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Abstract

A new approach for simulating the solution of the time-dependent Schrödinger
equation with a general variable potential will be proposed. The key idea is to
approximate the Titchmarsh-Weyl m-function (exact Dirichlet-to-Neumann
operator) by a rational function with respect to a suitable spectral parame-
ter. With the proposed method we can overcome the usual high-frequency
restriction for absorbing boundary conditions of general variable potential
problems. We end up with a fast computational algorithm for absorbing
boundary conditions that are accurate for the full frequency band.
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1. Introduction

We consider in this paper the Schrödinger problem of the following form

iut + ∂2
xu = V (x)u, (x, t) ∈ R × (0, T ],

u(x, 0) = u0(x), x ∈ R,
(1)

where T denotes the finite evolution time, and u0 is an initial wave packet
supported in a finite interval Ωint = [x−, x+] with x− < x+. It is well–known
that under mild conditions the Cauchy problem (1) has a unique solution
u ∈ C(R+, L2(R)), cf. [30], e.g.:

Theorem 1. Let u0 ∈ L2(R) and V ∈ L∞(R). Then the problem (1) has a
unique solution u ∈ C(R+, L2(R)). Moreover, the “energy” is preserved, i.e.

‖u(., t)‖L2(R) = ‖u0‖L2(R) , ∀ t ≥ 0. (2)

The Schrödinger problem (1) is defined on an unbounded domain x ∈ R.
In order to numerically simulate its solution, it is a common practice to
truncate the computational domain to a bounded one, say Ωint,T = Ωint ×
(0, T ]. Absorbing boundary conditions (ABCs) are thus necessary for well–
posedness at the two artificially introduced boundaries, Σ±,T = {x±}×(0, T ].

Numerical simulation of the linear Schrödinger equation on unbounded
domains with an external potential has been a hot research area for nearly
thirty years, cf. the concise review article [7]. An ABC is called exact if the
solution of truncated domain problem remains the same as that of the origi-
nal unbounded domain problem. The exact ABC is guaranteed to exist due
to the well-posedness of the linear Schrödinger problem (1), but it can only
be formulated analytically for some special potentials, such as constant po-
tential [17], linear potential [18], symmetric periodic potential [20], isotropic
free particle potential, Morse potential, harmonic potential, and Bargeman
potential, cf. e.g. [31]. In the more general case, i.e. for general variable
potential problems, one is led to design approximate analytical ABCs for a
specific frequency regime in terms of some a-priori criterion. Methods in this
category includes the pseudo-differential calculus method [5, 6, 8], the per-
fectly matched layer (PML) method [39] and the operator splitting method
[37]. To the authors’ knowledge all of them are in essence based on the high
frequency approximations. For low frequency problems, the ABCs by these
methods would be less accurate.
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In this paper, a new approach for designing ABCs for the Schrödinger
problem will be proposed. Inspired by the work of Alpert, Greengard and
Hagstrom [2] on the fast evaluation of nonreflecting boundary kernels for
time-domain wave propagation, we approximate the Titchmarsh-Weyl m-
function (equivalently exact DtN operator) in the frequency domain by a
rational function with respect to an appropriate spectral parameter. In the
time domain, the nonreflecting boundary kernels are thus approximated by
a sum of exponentials, which makes the approximate ABCs easy to imple-
ment. The rationality of the above treatment is due to the analyticity prop-
erty and asymptotic behavior of the m-function. Since our approximation is
made in the whole frequency regime, the proposed ABCs are expected to be
more versatile and more accurate, especially in the low-frequency regime and
thus overcoming the typical high-frequency restriction. We remark that the
Titchmarsh-Weyl m-function is nothing else but the so–called total symbol in
the microdifferential calculus, which is treated by an asymptotic expansion to
get a hierarchy of ABCs, cf. [5, 6, 8]. Also note that Titchmarsh-Weyl theory
is already used in practical applications in the fields of quantum mechanics
[14, 24] and for option pricing in mathematical finance [28].

