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Abstract

We consider the solution of multiply shifted linear systems for a single
right-hand side. The coefficient matrix is symmetric, complex, and indefinite.
The matrix is shifted by different multiples of the identity. Such problems
arise in a number of applications, including the electromagnetic simulation in
the development of microwave and mm-wave circuits and modules.
The properties of microwave circuits can be described in terms of their scat-
tering matrix which is extracted from the orthogonal decomposition of the
electric field. We discretize the Maxwell’s equations with orthogonal grids us-
ing the Finite Integration Technique (FIT).
Some Krylov subspace methods have been used to solve multiply shifted sys-
tems for about the cost of solving just one system. We use the QMR method
based on coupled two-term recurrences with polynomial preconditioning.
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1 Introduction

Today, electromagnetic simulation forms an indispensable tool in the development
of microwave circuits. The description of the boundary of the computational domain
has always been a key issue in bringing up efficiency of electromagnetic simulation.
The Perfectly Matched Layer (PML) concept provides an excellent solution to this
issue. However, the benefits of PML do not come for free. In the frequency-domain
case, the material tensors worsen the numerical properties of the system of equations
to be solved, which results in increased CPU time [20].
The subject under investigation are three-dimensional structures of arbitrary geom-
etry which are connected to the remaining circuit by transmission lines. Ports are
defined at the outer terminations of the transmission lines (see Fig. 1).
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Figure 1: The basic structure under investigation

Calculating the excitations at the ports, one obtains eigenvalue problems and then
large-scale systems of linear algebraic equations. In general, the computation of the
eigenvalue problem and of the system of linear algebraic equations have to be done
for several frequencies. Moreover, these linear equation problems have to be solved
repeatedly for different right-hand sides. The number of right-hand sides depends
on the number of ports and modes.
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2 Scattering Matrix

The scattering matrix describes the structure in terms of the wave modes on the
transmission line sections at the ports. We consider all exciting modes with ampli-
tudes al towards the discontinuity and all amplitudes bl outwards from the disconti-
nuity (see Fig. 1). As example for the waves at the left port of Fig. 1 the transverse
mode field at a cross-sectional plane z is given by

�Et(z) =
m(p)∑
l=1

al
�Et,le

−jkzl
z +

m(p)∑
l=1

bl �Et,le
+jkzl

z =
m(p)∑
l=1

wl(z) �Et,l (1)

with
wl(z) = ale

−jkzl
z + ble

+jkzl
z = ãl(z) + b̃l(z), (2)

where kzl
is the propagation constant. We consider the application of (1) with (2)

at a pair of neighboring cross-sectional planes zp and zp+Δp. That means, we have
to solve ms boundary value problems (see [9, 10]) with the boundary conditions

�Et,ν =

ms∑
ρ=1

w̄ρ,ν
�Et,l(zp), ρ = l +

p−1∑
q=1

m(q), p = 1(1)p, ν = 1(1)ms, (3)

in order to compute w(p+Δp)
m where the weighted amplitude sums w(p)

m are given. m(p)

denotes the number of modes which have to be taken into account at the port p. p
is the number of ports. The modes on a port p are numbered with l, l = 1(1)m(p).
That means, the dimension ms of this matrix is determined by the total number of
modes at all ports. We get �Et,l(zp) solving eigenvalue problems for the transmission
lines.

The scattering matrix S (see [10]) is defined by

�̄bν = S�̄aν , ν = 1(1)ms , (4)

or

b̄ρ,ν =
ms∑
σ=1

Sρ,σ · āσ,ν , ρ, ν = 1(1)ms . (5)

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral
form of Maxwell’s equations in the frequency domain [1] in order to compute the
electromagnetic field:∮

∂Ω

�H · d�s = jω

∫
Ω

[ε] �E · d�Ω ,

∮
Ω

[ε] �E · d�Ω = 0 ,∮
∂Ω

�E · d�s = −jω ∫
Ω

[μ] �H · d�Ω ,

∮
Ω

[μ] �H · d�Ω = 0 ,

(6)
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�D = [ε] �E, �B = [μ] �H. (7)

The electric and magnetic flux densities �D and �B are complex functions of the
spatial coordinates. ω = 2πf is the angular frequency of the sinusoidal excitation.
f denotes the frequency.

At the ports p the transverse electric field �Et(zp) is given by superposing weighted
transmission line modes �Et,l(zp) (see (1)):

�Et(zp) =

m(p)∑
l=1

wl(zp) �Et,l(zp) . (8)

All other parts of the surface of the computation domain are assumed to be an
electric or a magnetic wall:

�E × �n = 0 , �H × �n = 0 . (9)

We introduce a complex permittivity [ε] and a complex permeability [μ] diagonal
tensor to obtain a reflection-free interface between the computational area and the
lossy PML region:

[ε] = (ε)[Λ(ε)] , [μ] = (μ)[Λ(μ)] (10)

with
(ε) = diag(εx, εy, εz) , (μ) = diag(μx, μy, μz) . (11)

[Λ(ε)] and [Λ(μ)] are defined for a PML in x-, y-, or z-direction as follows (ν ∈ {ε, μ}):

[Λ(ν)] =

⎧⎨
⎩

[Λ(ν)]x = diag( 1
λν
, λν , λν)

[Λ(ν)]y = diag(λν ,
1
λν
, λν)

[Λ(ν)]z = diag(λν , λν ,
1
λν

)

⎫⎬
⎭ with (12)

λν = 1 − j
κν

ν0ω
and

κε

ε0
=
κμ

μ0
. (13)

In case of overlapping at edges and corners the resulting PML tensor is the product
of the PML tensors of the individual PML walls that form the edges and corners,
respectively.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular
grids (see Fig. 2) using the Finite Integration Technique with lowest order integration
formulae [1, 14, 23]:∮

