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Abstract

In this note the spatial regularity of weak solutions for a class of elasto-viscoplastic
evolution models is studied for nonsmooth domains. The considered class comprises
e.g. models which are obtained through a Yosida regularization from classical, rate-
independent elasto-plastic models. The corresponding evolution model consists of an
elliptic PDE for the (generalized) displacements which is coupled with an ordinary
differential equation with a Lipschitz continuous nonlinearity describing the evolution
of the internal variable. It is shown that the global spatial regularity of the displace-
ments and the inner variables is exactly determined through the mapping properties
of the underlying elliptic operator.

1 Introduction

In this note we study the spatial regularity of weak solutions for a class of elasto-viscoplastic
models on nonsmooth domains. The class comprises the Perzyna model and models which
arise from a regularization of classical rate-independent elasto-plastic problems.

Let Ω ⊂ R
d be a bounded domain and S = (0, T ) a time interval. By u : S×Ω → R

d we
denote the displacement field and by z : S ×Ω → R

N the vector of the internal variables.
Assuming small strains, the behavior of the body is described by the quasistatic balance
of forces (1.1), Hooke’s law (1.2), which relates the stress σ : S × Ω → R

d×d
sym with the

elastic part of the strain, and an evolution equation for the internal variable z (1.3):

divx σ + f = 0 in (0, T ) × Ω, (1.1)

σ = A(ε(u) − Bz) in (0, T ) × Ω, (1.2)

∂tz = g(∇u, z) in (0, T ) × Ω. (1.3)

These equations are completed with an initial condition for z and Dirichlet and Neumann
boundary conditions for u. The function f is a given volume force density, the tensor
ε(u) = 1

2(∇u + (∇u)�) denotes the linearized strain tensor, A ∈ Lin(Rd×d
sym, Rd×d

sym) is the
fourth order elasticity tensor and the linear mapping B : R

N → R
d×d
sym maps the vector z of

internal variables on the plastic strain εp = Bz. Throughout the whole paper we assume
that the constitutive function g : R

d×d × R
N → R

N is Lipschitz continuous.
Equations (1.1)–(1.3) with Lipschitz continuous g typically arise as a regularization of

classical elasto-plastic models: Assume that g̃ : R
N → P(RN ) is a multi-valued monotone

mapping with 0 ∈ g̃(0) and replace (1.3) with the relation ∂tz(t) ∈ g̃(B�σ − Lz), where
L ∈ Lin(RN , RN ) is a symmetric and positive semi definite tensor. Then (1.3) belongs to
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the class of constitutive relations of monotone type introduced by Alber, [Alb98], where
a typical example is the model of elasto-plasticity with linear kinematic or isotropic hard-
ening. Replacing the monotone mapping g̃ with its Yosida approximation leads to the
systems which we study here.

Elasto-viscoplastic models with Lipschitz continuous g are extensively studied in the
literature, see for example [FHSV01, IS93, DL76] and the references therein, where exis-
tence of solutions is established and where numerical schemes for solving (1.1)–(1.3) are
discussed. In order to obtain information about convergence rates, global spatial regular-
ity properties of the solutions are needed. In this note we show that regularity results for
linear elliptic systems can immediately be carried over to time dependent systems of the
type (1.1)–(1.3).

In particular we prove the following global regularity result for weak solutions of (1.1)-
(1.3) with Lipschitz continuous g (Theorem 3.2): Assume that the operator of linear
elasticity generates an isomorphism between the spaces H1+s

Γ (Ω) → Hs−1
Γ (Ω) for some

s ∈ (0, 1], where H1+s
Γ = { v ∈ H1+s(Ω) ; v

∣∣
ΓDir

= 0 }. Then, under natural assumptions
on the smoothness of the given data, we have

u ∈ W 1,∞(0, T ;H1+s(Ω, Rd)), z ∈ W 1,∞(0, T ;Hs(Ω, RN )). (1.4)

This extends a local regularity result by Miersemann, [Mie80].
The regularity result is obtained by discussing the properties of the fixed point operator,

which is used to prove existence of solutions. The smoothness properties in (1.4) fit exactly
with the smoothness assumptions in the paper [FHSV01] (if we neglect the contact problem
studied there), where convergence rates for numerical schemes are discussed.

It is an open problem whether the regularity result of the present paper can be carried
over to solutions of classical elasto-plastic models with a multi-valued monotone constitu-
tive function g̃. The problem is that regularity estimates, which are uniform with respect
to the regularization parameter, are not available yet. However, with a different technique
(difference quotients in combination with a reflection argument) a global regularity re-
sult was recently derived for elasto-plastic models with a multi-valued maximal monotone
mapping g̃, [Kne09].

The paper is organized as follows: In Section 2 we study an abstract ordinary differential
equation in a Banach space and formulate and prove the regularity result in the abstract
setting. In Section 3 we reformulate the abstract result for general elasto-viscoplastic
models and give some examples. In the last section, Section 4, we illustrate the influence
of the regularity of solutions on the convergence rates of numerical schemes.

