj ∈ [0, ∆′′) ∀y ∈ [−ŷ, ŷ]:

if ∇T L(y)z = BT z and zi = 0 for some i then z = 0.

Proof. For 1., see Biggs ([1], Prop 4.3 ). In particular, rank B = N − 1. For 2.,
assume that the rank of some (N−p, m)-submatrix of B is smaller than N−p. Then,
succesively joining the p left out rows to this submatrix and thus reconstructing B

can increase the rank at most by p − 1, because the last row is already a linear
combination of all the remaining N − 1 rows (see 1.). Whence a contradiction with
rank B = N − 1 (see 1.). 3. is an immediate consequence of (4). Concerning
4., it follows from 3. that for small enough transmission losses, ∇L(y) can be
considered arbitrarily small for all y in the indicated compact range. Since rank B =
N − 1, one has rank (∇L(y) − B) ≥ N − 1 for small losses. If this rank strictly
increases, then the dimension of the corresponding kernel strictly decreases, hence
ker(∇T L(y) − BT ) = {0} by 1. Otherwise, this rank remains N − 1, hence the
corresponding kernel stays one-dimensional. Now, by 1. and a continuity argument
there exists some v 6= 0, which can be chosen arbitrarliy close to (1, . . . , 1)T such that
ker(∇T L(y) − BT ) = Rv. In either case, the asserted implication in 4. follows.

The following lemma provides some initial properties of the constraint mapping H

defined in (10). In particular it clarifies under which conditions the inequality system
(9) satisfies the Mangasarian-Fromovitz or Linear Independence Constraint Quali-
fication (positive or complete linear independence of active gradients). Moreover,
information pertaining to the Lagrange multipliers associated to (5) is derived. We
will need to split the matrix ∇L(y) − B into specific submatrices according to the
parameters l and k of activity and congestion:

∇L(y) − B =

(
∇L1(y) − B1

∇L2(y) − B2

)
=

(
∇L11(y) − B11 ∇L12(y) − B12

∇L21(y) − B21 ∇L22(y) − B22

)
.

Lemma 4.2. Let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8). Then, there exists
some ∆ > 0 such that under the condition ρj ∈ [0, ∆) (j = 1, . . . , m) the following
properties hold:

1. (a) The rows of ∇H(q̄, ȳ) are positively linearly independent.
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(b) If l = N (all generators active) or k = m (no congestion) then ∇H(q̄, ȳ)
is surjective.

(c) If 1 ≤ l < N , 0 ≤ k < m, and B21 is surjective, then ∇H(q̄, ȳ) is
surjective.

2. H(q̄, ȳ) = 0.

3. (a) Concerning the ISO problem (5) (with fixed parameters (ᾱ, β̄), strict com-
plementarity holds for the first l demand-satisfaction constraints (3) (cor-
responding to active producers).

(b) If k = m (no congestion) or all multipliers associated with the flow
constraints y(2) ≤ ŷ(2) vanish, then strict complementarity holds for all
demand-satisfaction constraints (3).

Proof. The Jacobian of the mapping H(q, y) at (q̄, ȳ) becomes

∇H(q̄, ȳ) =





−I1 0 ∇L11(ȳ) − B11 ∇L12(ȳ) − B12

0 −I2 ∇L21(ȳ) − B21 ∇L22(ȳ) − B22

0 −I2 0 0
0 0 0 I3



 . (11)

Assume a relation ∇T H(q̄, ȳ)c = 0 for some c ≥ 0.





−I1 0 0 0
0 −I2 −I2 0

(∇L11(ȳ) − B11)T (∇L21(ȳ) − B21)T 0 0
(∇L12(ȳ) − B12)T (∇L22(ȳ) − B22)T 0 I3









c1

c2

c3

c4



 = 0.

Then

c1 = 0, c2 = −c3, (∇L21(ȳ) − B21)T c2 = 0, (∇L22(ȳ) − B22)T c2 = −c4. (12)

Given that c2, c3 ≥ 0, it follows that c2 = c3 = 0, and so c4 = 0 as well. Therefore,
c = 0, proving the positive linear indpendence of the rows of ∇H(q̄, ȳ) stated in 1.
(a). Inspecting again (12), we observe, that the conclusion c = 0 could equally well
be drawn from the relation ∇T H(q̄, ȳ)c = 0 upon replacing the original assumption
c ≥ 0 by the injectivity of (∇L21(ȳ) − B21)T . This, however, follows from the
assumed surjectivity of B21 if ∆ > 0 in the statement of our lemma is chosen small
enough as to maintain surjectivity of ∇L21(ȳ)−B21 via statement 3. of Lemma 4.1.
This shows 1. (c). Concerning 1. (b), consider the case l = N first, which implies
that the third row block of ∇H(q̄, ȳ) in (11) is missing. Surjectivity of ∇H(q̄, ȳ)
is obvious then. If in contrast k = m, then the fourth row block of ∇H(q̄, ȳ) in
(11) is missing. Surjectivity of ∇H(q̄, ȳ) would follow now under surjectivity of
(∇L2(ȳ) − B2). As per Lemma 4.1 (statement 2.), B2 has rank N − l. Then, as
a consequence of Lemma 4.1 (statement 3.), there exists some ∆ > 0 such that
(∇L2(ȳ) − B2) has rank N − l too whenever ρj ∈ [0, ∆), for all j = 1, . . . , m and
∆ > 0. In other words, (∇L2(ȳ) − B2) is surjective and 1. (b) is proven.

Statement 1. (a) guarantees the existence of Lagrange multipliers such that the
first-order optimality conditions of (5) hold for a solution (ᾱ, β̄, q̄, ȳ). Accordingly,
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there exist λ̄1, λ̄2, µ̄, η̄ ≥ 0 such that

(
ᾱ + 2[diag β̄]q̄

0

)
+ ∇T H(q̄, ȳ)





λ̄(1)

λ̄(2)

µ̄

η̄



 = 0 (13)

H(q̄, ȳ) • (λ̄1, λ̄2, µ̄, η̄) = 0 (14)

Here, we let ‘•’ denote the Hadamard, or component-wise, product. Then by taking
into account (8) we obtain the following set of relations

0 < ᾱi + 2β̄iq̄i = λ̄
(1)
i , i = 1, . . . , l (15)

0 < ᾱi = λ̄
(2)
i−l + µ̄i−l, i = l + 1, . . . , N (16)

0 = (∇L11(ȳ) − B11)T λ̄(1) + (∇L21(ȳ) − B21)T λ̄(2) (17)

−η = (∇L12(y) − B12)T λ̄(1) + (∇L22(y) − B22)T λ̄(2). (18)

From (15) we derive statement 3. (a). Under any of the assumptions of statement
3. (b), (17) and (18) combine to

(∇L(ȳ) − B)T

(
λ̄(1)

λ̄(2)

)
= 0.

Choosing ∆ in the assertion of this lemma equal to ∆′′ in statement 4. of Lemma
4.1, we may draw the following conclusion: if there existed i ∈ {l + 1, . . . , N} such

that λ̄
(2)
i−l = 0 then λ̄(1) = λ̄(2) = 0, a contradiction with (15). Therefore, λ̄

(2)
i−l > 0

and statement 3. (b) follows.

