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Abstract

We consider the singularly perturbed parabolic differential equation ε2
(

∂2u
∂x2 −

∂u
∂t

)
= f(u, x, t, ε) under the assumption that f is T -periodic in t and that the

degenerate equation f(u, x, t, 0) = 0 has two intersecting roots. In a previous
paper [1] we presented conditions under which there exists an asymptotically
stable T -periodic solution up(x, t, ε) satisfying no-flux boundary conditions.
In this note we characterize a set of initial functions belonging to the global
region of attraction of up(x, t, ε).

1 Formulation of the problem

1.1 Introduction

We consider the singularly perturbed parabolic differential equation

Lεu := ε2
(∂2u

∂x2
− ∂u

∂t

)
− f(u, x, t, ε) = 0 for (x, t) ∈ D (1)

with
D := {(x, t) ∈ R2 : −1 < x < 1, t ∈ R}

and
ε ∈ Iε0 := {ε ∈ R : 0 < ε < ε0}, 0 < ε0 � 1.

Under the assumption f to be T -periodic in t, that is

f(u, x, t+ T, ε) = f(u, x, t, ε) ∀(u, x, t, ε) ∈ G × Iε0 ,

where G is some region which is defined in assumption (A1) below we considered in
[1] the periodic boundary value problem

∂u

∂x
(±1, t, ε) = 0 ∀(t, ε) ∈ R× Iε0 , (2)

u(x, t+ T, ε) = u(x, t, ε) ∀(x, t, ε) ∈ D × Iε0 (3)

in the case that the degenerate equation

f(u, x, t, 0) = 0 (4)
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which we get from (1) by setting ε = 0, has two roots

u = ϕ1(x, t) and u = ϕ2(x, t) for (x, t) ∈ D

which are T -periodic in t and intersect along some curve whose projection into the
(x, t)-plane is located in D. This situation is called as case of exchange of stability
(see [2]).
In [1] have derived conditions implying the existence of an asymptotically stable
periodic solution of (1)-(3). In order to recall the main result of our paper [1] we
introduce the following assumptions on the function f .

(A1). f ∈ C2(G × Iε0 ,R), and f is T -periodic in the third variable. The region G is
defined by

G := {(u, x, t) ∈ R3 : u(x, t) ≤ u ≤ u(x, t), (x, t) ∈ D},

where u, u ∈ C2(D, R) are certain given functions T -periodic in t.

For the sequel we represent f in the form

f(u, x, t, ε) = f(u, x, t, 0)− εf1(u, x, t) + ε2f2(u, x, t, ε). (5)

Concerning the function f(u, x, t, 0) we suppose

(A2). The function f(u, x, t, 0) can be represented in the form

f(u, x, t, 0) = h(u, x, t)
(
u− ϕ1(x, t)

)(
u− ϕ2(x, t)

)
(6)

with h ∈ C2(G,R), ϕ1, ϕ2 ∈ C2(D,R), where all functions are T -periodic in t
and satisfy:
There is a positive number m such that

h(u, x, t) ≥ m > 0 for (u, x, t) ∈ G, (7)

u(x, t) < ϕi(x, t) < u(x, t) for i = 1, 2, (x, t) ∈ D. (8)

Condition (A2) implies that the degenerate equation (4) has exactly two roots in G.
From the hypothesis (A2) it follows that there is a positive number M such that

|hu(u, x, t)| ≤M for (u, x, t) ∈ G. (9)

The next condition describes the intersection of the surfaces u = ϕ1(x, t) and
u = ϕ2(x, t).
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(A3). There exists a smooth T -periodic function x0 : R → R with

−1 < x0(t) < 1 for t ∈ R (10)

such that
ϕ1(x0(t), t) ≡ ϕ2(x0(t), t) for t ∈ R,

ϕ1(x, t) > ϕ2(x, t) for − 1 ≤ x < x0(t), t ∈ R,
ϕ1(x, t) < ϕ2(x, t) for x0(t) < x ≤ 1, t ∈ R.

Assumption (A3) says that the roots u = ϕ1(x, t) and u = ϕ2(x, t) of the degenerate
equation intersect in a curve whose projection into the (x, t)-plane is located in the
region D. We denote this projected curve by Γ0,

Γ0 := {(x, t) ∈ D : x = x0(t), t ∈ R}.