The results which we present in this note were derived while A. Bumb was student
research assistant at the Weierstrass Institute.
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2 An abstract regularity result

In this section we study the “spatial regularity” of solutions of the following ordinary
differential equation:

Let Y,Z be Banach spaces. The problem under consideration is: For given z0 ∈ Z and
f : S → Y find z : S → Z with

∂tz(t) = G(f(t), z(t)) for t ∈ S, (2.1)

z(0) = z0. (2.2)

Here, G : Y × Z → Z is a given Lipschitz continuous operator. We denote by Lp(S;Z)
and W k,p(S;Z), k ∈ N the spaces of functions z : S → Z which are measurable and
p-integrable and which have p-integrable weak derivatives up to order k.

The following existence theorem is standard for ordinary differential equations in Banach
spaces:

Theorem 2.1. Assume that G : Y × Z → Z is Lipschitz continuous. For every z0 ∈ Z

and every f ∈ W k,p(S;Y ) with k ∈ {0, 1} and p ∈ [1,∞], there exists a unique element
z ∈ W k+1,p(S,Z) solving (2.1)–(2.2).

The proof of this theorem relies on Banach’s fixed point theorem. Since we need the
fixed point operator for proving our regularity result, Theorem 2.2 below, we give a short
sketch of the proof following the lines in [Sof93].

Proof. Let p ∈ [1,∞] and f ∈ Lp(S;Y ). For η ∈ Lp(S;Z) and t ∈ S let zη(t) ∈
W 1,p(S;Z) be defined through zη = z0 +

∫ t
0 η(s) ds. The fixed point operator is defined in

the usual way

Q : Lp(S;Z) → Lp(S;Z); η �→ G(f, zη). (2.3)

It is shown in [Sof93] that there exists a constant n0 ∈ N such that (Q◦. . .◦Q)n0times = Qn0

is a contraction in Lp(S;Z). The generalized Banach fixed point theorem implies that
Q has a unique fixed point η∗ ∈ Lp(S;Z) and that for every η ∈ Lp(S;Z) we have
limn→∞Qn0n(η) = η∗. Finally, zη∗ ∈ W 1,p(S;Z) is the unique solution of (2.1)–(2.2).

Let now Y1, Z1 be further Banach spaces which are continuously embedded in Y and
Z, respectively. In addition to the Lipschitz continuity of G : Y × Z → Z we assume that

G : Y1 × Z1 → Z1 (2.4)

is well defined and bounded, i.e. there is a constant cb > 0 such that for every y ∈ Y1 and
z ∈ Z1 we have

‖G(y, z)‖Z1
≤ cb

(
1 + ‖y‖Y1

+ ‖z‖Z1

)
. (2.5)
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Theorem 2.2. Let Y, Y1, Z, Z1 be as described above and assume in addition that the
spaces Lp(S;Z1), p ∈ (1,∞], are sequentially weakly∗ compact. Let furthermore G : Y ×
Z → Z be Lipschitz with (2.4)–(2.5). Then for every z0 ∈ Z1 the unique solution of
(2.1)–(2.2) satisfies

p ∈ (1,∞] and f ∈ Lp(S;Y1) =⇒ z ∈ W 1,p(S;Z1).

Since G : Y1 × Z1 → Z1 is bounded, only, we do not obtain further information on
the second time derivative of z, which means that f ∈ W 1,p(S;Y1) does not imply z ∈
W 2,p(S;Z1), in general.

Proof. Let f ∈ Lp(S;Y1) with p ∈ (1,∞]. The goal is to show that for every η ∈ Lp(S;Z1)
we have

sup
n∈N

‖Qn(η)‖Lp(S;Z1)
< ∞, (2.6)

where Q is the operator defined in (2.3). Since Lp(S;Z1) is sequentially weakly∗ com-
pact, estimate (2.6) implies that the sequence (Qn0n(η))n∈N contains a subsequence which
converges weakly∗ in Lp(S;Z1) to an element η̃ ∈ Lp(S;Z1). Here, n0 is the number in
the proof of Theorem 2.1. From the proof of Theorem 2.1 and the uniqueness of limits it
follows that z

eη is the solution of (2.1)–(2.2). Observe that z
eη ∈ W 1,p(S;Z1).

It remains to prove estimate (2.6). Let w(t) = 1 + ‖f(t)‖Y1
+ ‖z0‖Z1

. From (2.5) and
the definition of Q it follows that for almost every t0 ∈ S we have

‖Q(η(t0))‖Z1
≤ cb

(
w(t0) +

∫ t0

0
‖η(t1)‖Z1

dt1
)

and, by induction,

‖Qn(η(t0))‖Z1
≤ cn

b

∫ t0

0
. . .

∫ tn−1

0
‖η(tn)‖Z1

dtn . . . dt1

+ cbw(t0) + c2
b

∫ t0

0
w(t1) dt1 + . . . + cn

b

∫ t0

0
. . .

∫ tn−2

0
w(tn−1) dtn−1 . . . dt1

= S1,n(t0) + S2,n(t0). (2.7)

Assume now that p < ∞. From (2.7) we obtain with a constant depending on p

cp ‖Qn(η)‖p
Lp(S;Z1)

≤
∫ T

0
|S1,n(t0)|p dt0 +

∫ T

0
|S2,n(t0)|p dt0 (2.8)

Note that for α > 0 we have

∫ t0

0
. . .

