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Abstract 

We consider an indirect boundary integral equation formulation for the mixed Dirichlet-

Neumann boundary value problem for the Laplace equation on a plane domain with a 

polygonal boundary. The resulting system of integral equations is solved by a collocation 

method which uses a mesh grading transformation and a cosine approximating space. The 

mesh grading transformation method yields fast convergence of the collocation solution 

by smoothing the singularities of the exact solution. A complete stability and solvability 

analysis of the transformed integral equations is given by use of a Mellin transform technique, 

in a setting in which each arc of the polygon has associated with it a periodic Sobolev space. 

1 Introduction 

Consider the mixed Dirichlet-N eumann boundary value problem for the Laplacian iµ a simply 
connected region n with piecewise-smooth boundary r = rn u rN: For given f on I'n, g on 
r N, find u in f2 such that 

.6.u = 0 in n, 
u=f on rn, 

au rN, -=g on an 

where ~~ denotes the derivative of u with respect to the outward normal vector n. 
We use the single layer potential for the representation of u, 

u(P) = _.!. r log IP - Qlz(Q)dSq, p En, 
7r lr 

(1.1) 

(1.2) 

where IP - QI is the Euclidean distance between P and Q, and dSq the element of arc length. 
From the well known jump condition for the normal derivative of the single layer potential at 
the boundary, we then have the following boundary integral equations: 

_.!. r log IP - Qlz(Q)dSq = f(P), 
7r lr 

z(P) - .!. r a log IP - QI z(Q)dS = g(P), 
7r lr anp Q 

PE rn, 
(1.3) 

where the density function z is sought on r. Throughout the paper we make the following 
assumption. 

(Al) Equation (1.3) with f = g = 0 has in Lp(r) a unique solution z = 0 for any p > 1. 

Defining zn == zlrD and ZN := zlrN, (1.3) can be rewritten as a 2 x 2 matrix integral equation 
system, where ZD and ZN are sought: 
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_.!_ f logjP-Qlzn(Q)dSq-.!_ f logjP-QlzN(Q)dSq=f(P), PErn, 
7r lrD 7r lrN 

(1.4) 
1 lr 8log IP - QI (Q)dS (P) 1 lr 8log IP - QI (Q)dS (P) p r -- B ZD Q+ZN -- B ZN Q = g , E N· 7r rD np 7r rN np 

Even for smooth boundary data f, g, the solutions zn and ZN may not be smooth. Let 
{Po, P1} be the interface points (i.e., Pi E rn n rN, i = 0, 1). Let us assume the polygon r 
forms an interior angle Wi at Pi. Then by [3], 

u( P) = C( 8)r7C'f2wi + smoother terms, p E n, (1.5) 

where (r, 8) are the polar coordinates centered at Pi. We may use (1.2) to define a potential 
not only in the interior region n but also in the exterior domain 1R 2 \ n. Then the single layer 
density z is the difference between the normal derivatives of the solution of (1.1) and of u in 
the exterior domain JR.2 \n. Thus we have 

z(P) = CrSi + smoother terms, Si= min{27r '2(2 7r ) } - 1, p Er. (1.6) 
Wi 7r - Wi 

near Pi. Thus zn and ZN have this behaviour near Pi, possibly with different constants. 
For integral equations with solutions having weaker singularities than i.n (1.6), the mesh 

·grading transformation method has often been applied to obtain a rapidly convergent numerical 
method [6], [9], [10], [11]. In the following we use a slightly different form of mesh grading 
analysis, and ap.ply it to the mixed boundary value problem. The idea of the mesh grading 
transformation is this:· if we make a mesh grading a( x) ~ Cxq near Pi, then instead of z, with 
the behaviour seen in (1.6), we have to consider 

z(x) := z(a(x))a'(x) = Cxq(l+si)-1 + smoother terms. (1.7) 

Now z( x) is smooth for large q, and z( x) can be approximated by an evenly spaced high order 
spline or a trigonometric function. Moreover, without a mesh grading transformation, the 
analysis of (1.4) is only possible in a weighted L2 space or in a Sobolev space of negative order 
(e.g. n-1/ 2 ) because of the regularity result (1.6). With a mesh grading transformation, an 
analysis in the L 2 space is possible. 

In this paper we assume for simplicity that rn and rN are smooth arcs. (In the analysis 
we shall make the stronger assumption, that each arc is straight in some neighbourhood of the 
corners. This is believed to be an inessential restriction.) The restrictions of z to rn and rN 
are each approximated by a trigonometric cosine function, with the approximation determined 
at equally spaced points with respect to the parameter x on each arc. (For a polygon r with 
more than two corners the mesh grading transformation would be carried out for each corner,· 
and the restriction of z to each smooth arc expressed by a different cosine series.) 

The analysis has a feature that seems to us unusual, and that perhaps will be useful for 
other problems. It is that to each smooth arc (after parametrisation as above) we associate a 
separate periodic Sobolev space. The periodic setting is obtained by extending a function on a 
given arc (after parametrisation) to twice the natural range of the _variable x, by requiring the 
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function to be even about each endpoint. This is an approach which has proved useful in the 
past for single open arcs (see [13]), and indeed there is a sense in which our first approximation 
is to treat each arc (after the mesh grading transformation) as an isolated arc. 

In working through the analysis, it is important not to be misled into thinking of the 
above-mentioned extension to an even function as carrying a function defined on one arc of 
the polygon across to an adjacent arc: rather, the extension to a periodic function carries the 
parametrisation function a( x) (and hence also every function of a( x)) back along the same 
arc. Pictorially, it is useful to think of each arc of the polygon as in some sense a flattened 
and deformed circle. (The authors understand well the seductiveness of that false view, having 
often fallen into the trap themselves.) 