∂Ω

�f · d�s→
∑

(±fisi) ,

∫
Ω

�f · d�Ω → fΩ ,

∮
Ω

�f · d�Ω →
∑

(±fiΩi) . (14)

The discretized form of (6) results in an equation for each field component. Pre-
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Figure 2: Primary and dual grid

senting each equation using matrices provides a compact form:

C̃Ds̃/μ̃
�b = jωε0μ0DÃε̃�e , S̃DÃε̃�e = 0 ,

CDs�e = −jωDA
�b , SDA

�b = 0 .
(15)

The diagonal matrices Ds̃/μ̃, DÃε̃, Ds, and DA represent all cell quantities. The
so-called curl (C, C̃) and source matrices (S, S̃) describe the topology of the two
grids with the following properties (see [24]):

SC = 0 , S̃C̃ = 0 , C = C̃T . (16)

4.1 System of Linear Algebraic Equations

Using (16), eliminating the components of the magnetic flux density (�b) in (15), and
multiplying by D1/2

s yields a symmetric form of linear algebraic equations:

(D1/2
s CTDs̃/μ̃D

−1
A CD1/2

s − k2
0DÃε̃)D

1/2
s �e = 0 , (17)

where k0 = ω
√
ε0μ0 denotes the wavenumber in vacuum. Moreover, the gradient of

the electric field divergence

[ε]∇([ε]−2∇ · [ε] �E) = 0 (18)

is equivalent to the matrix equation

(D−1/2
s DÃε̃S̃

TD−1

Ṽ ε̃ε̃
S̃DÃε̃D

−1/2
s )D1/2

s �e = 0 . (19)
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The diagonal matrix DṼ ε̃ε̃ is a volume matrix for the 8 partial volumes of the dual
elementary cell.

The addition of Eqs. (17) and (19) yields the form

(A(G) − k2
0D

(G))x(G) = 0 . (20)

Taking into account the constitutive relations (7), the boundary conditions (9),
and the transmission line modes �Et,l(zp) (see (1)) we transform Eq. (20) into an
inhomogeneous linear system of equations where its right-hand side depends on (8).
For it, we use the notations given in Table 1. Thus, we get from Eq. (20):

Table 1: Notations

x(G) = (x
(G)
E , x

(G)
I )T , vector of the unknown electric flux densities

x
(G)
E = (x

(G)
2d , x

(G)
3d )T , given components of the solution vector x(G)

x
(G)
E external points, x

(G)
2d solution of the

dim(x(G)
E ) = nE 2d eigenvalue problem

x
(G)
I internal points, x

(G)
3d given boundary points

dim(x(G)
I ) = nI ,n = nE + nI of the 3d problem

A(G) = (A
(G)
E , 0) + (0, A

(G)
I ) dim(A(G)) = (nI , n) ,

dim(A(G)
E ) = (nI , nE) ,

dim(A(G)
I ) = (nI , nI)

D(G) = (0, D
(G)
I ) dim(D(G)) = (nI , n) ,

dim(D(G)
I ) = (nI , nI)

IE identity dim(IE) = (nE , nE)

(
0

A(G)

)(
x

(G)
E

x
(G)
I

)
=

(
IE − IE 0

A
(G)
E A

(G)
I − k2

0D
(G)
I

)(
x

(G)
E

x
(G)
I

)
= 0 ,

(
IE 0

0 A
(G)
I − k2

0D
(G)
I

)(
x

(G)
E

x
(G)
I

)
+

( −IE 0

A
(G)
E 0

)(
x

(G)
E

x
(G)
I

)
= 0 ,

(
IE 0

0 A
(G)
I − k2

0D
(G)
I

)(
x

(G)
E

x
(G)
I

)
=

(
x

(G)
E

−A(G)
E x

(G)
E

)
=

(
x

(G)
E

b
(G)
I

)
= b(G) , (21)

(A
(G)
I − k2

0D
(G)
I )x

(G)
I = b

(G)
I . (22)

Therefore, the systems of linear algebraic equations (21) and (22) are to be solved,
respectively.
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4.2 Eigenvalue Problem

The vector x(G)
2d is the solution of the 2d eigenvalue problem. In the following,

we consider a longitudinally homogeneous transmission line. Thus, any field can
be expanded into a sum of so-called modal fields which vary exponentially in the
logitudinal direction:

�E(x, y, z ± 2h) = �E(x, y, z)e∓jkz2h , (23)

where kz is the propagation constant, and 2h is the length of an elementary cell in
z-direction (see Fig. 3). Thus, we get a two-dimensional eigenvalue problem for the
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Figure 3: Transmission line

transverse electric fields �y = �Et,l(zp), l = 1(1)m(p), (see (8)) on the transmission
line region:

A�y = γ�y, γ = e−jkz2h + e+jkz2h − 2 = −4 sin2(hkz). (24)

A detailed derivation of the eigenvalue problem can be found in [11, 12, 13, 15].

5 QMR Algorithm for Shifted Matrices

We consider the iterative solution of large systems of linear algebraic equations
which not only have multiple right-hand sides, but also have multiple shifts for each
right-hand side. The generalized form of Eq. (22) is the problem

(αjA+ βjD)x(j,k) = b(k) , αj, βj ∈ C , (25)
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with j = 1, . . . , ns and k = 1, . . . , nb. Let nb be the number of right-hand sides and
ns be the number of shifts. The Matrix A is complex, symmetric, and indefinite.
A standard way to solve systems with multiple right-hand sides is to use a block
approach [19, 6].