∫ tn−2

0
tαn−1 dtn−1 . . . dt1 = tn−1+α

0

n−1∏
l=1

(l + α)−1 ≤ tn−1+α
0

(n − 1)!
. (2.9)
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Therefore, the first term in (2.8) can be estimated as follows using Hölder’s inequality and
p−1 + (p′)−1 = 1

∫ T

0
|S1,n(t0)|p dt0 ≤ cnp

b ‖η‖p
Lp(S;Z1)

∫ T

0

(∫ t0

0
. . .

∫ tn−2

0
t

1
p′
n−1 dtn−1 . . . dt1

)p

dt0

≤ 1
pn

‖η‖p
Lp(S;Z1)

(
(cbT )n

(n − 1)!

)p

. (2.10)

The right hand side in (2.10) tends to zero for n → ∞. Furthermore, again with Hölder’s
inequality and estimate (2.9), we have

S2,n(t0) = cbw(t0) +
n−1∑
l=1

cl+1
b

∫ t0

0
. . .

∫ tl−1

0
w(tl) dtl . . . dt1

≤ cbw(t0) + ‖w‖Lp(S) c2
bT

1
p′

n−1∑
l=1

(cbT )l−1

(l − 1)!

≤ cbw(t0) + c2
bT

1
p′ ‖w‖Lp(S) exp(cbT ).

This implies

‖S2,n‖Lp(S) ≤ c ‖w‖Lp(S) (1 + exp(cbT )) (2.11)

with a constant c which is independent of n. Putting together estimates (2.10) and (2.11)
proves (2.6) for p < ∞. The case p = ∞ can be treated similarly with obvious modifica-
tions.

A special case of the previous theorem is the following:
Let H,V,Z, Y be Banach spaces and assume that V ⊂ H is a closed subspace. Let

furthermore A : V → Y be a linear and continuous isomorphism and let B : Z → Y and
G : H × Z → Z be Lipschitz continuous operators. We consider the following problem:
Find u : S → V and z : S → Z such that

Au(t) + B(z(t)) = f(t), (2.12)

∂tz(t) = G(u(t) + h(t), z(t)), (2.13)

z(0) = z0 (2.14)

for some given f ∈ W k,p(S;Y ), h ∈ W k,p(S;H) and z0 ∈ Z. Let V1 ⊂ H1, Z1, Y1 be
Banach spaces, which are continuously embedded in V , H, Z and Y , and assume that
Lp(S;Z1) is sequentially weakly∗ compact for every p ∈ (1,∞].

Corollary 2.3. Assume in addition that A : V1 → Y1 is an isomorphism. Moreover,
suppose that B : Z1 → Y1 and G : H1 × Z1 → Z1 are bounded operators satisfying
‖B(z)‖Y1

≤ c1(1 + ‖z‖Z1
) and ‖G(u, z)‖Z1

≤ c2(1 + ‖u‖H1
+ ‖z‖Z1

) for all u ∈ H1 and
z ∈ Z1.
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Then, for every f ∈ Lp(S;Y1), h ∈ Lp(S;H1) with p ∈ (1,∞] and for every z0 ∈ Z1,
there exist unique elements u ∈ Lp(S;V1) and z ∈ W 1,p(S;Z1), which solve (2.12)–(2.14).
If f ∈ W 1,p(S;Y1), then u ∈ W 1,p(S;V1).

Proof. We set Ỹ = Y × H and define G̃ : Ỹ × Z → Z by

G̃((f, h), z) = G(A−1(f − B(z)) + h(t), z).

Then the pair (u, z) : S → (V,Z) is a solution to problem (2.12)–(2.14) if and only if z

solves ∂tz(t) = G̃((f(t), h(t)), z(t)) and u(t) = A−1(f(t) − B(z(t))). Corollary 2.3 is now
a consequence of Theorem 2.2 since the operator G̃ satisfies the assumptions of Theorem
2.2 with respect to the space Ỹ1 × Z1, where Ỹ1 = Y1 × H1.

3 Application to elasto-viscoplasticity

3.1 Notation and basic assumptions

As an application of Corollary 2.3 we discuss the case, where the operator A in (2.12)
represents a linear, elliptic differential operator of second order. Let Ω ⊂ R

d be a bounded
domain with Lipschitz boundary and ∂Ω = ΓD∪ΓN , where ΓD and ΓN denote the Dirichlet
and Neumann boundary, respectively. It is assumed that ΓD is not empty. The spaces
H,V,Z and Y are chosen as

H = H1(Ω, Rm), V = {u ∈ H1(Ω, Rm) ; u
∣∣
ΓD

= 0 },

Z = L2(Ω, RN ), Z̃ = L2(Ω, Rm×d), Y = V ′ (the dual of V ).
(3.1)

Let the bilinear form a : H × H → R be defined by a(u, v) =
∫
Ω A∇u : ∇v dx, where the

following assumptions on the coefficient matrix A shall be satisfied:

A1 A ∈ L∞(Ω,Lin(Rm×d, Rm×d)) and satisfies
∑d

i,j=1

∑m
α,β=1 Aαβ

ij (x)ξiξjηαηβ ≥ ca |ξ|2 |η|2

for a.e. x ∈ Ω and every ξ ∈ R
d, η ∈ R

m. Moreover, the induced bilinear form
a : V × V → R is V -elliptic, i.e. there is a constant cA > 0 such that for every v ∈ V

we have a(v, v) ≥ cA ‖v‖2
H1(Ω).