The paper is organised in the following way. In §2, we introduce the mesh grading transfor-
mation, and the mid-point cosine collocation method for the transformed equation is defined. 
In §4, some preliminary mathematical results regarding the Hilbert transform, a collocation 
projection on even periodic functions, and the Mellin transform are introduced. The colloca-
tion projection is the mid-point collocation, which overcomes an unsymmetric feature of the 
collocation projection introduced in [1]. In §5, a complete ellipticity and solvability analysis for 
the mesh-grading-transformed equations arising from (1.4) is given in the L 2 space. In §6 an 
error analysis for the mid-point collocation method is given. 

2 A numerical method 

Let us first consider a piecewise-smooth parameterisation a : [O, 2] ~ r such that on each 
smooth arc jO:'I is bounded above and below by positive constants, and 

Let us consider a mesh grading transformation "Y such 'that, for some € satisfying 0 < € < 1/2 
and some q ~ 1 , 

(2.1) 

The parameter q is the order of the mesh grading. For an example of a good mesh grading 
transformation, see [11]. Then we consider a new mesh graded parameterisation, 

We now define 

and take 

{ 
O:(r(x)), 0 S x S 1 

a(x) := 0:(1 + r(x - 1)), 1 s x s 2. 

z(x) = z(a(x))la'(x)I, 

z1(x) = z(x), 0 s x s 1, 
z2 ( x) = z ( x), 1 S x S 2, 
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so that z1 and z2 correspond to the unknown functions on rn and rN respectively. Substituting 
P = a(x) and Q = a(y), and multiplying the second equation of (1.4) by jo:'(x)j, we obtain 

- ~ f\og jo:(x) - a(y)lz1(y)dy- ~ f
2

1og jo:(x) - a(y)lz2(y)dy = f(x), 0 S x S 1, (2.5) 
~lo ~11 

and 

l ln1 jo:'(x)j(o:(x)- a(y),nx) ( )d 
-- Z1 Y Y 
~ o jo:(x)-o:(y)j 2 (2.6) 

( ) -~12 la'(x)l(a(x)-o:(y),nx) ( )d _ () + Z2 x I ( ) ( ) 12 Z2 y y - g x ' 
~ 1 o:x -ay 1 s x s 2, 

where f(x) := f(a(x)), g(x) := g(o:(x))jo:'(x)j, nx := na(x) and(-,·) denotes the Euclidean 
inner product in IR. 2 • 

The numerical method is simply to approximate z1 and z2 by 

N-1 

zJ(x)= Laizcos(~lx), j=l,2, (2.7) 
l=O 

and then to collocate equations (2.5) at the 'midpoints' kh + h/2 for 0 s k < N - 1, and 
equation (2.6) at the points kh + h/2 for N s k s 2N - 1, where h := 1/ N. 

3 The periodic function space setting 

As indicated in the introduction, the first step in the analysis is to introduce a periodic function 
space setting, in which each arc has associated with it its own periodic Sobolev space. The 
total function space in which the problem is analysed is then the product of these spaces, with 
as many spaces in the product as there are arcs (two in the present analysis). 

Appropriate Sobolev spaces will be defined in the next section. Here we rewrite the boundary 
integral equation (2.6) so that it has an appropriate periodic structure. 

Recall that the parametrisation function o:, defined by (2.2), has values on rn for 0 s x s 1, 
and values on rN for 1 s x s 2. Let us define the corresponding 2-periodic functions: 

together with 

o:i(x) := { o:(x), 0 ~ x ~ 1, 
o:(-x), -1~x~0, 

{ 
o:(x) l~x~2, 

o:2 (x):= o:(2-~), O~x~l, 

O:j( x) = O:j( x + 2), j = 1, 2. 

(3.1) 

(3.2) 

(3.3) 
Thus 0:1 is the transformation function corresponding to r D' and 0:2 the transformation function 
corresponding to r N. (We would have to define further functions 0:3, ••• if r contained further 
arcs.) Both 0:1 and 0:2 are even and 2-periodic. (The reader might find it helpful to observe 
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that an even 2-periodic function F is necessarily even about each integer n, since F( n + x) = 
F(-n + x) = F(n - x).) 

In a similar way we extend z1 and z2 (the parts of the solution corresponding to r D and 
I' N respectively) to be even 2-periodic functions: 

z1(x) 

z2(x) 

z;(x) 

Then (2.5) and (2.6) can be written as 

Z1 ( - X), -1 ::; X ::; Q, 

Z2 ( 2 - X), 0 ::; X ::; 1, 
z;( x + 2), j = 1, 2. 

(3.4) 
(3.5) 
(3.6) 

- ~ f
1 

log la:1(x) - 0:1(Y)lz1(y)dy- ~ f
2

1og la:1(x) - 0:2(Y)lz2(y)dy = f(x), x E Ill, (3.7) 
~10 ~Ji 

111 la:~(x)l(a:2(x)- 0:1(y),nx) ( )d 
-- Z1 Y Y 
~ o la:2(x)- 0:1(Y)l 2 (3.8) 

( ) 112 la:~(x)l(a:2(x)- 0:2(y),nx) ( )d. ( ) + Z2 x - - I ( ) ( ) 12 Z2 y y = g x ' x E Ill. 
~ 1 0:2 x - 0:2 y 

Note that the integrals, here and generally in this paper, extend over only half of the period. 
Further, to avoid unnecessary confusion we have left the intervals of integration as the 'natural' 
intervals occurring in (2.5) and (2.6). Thus the periodic extensions of each of our solution 
functions z1 and z2 have little effect on the appearance of the equations, while allowing us later 
a simplified analysis that is only possible in periodic spaces. 

Let E denote temporarily the space of 2-periodic, even, complexed-valued measurable func-
tions without regard to smoothness. T~en we may define operators V11, V12, K21, K22, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

each of which manifestly maps E to E, and then write our boundary integral equations as 

B z = [ ~~~ I ~~22 ][ ;~ ] = [ ~ ] ' (3.13) 

with B an operator from E x E to E x E. 
The collocation equations can be written in terms of the operators V11, V12, K21, K22 as 

(V11z1 + V12z2) (kh + h/2) = J(kh + h/2), k = 0, ... , N - 1, . 