By means of the roots ϕ1 and ϕ2 we construct the following composed roots of
equation (4):

ǔ(x, t) =

{
ϕ1(x, t) for − 1 ≤ x ≤ x0(t), t ∈ R,
ϕ2(x, t) for x0(t) ≤ x ≤ 1, t ∈ R, (11)

û(x, t) =

{
ϕ2(x, t) for − 1 ≤ x ≤ x0(t), t ∈ R,
ϕ1(x, t) for x0(t) ≤ x ≤ 1, t ∈ R. (12)

It is obvious that the functions ǔ and û are continuous but in general not smooth
on the curve Γ0.
From the hypotheses (A2) and (A3) we get

ǔ(x, t) > û(x, t) for (x, t) ∈ D \ Γ0,

ǔ(x, t) ≡ û(x, t) for (x, t) ∈ Γ0,

fu(ǔ(x, t), x, t, 0) > 0
fu(û(x, t), x, t, 0) < 0

}
for (x, t) ∈ D \ Γ0, (13)

fu(ǔ(x, t), x, t, 0) = 0
fu(û(x, t), x, t, 0) = 0

}
for (x, t) ∈ Γ0. (14)

The inequalities in (13) yield a justification to call the root ǔ stable (and to call the
root û unstable, see [1]). However, the fact that inequality

fu(ǔ(x, t), x, t, 0) > 0
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does not hold on the curve Γ0 is some obstacle to give a unique answer to the ques-
tion whether there exists a solution up(x, t, ε) to the problem (1)–(3) converging to
the composed stable root ǔ(x, t) in D as ε tends to zero. As we have shown in [1],
the sign of the function f1(ǔ(x, t), x, t) (see (5)) on the curve Γ0 plays a crucial role
in answering the posed question. Therefore, we require

(A4). f1(ǔ(x, t), x, t) > 0 for (x, t) ∈ Γ0.

The main result of the paper [1] is the following one:

Theorem 1.1 Suppose the hypotheses (A1)−(A4) hold. Then, for sufficiently small
ε, the periodic boundary value problem (1)–(3) has a solution up satisfying

lim
ε→0

up(x, t, ε)) = ǔ(x, t) for (x, t) ∈ D, (15)

and this solution is asymptotically stable in the sense of Lyapunov.

Since the solution up is asymptotically stable, there arises the question for a global
region of attraction of this solution. We formulate this problem more precisely in
the following subsection including the corresponding main result.

1.2 Global region of attraction of up

We consider equation (1) for ε ∈ Iε1 in the region

D0 := {(x, t) ∈ R2 : −1 < x < 1, t > t0}, (16)

where t0 is any number, with the boundary condition (2) and the initial condition

u(x, t0, ε) = u0(x) for − 1 ≤ x ≤ 1. (17)

According to Theorem 1.1, the solution up(x, t, ε) is asymptotically stable for suffi-
ciently small ε. That means that if the initial function u0(x) in (17) is sufficiently
near to up(x, t0, ε), then the solution u(x, t, ε) of the initial-boundary value problem
(1), (2), (17) exists for t > t0 and satisfies for sufficiently small ε the relation

lim
t→∞

[
u(x, t, ε)− up(x, t, ε)

]
= 0 for x ∈ [−1, 1]. (18)

We denote the set of all initial functions u0 ∈ C1([−1, 1],R) for which the initial-
boundary value problem (1), (2), (17) for sufficiently small ε has a solution satisfying
(18) as global region of attraction. The following assumption plays a crucial role in
determining such a region.
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(A5). Let u0 ∈ C([−1, 1],R) be a function satisfying the inequality

û(x, t0) < u0(x) < u(x, t0) for − 1 ≤ x ≤ 1,

where û is defined in (12) and u is the function from assumptions (A1) and
(A2).

The main result of this paper is the following one.

Theorem 1.2 Suppose the hypotheses (A1)−(A5) hold. Then, for sufficiently small
ε, the initial-boundary value problem (1), (3), (17) has a solution u(x, t, ε) satisfying
relation (18).

The proof of this theorem will be given in section 3. As preparation we introduce in
section 2 the so-called regularized degenerate equation and estimate its correspond-
ing roots.