The Lax-Milgram Lemma guarantees that the operator A : V → V ′, which is defined by

〈Au, v〉 = a(u, v) for every u, v ∈ V, (3.2)

is an isomorphism. Concerning the constitutive functions B and g, we assume

A2 B : Ω × R
N → R

m×d is a Carathéodory function for which there exists a constant
LB > 0 such that for every x, y ∈ Ω and every z1, z2 ∈ R

N we have

|B(x, z1) − B(x, z2)| ≤ LB |z1 − z2| ,
|B(x, z1) − B(y, z1)| ≤ LB(1 + |z1|) |x − y| .
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A3 g : Ω×R
m×d×R

N → R
N is a Carathéodory function for which there exists a constant

Lg > 0 such that for every x, y ∈ Ω, z1, z2 ∈ R
N and a1, a2 ∈ R

m×d we have

|g(x, a1, z1) − g(y, a1, z1)| ≤ Lg(1 + |a1| + |z1|) |x − y| ,
|g(x, a1, z1) − g(x, a2, z2)| ≤ Lg

(
|a1 − a2| + |z1 − z2|

)
.

The operators Div : Z̃ → Y , B̃ : Z̃ → Z, B : Z → Y and G : H × Z → Z are defined via

〈Div η, u〉 = −
∫

Ω
η(x) : ∇u(x) dx for u ∈ V, η ∈ Z̃, (3.3)

B̃(z)(x) = B(x, z(x)) for z ∈ Z, (3.4)

B(z) = Div B̃(z) for z ∈ Z, (3.5)

G(u, z)(x) = g(x,∇u(x), z(x)) for every u ∈ H, z ∈ Z. (3.6)

It is easily checked that B and G are well defined and Lipschitz continuous provided that
A2 and A3 are satisfied. For the data we assume

A4 f ∈ Lp(S;Y ), HD ∈ Lp(S;H) with p ∈ (1,∞], z0 ∈ Z.

The function HD can be interpreted as an extension of the Dirichlet datum to the entire
domain Ω. The Neumann datum is included in f . With f and HD we associate the
function F ∈ Lp(S;Y ) via 〈F (t), v〉 = 〈f(t), v〉 − a(HD(t), v) for every v ∈ V .

The problem under consideration is: Find u ∈ Lp(S;V ) and z ∈ W 1,p(S;Z) such that

Au(t) − B(z(t)) = F (t), (3.7)

∂tz(t) = G(u(t) + HD(t), z(t)), (3.8)

z(0) = z0. (3.9)

Problem (3.7)–(3.9) contains the model (1.1)–(1.3) as well as the models in [FHSV01, IS93]
as special cases. If conditions A1–A4 hold, then Theorem 2.1 guarantees the existence of
unique elements u ∈ Lp(S;V ) and z ∈ W 1,p(S;Z) which solve (3.7)–(3.9). Under suitable
regularity assumptions on the elliptic operator A, higher regularity properties can be
derived on the basis of Corollary 2.3. This will be explained in the next section.

3.2 Regularity in Sobolev–Slobodeckij spaces

We will now investigate the higher spatial regularity of u and z in Sobolev–Slobodeckij
spaces. For s > 0 we denote by Hs(Ω) the usual Sobolev–Slobodeckij spaces and refer to
[Gri85] for a definition.

Proposition 3.1. Assume A2 and A3. For every s ∈ [0, 1] the operators

B̃ : Hs(Ω) → Hs(Ω), G : H1+s(Ω) × Hs(Ω) → Hs(Ω)
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are well defined and there exist constants cB , cg > 0 such that for every z ∈ Hs(Ω) and
u ∈ H1+s(Ω) we have

∥∥B̃(z)
∥∥

Hs(Ω)
≤ cB(1 + ‖z‖Hs(Ω)), ‖G(u, z)‖Hs(Ω) ≤ cg(1 + ‖u‖H1+s(Ω) + ‖z‖Hs(Ω)).

(3.10)

Proof. For s = 1 the assertion follows from the Lipschitz continuity of B and g. The case
s ∈ (0, 1) is then a consequence of Tartar’s interpolation theorem for nonlinear operators,
[Tar72].

Our final assumption concerns the regularity property of A:

A5 There exists s ∈ (0, 1] and a Hilbert space Ys ⊂ Y (continuous embedding) such that
A : V ∩ H1+s(Ω) → Ys is an isomorphism and such that the restriction of Div to
Hs(Ω) is well defined and continuous as an operator Div : Hs(Ω) → Ys.