(K21z1 + z2 + K22z2) (kh + h/2) = g(kh + h/2), k = N, ... , 2N - 1. 
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4 Spaces and mapping properties 

4.1 Sobolev spaces and key operators 

Let H 8
, s E IR, be the Sobolev space of 2-periodic functions with norm 

llJll~ = L max{l, lml}28 l}(m)l 2
, (4.1) 

mE7l 

where 
A 1 /_1 , f(m) = - f(x)e-nrm:z:dx, 

2 -1 
( 4.2) 

so that 
J(x) f'.J L }(m)ei?rmx. (4.3) 

mE7l 

Following [13], an important role will be played by H:, the subspace of even 2-periodic functions. 
Similarly, H; denotes the subspace of odd 2-periodic functions, so that 

( 4.4) 

expressing the fact that u E H 8 can be written uniquely in the form u = Ue + u0 , with Ue E H: 
and u0 EH;. 

Now let 1t be the well-known Hilbert transform on H 8
, defined by the principal value integral 

1tu(x) 

if 

1 /_1 7r -.-pv cot(-(x - y))u(y)dy 
2 -1 2 

i L ( signm )u( m )ei?rm:z: 
mE7l 

u(x) f'.J :E u(m)ei?rm:z:. 
mE7l 

(4.5) 

( 4.6) 

It is clear from ( 4.5) that 1t : H 5 ---+ H 5 is isometric, i.e., ll1tulls = !lulls, that 'it maps even 
functions to odd functions and vice versa, 

(4.7) 

and that 
1t2 =-I. (4.8) 

Now let A be the single-layer operator for an appropriately parametrised circle of radius 
-1/2 

e ' 
1 /_1 7r Au(x) = -- log l2e-1l 2 sin(-(x - y))lu(y)dy. 
7r -1 2 

(4.9) 
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It is well known (see [1], [13]) that A is expressible as 

1 " u(m) . Au(x) = - L.J e'?mlx 
7r 7L max{l, lml} 

mE 

(4.10) 

if u has the Fourier representation ( 4.6), from which it is clear that 

( 4.11) 

is an isometric operator, apart from an unimportant constant factor. From the Fourier repre-
sentation it is also clear that 

DA=AD = 1-l, 

where D is the operator of differentiation. From this we recover, on recalling ( 4.8) and ( 4.10), 

A-1 = -D1t + T = -1-lD + T, ( 4.12) 

where T = 7r f~ u(y)dy. 
The Hilbert transform ( 4.5) can be written, using only properties of the trigonometric 

functions, as 

1tu(x) ~ 11 sin(7rx) + sin(7ry) u(y)dy 
2 -1 cos(?rx)-cos(?ry) 
1 11 sin( ?rx) d l 11 sin('rry) d - u(y) y + - u(y) y 
2 -1 cos( ?rX) - cos( ?rY) 2 -1 cos( ?rX) - cos( ?ry) 

-. 1teu(x) + 1tou(x), ( 4.13) 

where (because the kernel of 1-le is even in y, and the kernel of 1t0 is odd in y), if u = Ue + u0 

with Ue En: and Uo EH~, then 

(4.14) 

Also important to us is the restriction of A to H;. If Ue E H; then because Ue is even we 
have, from ( 4.9), 

_]:_ j1 
(1og j2e-1/ 2 sin(~(x - y))I + l~g j2e-1l 2 sin(~(x + y))I) ue(y)dy 

27r -1 2 2 

_.!_ f
1

1og j2e-1 (cos(7rx)- cos(?rY)lue(y)dy 
7r lo 

-. Aeue( x ). ( 4.15) 

From ( 4.10) we then have 

2 " I u(m) Aeu( x) = - L.J { } cos( ?rmx ), 
7r + max 1,m 

mE7L 

( 4.16) 
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where, from ( 4.6), 
Ue(x) rv 2 L 1

ue(m) cos(7rmx), 
mez+ 

( 4.17) 

and z+ = {O, 1, 2, ... }, and the prime indicates that them= 0 term is to be multiplied by 1/2. 
Finally, we see from ( 4.12), ( 4.14), ( 4.15) that, as an operator on H:, 

A;1 = -D?te + T = -?toD + T. ( 4.18) 

The last relation will play an important role in the subsequent analysis. 

4.2 The collocation projection 

Let us define a space of 2-periodic cosine functions of degree N - 1, 

Te,h = span{cos(7rmx): 0 ~ m ~ N - l}. ( 4.19) 

From here on, we set '1/Jm(x) := cos(7rmx). 
We introduce a colldcation projection Ph from H: (with s > 1/2) to Te,h, that is similar 

but not identical to the one introduced in [l]: 

N-1 

Phf = 2 L '(!, '1/Jk)h'l/Jk, ( 4.20) 
k=O 

where 
N-1 

u,g)h = h L: u. g)(kh + h/2). 
k=O 

In the next lemma, we introduce several interesting properties of Ph. It turns out that Phis an 
interpolatory projection operator. 

Lemma 4.1 The operator Ph satisfies the following properties as an operator on n:, s > 1/2. 
Let f EH: with s > 1/2. Then 

(1) (Phf,'1/J)h=(f,'1/J)h, '1/JETe,h· 

(2) PK= Ph. 

(3) Phf(kh + h/2) = f(kh + h/2), k = 0, · · ·, N - 1, h = l/N. 