2 Regularization of the degenerate equation

As in [1] we consider the equation

f(u, x, t, 0)− εf1(u, x, t) = 0, (1)

which is distinguished from the degenerate equation (4) by taking into account also
first order terms in ε and where f1 is defined in (5). Using the representation (6)
and exploiting the relation (7), we rewrite equation (1) in the form(

u− ϕ1(x, t)
)(
u− ϕ2(x, t)

)
− εa(u, x, t) = 0, (2)

where a(u, x, t) ≡ f1(u, x, t)/h(u, x, t). According to assumption (A4) and (7) we
have

a(ǔ(x, t), x, t) > 0 for (x, t) ∈ Γ0. (3)

We denote by Cδ a δ-neighborhood of the curve

C := {(u, x, t) ∈ R× [0, 1]× R : u = ǔ(x0(t)), x = x0(t), t ∈ R}.

It follows from (3) that there is a positive number a0 such that for sufficiently small
δ

a(u, x, t) ≥ a2
0 for (u, x, t) ∈ Cδ. (4)
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Relation (4) implies that for sufficiently small ε > 0 equation (2) has two smooth
roots in u. We denote these roots by u = ϕ(x, t, ε) and u = ψ(x, t, ε). From (2) we
get

ϕ(x, t, ε) =
1

2

{
ϕ1(x, t) + ϕ2(x, t) +

[
(ϕ1(x, t)− ϕ2(x, t))

2+

+ 4εa(ϕ(x, t, ε), x, t)
]1/2

}
,

ψ(x, t, ε) =
1

2

{
ϕ1(x, t) + ϕ2(x, t)−

[
(ϕ1(x, t)− ϕ2(x, t))

2+

+ 4εa(ψ(x, t, ε), x, t)
]1/2

}
,

(5)

which imply the asymptotic expressions

ϕ(x, t, ε) =ǔ(x, t) +O(
√
ε) for (x, t) ∈ Γδ,

ψ(x, t, ε) =û(x, t) +O(
√
ε) for (x, t) ∈ Γδ,

(6)

ϕ(x, t, ε) =ǔ(x, t) +O(ε) for (x, t) ∈ D \ Γδ,

ψ(x, t, ε) =û(x, t) +O(ε) for (x, t) ∈ D \ Γδ,
(7)

where Γδ is any small δ-neighborhood of Γ0 which does not depend on ε.

As we mentioned in [1], the procedure to replace the degenerate equation (4) by
equation (1) represents a regularization in the sense that we approximate the non-
smooth functions ǔ(x, t) and û(x, t) by the smooth functions ϕ(x, t, ε) and ψ(x, t, ε)
for sufficiently small ε.
In [1] we have shown that the solution up(x, t, ε) of the periodic boundary value
problem (1)-(3) satisfies

up(x, t, ε) = ϕ(x, t, ε) +O(ε) for (x, t) ∈ D. (8)

For the proof of Theorem 1.2 we need some relations concerning the roots ϕ and ψ
of the regularized equation (2).
From (8) and (5) we get for (x, t) ∈ D

2up(x, t, ε)− ϕ1(x, t)− ϕ2(x, t) =

= 2ϕ(x, t, ε)− ϕ1(x, t)− ϕ2(x, t) +O(ε) =

=
[
(ϕ1(x, t)− ϕ2(x, t))

2 + 4εa(ϕ, x, t)
]1/2

+O(ε).

(9)

From the estimate (4) we get for sufficiently small ε

a(ϕ(x, t), x, t) ≥ a2
0, a(ψ(x, t), x, t) ≥ a2

0 for (x, t) ∈ Γδ (10)

and the obvious inequality

|ϕ1(x, t)− ϕ2(x, t)| ≥ 2cδ > 0 for (x, t) ∈ D \ Γδ, (11)
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where the constant cδ depends on δ but not on ε. Using these relations we obtain
from (9) for sufficiently small δ and ε

2up(x, t, ε)− ϕ1(x, t)− ϕ2(x, t) ≥
{
a0

√
ε for (x, t) ∈ Γδ,

cδ for (x, t) ∈ D \ Γδ.
(12)

Furthermore, from (5) we get

ϕ(x, t, ε)− ψ(x, t, ε) =

=
1

2

[
(ϕ1(x, t)− ϕ2(x, t))

2 + 4εa(ϕ(x, t, ε), x, t)
]1/2

+

+
1

2

[
(ϕ1(x, t)− ϕ2(x, t))

2 + 4εa(ψ(x, t, ε), x, t)
]1/2

.