The space Ys depends strongly on the smoothness of the coefficient matrix A, the smooth-
ness of ∂Ω and the type of the boundary conditions. If ∂Ω is C1,1–smooth, if A ∈
C0,1(Ω,Lin(Rm×d, Rm×d) satisfies A1 and if ∂Ω = ΓD, then classical regularity and in-
terpolation results, [Neč67, Tri78], guarantee that A5 holds for every s ∈ (0, 1] with
Ys = (H1−s

∂Ω (Ω))′, where for δ ≥ 0

Hδ
∂Ω(Ω) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hδ(Ω) if δ − 1
2 < 0,

{u ∈ H
1
2 (Rd) ; suppu ⊂ Ω } if δ = 1

2 ,

{u ∈ Hδ(Ω) ; u
∣∣
Γ

= 0 } if δ − 1
2 > 0.

Subsequent to the next theorem we give further examples, where A5 is valid.
The following regularity theorem is a direct consequence of Corollary 2.3 and Proposition

3.1.

Theorem 3.2. Assume A1–A5 for some p ∈ (1,∞] and s ∈ (0, 1]. Let furthermore
f ∈ Lp(S;Ys), HD ∈ Lp(S;H1+s(Ω)) and z0 ∈ Hs(Ω). Then the unique solution (u, z) of
(3.7)–(3.9) satisfies

u ∈ Lp(S;H1+s(Ω)), z ∈ W 1,p(S;Hs(Ω)).

If in addition f ∈ W 1,p(S;Ys) and HD ∈ W 1,p(S;H1+s(Ω)), then u ∈ W 1,p(S;H1+s(Ω)).

This theorem shows that regularity results for linear elliptic operators can immediately
be carried over to the viscous models. Note that in the scale of Sobolev–Slobodeckij
spaces we may at best expect u(t) ∈ H2(Ω) and z(t) ∈ H1(Ω), since for s > 1 and an arbi-
trary Lipschitz continuous function g one cannot guarantee in general that G(H1+s(Ω) ×
Hs(Ω)) ⊂ Hs(Ω).
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Example 3.3 (Scalar case). This example relies on regularity results by Dauge for scalar
elliptic equations on polyhedral domains [Dau88]. Assume that m = 1 and that the
coefficient matrix A is constant and satisfies A1. For simplicity we restrict ourself to
two and three space dimensions. Let Ω ⊂ R

d, d ∈ {2, 3}, be a bounded, polyhedral
domain with Lipschitz boundary (i.e. ∂Ω coincides locally with the graph of a Lipschitz
continuous function). We denote the faces of Ω with Γi, 1 ≤ i ≤ L, and assume that
∂Ω = ∪1≤i≤LΓi and that every Γi is an open subset of a d − 1 dimensional hyperplane.
Moreover, we assume that the opening angle �(Γi,Γj) �= π for i �= j if Γi∩Γj �= ∅. Finally,
we assume that for every i we have Γi ⊂ ΓD or Γi ⊂ ΓN . Let ID = { i ; Γi ⊂ ΓD } and
IN = { i ; Γi ⊂ ΓN }. From these assumptions it follows that the type of the boundary
conditions does not change within a face of the polyhedron Ω.

For s ∈ (0, 1)\{1
2 } we define analogously to [Dau88, p. 194]

V 1−s = { v ∈ H1−s(Ω) ; v
∣∣
ΓD

= 0 }, Ys = (V 1−s)′ if s < 1
2 , (3.11)

V 1−s = H1−s(Ω), Ys = (V 1−s)′ ×
∏
i∈IN

Hs− 1
2 (Γi) if s > 1

2 . (3.12)

From Theorem 23.3 in [Dau88] it follows that there exists s ∈ (0, 1)\{1
2} such that A :

V ∩ H1+s(Ω) → Ys is an isomorphism, and thus condition A5 holds for this particular
s. The optimal s depends on the opening angles of Ω, the boundary conditions and
the coefficient matrix A and can be calculated from a nonlinear eigenvalue problem, see
e.g. [MNP91, Dau88]. For example, if Ω is a two dimensional polygon and the interior
opening angle between Dirichlet and Neumann boundary satisfies �(ΓD,ΓN ) < π and if
A is symmetric, then A5 holds for every s ∈ (0, 1

2), see the estimates of eigenvalues in
[Kne04]. If again A is symmetric and if Ω ⊂ R

d is a polyhedral domain with Lipschitz
boundary and with ∂Ω = ΓD, then there exists δ ∈ (0, 1

2) such that A5 is satisfied for
s = 1

2 + δ, [KM88].

Corollary 3.4. Under the above assumptions on Ω, ΓD, ΓN and s ∈ (0, 1)\{1
2} it fol-

lows that for every f ∈ Lp(S;Ys), HD ∈ Lp(S;H1+s(Ω)) and z0 ∈ Hs(Ω) we have
u ∈ Lp(S;H1+s(Ω)) and z ∈ W 1,p(S;Hs(Ω)).

Finally, if Ω ⊂ R
d, d ≥ 2, is a bounded convex domain with ∂Ω = ΓD and if u is scalar,

then A : H1
0 (Ω) ∩ H2(Ω) → L2(Ω) is an isomorphism [Gri85] and we have Corollary 3.4

with s = 1 and Ys = L2(Ω).