This work is organized as follows. In Section 2 we review for the ease of
later reference the basic facts of the Titchmarsh-Weyl theory for Schrödinger
operators in one dimension. Then, in Section 3 we discuss the Titchmarsh-
Weyl m-function (i.e. the exact Dirichlet-to-Neumann operator) and explain
the used algorithm to compute the m-function numerically. Hence, at least
from a numerical point of view, the exact ABC is explicitly known, see Sec-
tion 3. However, when simulating the Schrödinger equation (1), the difficulty
does not lie in the computation of the m-function in a frequency domain
method that is presented Section 4, but in its inverse Laplace transformation
which is too much costly. For this reason we introduce in Section 5 a ratio-
nal approximation of the m-function in the frequency domain to obtain an
approximate ABC that can be calculated efficiently using a fast evaluation
technique [38] in the time-domain. We discuss practical implementation is-
sues and finally in Section 6 we conclude with numerical results illustrating
that our new approach leads to an efficient and reliable algorithm for the
time-dependent Schrödinger equation with a general variable potential.
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2. The Titchmarsh–Weyl theory

We will review here for convenience of the later work the essentials of
the Titchmarsh–Weyl (TW) theory for Schrödinger operators in one dimen-
sion. The interested reader may consult [23, Section 2] for a more detailed
presentation.

To start with, we consider the Schrödinger operator L on the real line
given by

L = −∂2
x + V (x), x ∈ R, (3)

with a real–valued, locally integrable potential V ∈ L1
loc(R). Let x0 ∈ R

denote an arbitrarily chosen point which is called reference point. In the
sequel, we investigate how solutions depend on this parameter x0.

To do so, we consider θ(x; x0, λ) and φ(x; x0, λ) being the fundamental
solutions to the Schrödinger eigenvalue problem

−uxx + V (x)u = λu, x ∈ R, λ ∈ C, (4)

supplied with the following initial conditions at the reference point x0:

θ(x0; x0, λ) = 1, θx(x0; x0, λ) = 0 (5a)

φ(x0; x0, λ) = 0, φx(x0; x0, λ) = 1. (5b)

It can be shown that under these assumptions, θ(x; x0, λ) and φ(x; x0, λ)
exist on the whole real axis, and they are entire functions of λ and real for
λ ∈ R. Now as a basic fact of the TW theory, equation (4) possess at least
one solution ψ±, called Weyl’s solution with

ψ±(x0; x0, λ) = 1, (6a)

and
ψ±(x; x0, λ) ∈ L2(Rx0

±
) (6b)

for any λ ∈ C+. Here, R
x0

± stands for the interval [x0,±∞) and C+ denotes
the upper half complex plane, i.e. C+ = {z ∈ C | Im z > 0}. A potential V (x)
is said to be in the limit-point case at ±∞ if and only if there exists only
one Weyl’s solution in the corresponding L2 space. The reader would realize
immediately that assuming V (x) in the limit-point case is necessary for the
well-posedness of the Schrödinger problem (1) in a more general setting. At
positive infinity point, a standard sufficient condition for the limit-point case
is from [32]:
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Theorem 2 ([32, Theorem X.8]). Let V (x) be a continuous real-valued
function on (x0,∞) and suppose that there exists a positive differentiable
function M(x) so that

(i) V (x) ≥ −M(x) if x > x0;

(ii)
∞
∫

x1

(

M(x)
)−1/2

dx = ∞ for any x1 > x0;

(iii) M ′(x)/
(

M(x)
)3/2

is bounded near ∞.

Then V (x) is in the limit point case at ∞.

An analogous result can be given at negative infinity point.
According to this theorem, a potential V (x) is in the limit-point case

provided that V (x) ≥ −kx2 for some constant k and for all large enough x.
This implies that the restriction to the potential for the limit point case is
very weak: it only excludes some especially strange potential, which might
not be physically relevant at all. Roughly speaking, the limit point case does
not admit potentials that tend too fast (faster than quadratically) to −∞
for x → ±∞.

Due to the boundary conditions (6a) we can write

ψ±(x; x0, λ) = θ(x; x0, λ) + m±(x0, λ) φ(x; x0, λ), (7)

with some uniquely determined coefficient, the Titchmarsh-Weyl m-function
m±(x0, λ). This function plays a fundamental role in the spectral theory of
the Schrödinger operator (3) on the half–line R

x0

± .
We will now summarize some of the most important properties about the

Titchmarsh-Weyl m-function. First,

m±(x0, λ) is analytic with respect to λ on C\R and m± : C+ → C+ (8)

and is thus called a Herglotz function (or Nevanlinna or Pick function), cf.
[23, Lemma 2.3]. It is an easy matter to show that this Herglotz property is
directly linked to the positive-type of the DtN-map in the sense of memory
equations, cf. [17] for the corresponding constant exterior potential case.
Hence, it is an essential ingredient of the stability w.r.t. the L2-norm.

