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Abstract 

This paper is devoted to the approximate solution of the classical first-kind 
boundary integral equation with logarithmic kernel (Symm's equation) on a clo-
sed polygonal boundary in lR 2 • We propose a fully discrete method with a trial 
space of trigonometric polynomials, · combined with a trapezoidal rule approxi-
mation of the integrals. Before discretization the equation is transformed using 
a nonlinear (mesh grading) parametrization of the boundary curve which has the 
effect of smoothing out the singularities at the corners and yields fast conver-
gence of the approximate solutions. The convergence results are illustrated with 
some numerical examples. 

1 Introduction 
This work is concerned with the numerical solution of 

- .!_ f log Ix - elu(e) dr(e) = J(x ), 
7r Jr x Er, (1.1) 

with r the boundary of a simply connected bounded domain n in IR.2• Equation (1.1) 
arises in solving the Dirichlet problem for Laplace's equation on n, using boundary 
integral equation methods. 

For the case of smooth r, there is now a large literature on the approximate solu-
tion of ( 1.1) by collocation and quadrature methods based on splines or trigonometric 
polynomials; see [11] for a review. Until recently only special results for low order 
methods were known when r is a polygonal boundary; see [4] for a discussion. With 
the recent paper [4], results on stability and optimal convergence for spline collocation 
methods of arbitrarily high order are now available for polygonal r. Analogous results 
for a fully discrete version of the method in (4) were obtained in [5], and a convergence 
theory for the qualocation method on a polygon . was presented in [ 6). 

The purpose of the present paper is to extend the discrete trigonometric collocation 
method, considered in [1] for smooth closed curves and in [2] for smooth open arcs, to 
a rapidly convergent method for curves with corners. In addition, this method is easier 
to implement than the quadrature-collocation scheme of [5). A generalization of the 
discrete qualocation methods introduced in [12) to the case of a polygonal boundary 
can be found in [8]. 

In this paper, we consider the case that r is (infinitely) smooth, with the exception 
, of a corner at a point x 0 . In the analysis we further assume that r in the neighbourhood 

of the corner x 0 consists of two straight lines intersecting with an interior angle (1 -
X)7r, 0 < lxl < 1. This is believed to be an inessential restriction. The extension to 
boundary curves with more than one corner is straightforward, see (4, 5]. We assume 
throughout that the transfinite diameter of r is not equal to 1, so that (1.1) is uniquely 
solvable. 
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Following the development in [4, 5], we now rewrite (1.1) using an appropriate 
nonlinear parametrization 7 : [O, 1] ----+ r which varies more slowly than arc-length 
parametrization in the vincinity of Xo. Consider a parametrization 'Yo : [O, 1] ----+ r such 
that 70 (0) = 70 (1) = x 0 and b~(s)I > 0 for all 0::; s::; 1. Choosing a grading exponent 
q E 1N and selecting a function v such that 

v E C00 [0,1], v(O) = 0, v(l) = 1, v'(s) > 0, 0::; s::; 1, (1.2) 

we define the mesh grading transformation 
vq(s) 

7(s) = 'Yo(w(s)), where w(s) = ( ) ( )" vq s + vq 1 - s 
(1.3) 

The parametrization 7 we have chosen is graded with exponent q near the cor:r;i.er. The 
simplest choice of v satisfying (1.2) is, of course, v( s) = s. A more practical choice of 
v in (1.3) is the cubic polynomial 

v(s) = (~ - ~)(1 - 2s)3 + ~(2s - 1) + ~ (1.4) 

where the grading exponent is an integer ~ 2, see (9]. 
Using the change of variables x = 7(s), e = 7(u), Equation (1.1) becomes· 

1 !al Kw(s) := -- log b(s) - 7(u)lw(u) du= g(s), 
7r 0 

s E (0, 1], (1.5) 

·where 
g(s) = J('Y(s)). (1.6) 

The solution w of the transformed equation (1.5) may be made as smooth as desired 
on (0, 1] provided f is smooth and the grading exponent is sufficiently large, and hence 
w can be optimally approximated using trigonometric polynomials as basis functions. 