Eq. (25) can be transformed into

(D−1/2AD−1/2 + α−1
j βjI)(αjD

1/2x(j,k)) = D−1/2b(k) . (26)

Thus, we get then the common equation

A(j)x(j,k) = (A+ σjI)x
(j,k) = b(k) , σj ∈ C . (27)

For the special case that all right-hand sides in (27) are identical, i.e.,

x(j) = x(j,k) , b(k) = b for all k = 1, . . . , nb , (28)

it is straightforward to exploit the shift structure when solving the ns systems by
Krylov subspace methods. We use the initial guess x(j)

0 = 0 for all j. In this case,
the Krylov subspaces for all ns systems are identical:

Km(A + σjI, b) = Km(A, b) for all j = 1, . . . , ns and m ≥ 1 . (29)

This means that the computation of suitable basis vectors for the underlying Krylov
subspaces has to be performed only once.

A lot of Krylov subspace methods have been developed for shifted matrix problems.
We present a shifted coupled two-term algorithm without look-ahead for

A(j)x(j) = (A+ σjI)x
(j) = b , σj ∈ C , j = 1, . . . , ns . (30)

Unfortunately, standard preconditioning techniques with a preconditioner

M = M1M2 = (M1M2)
T = MT , (31)

such as SSOR preconditioning, destroy the special structure when they are applied
to shifted linear systems. The only technique we are aware of that allows to preserve
the shifted structure is polynomial preconditioning (see [5]).

Using standard preconditioning techniques, we apply the coupled two-term QMR
algorithm to the shifted linear systems [5, 7]

Ã(j)x̃(j) = b̃ , j = 1, . . . , ns , (32)

with
Ã(j) = M−1

1 (A+ σjM1M2)M
−1
2 = M−1

1 AM−1
2 + σjI ,

b̃ = M−1
1 b and x̃(j) = M2x

(j) .
(33)

It is easy to see that the linear systems (30) and (32) with (33) are not equivalent.
Only, for M = I the systems (30) and ( 32) are equivalent.
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It is possible to write the resulting algorithm in terms of quantities corresponding
to the system (30). This is what we have done below.
We have the following analogies:

vn → ṽn = M−1
1 vn , wn → w̃n = M−T

2 wn ,
pn → p̃n = M2pn , qn → q̃n = MT

1 qn ,

w̃T
n ṽn = wT

nM
−1
2 M−1

1 vn = wT
nM

−1vn ,

q̃T
n p̃n = qT

nM1M2pn = qT
nMpn ,

q̃T
n Ãp̃n = qT

nM1M
−1
1 AM−1

2 M2pn = qT
nApn .

The resulting coupled two-term QMR algorithm is as follows.

0. Input: A, {σ1, . . . , σns}, b.
For j = 1, . . . , ns, set x(j)

0 = 0 and r0 = b.
Compute ρ1 = ‖M−1

1 r0‖ and set v1 = r0/ρ1.
For j = 1, . . . , ns, set p(j)

0 = d
(j)
0 = 0, c(j)0 = ε

(j)
0 = 1, ϑ(j)

0 = 0, η(j)
0 = −1.

Choose j1 ∈ {1, . . . , ns}: Ã(j1)x̃(j1) = b̃ is the seed system.

For n = 1, 2, . . . , do:

1. Compute δn = vT
nM

−1vn.
If δn = 0, then stop.

2. For all j = 1, . . . , ns for which x
(j)
n has not converged yet:

• If ε(j)n−1 = 0, then stop.

• Compute
p

(j)
n = M−1vn − p

(j)
n−1(ρnδn/ε

(j)
n−1) .

• Compute
ε
(j)
n = p

(j)
n

T
A(j)p

(j)
n = p

(j)
n

T
(A+ σjM)p

(j)
n ,

β
(j)
n = ε

(j)
n /δn ,

v̂n+1 = A(j1)p
(j1)
n − vnβ

(j1)
n = (A+ σj1M)p

(j1)
n − vnβ

(j1)
n ,

ρn+1 = ‖M−1
1 v̂n+1‖ .

• Compute
ϑ

(j)
n =

ρn+1

c
(j)
n−1|β(j)

n |
,

c
(j)
n =

1√
1 + ϑ

(j)
n

2
,

η
(j)
n = −η(j)

n−1

ρnc
(j)
n

2

β
(j)
n c

(j)
n−1

2 ,

d
(j)
n = p

(j)
n η

(j)
n + d

(j)
n−1ϑ

(j)
n−1

2
c
(j)
n

2
,

x
(j)
n = x

(j)
n−1 + d

(j)
n .
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• If ρn+1 = 0, then stop.
Otherwise, set

vn+1 = v̂n+1/ρn+1.

End for (j).

3. If all x(j)
n have converged, then stop.

End for (n).

5.1 Implementation Details

In this section, we present a detailed description of the implementation of the coupled
two-term Lanczos algorithm for shifted linear systems [7].
First, we consider the non-shifted system Ax = b. The construction for the basis
vectors pk and vk can be written compactly in matrix form:

Vn = PnUn , APn = Vn+1Ln . (34)

Here, Un is an upper triangular matrix and Ln is an upper Hessenberg matrix given
by

Un =

⎛
⎜⎜⎜⎝

1 u12 . . . u1n

0 1
. . . ...

... . . . . . . un−1n

0 . . . 0 1

⎞
⎟⎟⎟⎠ and Ln =

⎛
⎜⎜⎜⎜⎜⎜⎝

l11 l12 . . . l1n

ρ2 l22
. . . ...

0 ρ3
. . . ...

...
... . . . lnn

0 . . . . . . ρn+1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, it follows that

lin = 0 , i = 1, 2, . . . , n− 1 , lnn = βn = εn/δn ,
uin = 0 , i = 1, 2, . . . , n− 2 , un−1n = ρnδn/εn−1 .

Therefore, the matrix Un is upper bidiagonal and Ln is a lower bidiagonal matrix.