Moreover, we have the symmetry property

m±(x0, λ) = m±(x0, λ̄) (9)
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and the local singularities of m are real and and most of them are first order,
i.e.

lim
ǫ→0+

(−iǫ) m±(x0, λ + iǫ) ≥ 0, λ ∈ R, (10)

cf. [23, Theorem A.2].
Another important property is given by the Borg–Marchenko theorem

[12, 29] stating that the Titchmarsh-Weyl m-function m±(x0, λ) determines
uniquely the potential V (x) on x > x0 (or x < x0, respectively). Besides,
since ψ±(x; x0, λ) changes with a simple multiplication when changing the
reference point x0, one has

m±(x, λ) =
∂xψ±(x; x0, λ)

ψ±(x; x0, λ)
. (11)

It is thus easy to verify that the m-function satisfies the following Riccati
equation:

∂xm±(x, λ) = −m2
±
(x, λ) + V (x) − λ. (12)

3. The exact ABC by Titchmarsh-Weyl theory

We apply the Laplace transform

û(x, s) = L(u(x, t))(s) =

∫ +∞

0

u(x, t) e−st dt, Re s > 0, (13)

to the Schrödinger equation (1) on the right exterior domain Ω+ = {x ∈
R|x > x+} and on the left exterior domain Ω− = {x ∈ R|x < x−}. In the
frequency domain, the Schrödinger equation is a second order homogeneous
ODE

−ûxx + V (x)û = λû, x ∈ Ω±, (14)

with λ = is ∈ C+. The exact absorbing boundary condition of the DtN form
in the frequency domain is thus

ûx(x±, λ) = m±(x±, λ)û(x±, λ).

Only in some special cases, the m-function has a closed analytical form
[13, 22]. For example, in the case of a constant potential V ≡ V0 one gets

m+(x+, λ) = − +
√

−λ + V0. (15)
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If the potential represents a harmonic oscillator, i.e. V (x) = x2 on the
interval [0,∞), one obtains a meromorphic m-function given by the ratio of
two gamma functions:

m+(0, λ) = −2Γ(3
4
− 1

4
λ)

Γ(1
4
− 1

4
λ)

. (16)

Finally, for the Bargmann potential

V (x) = −8β2 β − γ

β + γ

e−2βx

(1 + β−γ
β+γ

e−2βx)2
, β > 0, γ ≥ 0, (17)

one obtains the m-function

m+(0, λ) = − +
√
−λ − γ2 − β2

+
√
−λ + γ

. (18)

However, in the general case numerical methods have to be considered.
This issue has been investigated in many papers, e.g. [13, 36, 25, 27]. In this
paper we simply compute the m-function by evolving the Riccati equation
(12) with fourth-order classical Runge-Kutta scheme and setting an initial
data m±(x±,λ, λ) = ∓ +

√
−λ at sufficiently far away point x±,λ = ±200. This

treatment is reasonable since the potentials in our numerical tests actually
decay to zero for x → ∞.

4. The frequency–domain method

The solution of the time-dependent Schrödinger equation could then be
computed with the following frequency-domain method:

Step 1. Fix σ > 0. For each s = σ + iµ with µ ∈ R, solve the Laplace-
transformed Schrödinger equation in the bounded interval [x−, x+]:

−ûxx + V (x)û = is û − iu0(x), x ∈ [x−, x+],

ûx(x−) = m−(x−, is) û(x−),

ûx(x+) = m−(x+, is) û(x+).

Step 2. Perform the inverse Laplace transformation

u(x, t) = L−1(û(s, t))(x)

=
1

2πi

∫ σ+i∞

σ−i∞

estû(s, t) ds =
eσt

2π

∫

∞

−∞

eiftu(x, σ + if) df,

(19)
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to derive the wave function u(x, t) for any t ∈ (0, T ].

In the numerical implementation, some parameters need to be tuned. The
function û is more smooth for larger damping factor σ, but the evolution time
span is then limited since an exponential term gets involved in the inverse
Laplace transformation. As a common practice, we set σ = 1/T where T is
a prescribed evolution time. The integrating domain is unbounded in (19),
and has to be truncated. We introduce a cut-off frequency fc and confine
the integration to the interval [−fc, fc]. Besides, to get rid of high frequency
oscillations in the inversely-transformed function we should introduce another
filtering function χ, which remains 1 at a large enough frequency band with
zero frequency being its center, and vanishes smoothly when close to the
ending points of [−fc, fc]. A good candidate (empirically) is

χ = exp
(

−(1.2f/fc)
20

)

.