In order to prove statement 2., we first observe that Hi(q̄, ȳ) = 0 for i > N because
by definition of q(2) and y(2) in (10) via (8), one has that q̄(2) = 0 and ȳ(2) = ŷ(2).
Moreover, (15) along with (14) yields that Hi(q̄, ȳ) = 0 for i ≤ l. It remains to prove
that Hi(q̄, ȳ) = 0 for i ∈ {l + 1, . . . , N}. This would follow easily from (14) and the
just proven statement 3. (b) of the lemma in the case of k = m (no congestion).
The case of congestion requires a more subtle reasoning, however. Therefore, assume
there exists some i∗ ∈ {l + 1, . . . , N} such that Hi∗(q̄, ȳ) < 0. Given the structure
of H and noting that the loss function L has nonnegative components, this amounts
to saying that

0 ≤ di∗ + Li∗ (ȳ) < q̄i∗ +
m∑

j=1

bi∗j ȳj. (19)

Recalling that i∗ is chosen among the set of inactive producers, we derive that

m∑

j=1

bi∗j ȳj > 0. (20)

Now, for any i1 ∈ {1, . . . , N} we declare i2 ∈ {1, . . . , N} to be a critical neighbour
of i1 if there exists some j ∈ {1, . . . , m} such that

|bi1j| = |bi2j| = 1, bi1jbi2j = −1, bi1j ȳj > 0. (21)
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We define the set Π ⊆ {1, . . . , N} to consist of our fixed node i∗, all its critical
neighbors, all the critical neighbours of these critical neighbours etc. Define Λ ⊆
{1, . . . , m} to consist of those transmission lines connecting nodes inside Π only.
Then, Π × Λ constitutes a subgraph of the original one which is connected again
by construction (there exists a path from any node in Π to i∗). Consequently, the
associated submatrix of B is again the incidence matrix of a connected oriented
graph. Therefore, we can invoke statement 1. of Lemma 4.1 to conclude that∑

i∈Π bij = 0 for all j ∈ Λ. This in turn implies that
∑

i∈Π

∑

j∈Λ

bij ȳj = 0. (22)

Next we observe that
∑

j∈Λc

bij ȳj ≤ 0 ∀i ∈ Π. (23)

Indeed, otherwise there exists some i ∈ Π and j ∈ Λc with bij ȳj > 0. In particular,
bij 6= 0, whence |bij | = 1. Moreover, let ia ∈ {1, . . . , N} be the uniquely defined
node such that bijbiaj = −1 (i.e., ia is the node joined with i via edge j). Then,
by definition, ia is a critical neighbour of i, whence ia ∈ Π. Therefore, the edge j

joining i and ia belongs to Λ which contradicts j ∈ Λc. Now, combining (20) with
(23) yields

∑
j∈Λ bi∗j ȳj > 0 which along with i∗ ∈ Π and (22) allows to infer the

existence of some i∗∗ ∈ Π such that
∑

j∈Λ bi∗∗j ȳj < 0. Then, the demand satisfaction
at i∗∗ provides that (taking into account (23) for i∗∗)

0 ≤ di∗∗ + Li∗∗ (ȳ) ≤ q̄i∗∗ +

m∑

j=1

bi∗∗j ȳj < q̄i∗∗ .

In other words, i∗∗ is an active producer, hence i∗∗ ≤ l. Finally, we observe, that
for each critical neighbour i′ of i∗ we may modify the flow vector ȳ to some ỹ such
that (q̄, ỹ) remains feasible for the ISO problem (5) (i.e., H (q̄, ỹ) ≤ 0) and that
Hi′ (q̄, ỹ) < 0. Indeed, assuming that i′ and i∗ are joined by some edge j′, we may
define ỹ as

ỹk :=






ȳk k 6= j′

ȳj′ − ε k = j′, bi∗j′ = 1
ȳj′ + ε k = j′, bi∗j′ = −1

,

where ε > 0 is chosen small enough to guarantee that the demand at node i∗ remains
satisfied after the modification (which is possible by (19)):

q̄i∗ +

m∑

j=1

bi∗j ỹj ≥ di∗ + Li∗ (ȳ) . (24)

Moreover, let ε > 0 be small enough such that ỹj ≤ ŷj. This is possible due to
ȳj ≤ ŷj (by feasibility of ȳ) and upon observing that ȳj > 0 in case of bi∗j = 1 and
ȳj < 0 in case of bi∗j = −1 (see (21)). Thus, ỹ is feasible for the constraint y ≤ ŷ. In
addition, we have that bi′j′ ỹj′ = bi′j′ ȳj′ +ε by construction of ỹj′ and by bi∗j′ = −bi′j′.
Then, the demand satisfaction at node i′ reads as

di′ + Li′ (ȳ) ≤ q̄i′ +

m∑

j=1

bi′j ȳj = q̄i′ +

m∑

j=1

bi′j ỹj − ε.
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Since the demand satisfaction relations at nodes i′ and i∗ are the only ones affected
by the transition from ȳ to ỹ, it follows that (q̄, ỹ) remains feasible for (5) (i.e.,
H (q̄, ỹ) ≤ 0) and Hi′ (q̄, ỹ) < 0 (demand is strictly exceeded by offer). In this
way, we have shifted the strict inequality Hi∗ (q̄, ȳ) < 0 to the strict inequality
Hi′ (q̄, ỹ) < 0 at any of the critical neighbours i′ of i∗ just by modifying the flow
vector. This procedure can now be repeated for any of the critical neighbours of i′,
and so after finitely many steps one arrives at a feasible solution (q̄, y′) of (5) such
that Hi∗∗ (q̄, y′) < 0 for the node i∗∗ ∈ Π constructed above. Since the objective
function of (5) does not depend on y but just on q, it follows from the fact that
that (q̄, ȳ) was an optimal solution to (5), that (q̄, y′) is also an optimal solution
to (5). But now, using the already proven fact that demand satisfaction comes as
an equality at solutions to (5) for all active generators, we infer from the relation
i∗∗ ≤ l shown above that Hi∗∗ (q̄, y′) = 0, a contradiction. Consequently, our original
assumtion Hi∗(q̄, ȳ) < 0 is wrong showing that Hi(q̄, ȳ) = 0 for i ∈ {l + 1, . . . , N}.
This completes the proof of the lemma.

The surjectivity condition in statement 1. (c) of Lemma 4.2 can be interpreted as
follows in a special case: if l = N − 1 (all generators but one are active) then there
must exist at least one non-congested transmission line leading to the non-active
generator.

We next turn to strong regularity of solutions to the ISO problem. We recall that
the ISO problem (5) with fixed parameters (ᾱ, β̄) satisfies the strong second-order
sufficient condition (SSOSC) at one of its solutions (q̄, ȳ) if

〈
d,∇2

(q,y)L(q̄, ȳ, ξ̄)d
〉

> 0 ∀d 6= 0 : ξ̄i∇Hi(q̄, ȳ)d = 0 (i = 1, . . . , 2N + m − l − k) .

(25)

Here,

L(q, y, ξ) :=
N∑

i=1

ci(ᾱi, β̄i, qi) +
2N+m−l−k∑

i=1

ξiHi(q̄, ȳ)

refers to the Lagrange function associated with (5) and ξ̄ denotes the uniquely
defined (by surjectivity of ∇H(q̄, ȳ)) Lagrange multiplier associated with the solution
(q̄, ȳ). Note that in the formulation of (25) we have already exploited, that all
2N + m− l− k components of H are active at (q̄, ȳ) by statement 2. of Lemma 4.2.