In the QMR method, the vectors vk and pk generated by the Lanczos algorithm are
used as a basis for the Krylov subspace Kn(A, r0). The nth QMR iterate is then
defined by

xn = x0 + Vnzn . (35)

Setting yn = Unzn, we can rewrite xn as follows:

xn = x0 + VnU
−1
n yn , (36)

where yn is the unique solution of the least squares problem

yn = arg min
y∈Cn

‖ ‖r0‖e1 − Lny ‖ . (37)
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We now return to shifted linear systems of the form (32).

The construction of the basis vectors p(j)
k and vk for the Krylov subspace can be

written as follows:

Vn = P (j)
n U (j)

n , A(j)P (j)
n = (A+ σjM)P (j)

n = Vn+1L
(j)
n . (38)

U
(j)
n is an upper bidiagonal matrix with u

(j)
n−1n = ρnδn/ε

(j)
n−1 and L

(j)
n is a lower

bidiagonal matrix with l(j)nn = β
(j)
n = ε

(j)
n /δn.

We set x(j)
0 = 0, j = 1, . . . , ns. Then, the nth QMR iterates are defined by

x(j)
n = Vnz

(j)
n = VnU

(j)
n

−1
y(j)

n , (39)

where y(j)
n is unique solution of the jth least squares problem

y(j)
n = arg min

y∈Cn
‖ ‖r0‖e1 − L(j)

n y ‖ . (40)

Using

A(j) = A+ σjM = A+ σj1M + (σj − σj1)M = A(j1) + (σj − σj1)M

the term ε(j) can be expressed as ε(j1):

ε(j)n = p(j)
n

T
A(j)p(j)

n

= p(j)
n

T
(A(j1) + (σj − σj1)M)p(j)

n (41)

= p(j)
n

T
A(j1)p(j)

n + (σj − σj1)p
(j)
n

T
Mp(j)

n .

The resulting algorithm is as follows.

0. For j = 1, . . . , ns, set μ(j)
0 = 0 and γ(j)

0 = 0.

For n = 1, 2, . . . , do:

1. For j = 1, . . . , ns, do:

• μ
(j)
n = μ

(j)
n−1(ρnδn/ε

(j)
n−1)

2 + ε
(j)
n−1(ρnδn(1/ε

(j1)
n−1 − 1/ε

(j)
n−1))

2

• γ
(j)
n = δn + γ

(j)
n−1(ρnδn/ε

(j)
n−1)

2

• ε
(j)
n = ε

(j1)
n + μ

(j)
n + (σj − σj1)γ

(j)
n

End for (j).

End for (n).
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The vector p(j)
n can be expressed recursively as

p
(j)
n = M−1vn − p

(j)
n−1(ρnδn/ε

(j)
n−1)

= M−1vn − p
(j1)
n−1(ρnδn/ε

(j1)
n−1)+

p
(j1)
n−1(ρnδn/ε

(j1)
n−1) − p

(j)
n−1(ρnδn/ε

(j)
n−1)

= p
(j1)
n + p

(j1)
n−1(ρnδn(1/ε

(j1)
n−1 − 1/ε

(j)
n−1))+

(p
(j1)
n−1 − p

(j)
n−1)(ρnδn/ε

(j)
n−1)

and p(j1)
0 = p

(j)
0 = 0.

Also, the scalar product p(j)
n

T
Mp

(j)
n can be expressed recursively as

p
(j)
n

T
Mp

(j)
n = vT

nMvn + p
(j)
n−1

T
Mp

(j)
n−1(ρnδn/ε

(j)
n−1)

2

= δn + p
(j)
n−1

T
Mp

(j)
n−1(ρnδn/ε

(j)
n−1)

2

and p(j)
0 = 0.

6 Polynomial Preconditioning

We consider the shifted linear system

Aσx = (A+ σI)x = b . (42)

We use polynomial preconditioning to speed up the convergence of the iterative
methods for the solution of (42), i.e.,

sσ(Aσ)Aσx = sσ(Aσ)b (43)

for left preconditioning and

Aσsσ(Aσ)y = sσ(Aσ)Aσy = b , x = sσ(Aσ)y , (44)

for right preconditioning, respectively. Here, sσ is a suitable chosen polynomial
of a small degree. Both linear systems (43) and (44) are equivalent. We seek a
polynomial sσ with the following two properties [4, 3]:

• The coefficient matrix sσ(Aσ)Aσ is again a shifted matrix.

• The convergence of the iterative method, applied to the preconditioned system,
is speed up optimally.

First, for any polynomial, we can represent Aσsσ(Aσ) in the form

Aσsσ(Aσ) = (A+ σI)sσ(A+ σI) = As(A) + τI (45)

12



with τ ∈ C. Note that sσ, s, and τ are related by

(z + σ)sσ(z + σ) = zs(z) + τ and τ = σs(−σ) . (46)

We note that the coefficient matrix As(A) of the preconditioned system (45) is
Hermitian if, and only if, s is a real polynomial. In order to guarantee that As(A)
is nonsingular, we require that s(z) �= 0 for all z ∈ S with

�(A) ⊆ S = [a, b] ∪ [c, d] , c < d < 0 < a < b ,

where �(A) is the spectrum of A.

Next, we turn to the question of optimal choice of polynomial s. We have two
different cases:

• zs(z) > 0 ∀z ∈ S

• zs(z) > 0 ∀z ∈ [a, b] and zs(z) < 0 ∀z ∈ [c, d] .

If the last case holds, then the preconditioned system remains indefinite. We can
now state the main result in the following form [4]:

Let S = [a, b]∪ [c, d] be the union of a positive and negative interval with
c < d < 0 < a < b and Γ = {(γ, δ) ∈ R × R : δ > 0} a parameter set.
The optimal polynomial s∗(z) of

w(γ, δ) = min
s

‖f − zs‖g , ‖f − zs‖g = max
z∈S

|g(z)(f(z)− zs(z))| , (47)

where
g(z) =

{
1 if z > 0
δ if z < 0

, f(z) =

{
1 if z > 0
γ if z < 0

is an indefinite polynomial preconditioner with

γ =
d̄+ c̄

b̄+ ā
and δ =

b̄− ā

d̄− c̄
.