(13)

Using (10) and (11) we get from (13) for sufficiently small ε

ϕ(x, t, ε)− ψ(x, t, ε) ≥ 2a0

√
ε for (x, t) ∈ D. (14)

From (5) we also obtain

ϕ(x, t, ε) + ψ(x, t, ε) = ϕ1 + ϕ2

+
1

2

{[
(ϕ1 − ϕ2)

2 + 4εa(ϕ, x, t)
]1/2

−
[
(ϕ1 − ϕ2)

2 + 4εa(ψ, x, t)
]1/2}

.
(15)

In what follows we will show that the expression in the curly brackets on the right
hand side of (15) has the order O(ε) in D.
In order to get this we use the identity[

(ϕ1 − ϕ2)
2 + 4εa(ϕ, x, t)

]1/2

−
[
(ϕ1 − ϕ2)

2 + 4εa(ψ, x, t)
]1/2

=

=
4ε[a(ϕ, x, t)− a(ψ, x, t)][

(ϕ1 − ϕ2)2 + 4εa(ϕ, x, t)
]1/2

+
[
(ϕ1 − ϕ2)2 + 4εa(ψ, x, t)

]1/2

According to the mean value theorem we have

a(ϕ, x, t)− a(ψ, x, t) = au(ϕ+ θ(ϕ− ψ), x, t)(ϕ− ψ).

Taking into account (13) we get that the expression in the curly brackets on the
right hand side of (15) is equal to 2εau(ϕ+ θ(ϕ− ψ), x, t) = O(ε). Thus, we obtain
from (15)

ϕ(x, t, ε) + ψ(x, t, ε) = ϕ1(x, t) + ϕ2(x, t) +O(ε) for (x, t) ∈ D. (16)

For the proof of Theorem 1.2 we also need the following estimates of some derivatives
of ϕ and ψ derived in [1] for sufficiently small ε:

ϕx(x, t, ε) = O(1), ϕt(x, t, ε) = O(1) for (x, t) ∈ D, (17)

ϕxx(x, t, ε) ≤
{ c√

ε
for (x, t) ∈ Γδ,

c for (x, t) ∈ D \ Γδ,
(18)

where the constant c does not depend on δ and ε for sufficiently small ε.
The same estimates hold for the function ψ.
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3 Proof of Theorem 1.2

3.1 Definition of lower and upper solutions

The proof of Theorem 1.2 is based on the method of differential inequalities. For
this reason we will construct for the problem (1), (2), (17) upper and lower solutions
in the subsections 3.2 and 3.3. First we recall their definitions.

Definition 3.1 Let U(x, t, ε) and U(x, t, ε) be functions mapping D0 × Iε0 into R,
twice continuously differentiable in x and continuously differentiable in t, where D0

is defined in (16). The functions U and U are called lower and upper solutions
of the initial boundary value problem (1), (2), (17), respectively, if they satisfy for
sufficiently small ε the inequalities

LεU − f(U, x, t, ε) ≤ 0 ≤ LεU − f(U, x, t, ε)

for (x, t) ∈ D0,
(1)

∂U

∂x
(1, t, ε) ≤ 0 ≤ ∂U

∂x
(−1, t, ε) for t ≥ t0,

∂U

∂x
(−1, t, ε) ≤ 0 ≤ ∂U

∂x
(1, t, ε) for t ≥ t0.

(2)

U(x, t0, ε) ≤ u0(x) ≤ U(x, t0, ε) for − 1 ≤ x ≤ 1, (3)

It is well-known [3] that the lower and upper solutions defined above are ordered
and that their existence implies the existence of a solution u(x, t, ε) to problem (1),
(2), (17) satisfying

U(x, t, ε) ≤ u(x, t, ε) ≤ U(x, t, ε) for (x, t) ∈ D0. (4)

3.2 Construction of an upper solution

We construct an upper solution U to (1), (2), (17) in the form

U(x, t, ε) := up(x, t, ε) + α(x, t, ε)E(t, ε), (5)

where up is the solution of the periodic boundary value problem (1)–(3) (see Theorem
1.1),

α(x, t, ε) := u(x, t)− ϕ(x, t, ε) + εz(x, ε), (6)

where u is introduced in assumption (A1) and satisfies (8), ϕ is defined in (5),

z(x, ε) := exp
{
− k

x+ 1

ε

}
+ exp

{
k
x− 1

ε

}
, k > 0, (7)
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E(t, ε) := exp
{
− %

t− t0
ε3/2

}
, % > 0, (8)

the numbers k and % will be chosen suitably later.
We note that for sufficiently small ε the following relations hold:

(i). There is a positive constant α0 such that

α(x, t, ε) ≥ α0 > 0 for (x, t) ∈ D0.