We decompose (1.5) as 

with 
Aw+Bw=g 

Aw(s) = -2 f log l2e-1l 2 sin(11"(s - <T))lw(<T) dCT, 

Bw(s) = l b(s, <T)w( <T) dCT, 

I 
7( s) - 7( C7) I b(s, u) := -2log 2 112 . ( ( )) , e- sm 7r s - u 0 < s, C7 < 1, s =J O". 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

The kernel function (1.10) is 1-periodf.c in both variables and C00 for 0 < s, u < 1, but 
in contrast to the case of smooth r it has fixed singularities at the four corners of the 
square (0, 1] x (0, l]. The operator A arises from studying (1.1) on a circle with radius 
e-1/2. 

Applying the analysis of the transformed equation in (4, 5] and using the fact 
that the eigenfunctions of A are the trigonometric functions, we consider a collocation 
method with trigonometric trial functions for solving (1. 7) in § 2. In § 3 we introduce 
and analyze a corresponding discrete collocation method. Numerical examples are 
given in§ 4. 
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2 Trigonometric Collocation 

Let Ht, t E Ill, be the usual Sobolev spaces of 1-periodic functions (distributions) on 
the real line, with norm given by 

llvll~ = lv(O)l 2 + L lml 2tlv(m)l 2
, 

m:;CO 

where the Fourier coefficients of v are defined by 

V( m) = ( v, e•2=•) = L1 v( s )e-•2=• ds. 

Introduce the collocation points 

s; = jh + h/2, j E 'll, where h := 1/(2n + 1), (2.1) 

and let 7" denote the space of .trigonometric polynomials of degree < n with the 
standard basis 

(2.2) 
Then, for any continuous 1-periodic function v, the interpolatory projection Qhv onto 
7" is well defined by 

(Qhv)(s;) = v(s;), j = 0, ... ,2n, (2.3) 
and satisfies [2] 

llv - Qhvllt :::; chr-tllvlln v E Hr, for r > 1/2, r ~ t ~ 0. (2.4) 

Note that, using the basis (2.2), the projection Qh is given by 
n n 

Qhv(s) = L O:k'Pk(s), ak := h L v(s;)cpk(s;); 
k=-n i=-n 

see [1) or [10, Chap. 2.3). 
The collocation method for ( 1. 7) consists of solving 

and since Qh commutes with A on 7", we have the equivalent formulation 

Following [1, 4), we rewrite (1.7) as the second kind equation 

(I+ M)w = e, 

Recall [1] that the operator A of (1.8) takes the form 

v(m) 
Av(s) = ~ max(l, lml) 'Pm(s) 

mEL.LJ 
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and is an isomorphism of Ht onto Ht+l for any real t, and its inverse satisfies 

A-1 = -HD + :1 = -DH + :1 (2.7) 

with Dv(s) = v'(s), :lv(s) = v(O) and H the (suitably normalized) Hilbert transform 

1 11 Hv(s) = --p.v. cot('7r(s - a))v(a) da. 
271" 0 

Therefore, the operator M of (2.6) takes the form 

M = -HDB +:!B. (2.8) 

From [4, 5) we now recall some analytical results on Equations (1.5) and (2.6) which 
are needed in the convergence analysis of the trigonometric collocation method. The 
first theorem was proved in [4), using a decomposition of M into a Mellin convolution 
operator local to the corner and a compact operator on H0 • 

Theorem 2.1 The operators I+ M: H 0 ~ H 0 and K: H 0 ~ H 1 are continuously 
invertible, and we have the strong ellipticity estimate 

Re((!+ M + T)v,v) 2:: cjjvll~, v E H 0
, 

with some compact operator T on H 0 • 

The next result, also taken from [4), shows that the unique solution of (1.5) is 
smooth provided the right-hand side of (1.1) is smooth and the grading exponent is 
sufficiently large. Let H1(I'), l > 0, denote the restriction of the usual Sobolev space 
H 1+il2 (IR2 ) to r. 