The numbers ā, b̄, c̄, and d̄ are defined by

ā = min
z∈[a,b]

zs(z) , b̄ = max
z∈[a,b]

zs(z) , c̄ = min
z∈[c,d]

zs(z) , and d̄ = max
z∈[c,d]

zs(z) .

Moreover, there exist parameters γ0 and δ0, (γ0, δ0) ∈ Γ, such that
s∗(z, γ0, δ0) is an optimal indefinite polynomial preconditioner.

(47) is a linear Chebyshev approximation problem depending on the two parameters
(γ, δ) ∈ Γ. We seek to approximate f(z) by polynomials of the form zs(z) in the
weighted uniform norm ‖.‖g . The standard tool for the numerical solution of such
general real Chebyshev approximation problems is the method of Remez. The Remez
type procedure is based on the equioscillation property [4].
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6.1 Remez Algorithm

Let l ∈ N, γ ∈ R, and δ > 0 be given. In the following, let s be any candidate for
the optimal polynomial with degree l − 1 and real coefficients. We introduce the
so-called residual polynomial

p(z) = p(z, s) = 1 − zs(z) (48)

corresponding to s and therefore

g(z)(f(z) − zs(z)) =

{
p(z) if z > 0
δ(γ − 1 + p(z)) if z < 0

. (49)

We seek a polynomial s with l + 1 extremal points

c ≤ z1 < z2 < · · · < zk ≤ d , a ≤ zk+1 < · · · < zl < zl+1 ≤ b

and a number y ∈ R such that

g(zj)(f(zj) − zjs(zj)) =

{
(−1)j−1y for j = 1, . . . , k
(−1)jy for j = k + 1, . . . , l + 1

. (50)

Moreover, if s is optimal, then w(γ, δ) = |y| (see (47)). For any k ∈ {1, . . . , n + 1},
denote by

Zk = {(z1, . . . , zn+1) : c ≤ z1 < · · · < zk ≤ d, a ≤ zk+1 < · · · < zl+1 ≤ b}

the set of all possible zj for which (50) holds. To each Z ∈ Zk, there is a unique
polynomial s(z) = s(z, Z) and a unique number y = y(Z) ∈ R such that

p(z) =
k∑

j=1

(1 − γ + (−1)j−1y/δ)Lj(z) +
l+1∑

j=k+1

(−1)jyLj(z) ,

Lj(z) =
l+1∏
i=1
i�=j

z − zi

zj − zi
, Lj(zi) =

{
1 if j = i
0 otherwise ,

(51)

and

y =
1 + (γ − 1)

∑k
j=1Lj(0)

(1/δ)
∑k

j=1(−1)j−1Lj(0) +
∑l+1

j=k+1(−1)jLj(0)
. (52)

The Lagrange interpolation formula Lj(z) can be rewritten in such a way that it
can evaluated and updated in O(l) operations. The numerator of Lj can be written
as the quantity

L(z) = (z − z1)(z − z2) · · · (z − zl+1) =
l+1∏
j=1

(z − zj) (53)
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divided by (z − zj). We define the barycentric weights by

wj =
1

l+1∏
k=1
k �=j

(zj − zk)

=
1

L′(zj)
, j = 1, . . . , l + 1 , (54)

and thus we can write Lj as

Lj(z) = L(z)
wj

z − zj

and Lj(0) = −L(0)
wj

zj

. (55)

Using (53) – (55), we transform the Eqs. (51) and (52) into

p(z) = L(z)

(
k∑

j=1

(1 − γ + (−1)j−1y/δ)
wj

z − zj
+

l+1∑
j=k+1

(−1)jy
wj

z − zj

)
(56)

and

y = − 1 − (γ − 1)L(0)
∑k

j=1wj/zj

L(0)
(
(1/δ)

∑k
j=1(−1)j−1wj/zj +

∑l+1
j=k+1(−1)jwj/zj

) . (57)

The resulting Remez algorithm is as follows.

1. Choose l ∈ N, k ∈ {1, . . . , l + 1}, and l + 1 alternation points zj such that
Z = (z1, . . . , zl+1) ∈ Zk, c ≤ z1 < · · · < zk ≤ d < 0 < a ≤ zk+1, · · · < zl+1 ≤ b .

2. Evaluate y and the residual polynomial p(z) by means Lagrange interpolation
polynomials Lj(z):

p(zj) =

{
1 − γ + (−1)j−1y/δ for j = 1, . . . , k
(−1)jy for j = k + 1, . . . , l + 1

.

3. Find local extrema of g(z)(f(z)− zs(z)) on mesh S, and form a new reference
point set Z ′ = (z′1, . . . , z

′
l+1) ∈ Zk .

4. If algorithm not converged go to step 2.

|g(z)(f(z) − zs(z))| ≤ |y| for any z ∈ S

|g(zj)(f(zj) − zjs(zj))| = |y| for j = 1, . . . , l + 1

A practical procedure for computing the approximate local extrema in step 3 can
be found in [8]. The initial choice of reference point set Z is completely arbitrary.
The Remez algorithm tends to self-correct a bad choice of reference points by the
exchange process. A possible choice of the initial reference point set Z is:

• Equidistant nodes with spacing h = (d − c)/(k − 1) on the interval [c, d] and
with spacing h = (b− a)/(l − k) on the interval [a, b].
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• Chebyshev points of the first kind. Zeros of the Chebyshev polynomial on
[−1, 1] are

cos
(2j − 1)π

2l + 2
, j = 1, . . . , l + 1 .