Proposition 4.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8). Then, there
exists some ∆ > 0 such that under the condition ρj ∈ (0, ∆) (j = 1, . . . , m) the
following holds true: if l = N (all generators active) or k = m (no congestion) then
∇H(q̄, ȳ) is surjective and (25) is satisfied at (q̄, ȳ). The same conclusion can also
be drawn if ρj = 0 (j = 1, . . . , m) under the additional assumption that the network
graph is a tree (i.e., it does not contain cycles).

Proof. First note that ∇H(q̄, ȳ) is surjective under the assumption l = N or k = m

by statement 1. (b) of Lemma 4.2. Hence, it suffices to verify (25). Exploiting the
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explicit definitions of ci and H , one calculates

∇2
(q,y)L(q̄, ȳ, ξ̄) =





2[diag β̄] 0 · · · 0

0 ρ1

∑N

i=1 ξ̄i|bi1| · · · 0
...

...
. . .

...

0 0 · · · ρm

∑N

i=1 ξ̄i|bim|




.

This diagonal matrix contains only positive entries. Indeed, this is clear for the first
block because β̄i > 0 (see ((8))). For the remaining entries

ρj

∑N

i=1
ξ̄i|bij | (26)

note that ρj > 0 by assumption. Moreover, ξ̄i > 0 for i = 1, . . . , N . To see this,
recall that

(
ξ̄1, . . . , ξ̄l

)
and

(
ξ̄l+1, . . . , ξ̄N

)
correspond to the Lagrange multipliers

of the demand satisfaction relations (first N components of H) for active and non-
active generators, respectively. Now statements 3. (a) and (b) of Lemma 4.2 yield
that strict complementarity (i.e., ξ̄i > 0 for i = 1, . . . , N) holds whenever l = N

or k = m. On the other hand, as our network was supposed to be a connected
graph, for each index j there exists at least one (exactly: two) i such that |bij| = 1.
Consequently, (26) is strictly positive for all j = 1, . . . , m. Now, with ∇2

(q,y)L(q̄, ȳ, ξ̄)

being positive definite, (25) is evidently satisfied at (q̄, ȳ).

For the second assertion, assume that ρj = 0 (j = 1, . . . , m) and the network does
not contain cycles. Then,

∇2
(q,y)L(q̄, ȳ, ξ̄) =

(
2[diag β̄] 0

0 0

)
.

Choose an arbitrary d as indicated in (25). In particular, d 6= 0. Moreover, as
already shown above, one has that ξ̄i > 0 for i = 1, . . . , N holds whenever l = N

or k = m. Consequently, by (25), ∇Hi(q̄, ȳ)d = 0 for i = 1, . . . , N . Using the
partition d = (d1, d2), the concrete shape of ∇H(q̄, ȳ) (see first two row blocks in
(11) and notice that the part associated with the loss function vanishes due to ρj = 0
for j = 1, . . . , m) yields that d1 + Bd2 = 0. However, since B is injective as the
incidence matrix of a tree, d 6= 0 already implies that d1 6= 0. But then,

〈
d,∇2

(q,y)L(q̄, ȳ, ξ̄)d
〉

= 2
〈
d1, [diag β̄]d1

〉
> 0

as was to be shown in (25).

As a consequence of Proposition 4.1, the solutions to the ISO probelm (5) are
strongly regular in the sense of Robinson under the indicated assumptions, i.e.,
if (ᾱ, β̄, q̄, ȳ) is a solution to (7) satisfying (8), then, locally around (ᾱ, β̄, q̄, ȳ) all
solutions of (5) can be parameterized by a single-valued and Lipschitzian mapping
(q (α, β) , y (α, β)). This allows, in particular, to locally replace the EPEC (7) by
a simple equilibrium problem without explicit equilibrium constraints and thus to
make it amenable to what is called the Implicit Programming Approach:

min
(αi,βi)∈R2

−fi(αi, βi, q (α, β) , y (α, β)) (i = 1, . . . , N).

Note, however, that this approach is not possible in all relevant cases. For instance,
if the network graph contains cycles, as it is typically the case, then Proposition 4.1
does not apply to the loss-free model (ρj = 0 (j = 1, . . . , m)).
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5 Stationarity of EPEC Solutions

Given the previous results pertaining to the structual properties of the spot mar-
ket EPEC, we are now in a position to begin our analysis of stationary solutions
to EPECs. Here we follow the approach of so-called M-stationarity meaning that
stationarity conditions are obtained on the basis of the Mordukhovich coderivative
(see introduction). We rely on a version of the M-stationary conditions for solutions
to EPECs provided in [17] by Outrata which is based on a corresponding result for
MPECs by Ye and Ye [22]. We adopt the statement to the setting of our spot market
EPEC:

Theorem 5.1. Let
(
ᾱ, β̄, q̄, ȳ

)
be a solution to (7). If for all i = 1, . . . , N , the

multifunctions

Ψi(u) :=
{
(αi, βi, q, y)

∣∣u ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y)
}

(27)

are calm at
(
0, ᾱi, β̄i, q̄, ȳ

)
(see introduction), then for all i = 1, . . . , N , there exist

vi such that the following relations hold

∇(αi,βi)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(αi,βi)

F (ᾱ, β̄, q̄, ȳ)vi (28)

∇(q,y)fi(ᾱi, β̄i, q̄, ȳ) ∈ ∇T
(q,y)F (ᾱ, β̄, q̄, ȳ)vi (29)

+D∗NG(q̄, ȳ,−F (ᾱ, β̄, q̄, ȳ))(vi) (30)

Here, D∗ refers to the coderivative presented in the introduction. Before benefitting
from this characterization of EPEC solutions one has to cope with two tasks: first,
one has to be able to check the constraint qualification represented by the calmness
of (27); second, an explicit formula for calculating the coderivative in terms of the
problem data is needed. We are going to address these tasks in the following two
subsections.

5.1 Verification of calmness

According to a well-known result by Robinson, a multifunction with polyhedral
graph (i.e., the graph of which is a finite union of polyhedra) is calm at any point of
its graph. Hence, the simplest way to verify calmness of (27) consists in checking the
polyhedrality of its graph. The following observation is evident: if the mapping F is
linear and the transmission is loss-free (ρj = 0 (j = 1, . . . , m)), then the mappings
Ψi are calm at all points of their graph. Indeed, in the loss-free case the feasible
set G of the ISO problem (5) becomes a polyhedron, thus making the graph of the
mapping NG a finite union of polyhedra. But, given the linearity of F , the graph of
Ψi is also a finite union of polyhedra then. Unfortunately, the mappings

F (ᾱ−i, αi, β̄−i, βi, q, y) =

(
(ᾱ−i, αi) + 2[diag

(
β̄−i, βi

)
]q

0

)

are not linear in our case because they contain the bilinear term βiqi. Things would
be different under the special assumption of partial bidding made in [9], [10]: here,
the producers quadratic cost term is supposed to be known to every market partic-
ipant and thus not being part of the decision variables. In that case, F becomes
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linear indded and calmness of (27) can be taken for grantedin the loss-free case (this
fact was exploited, for instance in [8]). We are not insisting here, however, on the
rather restrictive assumption of partial bidding.