Theorem 2.2 Let l E JN, q > (l + 1/2)(1 + lxl), and suppose that f E H 1+sl2(r). Then 
the unique solution of {1.5) satisfies w E H1• Moreover, there exists 6 < 1/2 such that 

Dmw(s) = O(lsl1-m-0 ) ass~ O, m = 0, ... , l. (2.9) 

The following result from [5) describes the properties of the kernel function b( s, a) 
defined in ( 1.10). 

Theorem 2.3 On each compact subset of 1Rx1R\(7.lx7Z), the derivatives D~D7;b(s, a) 
of order i + m ~ q are bounded and 1-periodic. Moreover, for s, a E [-1/2, 1/2] \ {O}, 
we have the estimates 

lb(s, a)I ~cl log( ls I+ lal)I, 
ID!D;1b(s, a)I ~ c(lsl + lal)-i-m, 1 ~ i + m ~ q. 
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Let us now consider the collocation method (2.5). We shall rewrite this as a projec-
tion method for (2.6). For any v E H 0 , let Rhv E Th solve the collocation equation 
ARhv = QhAv. Then Rh = A-1QhA is a well defined projection operator of H 0 onto 
Th which satisfies (see (2.4)) 

(2.10) 

It is then straightforward to see that (2.5) is equivalent to 

As is usual for Mellin convolution operators, we are only able to prove stability for a 
· slightly modified method. Introduce, for T > 0 sufficiently small, the truncation TTv 
as the 1-periodic extension of 

Trv(s) = { v(s), s E (T, 1 - T), 
0, S E (0, T) LJ (1 - T, 1) 

and consider the modified collocation method 

(2.11) 

where ·i* is a fixed natural number independent of h. If i* = 0 then (2.11) coincides 
with (2.5). Otherwise, (2.11) can be obtained from (2.5) by a slight change to the 
coefficient matrix of the corresponding linear system. Now it is easily seen that (2.11) 
is equivalent to 

(2.12) 

The following theorem establishes the convergence of the (modified) collocation method 
with optimal'order in the L2 norm. 

Theorem 2.4 Let q ~ 2, and suppose that i* is sufficiently large. 
(i} The method {2.12} is stable, that is the estimate 

v E Th 

holds for all h sufficiently small, where c is independent of h and v. 

(2.13) 

{ii} If, in addition, the hypothesis of Theorem 2.2. holds, . then (2.11) has a unique 
solution for all h sufficiently small and 

(2.14) 

where c is a constant which depends on w and i* but is independent of h. 

Proof: Following [4, Theorem 9], we first verify the stability estimate (2.13). Since, by 
Theorem 2.1, I+ M is strongly elliptic and invertible on H 0 , we obtain stability of 
the finite section operators Tr(I + M)Tr as T ~ 0, which implies the estimate (see [4, 
Theorem 6]) 

II(!+ MTr)vllo ~ cllvllo, · v E H 0
, T ~To. (2.15) 
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Then (2.13) is obtained with the help of (2.15) and the following perturbation result. 
For fixed q 2:: 2 and each e > 0, there exists i* 2:: 1 such that for all h sufficiently 

small 
v E H 0 • (2.16) 

From (2.8) and (2.10) and the fact that I - Rh annihilates the constants, we obtain 
the estimate 

v E H 0 • 

To prove (2.16), it is now sufficient to verify that 

v E H 0
• (2.17) 

where e is independent of i*, h and v. Using Theorem 2.3, we now obtain 

ID2 BT;•hv(s )I < h,., ID~b(s, u)llv(u)I du 

< c 1,., (Jsl + lult2 Jv(u)J du 

< ( c/i* h) { (J 1 lu: 1)2 Iv( u )I du, 
l1i.h s + a 

s E (-1/2, 1/2), 

where Ji•h = (-1/2, -i*h) U (i*h, 1/2). Taking 1 2 norms and using the fact that the 
integral operator with Mellin convolution kernel (s +a t 1 is bounded on 1 2(0, oo) then 
gives (2.17). 