• Chebyshev points of the second kind. Extrema of the Chebyshev polynomial
on [−1, 1] are

cos
(j − 1)π

l
, j = 1, . . . , l + 1 .

Now, we consider the problem of how to obtain the bounds a, b, c, d ∈ R in the set
S = [a, b]∪ [c, d] where c < d < 0 < a < b. Ideally, a, b, c, and d are the four extreme
eigenvalues of A. Some results of this problem can be found in [22, 2, 21].

6.2 Nelder-Mead Method

The Nelder-Mead method [17] or downhill simplex method is a commonly used non-
linear optimization algorithm for unconstrained real functions. It is a numerical
method for multidimensional minimization, that is, finding the minimum of an ob-
jective function of more than one independent variable. The method requires only
function evaluations, not derivates. It uses the concept of a simplex, which is a
polyhedron of m+1 vertices in m dimensions. Examples of simplexes include a line
segment on a line, a triangle on a plane, a tetrahedron in three-dimensional space
and so forth. The problem can be written as

min
x
F (x) , x ∈ R

m , F ∈ C(Rm,R) . (58)

The Nelder-Mead algorithm is a simple, intuitive, and relatively robust method that
approaches the optimum in great steps in the beginning of the search. It must be
started not just with a single point, but with m+1 points, defining an initial simplex:

Σ = {x1, . . . , xm+1} .

Let sj be the center of gravity with respect to xj :

sj =
1

m

m+1∑
i=1
i�=j

xi .

There are three construction (basic) principles to determine a new point of the
simplex Σ.

1. Reflexion of the corner xj at the center sj . The new point is determined from

xr = sj + α(sj − xj) , 0 < α ≤ 1 .
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2. Expansion of the corner xj in the direction (sj − xj). The new point is deter-
mined from

xe = sj + β(sj − xj) = sj +
β

α
(xr − sj) , β > α .

3. Contraction with three different types. 0 < γ < α denotes a contraction
constant.

(a) Partial interior contraction of xj in the direction (sj−xj). The new point
is determined from

xc = sj + γ(xj − sj) .

(b) Partial exterior contraction of xj in the direction (sj−xj). The new point
is determined from

xc = sj + γ(sj − xj) = sj +
γ

α
(xr − sj) .

(c) Total contraction (shrink step) to xj . All points will replaced by

xi = (xi + xj)/2 , ∀ i ∈ {1, . . . , m+ 1} .

Note that standard values are α = 1, β = 2, and γ = 1/2.

It is possible to extend the Nelder-Mead method to simple bounds and nonlinear
inequality and equality constraints [16]:

min
x
F (x) , x ∈ Rm , F ∈ C(Rm,R) ,

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , m,

gi(x) ≤ 0, i = 1, . . . , ni, hi(x) = 0, i = ni + 1, . . . , nc .

(59)

An adaptive linear penalty function is used to handle general inequality and equality
constraints. The problem (59) is rewritten in an unconstrained penalized form,

min
x
L(x, λ) , x ∈ Rm , λ ∈ Rnc , L ∈ C(Rm × Rnc ,R) ,

L(x, λ) = F (x) +
ni∑

i=1

λi max(0, gi(x)) +
nc∑

i=ni+1

λi max(0, |hi(x)|) .
(60)

The penalty parameters λi, i = 1, . . . , nc, are updated after each determination of a
new simplex point by the Nelder-Mead algorithm. The updating scheme consists of
increasing penalty parameters of violated constraints. They are initialized as 0.

If (L(xnew, λk) ≤ L(xbest, λk) then

• s > 0, positive step size

• λk+1
i = λk

i + smax(0, gi(x
new)) , i = 1, . . . , ni ,

• λk+1
i = λk

i + smax(0, |hi(x
new)|) , i = ni + 1, . . . , nc ,
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• xbest = arg min
x∈{xnew ,xbest,Σ}

L(x, λk+1) ,

End if.

The original Nelder-Mead algorithm was developed for unbounded domain problems.
The new points can leave the domain after either the reflexion or the expansion
operation. Its coordinates are projected on the bounds:

if (xi < xmin
i ) set xi = xmin

i ,

if (xi > xmax
i ) set xi = xmax

i .

6.3 Asymptotic Convergence Factor

Using the Chebyshev approximation problem (47), we now construct an objective
function F (x) (see (58)) for the Nelder-Mead method. For the choice of a suitable
preconditioner, it is cruical to have error bounds for the iterates. We express the
Krylov subspace Km(A, r0) in terms of polynomials q(z):

Km(A, r0) = {q(A)r0 : q ∈ Πm−1} ,

where the notation Πm−1 will be used for the set of all complex polynomials of degree
at most m− 1. Thus, we have the following minimal residual property

‖b−Axm‖ = min
x∈x0+Km

‖b−Ax‖ , xm ∈ x0 + Km . (61)

Using (61), we can deduce the following result:

‖b−Axm‖
‖b− Ax0‖ ≤ Em(a, b, c, d) , m = 1, 2, . . . , (62)

with
Em(a, b, c, d) = min

p∈Π
(r)
m ,p(0)=1

max
z∈[a,b]∪[c,d]

|p(z)| , (63)

where Π
(r)
m denotes the set of all real polynomials of degree at mostm. Unfortunately,

the solution of (63) is explicitly know only for special cases. For the general case
holds

lim
m→∞

(Em(a, b, c, d))1/m = κ(a, b, c, d) , 0 < κ(a, b, c, d) < 1 . (64)

κ(a, b, c, d) is usually called the asymptotic convergence factor. An explicit formula
for κ for two intervals in terms of elliptic integrals is derived in [4].