After these treatments, we then derive an approximate inverse transformation
as

eσt

2π

∫

∞

−∞

eiftu(x, σ + if) df ≈ eσt

2π

∫ fc

−fc

χ(f) eiftu(x, σ + if) df. (20)

The right hand side is computed with a suitable quadrature scheme.

5. The time-domain method

From Section 2 it follows that the exact ABC we seek for is now explicitly
known, at least from the numerical point of view. But this is not the whole
story for simulating the solution of the time-dependent Schrödinger equation.
The difficulty does not lie in the computation of m-function itself, but its in-
verse Laplace transformation. Of course, a numerical inverse transformation
is possible, but this would be too much costly.

Hence, we design in this section an approximate ABC based on the ra-
tional approximation of the m-function. The kernel functions are of expo-
nential type with respect to the half-order time derivative operator, thus the
fast evaluation technique proposed in [38] (cf. Appendix) is applicable. For
a couple of alternative fast evaluation methods we refer the reader to [7] and
the references therein. The rational approximation will be realized by solv-
ing a least squares problem, an analogous technique as used in [2] for a fast
evaluation of the boundary kernel functions of the hyperbolic wave equation.
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In the time domain, the truncated Schrödinger problem reads

iut + ∂2
xu = V (x)u, (x, t) ∈ [x−, x+] × (0, T ],

u(x, 0) = u0(x), x ∈ [x−, x+],

ux(x±, t) = L−1
(

m±(x±, is) û(x±, s)
)

(t), t ∈ (0, T ].

(21)

To simplify the notation, we will focus on the right boundary at x = x+. Let
us recall the DtN map in the frequency domain reads

ûx(x+, s) = m+(x+, is) û(x+, s).

Returning to the time domain we have to consider the convolution

ux(x+, t) = K(t) ∗ u(x+, t), with K(t) = L−1
(

m+(x+, is)
)

(t).

Here we encounter two major difficulties. First, it is generally hard to compute
K(t) and second the involved convolution leads naturally to a nonlocal-in-
time DtN map.

To get an idea, let us first consider two specific simple examples. In the
case of the free Schrödinger (V ≡ 0), cf. (15), we have

m+(is) = − +
√
−is and thus L−1

(

m+(is)
)

= −e−iπ/4 ∂
1

2

t , (22)

with the half-order time derivative defined as

∂
1

2

t v(t) =
1√
π

d

dt

∫ t

0

v(τ)(t − τ)−1/2 dτ, (23)

which can be efficiently evaluated with some existing methods, e.g. [9, 26, 38].
Secondly we consider the Bargmann potential (17), and in this case the m-
function reads

m+(0, is) = − +
√
−is − γ2 − β2

√
−is + γ

,

thus we have

L−1
(

m+(0, is)
)

= −e−iπ/4 ∂
1

2

t − (γ2 − β2)(e−iπ/4 ∂
1

2

t + γ)−1.

This operator can then be efficiently evaluated by introducing an unknown

function and using the fast methods for ∂
1

2

t .
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Inspired by these two examples it naturally leads us to think about the
possibility of approximating the m-function with a rational function with
respect to a new spectral parameter k = +

√
−is (NOT s), i.e.,

m+(x+, is) ≈ m̃+(x+, is) = − +
√
−is +

d
∑

n=1

αn√
−is + βn

. (24)

If this is done, we can then replace the exact m-function with the approximate
alternative m̃, which leads to the approximate kernel function

L−1
(

m̃+(x+, is)
)

= −e−iπ/4 ∂
1

2

t +
d

∑

n=1

αn(e−iπ/4 ∂
1

2

t + βn)−1.

The analogous idea for the Bargmann potential (17) can then be used to
handle this kernel function.

The answer for the possibility is affirmative considering the asymptotic
expansion has been given in [16] as

m+(x+, λ) = − +
√
−λ + o(1/

√
r), r → ∞, (25)

where λ = µr, r ∈ R and the convergence is uniform for µ in any compact
subset of C+, cf. [33, Theorem C.4].