(ii).
αx(x, t, ε) = O(1), αt(x, t, ε) = O(1) for (x, t) ∈ D0.

(iii). αxx satisfies outside some small δ - neighborhoods of the straight lines x =
−1 and x = 1 the same estimates as ϕxx (see (18), while inside this δ-
neighborhoods we have ε2αxx = O(ε) since in these neighborhoods it holds

ε2zxx = O
(1

ε

)
.

Taking into account (i) we obtain∣∣∣ε2αxx(x, t, ε)− αt(x, t, ε)
∣∣∣ ≤ εc0α

for (x, t) ∈ D0.
(9)

where in the sequel we denote by c0, c1, ... suitable positive constants not depending
of ε and δ.

Next we will show that for sufficiently large k and % the function U defined in (5)
satisfies the inequalities (2) in Definition 3.1.
Indeed, by taking into account (5) we have

∂U

∂x
(−1, t, ε) =

∂up

∂x
(−1, t, ε) +

∂α

∂x
(−1, t, ε)E(t, ε) =

=
[∂u
∂x

(−1, t)− ∂ϕ

∂x
(−1, t, ε)− k + k exp

(−2

ε

)]
E(t, ε),

where we used the relation ∂up

∂x
(−1, t, ε) = 0.

From the relations∣∣∣∂u
∂x

(−1, t)
∣∣∣ = O(1),

∂ϕ

∂x
(−1, t, ε) = O(1) for t ≥ t0

(see (17)) we have for sufficiently large k

∂U

∂x
(−1, t, ε) ≤ 0 for t ≥ t0.
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Analogously we can show that for sufficiently large k

∂U

∂x
(1, t, ε) ≥ 0 for t ≥ t0.

Thus, the function U satisfies the inequalities (2) in Definition 3.1. Next we prove
that U obeys the inequality (3) in Definition 3.1.
By (8), (5) - (8) we have

U(x, t0, ε) = up(x, t0, ε) + α(x, t0, ε) = ϕ(x, t0, ε) +O(ε)+

+u(x, t0)− ϕ(x, t0, ε) + εz(x, ε) = u(x, t0) +O(ε).

According to assumption (A5) it holds u(x, t0) > u0(x). Hence, for sufficiently small
ε it holds

U(x, t0, ε) ≥ u0(x) for − 1 ≤ x ≤ 1,

that is, U satisfies the inequalities (3).
Now we show that U also obeys the inequality (1). By (1), (5), (6) we have

LεU ≡ ε2
(∂2U

∂x2
− ∂U

∂t

)
− f(U, x, t, ε) =

= ε2
(∂2up

∂x2
− ∂up

∂t

)
+ ε2

(∂2α

∂x2
− ∂α

∂t

)
E +

√
ε%αE−

− h(up + αE, x, t)(up + αE − ϕ1)(up + αE − ϕ2)+

+ εf1(up + αE, x, t)− ε2f2(up + αE, x, t, ε) =

=
[
ε2

(∂2up

∂x2
− ∂up

∂t

)
− h(up, x, t)(up − ϕ1)(up − ϕ2)+

+ εf1(up, x, t)− ε2f2(up, x, t)
]

+ ε2
(∂2α

∂x2
− ∂α

∂t

)
E+

+
√
ε%αE−

−
(
h(up + αE, x, t)− h(up, x, t)

)
(up − ϕ1)(up − ϕ2)−

− h(up + αE, x, t)(2up − ϕ1 − ϕ2 + αE)αE+

+ ε
(
f1(up + αE, x, t)− f1(up, x, t)

)
−

− ε2
(
f2(up + αE, x, t)− f2(up, x, t)

)
.