RF (x, y, z) =
1

2

∫ ∞

0

dt√
(t+ x)(t+ y)(t+ z)

, x, y, z ≥ 0 , (65)

is the standard form of the elliptic integral of the first kind.
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Let c < d < 0 < a < b. Then

κ(a, b, c, d) =
ϑ4(π(v0 −M)/(2K), q)

ϑ4(π(v0 +M)/(2K), q)
,

ϑ4(ψ, q) = 1 + 2
∞∑

j=1

(−1)jqj2
cos(2ψj) ,

(66)

where

q = e
−
πK ′

K , k =

√
(a− d)(b− c)

(a− c)(b− d)
, K = RF (1, 0, 1 − k2) ,

K ′ = RF (1, 0, k2) , M = −
√
a− c

b− c
RF

(
1,
b− a

b− c
,
b− a

b− d

)
,

v0 = −
√
a(b− d)

b(a− d)
RF

(
1,
d(a− b)

b(a− d)
,
c(a− b)

b(a− c)

)
.

(67)

For J ∈ N, we set

ϑ
(J)
4 (ψ, q) = 1 + 2

J∑
j=1

(−1)jqj2

cos(2ψj) .

If J is choosen large enough, the finite series ϑ(J)
4 (ψ, q) will yield a sufficiently ac-

curate approximation to ϑ4(ψ, q). For the calculation of the integral RF , we use a
procedure due to Carlson [18].

We now return to the right polynomial preconditioned system (44). Next, we state
error bounds for this system. Setting

ā = min
z∈[a,b]

zs(z) , b̄ = max
z∈[a,b]

zs(z) , c̄ = min
z∈[c,d]

zs(z) , and d̄ = max
z∈[c,d]

zs(z) ,

it follows that

�(As(A)) ⊂ S̄ = [ā, b̄] ∪ [c̄, d̄] and c̄ < d̄ < 0 < ā < b̄.

Analogous to (62), we get the estimates

‖b− As(A)ym‖
‖b− As(A)y0‖ =

‖b−Axm‖
‖b− Ax0‖ ≤ Em(ā, b̄, c̄, d̄) , m = 1, 2, . . . .

Furthermore, the error bound behaves like

Em(ā, b̄, c̄, d̄) ≈ (κ(ā, b̄, c̄, d̄))m

for large m.
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We now return to our optimization problem (47). For the optimal polynomial s∗(z)
of w(γ, δ) follows

ā(s∗) = 1 − w(γ, δ) , b̄(s∗) = 1 + w(γ, δ) ,

c̄(s∗) = γ − w(γ, δ)

δ
, d̄(s∗) = γ +

w(γ, δ)

δ
.

s∗ is an indefinite polynomial preconditioner if, and only if, (γ, δ) ∈ Γw:

Γw = {(γ, δ) ∈ R × R : δ > 0, w(γ, δ) < 1, and γ < −w(γ, δ)/δ} .
The objective function F (x) of (58) is replaced by the asymptotic convergence factor

κ(1 − w(γ, δ), 1 + w(γ, δ), γ − w(γ, δ)

δ
, γ +

w(γ, δ)

δ
)

with x = (γ, δ) and m = 2. Thus, we have to solve a nonlinear optimization
problem with simple constraints. The function F (x) is continous, but only piecewise
differentiable. There exist parameters γ0 and δ0 such that

F (γ0, δ0) = min
(γ,δ)∈Γw

F (γ, δ) , (γ0, δ0) ∈ Γw . (68)

6.4 Implementation Details

The polynomials s(z) and sσ(z + σ) (see (46)) are given by

s(z) =

l∑
i=0

ciz
i and zσ(z + σ) =

l∑
i=0

cσi (zi + σ) ,

respectively. The coefficients ci, i = 0, . . . , l, and the shift σ are known. The goal is
to evaluate the parameter τ and the coefficients cσi , i = 0, . . . , l.

(z + σ)sσ(z + σ) = zs(z) + τ

(z + σ)
l∑

i=0

cσi (z + σ)i = z
l∑

i=0

ciz
i + τ

(z + σ)
l∑

i=0

cσi

i∑
j=0

(
i

j

)
zi−jσj =

l∑
i=0

ciz
i+1 + τ

l∑
i=0

cσi

i∑
j=0

(
i

j

)
zi+1−jσj + σ

l∑
i=0

cσi

i∑
j=0

(
i

j

)
zi−jσj =

l∑
i=0

ciz
i+1 + τ (69)

Equating the coefficients of z0 (j = i) in Eq. (69) and from (46) we get

τ = σ
l∑

i=0

cσi σ
i = σ

l∑
i=0

ci(−σ)i = σ
l∑

i=0

(−1)iciσ
i .

The coefficients cσi , i = 0, . . . , l, are solutions of the following linear system of equa-
tions. Equating the coefficients of zk+1, k = 0, . . . , l, results in:
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1. right-hand side of (69): i+ 1 = k + 1, ck

2. left-hand side of (69):

(a) i+ 1 − j = k + 1, j = i− k ≥ 0,
l∑

i=k

cσi
(

i
i−k

)
σi−k

(b) i− j = k + 1, j = i− k − 1 ≥ 0,
l∑

i=k+1

cσi
(

i
i−k−1

)
σi−k

3.
l∑

i=k

cσi
(

i
i−k

)
σi−k +

l∑
i=k+1

cσi
(

i
i−k−1

)
σi−k = ck .

After some transformations we get the coefficients cσi as the solution of an upper
triangular system of equations.

0. Input: {c0, . . . , cl}.
cσl = cl.

For k = l − 1, . . . , 0 do:

1. cσk = ck −
l∑

i=k+1

(
i+1
k+1

)
σi−kcσi .

End for.