When polyhedrality fails, another way of verifying calmness is to check the stronger
Aubin property (see introduction) by using available criteria. Indeed, we have the
following result:

Proposition 5.1. Under the conditions of Proposition 4.1, the multifunctions Ψi

in (27) have the Aubin property and, hence, are calm at
(
0, ᾱi, β̄i, q̄, ȳ

)
.

Proof. Under the assumptions of Proposition 4.1, surjectivity of ∇H (q̄, ȳ) holds
true and the strong second-order sufficient condition (25) is satisfied. By Th. 4.1 in
[19], the generalized equation

0 ∈ C (α, β, q, y, λ) + N
RN+m×R

2N+m−l−k
+

(q, y, λ)

with

C (α, β, q, y, λ) :=

(
F (α, β, q, y) + ∇T H (q, y)λ

−H (q, y)

)

is strongly regular (see introduction) at
(
ᾱ, β̄, q̄, ȳ, λ̄

)
, where λ̄ is the uniquely de-

fined (by surjectivity of ∇H (q̄, ȳ)) Lagrange multiplier satisfying ∇T H (q̄, ȳ) λ̄ =
−F

(
ᾱ, β̄, q̄, ȳ

)
. Consequently, the mapping F defined by the partial linearization of

C as

F (η) := {(q, y, λ) |η ∈ C
(
ᾱ, β̄, q̄, ȳ, λ̄

)
+ ∇(q,y,λ)C

(
ᾱ, β̄, q̄, ȳ, λ̄

) (
(q, y, λ) −

(
q̄, ȳ, λ̄

))

+N
RN+m×R

2N+m−l−k
+

(q, y, λ)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
(see introduction). Next we

put

Φ (ξ, q, y, λ) :=(
F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y)

)
− ξ.

It is immediately seen that

C
(
ᾱ, β̄, q̄, ȳ, λ̄

)
= Φ

(
0, q̄, ȳ, λ̄

)
, ∇(q,y,λ)C

(
ᾱ, β̄, q̄, ȳ, λ̄

)
= ∇(q,y,λ)Φ

(
0, q̄, ȳ, λ̄

)
.

Consequently,

F (η) = {(q, y, λ) |η ∈ Φ
(
0, q̄, ȳ, λ̄

)
+ ∇(q,y,λ)Φ

(
0, q̄, ȳ, λ̄

) (
(q, y, λ)−

(
q̄, ȳ, λ̄

))

+N
RN+m×R

2N+m−l−k
+

(q, y, λ)}.

Since F is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
, it follows that the

generalized equation

0 ∈ Φ (ξ, q, y, λ) + N
RN+m×R

2N+m−l−k
+

(q, y, λ)

14



is strongly regular at
(
0, q̄, ȳ, λ̄

)
and, hence, (see introduction), that the mapping

ξ 7→
{

(q, y, λ) |0 ∈ Φ (ξ, q, y, λ) + N
RN+m×R

2N+m−l−k
+

(q, y, λ)
}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. By definition of Φ and upon

observing that

N
RN+m×R

2N+m−l−k
+

(q, y, λ) = {0} × N
R

2N+m−l−k
+

(λ)

this amounts to saying that the mapping

ξ 7→

{
(q, y, λ) |

(
ξ1

ξ2

)
∈

(
F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y)− (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y) + N
R

2N+m−l−k
+

(λ)

)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. Consequently, the mapping

ξ1 7→

{
(q, y, λ) |

(
ξ1

0

)
∈ (31)

(
F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y) + N
R

2N+m−l−k
+

(λ)

)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. This implies that also the

mapping

ξ1 7→
{
(q, y) |ξ1 ∈ F

(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + NG (q, y)

}

(32)

is locally Lipschitz and single-valued around (0, q̄, ȳ). Indeed, note first that in view
of the surjectivity of ∇H (q̄, ȳ), one has

NG (q, y) =
{
v|∃λ : v = ∇T H (q, y)λ, H (q, y) ∈ N

R
2N+m−l−k
+

(λ)
}

for (q, y) close to (q̄, ȳ). Moreover, again by surjectivity of ∇H (q̄, ȳ) and due to
∇T H (q̄, ȳ) λ̄ = −F

(
ᾱ, β̄, q̄, ȳ

)
, the equation

ξ1 − F
(
ᾱ, β̄, q̄, ȳ

)
−∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) = ∇T H (q, y)λ

has a unique solution λ which is close to λ̄ if (ξ1, q, y) is close to (0, q̄, ȳ). These two
observations allow to transfer the local Lipschitz and uniqueness statement from
(31) to (32). This, however, means that the generalized equations

0 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y) (i = 1, . . . , N)

are strongly regular at
(
ᾱi, β̄i, q̄, ȳ

)
. Then, from Prop. 3.2 in [16], we infer that the

mappings

(u1, u2, u3) 7→
{
(αi, βi, q, y)

∣∣u3 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(u1 + q, u2 + y)
}

have the Aubin property at
(
0, ᾱi, β̄i, q̄, ȳ

)
. All the more, the restricted mappings

(0, 0, u3) 7→
{
(αi, βi, q, y)

∣∣u3 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y)
}

,

which are nothing else but Ψi, have the Aubin property at
(
0, ᾱi, β̄i, q̄, ȳ

)
.
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Note, that Proposition 5.1 cannot be applied in the loss-free case whenever the net-
work graph contains cycles because then Proposition 4.1 cannot be invoked. Indeed,
the following example demonstrates that the Aubin property for the mappings Ψi

in (27) gets lost in such cases.

Example 5.1. Given the spot market EPEC (7), let (ᾱ, β̄, q̄, ȳ) be a solution such
that (8) is satisfied. Furthermore, let N = 3, m = 3, l = 3, k = 3, ρj = 0
(j = 1, 2, 3), i.e., there is neither congestion nor transmission losses nor non-active
generators, and define a cycled graph via the incidence matrix

B =




−1 0 1
1 −1 0
0 1 −1





Since l = N , Lemma 4.2 indicates that ∇H(q̄, ȳ) is surjective. Then we can rewrite
the normal cone NG(q̄, ȳ) (cf. Thm 6.14 [21])

NG(q̄, ȳ) = ∇T H(q̄, ȳ)NR
3
−

(H(q̄, ȳ)).

From ∇H(q̄, ȳ) = (−I| − B) (see (11) with the special data of this example) and
from the concrete shapes of F and B we derive that, for any i ∈ {1, . . . , N},

u = (u1, . . . , u6) ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q̄, ȳ) =⇒

∃λ̄ =
(
λ̄1, λ̄2, λ̄3

)
∈ NR

3
−

(H(q̄, ȳ)) : u4 = λ̄1 − λ̄2, u5 = λ̄2 − λ̄3, u6 = λ̄3 − λ̄1.

Consequently, if u ∈ F (ᾱ−i, αi, β̄−i, βi, q, y)+NG(q̄, ȳ), then necessarily u4+u5+ u6 =
0. By contraposition, if u4 + u5 + u6 6= 0 for some u, then necessarily Ψi(u) = ∅
for the multifunctions defined in (27). As one may now easily construct a sequence
u(n) → 0 with Ψi(u

(n)) = ∅, it follows that Ψi cannot have the Aubin property at(
0, ᾱi, β̄i, q̄, ȳ

)
.