Example 3.5 (Elasto-viscoplasticity). Here, we consider system (1.1)–(1.3) with a Lip-
schitz continuous function g : R

N → R
N and with ∂Ω = ΓD. Assume that the material

tensors A and B from (1.1)–(1.3) satisfy: A ∈ Lin(Rd×d
sym ; Rd×d

sym), A symmetric and positive
definite and B ∈ Lin(RN ; Rd×d

sym). We define A : H1
0 (Ω) → H−1(Ω) = (H1

0 (Ω))′ via
〈Au, v〉 = −

∫
Ω Aε(u) : ε(v) dx for u, v ∈ H1

0 (Ω). Condition A1 is satisfied due to Korn’s
inequality.
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Assume that ∂Ω is smooth enough such that for some s ∈ (0, 1] the mapping A :
V ∩H1+s(Ω) → Hs−1(Ω) is an isomorphism. For example, if ∂Ω is C1,1–smooth, then one
may choose s = 1. If Ω is a two or three dimensional polyhedral domain with Lipschitz
boundary and if A is the coefficient matrix for isotropic elasticity, then again from the
work by Dauge in combination with [KM88] it follows that there is a δ ∈ (0, 1

2 ] such that
we may choose s = 1

2 + δ. Like in Example 3.3, the optimal s depends on the opening
angles near the edges and vertices.

Corollary 3.6. Under the above assumptions and with z0 ∈ Hs(Ω), f ∈ Lp(S;Hs−1(Ω))
and HD ∈ Lp(S;H1+s(Ω)) we have u ∈ Lp(S;H1+s(Ω)) and z ∈ W 1,p(S;Hs(Ω)).

Let us note that the viscous models studied by Sofonea et al., see for example [FHSV01,
IS93], can be reformulated in the form of (1.1)–(1.2) with an evolution law of the type
∂tz = g(∇u, z) with a Lipschitz continuous function g. Therefore, Corollary 3.6 is valid
for these models.

Example 3.7 (Smooth inclusions). Let Ω1, Ω ⊂ R
d be bounded domains with C1,1-

smooth boundaries and Ω1 � Ω. Let Ω2 = Ω\Ω1 with Γ := ∂Ω1 ∩ ∂Ω2. Assume that
the coefficients A and B satisfy A1 and A2 and that their restrictions to the subdomains
Ωi are constant. Consider the spaces H = H1(Ω), V = H1

0 (Ω), Z = L2(Ω) and define
H1 = {u ∈ H1(Ω) ; u

∣∣
Ωi

∈ H2(Ωi) }, V1 = V ∩ H1, Z1 = { z ∈ Z ; z
∣∣
Ωi

∈ H1(Ωi) } and

Y1 = L2(Ω) × H
1
2 (Γ). Let furthermore A : V → V ′ and B : Z → V ′ be defined as in (3.2)

and (3.5). Observe that A : V1 → Y1 and B : Z1 → Y1 are well defined and bounded. From
regularity theory for elliptic problems with smooth inclusions it follows that A : V1 → Y1

is an isomorphism. Hence, Corollary 2.3 is applicable to the time dependent problem
(3.7)–(3.9). We refer to [NS94, NS99, CDN99, Kne04, Nic93] for more information about
the regularity theory of elliptic problems with nonsmooth coefficients.

4 Example: Convergence rates based on regularity results

In this section we illustrate how the regularity of solutions affects the convergence rates of
numerical schemes. First, we provide an estimate concerning the convergence rate when
discretizing the problem with a standard FE-method in space and an implicit Euler scheme
in time. The predicted convergence rate is then verified for an explicit example.

4.1 An error Estimate

At first we derive an estimate for a semi-discrete version of (3.7)–(3.9). Let Hh ⊂ H,
Vh = V ∩Hh and Zh ⊂ Z be closed subspaces of H, V and Z, where the spaces H, V and
Z are chosen as in (3.1). In the notation of Section 3.1 the discrete model reads: Find
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uh ∈ Lp(S;Vh), zh ∈ W 1,p(S;Zh) such that for t ∈ S

Ahuh(t) − Bh(zh(t)) = Fh(t) in V ′
h, (4.1)

∂tzh(t) = G(uh(t) + HD,h(t), zh(t)) in Zh, (4.2)

zh(0) = z0,h, (4.3)

where the operators Ah and Bh are defined as

〈Ahuh, vh〉V ′
h,Vh

:= 〈Auh, vh〉V ′,V for uh, vh ∈ Vh,

〈Bh(zh), vh〉V ′
h,Vh

:= −
∫

Ω
B̃(zh) : ∇vh dx for zh ∈ Zh, vh ∈ Vh.

In addition to A1–A4 we assume that the nonlinear operator G has the mapping property
G(Vh, Zh) ⊂ Zh. For example this is guaranteed if Vh consists of continuous and piecewise
affine functions and if the elements of Zh are piecewise constant. The discretized data
shall satisfy

A6 fh ∈ W 1,p(S;V ′
h), HD,h ∈ W 1,p(S;Hh), 〈Fh(t), v〉 := 〈fh(t), v〉−a(HD,h, v) for v ∈ Vh,

and z0,h ∈ Zh.