(10)

Taking into account that up solves (1) and that f has the representation (5) and
(6) we can conclude that the expression in the square bracket vanishes. Using the
inequalities (7), (9) we get the obvious estimates

h(up + αE, x, t) ≥ m > 0,

|h(up + αE, x, t)− hp(up, x, t)| ≤MαE,
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|f1(up + αE, x, t)− f1(up, x, t)| ≤ c1αE,

|f2(up + αE, x, t)− f2(up, x, t)| ≤ c2αE.

Using these estimates we get from (10)

LεU ≤ εc0αE +
√
ε%αE +M |up − ϕ1||up − ϕ2|αE−

−m(2up − ϕ1 − ϕ2)αE + εc1αE + ε2c2αE =

= αE
[√

ε%+M |up − ϕ1||up − ϕ2|−

−m(2up − ϕ1 − ϕ2) +O(ε)
]
.

(11)

According to (8) we have

up − ϕ1 = ϕ− ϕ1 +O(ε), up − ϕ2 = ϕ− ϕ2 +O(ε).

Consider the neighborhood Γδ of the curve Γ0. By (6) it holds

ϕ(x, t, ε) = ǔ(x, t) +O(
√
ε),

hence one of the differences ϕ−ϕ1 and ϕ−ϕ2 is O(
√
ε), while the other one satisfies

|ϕ1 − ϕ2|+O(
√
ε), that is, it is an expression of order O(δ) +O(

√
ε). Therefore,

|up − ϕ1||up − ϕ2| ≤ c3
√
ε(δ +

√
ε) for (x, t) ∈ Γδ. (12)

By using inequality (12) we obtain from (11)

LεU ≤ αE
√
ε
[
%+Mc3(δ +

√
ε)−ma0 +O(

√
ε)

]
for (x, t) ∈ Γδ.

Due to the term −ma0, for sufficiently small %, δ, and ε the expression in the square
bracket is negative, and we have

LεU < 0 for (x, t) ∈ Γδ.

Outside the neighborhood Γδ one of the differences up−ϕ1 and up−ϕ2 is a term of
order O(ε) according (8), (7). Thus

|up − ϕ1||up − ϕ2| ≤ c4ε for (x, t) ∈ D0 \ Γδ. (13)

For the expression 2up−ϕ1−ϕ2 the estimate (12) holds such that we get from (11)

LεU ≤ αE
[√

ε%+Mc4ε−mcδ +O(ε)
]

for (x, t) ∈ D0 \ Γδ.

Since the term −mcδ is negative and does not depend on ε, we can conclude that
the expression in the square bracket is negative for sufficiently small ε and we have

LεU < 0 for (x, t) ∈ D0 \ Γδ.

That implies Lε < 0 in D0, therefore, the function U defined in (5) satisfies for
sufficiently small ε and δ the inequality (1) in definition 3.1 and is an upper solution
of the problem (1), (2), (17).
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3.3 Construction of a lower solution

We construct a lower solution to (1), (2), (17) in the form

U(x, t, ε) = up(x, t, ε)− β(x, t, ε)E(t, ε), (14)

where up and E are the same functions as in (5),

β(x, t, ε) = ϕ(x, t, ε)− ψ(x, t, ε) + εz(x, ε)− a0

√
ε, (15)

ϕ and ψ are the roots of equation (2), z is defined in (7) and a0 satisfies (12), (14).
We note that due to (14) the following inequality holds

β(x, t, ε) ≥ a0

√
ε for (x, t) ∈ D0, (16)

and for the derivatives of β outside some δ-neighborhoods of the straight lines x =
−1, x = 1 there hold the same estimates as for the functions ϕ and ψ in (17) and
(18), respectively. Hence, outside the mentioned neighborhoods we have the estimate
analogously to (9) ∣∣∣ε2

(
βxx − βt

)∣∣∣ ≤ εc0β. (17)

Inside the δ-neighborhood of the straight lines x = −1 and x = 1 we have ε2 ∂2β
∂x2 =

O(ε) such that β can be estimated by

β(x, t, ε) ≥ c > 0

which is stronger than the corresponding inequality (16). Therefore, the estimate
(17) holds in the full region D0. As in the case of the function U it can be easily
checked that for sufficiently large k the function U satisfies the inequality (2) in
Definition 3.1.
Now we verify inequality (3). Using the relations (8), (6), (7) we have

U(x, t0, ε) = up(x, t0, ε)− ϕ(x, t0, ε) + ψ(x, t0, ε)− εz(x, ε) + a0

√
ε =

= ψ(x, t0, ε) +O(
√
ε) = û(x, t0) +O(

√
ε).