Now putting
g+(λ) = m+(x+, λ) +

+
√
−λ, (26)

in view of (25) we know that g+(λ) is analytic in C+ with respect to λ and it
tends to zero for λ → ∞. We then use the method of Alpert, Greengard and
Hagstrom [2] to approximate g+(λ) with a rational function with respect to
+
√
−λ (NOT λ). In terms of (25) we consider the following nonlinear least

square problem

ǫ = min
P,Q

∫

∞+iσ

−∞+iσ

∣

∣

∣

∣

P ( +
√
−λ)

Q( +
√
−λ)

− g+(λ)

∣

∣

∣

∣

2

|d +
√
−λ|, (27)

where P , Q are polynomials with deg(P ) + 1 = deg(Q) = d, and d is deter-
mined by making ǫ ≤ ǫ0, where ǫ0 is a prescribed tolerance number. This
nonlinear problem (27) is then solved with the technique of linearization and
orthogonalization [2]. Finally, by expressing P/Q with a sum of poles we
arrive at

m+(x+, λ) ≈ m̃+(x+, λ) = − +
√
−λ +

d
∑

n=1

αn

+
√
−λ + βn

. (28)
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Note that the coefficients αn and βn should appear as conjugate pairs, due
to the symmetry property (9). Unfortunately, it is not clear if the rational
approximation m̃+(x+, λ) in (28) has still the important Herglotz–property
of the m-function. Moreover, the Herglotz–property cannot be checked by
some conditions on the poles due to the leading square root in (28).

s

A

B

k=sqrt(−is)

A

B

Figure 1: s-plane and k-plane.

Employing the same idea to the m-function m−(x−, λ) and we get the
approximate boundary condition in the frequency domain

ûx(x±, s) =

(

∓ +
√
−is +

d±
∑

n=1

αn,±

+
√
−is + βn,±

)

û(x±, s). (29)

If we introduce new unknowns ŵn,± as

ŵn,± =
û(x±, s)

+
√
−is + βn,±

, (30)

then we can rewrite (29) as

ûx(x±, s) ± +
√
−is û =

d±
∑

n=1

αn,±ŵn,±, (31a)

+
√
−is ŵn,± + βn,±ŵn,± = û(x±, s), n = 1, . . . , d±. (31b)

In the time domain, the approximate boundary condition reads

ux(x±, t) ± e−iπ/4 ∂
1

2

t u(x±, t) =

d±
∑

n=1

αn,±wn,±(t), (32a)

e−iπ/4 ∂
1

2

t wn,±(t) + βn,±wn,±(t) = u(x±, t), n = 1, . . . , d±. (32b)
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The final approximate truncated time-domain problem is formulated as

iut + ∂2
xu = V (x)u, (x, t) ∈ Ωint × (0, T ],

u(x, 0) = u0(x), x ∈ Ωint,

ux(x±, t) ± e−iπ/4 ∂
1

2

t u(x±, t) =

d±
∑

n=1

αn,±wn,±(t),

e−iπ/4 ∂
1

2

t wn,±(t) + βn,±wn,±(t) = u(x±, t), n = 1, . . . , d±.

(33)

6. Numerical results

In this section we present some numerical results to test the accuracy
of the proposed methods. In every example the standard Crank-Nicolson
scheme for the time–discretization is employed. The fast evaluation of the
half–order time derivative operator (23) is performed with the method of
Zheng [38]. The computational domain is chosen to be Ωint = [x−, x+] =
[−5, 5] and the initial data is a Gaussian beam: u0(x) = e−x2+4ix. We use a
8th-order FEM method with 1024 elements for the spatial discretization and
a uniform time step of size ∆t = 10−4.

6.1. The Free Schrödinger Equation

The exact solution for the free Schrödinger equation (V (x) ≡ 0) reads

uexa(x, t) =

√

i

−4t + i
exp

(−ix2 − 4x + 16t

−4t + i

)

.

We set the cut–off frequency fc in (20) to be fc = 256 and used a filtering
function χ(f) = exp (−(1.2f/fc)

20). The following Table 1 shows the rela-
tive L2–errors to the exact solution at certain time points when using 8097
quadrature points with Simpson’s rule. By using this simple example we can

Time points 0.5 0.6 0.7 0.8 0.9
Relative L2 errors 2.26e-7 3.46e-8 7.60e-9 5.60e-9 6.25e-9

Table 1: Relative L
2–error at certain time steps for the free Schrödinger equation.

see that the frequency method with truncating and filtering works pretty
well: the magnitude of the relative L2–errors is at most on the order of 10−7.
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6.2. The Coulomb–like Potential

In the second example we test the time–domain method using a Coulomb–
like potential

V (x) =
1√

1 + x2
. (34)

We fixed σ for Step 1 to be σ = 1 and set the tolerance number for nonlinear
least square problem (27) as ǫ0 = 10−8. Here, we obtain 4 poles. In Figure 2
the time evolution is shown in a colored contour plot. One can see how
the initial beam spreads out with time increasing. Figure 3 shows how the

Figure 2: Time evolution of solution with Coulomb potential (34).

relative L2–error evolves in time. In this example with a varying external
potential the magnitude of the relative L2–errors stays below 10−5.