(4) 
llf - Phfllt ~ Chs-t llflls for s > 1/2, s 2:: t 2:: 0. ( 4.21) 

Proof. The property (1) follows from the definition of Phf and the easily verified 'discrete-
orthogonality' property 

( 4.22) 
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with ao = 1 and ak = 1/2 for 1 ~ k ~ N - 1. Property (2) follows from property (1). To prove 
(3) it is useful to define first the N x N matrix M with elements 

if k = 0, 
if 1 ~ k ~ N - 1, 

and 0 ~ l ~ N -1. Then ( 4.22) is equivalent to MM* =I, from which it follows that M* M =I, 
or 

N-1 

2 I: '7/Jk(lh + h/2)7/;k(l'h + h/2) = 8w. ( 4.23) 
k=O 

(This identity can of course also be established directly.) The property (3) follows immediately 
from ( 4.23). The approximation property ( 4) is standard, see [1]. o 

Remark 1 The projection in {1} is also a collocation projection at evenly spaced node points, 
but in that work the nodes are not located symmetrically on [O, 1], because whereas 0 is a node, 
1 is a 'midpoint'. Here our collocation is a simple midpoint collocation, and the nodes are 
symmetrically located. 

With the help of the projection Ph, the collocation method of this paper can be expressed 
h h" as: find z1 , z2 E Te,h such that. 

Ph(V11zf + V12z~) = Phf, 

PhK21zf + z~ + PhK22z~ = Ph9· 

4.3 Mellin convolution operators 

( 4.24) 

( 4.25) 

We recall some results on Mellin convolution operators defined on the half axis or on the unit 
interval. These are based on [3], [4], [5] and [7]. 

( i) The Mellin transform v of a function v : 1R + --t <C is defined as 

V(z) = f"' s'•-1v(s)ds. 

The operator v --t vis an isometric isomorphism of L2(1R+) onto L2( {Im z = -1/2} ), 
and its inverse is 

1 A . v(s) = - s-izv(z)ldzl. 
2?r Im Z=-1/2 

(ii) ff/(, is a Mellin convolution operator, i.e 

100 t v(s) 
Kv(t) = K(-)-ds 

0 s s 
( 4.26) 
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with kernel s-1! 2 K(s) E L1 (JR.+), then Kv(z) = K(z)·v(z), and JC is a continuous operator 
on L2 (1R +) with norm bounded by 

llJC llo ::; sup IK( z )I. 
Im Z=-1/2 

( 4.27) 

Note that this extends to more general operators of the form ( 4.26) provided the Mellin 
transform is bounded on Im z = -1/2; cf. e.g. the operators it0 and fie defined below 
in (5.4). 
From here on, we abuse notation by defining: 

K(z) := symbol(JC) = K(z). 
If JC and£ are Mellin convolution operators with bounded symbols on Im z = -1/2, then 
U(z) = K(z) · E(z) . 

(iii) The symbol K(z) of the Mellin convolution operator ( 4.26) is said to be of class ~;;,,';, 
a < -1/2 < {3, if it is analytic in the strip a <Im z < {3 and if the estimates 

K(z) = 0((1 + lzl)-k), lzl ~ oo, k E ?l+ 

hold uniformly in each substrip a' < Im z < {31
, a < a' < -1/2 < {31 < {3. Then the 

kernel function K( s) of JC satisfies the estimates 

sup. lsk-p Dk K(s)I < oo, k E ?l+, a< p < {3. ( 4.28) 
selR.+ 

In particular, (4.28) implies s-112 K(s) E L1(JR+) so that JC is a bounded operator on 
L2(R+) satisfying the estimate ( 4.27). 

(iv) Let x be a smooth function with supp(x) C [O, 1], and let 'l/J be a bounded function such 
that supp('l/J) C [O, 1] and 'l/;(s) = 0, s E [O, €],for some€ ·E (0, 1). If K E ~;;,,'; for some 
a < -1/2 < {3 and JC is the corresponding Mellin convolution operator ( 4.26), then the 
operators xJC - JCxI and 'l/;JC are Hilbert-Schmidt and hence compact on L2 (JR.+). 

We finally recall standard results on the invertibility of a convolution operator I+ JC restricted 
to the unit interval and on the stability of a corresponding finite section method. Note that, 
with the isometry :I : L2(0, 1) ~ L2(JR+) defined by (:fv)(t) = v(e-t)e-tf2 , :JJC:r-1 is a 
Wiener-Hopf integral operator with kernel function e-tf2K(e-t) E L1 (1R.). Thus the following 
assertions are easily checked via known results on Wiener-Hopf operators ([8]). 

(v) Let c/; and c/Jn 0 < T < 1, be the characteristic functions of the intervals (0, 1) and (T, 1), 
respectively. Suppose the conditions s-1/ 2 K(s) E L1(JR+) and 

1 + K(-i/2 + y) # 0, y E IR; {arg(l + K(-i/2 + y))}~00 = 0 

are satisfied, where {arg·}~00 denotes the variation of the argument when y runs from 
-oo to oo. Then the Mellin convolution operator ef;(I + JC)ef; is continuously invertible on 
L2(0, 1) and the corresponding finite section operators c/Jr(I + JC)efJr are stable, i.e., there 
is an To> 0 and a c > 0 such that 

for any T ::; To. 
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5 Mapping properties of integral operators and Mellin tech-
. n1ques 

Write (3.13) in the form: 
Bz =(A+ K)z = f, (5.1) 

where 

(5.2) 

and 

z= [~~], f= [~]· (5.3) 

Nate that K22 is a compact operator mapping even functions to even functions since it has a 
continuous kernel. 

In this section we analyse the operators in (5.2) by use of localization and Mellin transfor-
mation techniques. 

The key to the analysis that follows is the recognition that the difficulties with the integral 
equation (5.1) (which in explicit form is (3.7), (3.8)) arise only when x and y are both near 0, or 
both near 1, i.e. the values of the parameter that correspond to junctions between the arcs rn 
and r N. In such a neighbourhood the kernels of each operator behave like a Mellin convolution. 
Therefore cut-off functions are introduced, which allow the operator to be separated into Mellin 
convolutions, describing all corner effects, and smooth remainders. 