We now consider the computation of the coefficients ck, k = 0, . . . , l, from the La-
grange polynomial Lj(z) (see (51)). Using ansatz

Lj(z) =
l+1∏
i=1
i�=j

z − zi

zj − zi

=
l+1∑
k=1

ajkz
k−1

we get

Lj(zi) = δji =
l+1∑
k=1

ajkz
k−1
i

and therefore⎛
⎜⎜⎜⎜⎜⎝

δj1
...
δji
...

δjl+1

⎞
⎟⎟⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎜⎜⎝

aj1
...
ajk
...

ajl+1

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · 1
...

...
...

zk−1
1 · · · zk−1

i · · · zk−1
l+1

...
...

...
zl
1 · · · zl

i · · · zl
l+1

⎞
⎟⎟⎟⎟⎟⎠ . (70)
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Consequently, we have to solve (70) for j = 1, . . . , l + 1 with the transpose of the
matrix. This is a Vandermonde matrix.⎛

⎜⎜⎜⎜⎜⎝

1 · · · zk−1
1 · · · zl

1
...

...
...

1 · · · zk−1
i · · · zk−1

i
...

...
...

1 · · · zk−1
l+1 · · · zl

l+1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

aj1
...
ajk
...

ajl+1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

δj1
...
δji
...

δjl+1

⎞
⎟⎟⎟⎟⎟⎠ (71)

One could in principle solve Eq. (71) by standard techniques for linear equations.
A more efficient method is derived in [18].

Using (48), (51), (52), and (70) we can compute the coefficients ck of the polynomial
s(z) (see (46)).

p(zi) =
l+1∑
j=1

yjLj(zi) =
l+1∑
j=1

yjδji , yj = p(zj)

=
l+1∑
j=1

yj

l+1∑
k=1

ajkz
k−1
i =

l+1∑
k=1

l+1∑
j=1

yjajkz
k−1
i

=
l+1∑
k=1

bk−1z
k−1
i , bk−1 =

l+1∑
j=1

yjajk , b0 = 1

From (48) we get s(z) = z−1(1 − p(z)). This results in

ck = −bk+1 for k = 0, . . . , l − 1 .

7 Numerical Results

A nonequidistant mesh of 57 664 elementary cells including graded PML regions
is used for the discretization of (6), that means the order of the system of linear
algebraic equations is 172 992 (see (21)). The number of internal points x(G)

I (see
Table 1 and Eq. (22)) is 152 608. The stopping criterion was a reduction of the
norm of the residual for the preconditioned system (45) by 10−8.

Based on the family of approximation problems (47), we have computed indefi-
nite polynomial preconditioners. For this purpose, the Remez algorithm in Section
6.1 was used. Using the Nelder-Mead method (see Section 6.2), optimal indefinite
polynomial preconditioners were computed by solving the constrained optimization
problem (68) numerically.

We compare cumulative iteration counts required to individually solve each of the ns

linear systems (see (30)) using coupled two-term QMR algorithm with the number
of iterations required to solve all the ns systems simultaneously with the QMR
algorithm for shifted matrices. Table 2 shows the number of iteration required to
individually solve without polynomial preconditioning. Table 3 shows the numbers

22



Table 2: Number of iterations for each shifted linear system

Number of shifted system 1 2 3 4 5
QMR iterations 97 872 2 843 137 508
Accumulated QMR iterations 97 969 3 812 3 949 4 457
Number of shifted system 6 7 8 9 10
QMR iterations 1 558 718 732 1 177 1 958
Accumulated QMR iterations 6 015 6 733 7 465 8 642 10 600

Table 3: Number of iterations for shifted matrices

Number of shifted linear systems ns = 4 ns = 10

No preconditioning 2 348 2 348
Preconditioning: (γ, δ) 1 534 1 534
Preconditioning: (γ0, δ0) 1 390 1 390

of iterations for shifted matrices with polynomial preconditioning for ns = 4 and
ns = 10, respectively. We choose the parameters (γ, δ) ∈ Γw such that the two
intervals of S̄ = [ā, b̄]∪ [c̄, d̄] containing the eigenvalues of the preconditioned matrix
As(A) have the same length and position as the original intervals of S = [a, b]∪[c, d],
i.e.,

b+ a

d+ c
=
b̄+ ā

d̄+ c̄
and

b− a

d− c
=
b̄− ā

d̄− c̄
.

Thus, we have

γ =
d+ c

b+ a
and δ =

b− a

d− c
.

Note that for the example considered here

γ ≈ −0.2241 and δ ≈ 4.4610 .

We have also computed the ’optimal’ parameters (γ0, δ0) ∈ Γw:

γ0 ≈ −0.7339 and δ0 ≈ 4.3407 .

The degree of the Lagrange polynomial Lj(z) (see (51)) is l = 9. We choose for the
preconditioner s(A) (see (45)) the linear case. This choice decreases the numerical
effort and is more stable. Our seed linear system is the system with the index j1 = 3.
The comparison of the iteration numbers of the coupled two-term QMR algorithm
for shifted matrices with the individual solution of each linear system shows the
important advantage. Once more the linear polynomial preconditioner increases the
benefit. The computation of the ’optimal’ parameters (γ0, δ0) leads to better results.
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8 Conclusions

We have derived polynomial preconditioners for indefinite linear systems which lead
to indefinite preconditioned coefficient matrices. Such polynomials can be obtained
via the solution of linear Chebyshev approximation problems depending on two
parameters. The concept of the asymptotic convergence factors leads to an op-
timal preconditioner. The Nelder-Mead method or downhill simplex method is a
commonly used algorithm for the multidimensional minimization. A Remez type
procedure for the numerical solution of the linear Chebyshev approximation prob-
lem was outlined.
One problem is to find suitable informations on the location of the eigenvalues of A,
i.e., the bounds of the two intervals [a, b] and [c, d]. Another problem is the choice
of the seed linear system. For restarted methods, the crucial question is: Are the
residuals collinear? For minimal residual methods the residuals are in general not
collinear.
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