It follows that in the loss-free case one can neither rely on a polyhedrality argument
nor on a verification of the Aubin property in order to verify calmness. Fortunately,
the loss of polyhedrality turns out to be weak enough to allow a direct derivation
of the calmness of Ψi. In Section 7 we prove the calmness result in a slightly more
general setting then needed for our purposes here. This leads to the next proposition.

Proposition 5.2. Let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8). If for all j =
1, . . . , m, ρj = 0, then for all i = 1, . . . , N the multifunctions Ψi in (27) are calm at
(0, ᾱi, β̄i, q̄, ȳ).

Proof. Being that Ψi arises from the first order optimality conditions of the ISO
problem, we can use Theorem 7.1 for such a task. Without loss of generality, let
i = 1, then

F (ᾱ−1, α1, β̄−1, β1, q, y) =




α1 + 2β1q1

ᾱ−1 + 2[diag β̄−1]q−1

0



 .

Thus, F (ᾱ−1, α1, β̄−1, β1, q, y) has the form:

F (ᾱ−1, α1, β̄−1, β1, q, y) =

(
∆1(α1, β1, q, y)

∆2(q, y)

)
,
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where ∆1(α1, β1, q, y) = α1 + 2β1q1 and

∆2(q, y) =

(
ᾱ−1

0

)
+

(
0 2[diag β̄−1] 0
0 0 0

)


q1

q−1

y



 .

Then assumption 1. of Theorem 7.1 is fulfilled if we substitute (α1, β1) = u1, (q, y) =
z, t1 = 1, t2 = N − 1 + m, and C = G. Moreover, G is polyhedral and convex,
as H(q, y) is affine linear due to the fact that ρj = 0 for all j = 1, . . . , m. Then
Lemma 4.2 (statement 1. (a)) ensures the existence of a Slater point (q̃, ỹ) ∈ G.
Thus, assumption 2. is satisfied. Finally, by noting that

∇(α1,β1)∆1(ᾱ1, β̄1, q̄, ȳ) = (1, 2q̄1) 6= (0, 0),

we see that assumption 3. is fulfilled. Therefore, Theorem 7.1 implies Ψ1 is calm at
(0, ᾱ1, β̄1, q̄, ȳ).

5.2 A transformation formula for the coderivative

In this subsection we deal with the question of how to calculate the coderivative
D∗NG in the stationarity conditions (30). Note that calculating this coderivative
from scratch on the basis of the definition provided in the introduction may be
very difficult if possible at all. On the other hand, one has access to a simple
formula for D∗NR

p
−

and may then use a convenient transformation formula to get
D∗NG in case that G is described by finitely many smooth inequalities satisfying a
constraint qualification. More precisely, we first have (see e.g., [4] or [15]): For any
(z̃, ṽ) ∈ gr NR

p
−

it holds that for all ṽ∗ ∈ R
p

D∗NR
p
−

(z̃, ṽ)(ṽ∗) =

{
∅ if ∃i : ṽiṽ

∗
i 6= 0

{x∗ ∈ R
t|x∗

i = 0 ∀i ∈ Ia, x∗
i ≥ 0 ∀i ∈ Ib} else

,

(33)

where

Ia := {i|z̃i < 0} ∪ {i|ṽi = 0, ṽ∗
i < 0}, Ib := {i|z̃i = 0, ṽi = 0, ṽ∗

i > 0}.

Second, the following transformation formula was proved in [14] (Th. 3.4), [13] (Th.
1.127):

Theorem 5.2. Let C := {z ∈ R
t |Ai(z) ≤ 0 (i = 1, . . . , p)}, where A ∈ C2(Rt; Rp).

Fix z̄ ∈ C and v̄ ∈ NC (z̄), with A(z̄) = 0. If the vectors {∇Ai(z̄)}p

i=1 are linearly
independent (i.e., ∇A(z̄) is surjective), then for all v∗ ∈ R

t where λ̄ is uniquely
defined by the relation ∇T A(z̄)λ̄ = v̄,

D∗NC(z̄, v̄)(v∗) =

(
p∑

i=1

λ̄i∇
2Ai(z̄)

)
v∗ + ∇T A(z̄)D∗NR

p
−

(0, λ̄)(∇A(z̄)v∗). (34)

Evidently, (34) allows to calculate explicitly D∗NC upon using (33).
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Concerning the second term occuring in both formulae (34) and (36), we derive from
(33) that:

∇T A(z̄)D∗NR
p
−

(0, λ̄)(∇A(z̄)v∗) =
{

∅ if ∃i : λ̄i∇Ai(z̄)v∗ 6= 0
∇T A(z̄){x∗ ∈ R

t|x∗
i = 0 ∀i ∈ Ia, x∗

i ≥ 0 ∀i ∈ Ib} else
,

where

Ia := {i|λ̄i = 0,∇Ai(z̄)v∗ < 0}, Ib := {i|λ̄i = 0,∇Ai(z̄)v∗ > 0}. (35)

If D∗NR
p
−

(0, λ̄)(∇A(z̄)v∗) 6= ∅, then one arrives at the representation

∇T A(z̄)D∗NR
p
−

(0, λ̄)(∇A(z̄)v∗) = {∇T A(z̄)x∗|x∗
i = 0 (i ∈ Ia), x∗

i ≥ 0 (i ∈ Ib)}.

(36)

Moreover, the assumed non-emptiness implies the relation

∇Ai(z̄)v∗ = 0 ∀i : λ̄i > 0. (37)

Now we are in a position to reformulate the abstract stationarity conditions of
Theorem 5.1 in terms of our concrete EPEC. We provide the result for two significant
constellations:

Theorem 5.3. Let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8). Assume that l = N

(all generators active) or k = m (no congestion). Then, there exists some ∆ > 0
such that under the condition ρj ∈ (0, ∆) (j = 1, . . . , m) (small positive losses) or
ρj = 0 (j = 1, . . . , m) (no losses) the following holds true: there exists some λ̄ ∈
R

2N+m−l−k
+ and for all i = 1, . . . , N , there exist (vi, wi) ∈ R

N+m × R
2N+m−l−k such

that

∇(αi,βi)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(αi,βi)

F (ᾱ, β̄, q̄, ȳ)vi (38)

∇(q,y)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(q,y)F (ᾱ, β̄, q̄, ȳ)vi +

(
N∑

j=1

λ̄j∇
2Hj (q̄, ȳ)

)
vi + ∇T H (q̄, ȳ) wi

(39)

∇Hj (q̄, ȳ) vi = 0 ∀j : λ̄j > 0 (40)(
wi
)

j
= 0 ∀j : λ̄j = 0, ∇Hj (q̄, ȳ) vi < 0 (41)

(
wi
)

j
≥ 0 ∀j : λ̄j = 0, ∇Hj (q̄, ȳ) vi > 0 (42)

F (ᾱ, β̄, q̄, ȳ) = −∇T H (q̄, ȳ) λ̄. (43)

Proof. Note first that in all indicated constellations, ∇H (q̄, ȳ) is surjective according
to Lemma 4.2, statement 1. (b) and that the calmness assumption for the multi-
functions (27) is satisfied by virtue of Propositions 5.1 (for the case ρj ∈ (0, ∆)) and
5.2 (for the case ρj = 0). Thus, we may apply Theorem 5.1. (28) immediately yields
(38). Given the surjectivity of ∇H (q̄, ȳ), we may apply Theorem 5.2 in order to
derive (39) from (30) by combining (34) with (36) and putting G := C, H := A and
p := 2N + m− l− k. Note that in the summation of Hessian terms in (39) one may
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omit indices j > N due to the components Hj being linear then. (40) follows from
(37). (41) and (42) are consequences of the index sets Ia and Ib introduced in (35).
Finally, (43) characterizes the uniquely determined (by surjectivity of ∇H (q̄, ȳ))
multiplier λ̄ from the solution of the ISO problem (5).