Let us introduce smooth cut-off functions xo, X1 on [O, 1] and vo, v1 on [1, 2], such that for 
some 0 < € < 1/2, 

xo(x) = 1, x E [O, E], supp(xo) c [O, 1/2), x1(x) = 1, x E [1- E, 1], supp(x1) c(l/2, 1], 
v1(x) = 1, x E [1, 1+ E], supp(v1) C [1,3/2), vo(x) = 1, x E [2- E,2], supp(vo) C (3/2,2]. 

Each of xo, x1, v0 and v1 is extended to a 2-periodic even function by expressions analogous to 
(3.4)-(3.6). 

We also introduce certain Mellin convolution operators on the half axis (0, oo ). (For further 
discussion of the Mellin transform and Mellin convolution operators, see [3], [5], [6].) Let us 
define 

if.0 u(x) !_ [" H
0

( =.) u(y) dy, 
7r 0 y y 

iieu(y) = I_ f' H.(=.)u(y)dy, (5.4) 
7r 0 y y 

lwu(x) = !_ f Lw(=.)u(y)dy, 
7r 0 y y 

Kwu(x) I_[" Kw(=.)u u(y) dy, 
7r 0 y y 
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where 

2 
Ho(t) = --2 , 

l-t 
qtq-1(tq - cos(w)) 

Lw(t) = - 2 ) , t q - 2tq cos ( w + 1 

It is worth noting that if q = 2 then lo = He. 

2t 
He(t) = 1 - t2' 
K qtq-l sin( w) 

w(t) = - t 2q - 2tq cos(w) + 1 · 

It is convenient to extend the kernels of these operators to the whole real line in the following 
way: He and Lw are extended to be odd functions, and H0 and Kw are extended to even 
functions. It is then clear that Heu and lwu are odd, while H0 u and Kwu are even. · 

The symbols of these Mellin operators are (see [3], [6]) 

'[(z) = i coth(7r~), 

[(z) . h( z + i) i cot 7r-
2

- , 

l:(z) .cosh((7r - w)(z + i)/q) 
i sinh ( 7r ( z + i) / q) ' 

(5.5) 

£w(z) = sinh ( ( 7r - w) ( z + i) / q) 
sinh ( 7r ( z + i) / q) 

The integral operators in (5.2) can now be expressed as in the following lemma. In this 
lemma, and throughout the paper, E denotes a generic compact operator, which may be different 
in its different appearances. In the first term of the first result, property (1), it is understood 
that the domains of the Mellin operators lo and He are restricted to a _Enite interval in the 
natural way. In the second term of property (1) the double tilde on lo indicates that the 
transformations x H 1 - x and y H 1 - y are to be carried out, corresponding to the fact 
that in this term the singularity is not at x = 0 and y = 0 but at x = 1 and y = 1. The 
double-tilde notation in the remaining terms is to be understood in an analogous way, with the 
precise transformations in each case being apparent from the proofs. 

Lemma 5.1 As operators on even functions, 

(1) - -
D(Vn -Ae) = xo(lo - He)Xo - x1(lo - He)X1 + E, 

(2) - -
DV12 = xolwo Vo - x1lw1 V1 + E' 

(3) - -
K21 = v0Kw0 Xo + V1 Kw1 Xl + E · 

And as an operator on odd functions, 
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(4) 

where 'l/Jo and 'l/J1 are suitable cut-off functions such that 'l/Joxo = xo, 1/J1x1 = x1, 1/Jox1 = 0 and 
1/J1xo = 0. 

Proof. The results all follow from the asymptotic behaviour of the kernel of the integral 
operators. First, by the definition of a, ai and a2 in (2.1), (2.2) and (3.1)-(3.3) we can assume 
that 

l ai(x) - ai(O) = Coxq, 0 ~ x ~ E, 

a2(x) - a2(0) = Coeiw0 (2 - x)q, 2 - f ~ x ~ 2, 
ai(x) - ai(l) = C1(l - x)q, 1- f ~ x ~ 1, 

a2(x) - a2(1) = C1e-iw1 (x - l)q, 1~x~1 + f, 

(5.6) 

where w0 and w1 are the interior angles at the corners corresponding to x = 0 and x = 1 
respectively and Co and C1 are complex constants. (Points in IR 2 are here identified with 
complex numbers in the usual way.) Then for</> EH~ we have, from (3.9) and ( 4.15), 

Noting that the apparent singularities at x = y in the two terms of the kernel cancel, we see 
that 

D(V11 - Ae)</>( x) _.!_ r Xo(x)xo(Y) ( ~xq-1q - 2 2x 2) ef>(y)dy 
7r Jo x - y x - y 

1 11 ( q(1 - x )q-1 2(1 - x) ) +; Ji_ex1(x)x1(Y) (1- x)q - (1-y)q - (1- x)2 - (1-y)2 ef>(y)dy 

+ smoother terms 

_.!_ (JO Xo(x)xo(Y) ( ~xq-1q - 2 2x 2) ef>(y)dy 
7r Jo x - y x - y 

+; f°" x1(x)x1(Y) (x~x:-~. -,.2 ~ -2) ef>(l - y)dyl Jo Y Y {x=1-x, .Y=l-y} 
+ smoother terms. 

Then ( 1) follows. 
By the same argument, 
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+smoother terms, 

which proves (2). Similarly, to prove (3), 

-~ {1 Re (lo:~(x)l(o:2(x) - 0:1(y),nx)) <fJ(y)dy, 
7r Jo 10:2( x) - 0:1 (y)j 2 

1 !ae q(2 - x)q-lyq sin(wo) 
-- vo(x)xo(Y) </J(y)dy 

7r o (2 - x )2q - 2(2 - x )qyq cos(wo) + y2q 
1 [ 1 q(x - l)q-1(1- y)q sin(w1) ( )d 

- :; }1_e v1(x)xl(Y) (x - 1)2q - 2(x - l)q(l - y)q cos(w1) + (1 - y)2q<P y y 
+ smoother terms 

1 !a00 qxq-lyq sin(wo) _ -1 
- - vo(x)xo(y) _2q rq-q ( ) + -2q</J(y)dy 

7r o X - X y COS Wo y {--2 -- } X- -x, Y-Y 

1 loo qxq-lyq sin(wi) _ -1 
- - v1(x)x1(y) _2q rq-q ( ) + _2q<f;(l -y)dy 

7r 0 X - X y COS W1 Y {-_ l --l } 
X-X- ' Y- -y 

+smoother terms. 