To prove the error estimate (2.1.4), we note that 

where the first term is of order hl by Theorem 2.2 and (2.10) (with t = 0, r = l). 
Furthermore, using (2.13) and then (2.12) with (2.6) and the uniform boundedness of 
Rh on H0 , we obtain 

llwh - Rhwllo < ell(!+ RhMTi•h)(wh - Rhw)llo 
ellRh[(I + M)w - (I+ MTi·h)Rhw]llo 

< eil(J + MTi•h)(I - Rh)w + M(I - Ti·h)wllo 
< ell(/ - Rh)wllo +ell(/ - Ti•h)wllo· 

The proof is complete since by (2.9) (with m = 0) the last term is of order hl again. D 
The following corollary shows that the collocation solutions to the transformed 

equation yield superconvergent approximations to interior potentials. 

Corollary 2.5 Under the hypothesis of Theorem 2.4 (ii}, we have 

llw - whll-1 ~ ehl+{j 

where {3 = 1 if i* = 0 and {3 = 1 /2 if i* ~ 1. 
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Proof: We restrict ourselves to the case of the unmodified method; for i* ~ 1 we refer 
to [7). Suppose that (2.13) holds with i* = 0. 

Let v E H 1
, and write v = Kv1 with v1 E H 0 • Then, since QhKwh = QhKw, 

=((I- Qh)K(w -wh),vi). 

Hence, by (2.4), Theorem 2.1 and (2.14) 

which proves the result. D 

3 Discrete Collocation 
To define a fully discrete version of the collocation method (2.5), introduce the nodes 

O'j = jh, j E 'll, where h := 1/(2n + 1). (3.1) 

To evaluate the integral 

I(v) = t v(u) du 

for a 1-periodic continuous function v, approximate it by the trapezoidal rule 

2n 

h(v)=hl: v(cr;). (3.2) 
j=O 

The integral operator B of (1.9) is now approximated by 

2n 

Bhv(s) := h(b(s, ·)v(·)) = h L b(s, cr;)v(cr;), (3.3) 
j=O 

and replacing B with Bh in (2.5), the discrete collocation method can be written in 
the form 

(A+ QhBh)wh = Qhg, 
To obtain a linear system for finding wh, let 

n 
wh(s) = L ak'Pk(s) 

k=-n 

and calculate the coefficients ak from (3.4) and the definiti<?ns of A, Qh and Bh: 

~ [ 'Pk( Sj) ( ] ( ) k~n ak max(l, lkl) + (Bh'Pk) s;) = g s; ' j = 0, ... , 2n. 
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Our convergence analysis follows the same lines as in § 2. That is, instead of (3.4) we 
consider the modified method 

(3.6) 

Setting Mh = A-1 Bh and and using (2.6) and the projection Rh defined in § 2, (3.6) 
can be written as 

(3.7) 
For our analysis, the following standard estimate for the trapezoidal rule (3.2) is needed. 

Lemma 3.1 Let l E J!V, and suppose that v has 1-periodic continuous derivatives of 
order< l on IR and that Dlv is integrable on (0, 1). Then 

II( v) - h( v )I :<::: ch1 l ID1v(o-)ldo-, 

where e does not depend on v and h. 

The proof of Lemma 3.1 is based on the representation 

I( v) - h( v) = h1 l P1( o-/ h)D1v(o-) do-, 

where ·Pz is some 1-periodic piecewise polynomial of degree l, see [3, Chap. 2.9]. 
The following lemma is the key to the stability of (3. 7). 