The assumptions of Theorem 5.3 guarantee that ∇Hj (q̄, ȳ) is surjective by Lemma
4.2, statement 1. (b). If, however, both congestion and inactivity takes place at
an EPEC solution (i.e., l < N and k < m), then surjectivity of ∇H (q̄, ȳ) may
get lost. An example is given by N = 3 producers the first l = 2 of which are
active and connected by a line without congestion, whereas the third producer is
inactive and connected with the second one via a congested line (hence, k = 1).
On the other hand, we know by by Lemma 4.2, statement 1. (a) that at least
positive linear independence of the rows of ∇H (q̄, ȳ) remains valid. In such a case
the transformation formula (34) was found to still hold true as an inclusion ’⊆’,
where on the right-hand side of (34) the union over the whole set of admissible
Langrange multipliers has to be taken (see [15] (Th. 3.1)). This leads to a certain
loss of information but still allows to determine stationarity conditions that EPEC
solutions have to satisfy. Fortunately, in the linear case one is much better off
because then there still exists an exact coderivative formula even if surjectivity of
∇H (q̄, ȳ) fails. More precisely, the folowing holds true (see [7] (Th. 3.2) and [8],
(Prop. 3.2)):

Theorem 5.4. Let C := {z ∈ R
t |Az ≤ b }, where b ∈ R

p and A is a matrix of
order (p, t). Fix z̄ ∈ C and v̄ ∈ NC (z̄) with Az̄ = b. Let λ̄ be any vector defined
by the relation Aλ̄ = v̄ (the existence of λ̄ is guaranteed by v̄ ∈ NC (z̄) and C being
polyhedral). Denote

J := {j ∈ {1, . . . , p} |λj > 0}.

Then,

D∗NC (z̄, v̄) (v∗) =




x∗

∣∣∣∣∣∣
(x∗,−v∗) ∈

⋃

J⊆I1⊆I2⊆{1,... ,p}

PI1,I2 × QI1,I2




 , (44)

where

PI1,I2 = con {ai|i ∈ χ (I2) \I1} + span {ai|i ∈ I1}

QI1,I2 = {h ∈ R
n| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1)},

’con’ and ’span’ refer to the conic convex and linear hulls, respectively, and

χ(I ′) := {j ∈ {1, . . . , p} | if 〈ai, h〉 ≤ 0 for i ∈ {1, . . . , p} \ I ′

and 〈ai, h〉 = 0 for i ∈ I ′, then 〈aj, h〉 = 0}
(I ′ ⊆ {1, . . . , p}) .

Using the last theorem one can easily derive M-stationarity conditions similar to
those stated in Theorem 5.3 and which then would apply also to constellations
where both congestion and inactivity occur simultaneously but losses are absent.
We skip an explicit statement of these conditions here for the sake of brevity. We
also note that Theorem 5.4 can be generalized to the case of finitely many linear
inequalities in a reflexive Banach space (see [6], Th. 4.1).
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6 Explicit Characterizations of Solutions to the Spot

Market EPEC using M-stationarity Conditions

With the results of the previous sections in mind, we now provide explicit characteri-
zations of solutions to the spot market EPEC (7) via M-Stationarity conditions. For
the sake of brevity, we content ourselves with one particular constellation, namely
the loss-free case without congestion and with an acyclic network graph. In the
absence of losses and congestion, the Jacobian of the mapping H takes the form (see
(11))

∇H(q̄, ȳ) =




−I1 0 −B1

0 −I2 −B2

0 −I2 0



 . (45)

Then, we have

Theorem 6.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8). Assume that ρj = 0
for j = 1, . . . , m (no losses) and k = m (no congestion). Then, there exists some
λ̄ ∈ R

2N−l
+ and for all i = 1, . . . , N , there exist (vi, wi) ∈ R

N+m × R
2N−l such that

(vi)i =

{
q̄i if i ∈ {1, . . . , l}
0 if i ∈ {l + 1, . . . , N}

(46)

vi
a + B1vi

c = vi
b + B2vi

c = 0 (47)

(vi)l+j = 0 ∀j ∈ {1, . . . , N − l} : λ̄N+j > 0 (48)

(wi)i = γi − ᾱi + 2(δi − β̄i)q̄i if i ∈ {1, . . . , l} (49)

(wi)i + (wi)N+i−l = γi − ᾱi if i ∈ {l + 1, . . . , N} (50)

(wi)j = 2β̄j(v
i)j if j ∈ {1, . . . , l}, j 6= i (51)

(wi)j + (wi)N+j−l = 2β̄j(v
i)j if j ∈ {l + 1, . . . , N}, j 6= i (52)

(wi)N+j−l = 0 if j ∈ {l + 1, . . . , N}, λ̄N+j−l = 0, (vi)j > 0 (53)

(wi)N+j−l ≥ 0 if j ∈ {l + 1, . . . , N}, λ̄N+j−l = 0, (vi)j < 0 (54)

(B1)T wi
a + (B2)T wi

b = 0 (55)

ᾱ1 + 2β̄1q̄1 = ᾱj + 2β̄j q̄j (j = 1, . . . , l) (56)

= ᾱj′ − λ̄N+j′−l (j′ = l + 1, . . . , N) (57)

Here (·)j identifies a concrete component of a vector, whereas lower indices ’a’,’b’,’c’
obey the partition of the Jacobian in (45) and its transpose, respectively.

Proof. (46) follows from (38) upon calculating ∇(αi,βi)fi(ᾱ, β̄, q̄, ȳ) as well as
∇T

(αi,βi)
F (ᾱ, β̄, q̄, ȳ) and recalling that q̄i > 0 for i ≤ l and q̄i = 0 for i ∈ {l +

1, . . . , N}. Next, observe that due to our assumption k = m, we know that, by
statement 3. (b) of Lemma 4.2, λ̄j > 0 for j = 1, . . . , N . Therefore, (47) and (48)
are implied by (40) taking into account the shape of the Jacobian in (45). Relations
(49)-(52) and (55) are derived from (39) (with the Hessian term missing due to
linearity as a consequence of the loss-free case) upon calculating ∇(q,y)fi(ᾱ, β̄, q̄, ȳ)
and ∇T

(q,y)F (ᾱ, β̄, q̄, ȳ) and comparing components in the light of the shape of the

transposed Jacobian in (45). Relations (53) and (54) correspond to (41) and (42),
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where again λ̄j > 0 for j = 1, . . . , N and the shape of the third row block in (45)
are exploited. Relations (56) and (57) result from the Kuhn-Tucker conditions of
the ISO-problem (5) along the lines of relations (15), (16) and (17). Indeed, (17)
implies, due to the absence of losses and congestion, that

(λ̄1, . . . , λ̄N)T ∈ ker BT

which in turn results in λ̄1 = · · · = λ̄N by virtue of Lemma 4.1, statement 1. Now,
(56) and (57) follow from (15) and (16) with an appropriate change of notation.