6.3. The Gaussian Barrier

Next we change the potential to a Gaussian barrier

V (x) = 30e−36(x−8)2 (35)

13
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Figure 3: Time evolution of the relative L
2–error.

with the height of 30, located in the exterior domain x > 5 and centered at
x = 8. We set σ = 1 and ǫ0 = 10−4, and get 21 poles with the nonlinear
least squares algorithm. In Figure 4 the temporal evolution of the solution
is shown. One clearly observes how the initial beam propagates, spreads out
and is (partially) reflected by the Gaussian barrier (35). The time evolution
of the corresponding relative L2–error is presented in Figure 5. The relative
L2–errors remain below 5 × 10−4.

Unfortunately the nonlinear least squares algorithm used in this paper
failed to bring a rational approximation within an error tolerance much
smaller than ǫ0. More efficient algorithm is still on demand, and this is-
sue is now under investigation.

Conclusion and Outlook

In this work we presented a new approach for simulating the solution
to the Schrödinger equation with a general space–dependent potential in
unbounded domain. Both frequency-domain and time-domain methods were
developed.
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Figure 4: Time evolution of solution with Gaussian barrier (35).

Future work will consist of implementing a more sophisticated algorithm
for computing the m-function. Instead of solving the Riccati equation (12)
we will consider computing the Weyl circles [13, 27] or the recent boundary
control approach [10]. Moreover, we will seek for a more stable algorithm
for its rational approximation. It will also be clarified how this rational
approximation can be made to conserve the essential Herglotz–property of
the analytic m-function. This study will enable us for a rigorous stability
analysis of this new approach. Finally, as a future goal, we want to extend our
approach to the multi–dimensional Schrödinger problem, hereby following the
idea of Amrein and Pearson [3].
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Figure 5: Time evolution of the relative L
2–error.

Appendix: Fast Evaluation Method

Here we present a short description of the method in [38] for evaluating

the half–order time derivative ∂
1

2

t . For any smooth function v = v(t) with
v(0) = v′(0) = 0, it is known that the semi-discrete half-order derivative

D
1

2

t v(tn)
def
=

√

2

∆t

n
∑

m=0

αmv(tn−m) (36)

with

αm =







βk =
(2k)!

22k(k!)2
, m = 2k,

−βk , m = 2k + 1
(37)

gives a second-order approximation of ∂
1

2

t v(tn) (see [4, 38]). Suppose there
exists a sum of decaying exponentials satisfying

β̃k =
L

∑

j=1

wje
−sjk, sj > 0, |βk − β̃k| ≤ ǫ, k = 0, 1, · · · ,

[

N

2

]

. (38)
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Here N denotes the total number of time steps. If ǫ is small enough, it is
reasonable to approximate (36) with

D̃
1

2

t v(tn)
def
=

√

2

∆t
(v(tn) − v(tn−1)) +

√

2

∆t

n
∑

m=2

α̃mv(tn−m), (39)

where

α̃m =

{

β̃k , m = 2k,

−β̃k , m = 2k + 1.
(40)

Set vk = v(tk), v = (v0, v1, · · · ), and define

Fodd(w, s;v, k)
def
=

k
∑

m=1

we−smv2k+1−2m

and

Feven(w, s;v, k)
def
=

k
∑

m=1

we−smv2k−2m.

Thus Fodd(w, s;v, 0) = Feven(w, s;v, 0) = 0. In addition, we have the follow-
ing recursions

Fodd(w, s;v, k) = e−s [wv2k−1 + Fodd(w, s;v, k − 1)] ,

Feven(w, s;v, k) = e−s [wv2k−2 + Feven(w, s;v, k − 1)] .

The summation (39) is then computed within O(L) operations as

n
∑

m=2

α̃mvn−m =























L
∑

j=1

Feven(wj, sj;v, k) −
L

∑

j=1

Fodd(wj, sj;v, k − 1) , n = 2k,

L
∑

j=1

Fodd(wj, sj;v, k) −
L

∑

j=1

Feven(wj, sj;v, k) , n = 2k + 1.

In [38] for N = 1, 000, 000, the authors found a sum of 81 decaying exponen-
tials which approximates βk with an error less than 5.0 × 10−11.
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