Lemma 3.2 For fixed q 2::: 2 and for each e > 0, there exists i* 2::: 1 independent of h 
such that, for all v E Tii and all sufficiently small h, 

ll(M - Mh)Ti*hMhTi•hvllo ~ ellvllo, 
ll(M - Mh)Ti·h(I - Rh)MhTi·hvllo ~ ellvllo· 

Proof: We first show the estimate 

(3.8) 

(3.9) 

(3.10) 

where e is independent of i*, h and u. Using (2. 7) and the definition of Mh, we have 

ll(M - Mh)Ti*hullo ~ e{ll(B - Bh)Ti*hullo + IJD(B ~ Bh)Ti*hullo}. (3.11) 

Furthermore, using Lemma 3.1 (for l = 1 and the interval (-1/2, 1/2)) and Theorem 
2.3, we obtain 

l(B - Bh)Ti*hu(s)I + ID(B - Bh)Ti*hu(s)I 

< eh L. {lb( s, o-)I Iv'( o-)I + ID.-b( s, o-)I Iv( o-)I} do-

+ eh h,., {ID,b(s,o-)llv'(o-)1 + ID,D.-b(s,o-)llv(o-)1} do-

l 1 l lv'(a)I < eh ·(I I I l)2 lv(a)lda +eh I I I Ida 
Ji* h s + a . Ji* h s + a 
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.• /, !al /, lv'(a)I 
~ ( c I'/, ) ( I I I I) 2 Iv (a) Ida + eh I I I I da' s E ( -1I2' 1I2)' ( 3 .12) 

Ji. h s + a Ji. h s + a 

where Ji•h = (-1/2, -i*h) U (i*h, 1/2). Taking L2 norms in (3.12) and using the fact 
that an int~gral operator with Mellin convolution kernel am I ( s + a r+i, m ~ 0, is 
bounded on L 2(0, oo) gives (3.10). . 

To complete the proof of (3.8), we set u = MhTi•hV in (3.10). Then we have to 
verify that, for all v E Th, 

llMhTi•hVllo ~ cllvllo, 

llDMhTi•hvllo ~ (c/i*h)llvllo· 
(3.13) 

(3.14) 

Since MTi·h is obviously uniformly bounded on H 0 , it suffices to prove (3.13) with Mh 
replaced by M - Mh. Applying estimate (3.10) again, we then get 

ll(M - Mh)Ti•hvllo ~ (c/i*)llvllo + chllDvllo ~ cllvllo, v E Th, (3.15) 

where we have used the inverse property of Th (Bernstein's inequality); see e.g. [10, 
Chap. 2.1]. To prove (3.14), we observe that 

As in the proof of (2.16}, the first term of (3.16) can be bounded by (c/i*h)llvllo· 
· Analogously to (3.11) and (3.12), we have from (2.7), Lemma 3.1 and Theorem 2.3 

and 
ID2(B - Bh)Ti•hv(s)I 

:<:::eh 1,.k {ID~D.,.b(s,u)llv(u)I + ID~b(s,u)llv'(u)I} du 

:<:::eh 1,.k (lsl: lul)31v(u)I du+ eh 1,.k (lsl: lul)21v'(u)I du 

:<::: eh( i* ht
2 l,.k (Is! :•lul)3 Iv( u)I du+ eh(i* ht

1 1,.k (Is! ~:ul)2 lv'(u )I du 

for any s E (-1/2, 1/2). Taking L2 norms and applying the inverse property of Th then 
gives 

llD(M - Mh)Ti·hvllo ~ (c/i*h)llvllo + (c/i*)llv'llo ~ (c/i*h)llvllo, 
which completes the proof of (3.14). Therefore, (3.8) follows from (3.10), (3.13) and 
(3.14) provided i* is chosen large enough. . 

To prove (3.9), we now set u = (I - Rh)MhTi•hV in (3.10) to obtain the estimate 

ll(M - Mh)Ti•h(J - Rh)MhTi•hvllo 

~ (c/i*)ll(J - Rh)MhTi•hvllo + chllD(I - Rh)MhTi•hvllo· 
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Using (2.10), together with the fact that I - Rh annihilates the constants, and (3.14), 
the last expression can further be bounded by 

(ch/i*)llDMhTi•hvllo + chllDMhTi•hvllo 

~ chjjDMhTi•hvllo ~ (c/i*)llvllo, 
which gives the result by choosing i* sufficiently large. D 

We are now in the position to prove stability for the method (3. 7). 