The proof of ( 4) follows in the same way as above, using the fact that the commutator of 
xI and 1(,0 is an integral operator with smooth kernel for any smooth 2-periodic even function 
X· o 

Remark 2 It is easily seen from (5.5} that the symbols of the Mellin convolution operators 
lo - fie and lw, Kw, 0 < w < 27r, are of class ~=r'o· For q ~ 2, these symbols even belong to 

' ~-oo -1,1· 

Lemma 5.2 The operator A defined in (5.2} is an isomorphism of H~ x H~ onto H'! X H~, 
with inverse given by 

(5.7) 

Proof. By Lemma 5.1 (2), Remark 2 and §4.3(iii), V12 : H~ -7 H; is bounded. Hence (5. 7) 
is a bounded operator of H: x H~ into H~ x H~, which is easily seen to be the inverse of A. D 

To investigate the solvability of Equation (5.1), we consider the operator 

(5.8) 
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where 
(5.9) 

Note that Mand K21 are bounded operators on H~ while e and J(,22 are compact; see Lemma 
5.1, Remark 2 and §4.3(iii). With the notation of Lemma 5.1 (except that we now put aside 
the double tilde notation), we have: 

Lemma 5.3 As an operator on even functions, 

M = xoMoxo + x1M1x1 + e, 

where the symbols of the Mellin convolution operators Mj, j = 0, 1, take the form 

~(z) = -ff.(z)[~(z) - [(z)] + ff.(z)f:;(z)f:;(z) 

and are of class ~=ro· 

Proof. From ( 4.18) and Lemma 5.1, (1) and ( 4), we obtain 

A;1(V11 - Ae) = -1toD(V11 - Ae) + e 
-1to[Xo(lo - He)Xo - X1(lo - He)X1 + e] + e 

= -xoito(lo - He)Xo - x1Ho(lo - iie)X1 + e, 

where we have used the compactness results of §4.3(iv). Analogously, 

A;1 V12K21 = -1toDV12lC2i + e 
= -1to[xolwoVo - x1lw1V1 + e][voKwoXO + V1Kw1X1 + e] + e 

(5.10) 

(5.11) 

where we have used ( 4.18), Lemma 5.1, (2), (3) and ( 4), and the compactness results of §4.3(iv). 
Combining the above relations with (5.4), (5.5) and (5.9), we ~t (5.10) and (5.11). The last 

assertion of the 'lemma follows from Remark 2 and the fact that it0 ( z) is analytic and (together 
with all its derivatives) bounded on each strip -1+8 <Im z < -8, 8E(0,1/2).. D 

Lemma 5 .4 For q ~ 2, I + M is a Fredholm operator of index 0 on H~. 

Proof. Let <Po and </J1 denote the characteristic functions of the intervals (0,1/2) and (1/2,1), 
respectively, extended to 2-periodic even functions. From (5.10) and §4.3(iv), we obtain the 
representation 

(5.12) 

To prove the assertion, it is obviously sufficient to verify the invertibility of the Mellin convo-
lution operators <Po( I+ Mo)<Po and <P1(I + Mi)<P1 on L2(0, 1/2) and L2(1/2, 1), respectively, 
and we shall do this for the first term without loss of generality. In view of §4.3( v) we have to 
show that 

{arg(l + ~(y - i/2))}~00 = 0. (5.13) 

15 



--From (5.11) and the identity R0 Re = -1, we have 

-:::::.::-- -;::- -:::- -:::::-- -=-- -1 -:::---
1 + Mo(z) = -1to(z).Co(z)[l - Lw0 (z).Co(z) Kw0 (z)]. 

To check (5.13), it is now enough to prove the estimates 

-Re{-H0 (z)lo(z)} ~ c > 0, Im z = -1/2, 

-:::::-- -=-- -1 -:::---1.C wo ( z) .Co ( z) Kw0 (z)I ~ C < 1, Im z = -1/2. 

By a simple calculation, 

-(ffola)(y - i/2) 

Re{-(ffola)(y - i/2)} 

sinh( ?l"Y) + i sinh(27ry / q) - i sin( 7r / q) 
cosh( 1rY) cosh( 27ry / q) - cos( 7r / q) ' 

sinh( ?l"Y) sinh( 27ry / q) + sin( 7r / q) 
cosh( 1rY )( cosh(27ry / q) - cos( 7r / q))' 

which implies (5.14) for any q > 1. To prove (5.15), we observe that 

£:(z)la(z)_1£,(z) = cosh((7r -w)(z.+ i)/q). sin~((7r - w)(z :- i)/q) = a(2(z + i)/q), 
· cosh(7r(z + i)/q) smh((7r(z + i)/q) 

(5.14) 

(5.15) 

where a(z) := sinh((7r - w)z)/ sinh(7rz) is the symbol of the double layer potential in case of 
the arc-length parametrisation, which satisfies (see [3], [2]) 

sup la(i[. + y)I < 1 for lrl ~ 1/2. 
yElR 

Thus we obtain the desired result whenever q ~ 2. D 

Corollary 5.5 Assume {A1) and q ~ 2. Then the operator B : H~ x H~ -+ H~ x H~ has a 
bounded inverse. 