Theorem 2.1 implies the existence and uniqueness of solutions uh ∈ W 1,p(S;Vh) and
zh ∈ W 2,p(S;Zh) of the discretized problem (4.1)–(4.3). Let

r(t, h) := ‖z0 − z0,h‖Z + inf
vh∈Vh

‖u(t) − vh‖V + ‖F (t) − Fh(t)‖V ′
h

+
∫ t

0
inf

vh∈Vh

‖u(τ) − vh‖V + ‖HD(τ) − HD,h(τ)‖H dτ. (4.4)

The next proposition is an application of Cea’s Lemma:

Proposition 4.1. There exists a constant κ > 0 such that for a.e. t ∈ S and all Vh and
Zh the solutions (u, z) of (3.7)–(3.9) and (uh, zh) of (4.1)–(4.3) satisfy:

‖(u − uh)(t)‖V + ‖(z − zh)(t)‖Z ≤ κ r(t, h).

Proof. By Cea’s Lemma it follows from relations (3.7) and (4.1) that for a.e. t ∈ S it
holds

‖(u − uh)(t)‖V ≤ c1

(
‖(z − zh)(t)‖Z + ‖F (t) − Fh(t)‖V ′

h
+ inf

v∈Vh

‖u(t) − v‖V

)
, (4.5)

and the constant c1 is independent of t and the subspaces Vh and Zh.
Multiplying (3.8) and (4.2) with (z−zh)(t) (here we use the assumption that G(Vh, Zh) ⊂

Zh) and using the Lipschitz continuity of G, estimate (4.5) and Young’s inequality, we
arrive at

1
2

d
dt

‖(z − zh)(t)‖2
Z ≤ c2

(
inf

v∈Vh

‖u(t) − v‖2
V + ‖HD(t) − HD,h(t)‖2

H + ‖(z − zh)(t)‖2
Z

)
.

The Gronwall Lemma now leads to the desired result.
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For the time discretization we use an implicit Euler method. Let N ∈ N be the number
of time steps, �tN = T/N the time step size, and tNk = k�tN . For given z0,h ∈ Zh let
u0,N

h := A−1
h (F (0) + Bh(z0,h)). For 1 ≤ k ≤ N the pair (uk,N

h , zk,N
h ) ∈ Vh × Zh is defined

as the solution of

Ahuk,N
h − Bh(zk,N

h ) = Fh(tNk ) in V ′
h, (4.6)

1
	tN

(zk,N
h − zk−1,N

h ) = G(uk,N
h + HD,h(tNk ), zk,N

h ) in Zh. (4.7)

The next proposition gives the full error estimate:

Proposition 4.2. Let f ∈ W 1,p(S;V ′), HD ∈ W 1,p(S;H) for some p ∈ (1,∞] and assume
that A6 is satisfied. There exist constants κ > 0 and N0 ∈ N such that for all N > N0,
1 ≤ k ≤ N and all solutions (uk,N

h , zk,N
h )1≤k≤N ⊂ Vh ×Zh it holds with r(t, h) from (4.4):∥∥u(tNk ) − uk,N

h

∥∥
V

+
∥∥z(tNk ) − zk,N

h

∥∥
Z
≤ κ

(
�tN ‖zh‖W 2,∞(S;Z) + r(tNk , h)

)
, (4.8)

and there exists a constant c > 0 such that for all Vh and Zh it holds ‖zh‖W 2,∞(S;Z) ≤ c.

Proof. The last statement of the proposition follows from Proposition 4.1 and the Lip-
schitz continuity of G. In order to prove (4.8) observe that it holds∥∥u(tk) − uk

h

∥∥
V

+
∥∥z(tk) − zk

h

∥∥
Z

≤
∥∥u(tk) − uh(tk)

∥∥
V

+
∥∥z(tk) − zh(tk)

∥∥
Z

+
∥∥uh(tk) − uk

h

∥∥
V

+
∥∥zh(tk) − zk

h

∥∥
Z
. (4.9)

The first two terms are estimated in Proposition 4.1. From (4.1) and (4.6) it follows that∥∥uh(tNk ) − uk,N
h

∥∥
V
≤ c1

∥∥zh(tNk ) − zk,N
h

∥∥
Z
, (4.10)

and the constant is independent of h and N . From the Lipschitz continuity of G and
estimate (4.10) it follows by standard arguments that the discretization error

R
(
tNk ,�tN

)
:= (�tN )−1

(
zh(tNk ) − zh(tNk−1)

)
− G

(
uk,N

h + HD,h(tNk ), zh(tNk )
)

satisfies ∥∥R(tNk ,�tN )
∥∥

Z
≤ c2

(
�tN ‖zh‖W 2,∞(S;Z) +

∥∥zh(tNk ) − zk,N
h

∥∥
Z

)
. (4.11)

Hence, taking into account relation (4.7), we obtain with (4.11) and for �tN < C−1, where
C = CLip(G) + c2, that

∥∥zh(tNk ) − zk,N
h

∥∥
Z
≤ (1 −�tNC)−1

(∥∥zh(tNk−1) − zk−1,N
h

∥∥
Z

+ c2(�tN )2 ‖zh‖W 2,∞(S;Z)

)
.