Theorem 3.3 Assume q ~ 2, and suppose that i* is sufficiently large. Then the 
estimate 

v E 1h 
holds for all h sufficiently small, where c is independent of v and h. 

Proof: By Theorem 2.4 (i), the operators 

(3.17) 

exist and are uniformly bounded with respect to the H0 operator norm if i* is large 
enough. Consider the operators 

and 
Dh :== (1 + RhMTi·ht1 Rh(Mh - M)Ti·hRhMhTi·h 

acting on 1h. Then simple computation shows that 

(3.18) 

Using (3.15) and the uniform boundedness of Rh on H0 , we observe that RhMhTi•h 
and hence Ch are uniformly bounded, too. Furthermore, from Lemma 3.2 we obtain 
for some€ E (0, 1) 

llDhvllo ~ cjlRh(Mh - M)Ti·hRhMhTi•hvllo 

~ c{jj(M - Mh)Ti·hMhTi·hvllo + ll(M - Mh)Ti·h(I - Rh)MhTi·hvllo} 
v E 7h, h ~ho 

provided that i* is sufficiently large. Therefore, (1 - Dh) is invertible with (I - Dht1 

uniformly bounded, and (3.18) implies the estimate 

h ~ho, 

which proves (3.17). D 
Finally, we show that (3.6) converges with the same optimal order as the collocation 

method considered in§ 2. 
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Theorem 3.4 Let l E JN, q > (l + 1/2)(1 + Ix!), and suppose that f E H 1+512(I'). 
Suppose fu'rther that i* is sufficiently large. Then (3.6) has a unique solution for all h 
sufficiently small and 

(3.19) 
where c is independent of h. 

Proof: As in the proof of Theorem 2.4 (ii), we have 

where the first term is of order h1• Using Theorem 3.3 and the uniform boundedness 
of Rh, we get 

llwh - Rhwllo < cjj(J + RhMhTi•h)(wh - Rhw)llo 
cjjRh(I + M)w - Rh(!+ MhTi·h)Rhw)llo 

< cjjMw - MhTi·hRhwllo 

::; cjj(M - MhTi•h)wllo + cllMhTi•h(w - Rhw)llo· 
To estimate the second term on the right side of (3.20), we observe that 

(3.20) 

llMhTi•h(w - Rhw)llo::; llMTi·h(I - Rh)wllo + ll(M - Mh)Ti·h(I - Rh)wllo 

::; cl!(J - Rh)wllo + chllD(I - Rh)wllo, 
where we have used (3.10). Since w E H1 (see Theorem 2.2), the last two terms are of 
order h1 by virtue of (2.10). 

To complete the estimate (3.19), we need an analogous bound for the first term in 
(3.20). Note that 

ll(M - MhTi·h)wllo::; llM(J - Ti·hwllo + ll(M - Mh)Ti·h)wllo 

(3.21) 

Since Theorem 2.2 implies w( s) = 0( Is 1
1- 112 ) as s -+ 0, the first term is of order h1. 

To estimate the last term of (3.21), we proceed as in (3.12) and apply Lemma 3.1 and 
Theorem 2.3 to obtain 

l(B - Bh)Ti•hw(s)I + ID(B - Bh)Ti•hw(s)I 
l 

< eh1 h,., fo (ID:;'b(s, a)I + ID,D:;'b(s, a)I) ID1-mw( a)I da 

< eh' r_ t (I I ~ l)m+1 ID'-mw(a)I da }J,.h m=O S + CJ 

< eh
1 ~ L, (lsl 1~~)m+1 lal-mlD

1
-mw(a)lda 

11 



for any s E (-1/2, 1/2). Taking L2 norms and using (3.11) then gives 

l 

ll(M - Mh)Ti•hWllo::; chl 2:: lllsl-mDZ-mwllo::; chl, 
m=O 

since the estimate (2.9) ensures that 

lsl-mDl-mw E Ho, 

This finishes the proof of (3.19). 