Since according to assumption (A5) it holds û(x, t0) < u0(x), we can conclude that
for sufficiently small ε the inequality

U(x, t0, ε) ≤ u0(x) for − 1 ≤ x ≤, 1

is valid, that is U satisfies inequality (3).
Finally, we have to verify inequality (1). Analogously to (11) we obtain

LεU ≥ −εc0βE −
√
ε%βE −M |up − ϕ1||up − ϕ2|+

+ h(up − βE, x, t)(2up − ϕ1 − ϕ2 − βE)βE − εc1βE−

− ε2c2βE = βE
[
−
√
ε%−M |up − ϕ1||up − ϕ2|+

+ h(up − βE, x, t)(2up − ϕ1 − ϕ2 − βE) +O(ε)
]
.

(18)
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From (12) and (13) it follows that to any δ > 0 for sufficiently small ε there holds
the inequality

|up − ϕ1||up − ϕ2| ≤ c5
√
ε(δ +

√
ε) for (x, t) ∈ D0. (19)

Furthermore, using (8), the obvious inequality 0 < E(t, ε) ≤ 1 and the relation
ϕ− β = ψ − εz + a0

√
ε (see (15)) we obtain

2up − ϕ1 − ϕ2 − βE = 2ϕ+O(ε)− ϕ1 − ϕ2 − βE ≥

2ϕ− ϕ1 − ϕ2 − β +O(ε) = ϕ+ (ϕ− β)− ϕ1 − ϕ2 +O(ε) =

= (ϕ+ ψ − ϕ1 − ϕ2) + a0

√
ε+O(ε).

By (16) we have ϕ+ ψ − ϕ1 − ϕ2 = O(ε), thus it holds

2up − ϕ1 − ϕ2 − βE ≥ a0

√
ε+O(ε) for (x, t) ∈ D0. (20)

Taking into account the estimates (19), (20) and the inequality h(up − βE, x, t) ≥
m > 0 we get from (18)

LεU ≥ βE
√
ε
[
− %−Mc5(δ +

√
ε) +ma0 +O(

√
ε)

]
for (x, t) ∈ D0.

For sufficiently small %, δ, ε the expression in the square bracket is positive due to
the presence of the term ma0 such that we have

LεU > 0 for (x, t) ∈ D0,

that is, the function U satisfies the inequality (1) in Definition 3.1. Therefore, the
function U defined in (14) is a lower solution for the problem (1), (2), (17) provided
k occurring in the function z is sufficiently large, % arising in the function E is
sufficiently small and ε is sufficiently small.

3.4 Completing the proof of Theorem 1.2

As we mentioned in subsection 3.1, the existence of ordered upper and lower solutions
for the problem (1), (2), (17) implies the existence of a solution of that problem
satisfying the inequalities (4). Taking into account (5) and (14) we obtain from
these inequalities

−β(x, t, ε)E(t, ε) ≤ u(x, t, ε)− up(x, t, ε) ≤ α(x, t, ε)E(t, ε). (21)

Since E(t, ε) → 0 as t→∞ we have

u(x, t, ε)− up(x, t, ε) → 0 as t→∞,

that is the limit relation (18) is valid, and the proof of Theorem 1.2 is complete.
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Remark 3.1 Theorem 1.2 states that all smooth initial functions u0 satisfying the
condition (A5) belong to the region of attraction of the periodic solution up.

Remark 3.2 From the inequalities (21) and the form (8) of the function E we can
conclude

|u(x, t, ε)− up(x, t, ε)| ≤ c exp
(
− %

t− t0
ε3/2

)
for t ≤ t0,

that is, the solution u tends to the periodic solution up exponentially fast. Especially,
if t− t0 satisfies t− t0 = O(ε3/2−γ), where γ is any small positive number, we have
the estimate for any natural number n

u(x, t, ε)− up(x, t, ε) ≤ cexp
(
− %

εγ

)
= o(εn).

Remark 3.3 As well in our paper [1] as in this paper the assumption (A4) plays an
important role. If the function f does not depend on ε, then assumption (A4) is not
fulfilled. In that case the problem of the existence of a solution to (1)-(3) is more
complicated and we try to contribute to that problem in a forthcoming paper.
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