As an illustration, we determine the M-stationary points in a two-settlements ex-
ample, i.e., the network graph is given by a single transmission line connecting two
nodes. Moreover we assume absence of transmission losses and congestion. We are
interested in EPEC solutions forcing one of the two producers to become inactive.
So, let (ᾱ, β̄, q̄, ȳ) be a solution to (7) satisfying (8) such that N = 2, k = m = 1,
l = 1 and ρ = 0. Then,

B =

(
1
−1

)
, ∇H(q̄, ȳ) =




−1 0 −1
0 −1 1
0 −1 0



 .

Putting i := 1, (46) and (47) provide v1 = (q̄1,−q̄1,−q̄1). In particular, since q̄1 > 0
(due to l = 1), (48) (with j := 1) leads to λ̄3 = 0 because of v1

2 = −q̄1 < 0. From
here and (57) (with j′ := 2), we derive that

ᾱ1 + 2β̄1q̄1 = ᾱ2 − λ̄3 = ᾱ2 (58)

Next, (49) and (52) (with j := 2) lead to

(w1)1 = γ1 − ᾱ1 + 2(δ1 − β̄1)q̄1; (w1)2 + (w1)3 = 2β̄2(v
1)2 = −2β̄2q̄1.

Finally, (55) along with B1 = 1, B2 = −1 implies (w1)1 = w1
a = w1

b = (w1)2. This
combines with the two relations above to

γ1 − ᾱ1 + 2(δ1 − β̄1)q̄1 + (w1)3 = −2β̄2q̄1.

Now, by virtue of λ̄3 = 0 and v1
2 < 0, (54) (with j := 2) allows us to deduce that

(w1)3 ≥ 0. Inserting this into the relation above and recalling (58), we thus end
up at the following relations an EPEC solution has to satisfy under the indicated
conditions:

ᾱ2 = ᾱ1 + 2β̄1q̄1; γ1 − ᾱ1 + 2(δ1 − β̄1 + β̄2)q̄1 ≤ 0. (59)

At this point one might wonder if an evaluation of the necessary conditions of
Theorem 6.1 also for the second generator (i.e., for i = 2) would add some additional
information. The answer is negative in this simple example because in contrast to
the derivation with i = 1 it is not possible to gain a characterization for the multiplier
(w1)3. This is due to the fact that v2 = 0, which can be as easily calculated as v1

above. But then, neither (54) nor (53) apply. We also mention that the stationarity
conditions from Theorem 6.1 do not allow to uniquely identify EPEC solutions. This
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however, is not a weakness of these conditions but relies on the fact that the EPEC
solutions in our problem are not isolated but rather form a continuous set (see also
[10]).

At the end, we want to provide a quantiative economic interpretation of our station-
arity conditions in the two-settlements example. To this aim, we reduce the obtained
relations to fixed quantities of the problem (total demand and true cost coefficients
of the generators) which are independent of the bidded coefficients. Recall first that
H(q̄, ȳ) = 0 according to Lemma 4.2, statement 2. Given the mapping H in our
small example, this amounts to the relations

q̄1 + ȳ = d1, q̄2 − ȳ = d2, q̄2 = 0.

Denoting d := d1 + d2 the total demand, these relations yield that q̄1 = d. Now,
using this and substituting for ᾱ1 in the first relation of (59), the second relation of
(59) leads to the inequality

γ1 − ᾱ2 + 2(δ1 + β̄2)d ≤ 0.

In the last step we exploit the extra information ᾱ2 ≤ γ2 (the bidded linear coefficient
of generator 2 is not larger than its true linear cost coefficient) which can be obtained
from deriving the so-called strong stationarity conditions for our EPEC in the small
example. We note that strong stationarity leads to more precise conditions than
M-stationarity, but is hard or impossible to be calculated in general. In the context
of our EPEC, we were able to derive strong stationarity conditions only in the
small two-settlements example, whereas even the case of three generators appears
to be hopeless. In contrast, there is no problem in working with the M-stationarity
conditions of Theorem 6.1 in a general constellation. Now, adding the indicated
extra information to the inequality obtained at last, and noting that β̄2, d > 0, we
end up at

γ1 + 2δ1d < γ2.

This last relation means the following: In order to make the second generator disap-
pear from the market in an equilibrium solution, its true linear cost coefficient has
to be strictly larger than the true linear cost coefficient of the first generator by an
amount of at least 2δ1d, where δ1 is the true quadratic cost coefficient of the first
generator and d is the total demand. This statement obviously contains much more
information than the intuitively easy to guess relation

γ1 + 2δ1d < γ2 + 2δ2d,

which is a consequence of the first one and which expresses that the marginal price
of generator 2 is strictly larger than that of generator 1.

7 On the Calmness of the Solution Mapping of a

Canonically-perturbed Generalized Equation

In the main result of this section which is also the basis for the proof of Proposition
5.2 we rely on the results of the following Lemma, which is an immediate consequence
of Th. 4.10 in [13]:
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Lemma 7.1. Let Z : R
n

⇉ R
m be a multifunction defined by

Z(x) := {y ∈ R
m|h (x, y) = 0, y ∈ Ω} ,

where h : R
n × R

m → R
k is a continuously differentiable mapping and Ω ⊆ R

m is
closed. Consider a point (x̄, ȳ) ∈ gphZ. If for all (x∗, y∗, z∗) ∈ R

n × R
m × R

k the
implication

x∗ = ∇T
x h (x̄, ȳ) z∗

y∗ = −∇T
y h (x̄, ȳ) z∗

y∗ ∈ NΩ (ȳ)




 =⇒ x∗ = 0 (60)

holds true, then Z enjoys the Aubin property at (x̄, ȳ).

In the following, we assume, as in the spot market EPEC, that mappings Ψi given in
(27) arise from the first order optimality conditions of some perturbed optimization
problem. More specifically, we define:

min
z

{
f(u1, z) − uT

2 z |Az + b ∈ R
p
−

}
, (61)

where z ∈ R
t, u1 ∈ R

s, u2 ∈ R
t, A ∈ R

p×t, b ∈ R
p, and assume f is continuously

differentiable in both the decision variable z and the parameter u1. Then the first-
order optimality conditions of (61) may be written:

0 ∈ ∇zf(u1, z) − u2 + NC(z), (62)

where C := {z ∈ R
t |Az + b ∈ R

p
−}. Then we define

Ψ(u2) :=
{
(u1, z) ∈ R

s+t |u2 ∈ ∇zf(u1, z) + NC(z)
}

. (63)

Theorem 7.1. Let (ū1, 0, z̄, ) be a solution to (62) and assume the following condi-
tions hold:

1.

∇zf(u1, z) =

(
∆1(u1, z)

∆2(z)

)
,

where ∆1 ∈ C1(Rs+t; Rt1) and ∆2(z) := Dz + c with D ∈ R
t2×t such that

t1 + t2 = t and c ∈ R
t2.

2. There exists z̃ such that Az̃ + b ∈ int R
p
−, i.e., there exists a Slater point.

3. ∇u1
∆1(ū1, z̄) is surjective.

Then the multifunction Ψ in (63) is calm at (0, ū1, z̄).