4 Numerical results 

m= o, ... ,l. 
0 

In this section we consider a numerical example illustrating the solution of Equation 
(1.1) when r is given by 

ro(s) = sin?rs(cos(l - X)?r, sin(l - X)?rsf, s E [O, 1], X E (0, 1). 

In this example (also described in [4, 5]), r is the boundary of a "teardrop~shaped" 
region with a single corner at s = 0 (or s = 1) and smooth elsewhere. The exterior 
angle between the tangents at s = 0 and s = 1 is (1 + x)?r. Since it will be a 

· straightforward technical matter to extend the results of this paper to the case of a 
curvilinear polygon, this example provides a reasonable test of our theoretical results. 
With this parametrization we put (1.1) in the form (1.5) and solved the latter equation 
numerically using the quadrature-collocation scheme (3.4). We took the right-hand 
side f to be 

f ( x) = exp( x1) cos( x2) + Re{( x1 + ix2)1/(t-x)} 

Then f is the Dirichlet data for a harmonic function in the interior of r which has 
the (weak) singularity induced by the corner in r. Nevertheless the solution of (1.1) 
will have the stronger singularity to the worst of the two singularities appearing in the 
exterior and interior harmonic boundary value problem for this domain. Theorem 3.4 
implies that the numerical solution wh will converge to the true solution with rate 

(4.1) 

provided 
q > (k + 1/2)(1 + x). (4.2) 

In all experiments of this section, no modification of the collocation method was found 
necessary for stability and throughout we have set i* = 0. All experiments shown here 
are for x = 0.76. 

Special care must be taken in the implementation of (3.5), in particular in the 
evaluation of 

I 
1(s;)-1(ai) I b(s;, ai) = -2log _112 • ( .) 2e sm 7r s; - O"i 

( 4.3) 

12 



when the numerator and the denominator are both close to zero. For large n, large 
grading parameter q and in the extreme case when s; and G'i are near the endpoints of 
[O, 1], the numerator on the right hand side of ( 4.3) becomes much closer to zero than 
the denominator and numerically ( 4.3) becomes log(O). In this case an appropriate 
limiting approximation had to be used. For further details see [5]. 

The exact solution w of (1.5) is unknown. To check ( 4.1) we computed an appro-
ximation w* using n = 512 and used that as the exact solution. Then llw* - wh Ila 
was computed exactly using Parseval's equality. Empirically determined convergence 
rates are given in columns headed "EOC" in Table 1 and demonstrate the expected 
improvement of the convergence order for increasing values of the grading exponent 
q. Note that from {4.1) and (4.2) one would predict the convergence rates 0.64, 1.20, 
1. 77, 2.34 corresponding to q = 2, 3, 4, 5, respectively. 

Table 1 

q = 2 ·q=3 q=4 q=5 
n llwh - w*llo EOC llwh - w*llo EOC llwh - w*llo EOC llwh - w*llo EOC 
8 5.91 -3 4.61 -3 2.27 -3 5.28 -3 

0.76 1.17 2.33 5.26 
16 3.48 -3 2.05 -3 4.51 -4 1.38 -4 

0.68 1.18 1.73 2.41 

32 2.17 -3 9.01 -4 1.35 -4 2.58 -5 

0.73 1.20 1.75 2.35 

64 1.31 -3 3.90 ·_4 4.01 -5 5.03 -6 

0.86 1.25 1.74 2.32 

128 7.21 -4 1.63 -4 1.20 -5 1.01 -6 
1.26 1.38 1.72 2.38 

256 3.01 -4 6.26 -5 3.63 -6 1.93 -7 
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