After recursion this yields∥∥zh(tNk ) − zk,N
h

∥∥
Z
≤ exp(CT )

(∥∥zh(0) − z0
h

∥∥
Z

+ �tN c2 ‖zh‖W 2,∞(S;Z)

)
.

Combining the last estimate with (4.9) and (4.10) finishes the proof.
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Figure 1: Domain Ω

4.2 The numerical example

Let Ω ⊂ [−1, 1]2 be an L-shaped domain, see Fig. 1. The problem under consideration is
to find u : S × Ω → R, z : S × Ω → R such that:

div (∇u(t, x) − z(t, x) ( 1
0 )) = 0 in S × Ω, (4.12)

∂tz(t, x) = g(∂1u − 2z), in S × Ω, (4.13)

u(t, x) = hD(t, x) on ∂Ω, (4.14)

z(0, x) = z0(x) in Ω, (4.15)

where hD(t, x) = h̃(t) r
2
3 sin

(
2
3φ

)
, h̃(t) = max{0, (t − 2)3} sin(πt

2 ) and (r, φ) denote polar
coordinates. Observe that hD ∈ W 1,∞(S;H

3
2 (∂Ω)). The function g : R → R is chosen as

g(s) = max{0; s − 1} + min{0; s + 1}. For this setting obviously the assumptions A1 to
A4 are fulfilled and Proposition 4.1 and 4.2 can be applied.

As already discussed in Example 3.3 there exists s ∈ [0, 1] such that the Laplace operator
with Dirichlet boundary conditions is an isomorphism between the spaces H1+s(Ω) ∩
H1

0 (Ω) → Ys with Ys as in (3.11). For the considered L-shaped domain, we may choose
s = 2

3−δ for arbitrary δ > 0, [Gri85]. Hence the solution of (4.12)–(4.15) has the regularity
u ∈ W 1,∞(S;H1+ 2

3
−δ(Ω)) and z ∈ W 1,∞(S;H

2
3
−δ(Ω)) for every δ > 0.

In order to compute the solution of (4.12)–(4.15) numerically the domain Ω is discretized
with a sequence of regular triangulations Th in triangles (see Fig. 1 for the initial mesh).
To reveal the influence of the regularity of the solution on the convergence rate, the meshes
are not refined towards the origin, where the solution develops a singularity.

The spaces Hh and Zh are chosen as Hh = { v ∈ H1(Ω) ; ∀τ ∈ Th v
∣∣
τ
∈ P1(τ) }, where

P1(τ) consists of the affine functions on τ , and Zh = { z ∈ L2(Ω) ; ∀τ ∈ Th z
∣∣
τ

= const }.
With this choice, the mapping property G(Vh, Zh) ⊂ Zh of Section 4.1 is valid.

Combining the error estimate (4.8) with estimates for the interpolation error of H1+s-
functions (see e.g. [BS94]) and assuming that z(0) = zh(0) = z0

h, we obtain the following
estimate for the convergence rate

max
1≤k≤N

(∥∥u(tNk ) − uk,N
h

∥∥
V

+
∥∥z(tNk ) − zk,N

h

∥∥
Z

)
≤ κ(�tN + hs). (4.16)

Here h = maxτ∈Th
diam(τ) is the mesh size, �tN the time step size and, in the above

example, s = 2
3 − δ with δ > 0 arbitrary.
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Elements of hi

∥∥∥uNi
hi

− u
Ni+1

hi+1

∥∥∥
H1(Ω)

∥∥∥zNi
hi

− z
Ni+1

hi+1

∥∥∥
L2(Ω)

si

12 3.0620 0.8459 0.5861
48 2.0336 0.5697 0.7382
192 1.2028 0.3578 0.6919
768 0.7539 0.2122 0.6838
3072 0.4694 0.132 0.6286
12288 0.2958 0.0932 0.6901
49152 0.1858 0.0553

Table 1: Computed convergence rate si

In the experiment we consider a sequence of step-sizes hi = 2−(i+1)h1 and choose Δti =
hs

i with s = 2
3 in order to obtain similar convergence rates in space and time. Since an

explicit solution of the problem is not known we approximate the convergence rate s for
k = N through the expression

si ln 2 = ln

⎛
⎜⎝

∥∥∥uNi
hi

− u
Ni+1

hi+1

∥∥∥
H1(Ω)

+
∥∥∥zNi

hi
− z

Ni+1

hi+1

∥∥∥
L2(Ω)∥∥∥u

Ni+1

hi+1
− u

Ni+2

hi+2

∥∥∥
H1(Ω)

+
∥∥∥z

Ni+1

hi+1
− z

Ni+2

hi+2

∥∥∥
L2(Ω)

⎞
⎟⎠ . (4.17)

Tabular 1 shows the values of si for our example calculated with Comsol Script. The
resulting convergence rate si is ≈ 2

3 , which coincides with the predicted rate.
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