Proof. First we observe that the operator 

I + M = [ I + M E ] · H 0 x H 0 
---? H 0 x H 0 

K'.21 J + K'.22 • e e e e 

is Fredholm with index 0, using Lemma 5.4 and the compactness of e and K'.22 • Thus, by 
Lemma 5.2, B is a Fredholm operator with index 0. So it suffices to show that Bz = 0 and 
z E H~ x H~ imply z = 0. We now proceed as in the proof of Theorem 2 in [6] and consider 
the function 

Z(P) := l(a-1)1(P)lz(a-1 )(P)), PE r, 
where a-1 : r -+ [O, 2] is the inverse transformation of (2.2). Then Z solves the homogeneous 
version of the original integral equations (1.4) and satisfies ( cf. [6]) Z E Lp(r) for some p > 1 
sufficiently close to 1. Hence Z = 0 by (Al), which implies z = 0. D 
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Finally, for the convergence analysis of §6, we need a stability result for a finite section 
method applied to the operator I+ M defined in (5.8). Introduce, for v E H~ and O < T < 1/2, 
the truncation Trv as the 2-periodic even extension of 

rr-i ( ) _ { v( x ), x E ( T, 1 - T) 
.LrV X - 0, xE(O,T)U(l-T,1). (5.16) 

The finite section approximation to Mis then defined to be 

Lemma 5.6 There exists To> 0 such that 

for any T ~ To. 

Proof. Using (5.12), we may write Mr= Nr +:Fr, where 

N, [ ;:~, ~ ] ,F, = [ e~, ~2 ] , 

N </>oMo</>o + </>1M1 </>1. 

Note that I+ N is invertible on H~ ( cf. the proof of Lemma 5.4) while I+ Mis invertible on 
H~ x H~ by Corollary 5.5 and Lemma 5.2. Further, since Tr converges strongly to the identity 
as T -+ 0 and the operators £ and IC22 are compact, a standard perturbation result ( cf. [12], 
Chap. 17.1) reduces the assertion of the lemma to the corresponding stability estimate for the 
operators I+ N r. The latter is equivalent to showing that I+ NTr and hence that Tr (I+ N)Tr 
is stable on H~ ( cf. [6], Theorem 6). 

Finally, we note that the stability ofTr(I +N)Tr qbviously follows from the stability of the 
finite section operators Tr</>o(I +Mo)</>oTr and Tr</>1(I +M1)</>1Tr on L2(0, 1/2) and L2(1/2, 1), 
respectively, and it remains to apply the stability result of §4.3(v), using (5.13). D 

6 Error Analysis 

In this section, we study the stability of the collocation method (3.14), (3.15) and give an error 
estimate in the L 2 norm. Using (5.1)-(5.3) and the collocation projection 

with Ph defined in ( 4.20), Equations (3.14), (3.15), or equivalently ( 4.24), ( 4.25), can be written 

(6.1) 
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However, the stability can only be proved by allowing the possibility that the method be 
modified slightly, i.e. by cutting off around the corners at x = 0 and x = 1. Let Ti•h be 
the truncation operator introduced in (5.16) with r = i*h, and instead of (6.1), consider the 
modified collocation method 

where 
K. _ [ (V11 - Ae)Ti•h 0 ]· 

i•h - K21Ti•h K22 . 

Lemma 5.2 allows us to rewrite (5.1) as the (formally second-kind) equation 

(I+ M)z = e, with M = A-1K, e = A-1f. 

(6.2) 

(6.3) 

(6.4) 

We now attack the stability of (6.2) by writing this method as a non-standard projection method 
for (6.4). For any z E H~ X H~, let Rhz E Te,h X Te,h solve the collocation equations 

(6.5) 

The following lemma shows that Rh is a well defined projection operator with range Te,h X Te,h· 

Lemma 6.1 For any z EH~ x n; I the unique solution to {6.5) is given by 

[ 
Rh Qh l 0 ph z, 

A;1 PhAe, Qh = A;1 PhV12(I - Ph)· (6.6) 

Moreover, for any z E H:" x H:", m ~ 1, we have the error estimate 

(6.7) 

Proof. Since Ph commutes with Ae on Te,h, the unique solution to (6.5) is ( cf. Lemma 5.2) 

which gives (6.6). Moreover, using ( 4.21) we obtain 

ll(I - Rh)zllH~xH~ < c{ll(J - Rh)z1llo + ll(J - Ph)z2llo + llQhz2llo} 
~ cll(J - Ph)Aez1ll1 + cll(J - Ph)z2llo 
< chm{llAez1 llm+l + llz2llm} 
< chmllzllH;nxH;n· 

Using Lemma 6.1, it is easily seen that Zh solves (6.2) if and only if 
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where ( cf. (5.8), (5.9), (6.3)) 

-1 [ MTi*h e ] Mi*h = A Ki*h = v- rn 
f\,21.L i* h K22 . 

(6.9) 

The following lemma is crucial for the stability of (6.8). 

Lemma 6.2 Assume q ~ 2. For each€~ 0, there exists i* ~ 1 independent of h such that 

11(1- Rh)Mi*hzllH~xH~ ::; €11zllH~xH~> z EH~ X H~, 

for all h sufficiently small. 

Proof. From (6.6) and (6.9) we obtain for all z EH~ X H~ 

11(1- Rh)Mi*hzllH~xH~ ::; ll(J - Rh)MTi•hz1llo + cil(J - Ph)K21Ti•hz1l.lo 

(6.10) 

+ ll(I - Rh)ez2llo + cll(I - Ph)K22z2llo· (6.11) 

Here we have used the uniform boundedness of A;1 Ph V12 on H~ which is a consequence of 
estimate ( 4.21). Furthermore, since Rh converges strongly to the identity on H~ and since }(,22 
is a bounded operator of H~ into n-;_ for q ~ 2, we have 