Proof. We begin by defining the following multifunction:

Φ(p1, p2) :=




(u1, z, λ) ∈ R
s+t+p

∣∣∣∣∣∣

Θ1(u1, z, λ) = p1

Θ2(z, λ) = p2

λ ∈ NR
p
−

(Az + b)




 ,
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where

Θ1(u1, z, λ) := ∆1(u1, z) + AT
1 λ; Θ2(z, λ) := ∆2(z) + AT

2 λ

such that A1 ∈ R
p×t1, A2 ∈ R

p×t2, and A = (A1 | A2). Since C is polyhedral,

NC(z) = AT NR
p
−

(Az + b).

Consequently, by partitioning u2 = (ua
2, u

b
2) ∈ R

t1 × R
t2 , we have

Ψ(u2) =
{
(u1, z) ∈ R

s+t
∣∣∃λ : (u1, z, λ) ∈ Φ(ua

2, u
b
2)
}

We now demonstrate, for an arbitrarily fixed λ̄ with (0, 0, ū1, z̄, λ̄) ∈ gph Φ, that Φ
is calm at (0, 0, ū1, z̄, λ̄), after which we show how this implies Ψ is also calm at
(0, ū1, z̄). Start by realizing that Φ(p1, p2) can be written as Φ(p1, p2) = S(p1) ∩
T (p2), where

S(p1) := {(u1, z, λ) |Θ1(u1, z, λ) = p1}

T (p2) :=

{
(u1, z, λ)

∣∣∣∣
Θ2(z, λ) = p2

λ ∈ NR
p
−

(Az + b)

}
.

Moreover, note that

(ū1, z̄, λ̄) ∈ Φ(0, 0) ⇒ (ū1, z̄, λ̄) ∈ S(0) ∩ T (0).

Thus, we can show that Φ is calm at (0, 0, ū1, z̄, λ̄) by using an intersection criterion
developed by Klatte and Kummer (see [11], Theorem 3.6): If the following conditions
holds, then Φ is calm at (0, 0, ū1, z̄, λ̄):

S is calm at (0, ū1, z̄, λ̄)

T is calm at (0, ū1, z̄, λ̄)

S−1 has the Aubin property at (ū1, z̄, λ̄, 0)

S ∩ T (0) is calm at (0, ū1, z̄, λ̄)

Since the multifunction T is polyhedral, it follows from [20] that it is calm at
(0, ū1, z̄, λ̄). Thus, we show the remaining three conditions hold true. This will
be done by checking the partially strengthened (from calmness towards Aubin prop-
erty) conditions

1. S has the Aubin property at (0, ū1, z̄, λ̄).

2. S ∩ T (0) has the Aubin property at (0, ū1, z̄, λ̄).

3. S−1 has the Aubin property at (ū1, z̄, λ̄, 0).

Recall Lemma 7.1. For 1. and 2. put there x := p1,y := (u1, z, λ), h(x, y) :=
Θ1(y) − x, and Ω := R

m for 1. and Ω := T (0) for 2., respectively. Then Z = S
in 1. and Z = S ∩ T (0) in 2. The first relation in the assumption of (60) then
yields x∗ = −z∗. Hence, the second relation amounts to y∗ = ∇T

y h(x̄, ȳ)x∗. By
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using the partition y∗ = (u∗
1, z

∗, λ∗), the first component of the previous relation, in
accordance with that of y, now reads

u∗
1 = ∇T

u1
h(x̄, ȳ)x∗ = ∇T

u1
Θ1(ū1, z̄, λ̄)x∗.

By observing that T (0) = R
s × T ′ for some T ′ ⊆ R

t × R
p, we have in both cases

1. and 2. that Ω = R
s×T

′′

for some T
′′

⊆ R
t×R

p. Consequently, the third relation
in the assumption (60) yields u∗

1 = 0 in either case and hence, upon using the explicit
structure of Θ1, (60) reduces to

∇T
u1

∆1(ū1, z̄)x∗ = 0 ⇒ x∗ = 0.

This of course follows immediately from assumption 3. of the current theorem. For
the proof of 3., put y := p1, x := (u1, z, λ), h(x, y) := Θ1(x)−y, and Ω := R

t1 . Then
Z = S−1 and the assumption of (60) trivially imply x∗ = 0.

Since λ̄ was chosen arbitrarily, we have shown that Φ is calm at (0, 0, ū1, z̄, λ) for
any λ such that (0, 0, ū1, z̄, λ) ∈ gph Φ. Now, introduce the multiplier mapping

Λ(u1, u2, z) :=




λ ∈ R
p

∣∣∣∣∣∣

∇zf(u1, z) − u2 + AT λ = 0
Az + b ∈ R

p
−

λ ∈ NR
p
−

(Az + b)




 (64)

We show the claimed calmness of Ψ in (63) at (0, ū1, z̄). Assume by contradiction

the existence of sequences (u
(i)
2 , u

(i)
1 , z(i)) → (0, ū1, z̄) with

(u
(i)
1 , z(i)) ∈ Ψ(u

(i)
2 ) and d((u

(i)
1 , z(i)), Ψ(0)) ≥ i‖u

(i)
2 ‖ ∀i. (65)

By definition of Ψ, the first relation in (65) implies the existence of a sequence λ(i)

with

(u
(i)
1 , z(i), λ(i)) ∈ Φ(u

(i)
2 ) ∀i (66)

for all i which in turn entails that λ(i)) ∈ Λ(u
(i)
1 , u

(i)
2 , z(i)) for all i due to the equiv-

alence

λ ∈ Λ(u1, u2, z) ⇔ (u1, z, λ) ∈ Φ(u2).

Next we observe that Λ is upper Lipschitz at (ū1, 0, z̄) (see, e.g., Lemma 4.44 and
Remark 4.45 in [2]). Since Λ(ū1, 0, z̄) is compact (as a consequence of the our Slater
point assumption 2.) it follows that for sufficiently large i the multipliers belong
to a bounded set. Consequently, we may pass to a subsequence which converges to
some λ̄. Now, the closedness of Φ along with (66) provides that (ū1, z̄, λ̄) ∈ Φ(0),
whence λ̄ ∈ Λ(ū1, 0, z̄).

Next, we endow the cartesian product R
s+t×R

p (containing the elements ((u1, z), λ)
with a new norm ‖((u1, z), λ)‖∗ := max{‖((u1, z)‖, ‖λ‖}. Let d∗ be the distance
function associated with ‖ · ‖∗ and put

B :=
⋃

(u1,z)∈Ψ(0)

Λ(u1, 0, z).
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Since Φ(0) ⊆ Ψ(0) × B, one has by definition of d∗ that

d∗((u
(i)
1 , z(i), λ(i)), Φ(0)) ≥ d∗((u

(i)
1 , z(i), λ(i)), Ψ(0) × B)

= inf
(a,b,c)∈Ψ(0)×B)

max{‖(u
(i)
1 , z(i)) − (a, b)‖, ‖λ(i) − c‖}

≥ max{ inf
(a,b)∈Ψ(0)

‖(u
(i)
1 , z(i)) − (a, b)‖, inf

c∈B
‖λ(i) − c‖}

≥ d((u
(i)
1 , z(i)), Ψ(0)) ≥ i‖u

(i)
2 ‖ ∀i,

where the last inequality is taken from the second part of (65). This, however,
contradicts the already shown calmness of Φ at (0, 0, ū1, z̄, λ) where (0, 0, ū1, z̄, λ) ∈
gphΦ.
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