(6.12) 

for all sufficiently small h. To estimate the first two terms on the right side of (6.11), we observe 
that (4.21) (with t = 0, s = 1) and (6.7) imply the estimate 

ll(J - Ph)zllo + ll(J - Rh)zllo ::; chllDzllo; z E n;, 
since I - Ph and I - Rh annihilate the constants. Together with (5.9) and ( 4.18), we then 
obtain for any z E H~ 

ll(J - Rh)MTi*hzllo + ll(J - Ph)K21Ti•hzl10 < chllDMTi•hzllo + chllDK21Ti•hzllo 
< ch{llD2(V11 - Ae)Ti*hzllo + llD2 V12K21Ti*hzi10 

+llDK21Ti•hzllo}. (6.13) 

An inspection of the proofs of Lemmas 5.1 and 5.3 shows that, for q ~ 2, each of the operators 
D(V11 - Ae), DV12K21 and K21 takes the form 

(6.14) 

where K0 , K1 are Mellin convolution operators on JR.+ with symbols of class ~=r'1 , 'R is the 
reflection operator defined by (nz)(x) = z(1- x), and e is a bounded operator of il~ into n;. 

We are now left with proving the following fact. Let }(,be a Mellin convolution operator of 
the form ( 4.26) with kernel function K and symbol KE ~=r1 . Then the estimate 

(6.15) 
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holds, where cf;r is the characteristic function of (r, 1) and the constant c does not depend on v 
and r. 

Indeed, combining the estimates (6.11)-(6.13) and applying (6.15) with r = i*h and i* 
sufficiently large to the corresponding operators of the form (6.14) in (6.13), we obtain (6.10). 

To prove (6.15), we observe that 

IDKrfi,v(x )I < t IDxK(x/y)IY-1 lv(y)ldy::; t IK'(x/y)IY-2lv(y)ldy 

::; r-1 fo11K'(o:/y)ly-1 lv(y)ldy, o: E (0, 1). ( 6.16) 

Since K E E:r,'1 , the kernei estimates ( 4.28) (with k = 1 and -1 < p < 1) imply that the 
Mellin convolution kernel IK'(x/y)jy-1 satisfies x-112 IK'(x)I E Ll(JR+). Therefore, taking L2 

norms in (6.16) and applying §4.3(ii), gives the result. D 
We are now in the position to prove our convergence result for the collocation method (6.2). 

Theorem 6.3 Assume ( A1} and q ~ 2, and suppose that i* is sufficiently large. Then, for all 
h sufficiently small and all f E n: x n:, s > 1/2, there is a unique solution Zh E Te,h x Te,h of 
{6.2}. Moreover, if for some m ~ 1 the exact solution z of (5.1} satisfies 

z = [x(l - x)rv, with z EH-;' x H-;', v EH~ x H~, 

then we have the error estimate 

(6.17) 

( 6.18) 

Remark 3 It can be proved that the solution z of (5.1} takes the form {6.17} with arbitrarily 
large m if the functions f and g in ( 1.1) are sufficiently smooth and the grading. exponent in 
{2.1} is large enough: see {1.6}. 

Proof of Theorem 6.3. First, from Lemmas 6.2 and 5.6, we immediately obtain the stability 
of the equivalent method (6.8), i.e. the estimate 

(6.19) 

as h ---+ 0 whenever i* is sufficiently large. This gives the first assertion since the right side of 
( 6.2) is well defined for f E H: X H;, s > 1/2. 

To prove the error estimate (6.18), we note that 

llz - zhllHgxHg :::; 11(1 - Ph)zllHgxHg + llzh - PhzllHgxHg, 

where the first term is of order hm by (4.21) and (6.17). 
Furthermore, using (6.19) and then (6.8) with (6.4) and (6.7), we obtain 

llzh - PhzllHoxHo < cll(I + RhMi·h)( Zh - Phz)llHoxHo e e e e 

cjjRh[(I + M)z - (I+ Mi•h)Phz]llHoxHo e e 

< cll(Rh - Ph)zllH~xH~ + cllRhMz - RhMi*hPhzllH~xH~ 

< chmllzllH;nxH;n + cllMz - Mi*hPhzllH~xH~ 

+chllD(Mz - Mi•hPhz)llHgxHg. (6.20) 
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Using (4.21) and (6.17), the second term on the right side of (6.20) can now be estimated by 

l!Mz - Mi•hPhzllHgxHg < llMi•h( I- Ph)zllHgxHg + ll(M - Mi•h)zl!HgxHg 
< cll(I- Ph)zllHgxHg + cll(I - Ti•h)z1llo 
< chm(llzllH-:i-xH-:i- + llvllH~xH~ ). 

Note that Mi•h is uniformly bounded since Mis bounded on H~xH~ (see §5) and the truncation 
operator Ti• h is uniformly bounded on H~. 

It remains to show that the last term of (6.20) is of order hm. Using (6.9) and ( 4.21), we 
have 

llD(Mz - Mi·hPhz)llH~xH~ ~ llD(M - MTi•hPh)z1llo + llD(K21 - K21Ti•hPh)z1llo 
+llDe(I - Ph)z2llo + llDK22(I - Ph)z2llo 

< chmllz2llm + llDMTi•h(I - Ph)z1llo + llDK21Ti•h(I - Ph)z1llo 
+llDM(I -Ti•h)z1llo + llDK21(I -Ti•h)z1llo· 

From the proof of Lemma 6.2 we see that the second and the third term can be bou;nded by 

To estimate the last two terms, we again proceed as in Lemma 6.2 and are. left with proving 
the estimate 

llDK'l/Jrxmvllo ~ crm-lllvllo, v E L2(0, 1), 0 < r < 1, 

where 'l/Jr is the characteristic function of (0, r) and K is a Mellin convolution operator with 
kernel K and symbol of class ~=r1 . We have 

IDK,Prxmv(x )I < f ID,,K(x/y)IYm-llv(y)idy 

f IK'(x/y)IY-11Ym-lv(y)idy 

< rm-l l IK'(x/y)IY-1 lv(y)idy, x E (0, 1), 

and as in the proof of (6.15) we obtain the result. 
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