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Abstract

This paper studies the rupture of thin liquid �lms on hydrophobic sub-
strates, assuming large slip at the liquidsolid interface. Using a recently
developed strong slip lubrication model, it is shown that the rupture passes
through up to three self-similar regimes with di�erent dominant balances and
di�erent scaling exponents. For one of these regimes the similarity is of sec-
ond kind, and the similarity exponent is determined by solving a boundary
value problem for a nonlinear ODE. For this regime we also prove �nite-time
rupture.

1 Introduction

The formation of singularities is a well-studied topic in the context of viscous
liquids when describing the evolution towards rupture of thin-�lms or towards
pinch-o� of a liquid thread [1�6], see also the reviews (and many references therein)
by Oron et al., [7] and by Eggers [8]. Eggers also wrote some of the pioneering
papers in the �eld of jet breakup and droplet formations, e.g. [9]. The study of
these processes have a variety of technological applications in drying, spin coating
and in the semiconductor technology where nanoscopic thin-�lms are deposited,
furthermore in jet spraying, to name a few. Understanding the relevant forces
and their in�uence on the rupture process will be important for the application to
be successful. Fundamental driving forces that have been considered in the past
include van der Waals forces, surface tension, inertia, and viscous forces.

Ida and Miksis [4] consider rupture of a free �lm in a regime where viscous forces
and van der Waals forces dominate the rupture process. They �nd that the evolu-
tion has a self-similar phase, where the scaling exponents can not be determined
from dominant balances alone. They however do not explain how the exponents
which they determine from numerical simulations of the PDE are �xed; this was
later done for a related problem of curvature driven jet break-up by Papageorgiou
[10].
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Based on earlier work on the break-up of jets by Brenner et al. [11], Vaynblat et
al. [6] investigate the same model as Ida and Miksis but in a regime where viscous
forces, inertia and van der Waals forces balance. This dominant balance leads to
similarity solutions of the �rst kind. In their ODE analysis they �nd an intricate
family of self-similar pro�les, from which the time-dependent �lm dynamics selects
the one of �lowest order�. In [12, 13] Berno� and Witelski study the self-similar
structure of rupture of a thin �lm on a solid substrate with a fourth order thin-
�lm model that incorporates surface tension, van der Waals interaction, viscosity
and a no-slip condition at the liquid�solid interface. Again they �nd a family of
self-similar pro�les where only one is stable and is selected from the dynamics of
the time-dependent PDE model.

A fundamental property of all these models is that the singularity occurs in �nite
time, i.e. the spatial minimum of the �lm thickness tends to zero as a singularity
time t∗ < ∞ is approached. Surprisingly enough, there has been very few rigor-
ous analytical work regarding this phenomenon. A notable exception is a short
but inspiring paper by Renardy [14] on the �nite-time singularity for a model for
curvature-driven jet pinch-o� that includes viscosity (but not inertia or longitudi-
nal surface tension) as the dominant forces.

In recent applications, where liquid polymer �lms of nanoscale thickness are de-
posited on hydrophobized substrates, rupture of the �lm is a ubiquitous phe-
nomenon that initiates the dewetting of the liquid. The onset of rupture as well as
later stages of dewetting and the morphology and dynamics that arise in the course
of the �lm evolution have been intensively studied both experimentally and the-
oretically. Experiments show intricate patters arising at the beginning of rupture
and also in the hole and residual droplet distribution, e.g. [15, 16]. For many of
these processes, it has been found that e�ective interfacial slippage (which usually
plays a minor role in most classical thin-�lm problems, being mostly considered
near moving contact-lines to alleviate the stress singularity) signi�cantly in�uences
the dynamics and the morphology of the evolving �lm structures [17�19].

For these situations, new lubrication models have been developed [20�22] for rup-
ture and post-rupture processes. The models by Münch et al. [21] have been used
to explain the spanwise instability at the rim around the widening hole [23] as well
as the morphology of the cross-section of the rim [19]. Recently, the models have
been studied with respect to slow dynamics of the droplets into which the liquid
has collected in the late phases of the dewetting process [24]. This research comes
at a time of rising interest in slip at liquid�solid boundary conditions in a broader
range of applications, see the recent review by Lauga et al. [25].

In this paper, we investigate the dynamics of the rupture process of a dewetting
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�lm on a solid substrate when slip is very large. This work connects with the
previous research in that this previous research considered limiting situations with
either very small/zero slip or very large/in�nite slippage. Therefore, studying
these models relates to these other applications.

The outline of the paper is as follows. In section 2, we brie�y summariez the
thin-�lm models for dewetting �lms with various degrees of slippage. Through
asymptotic considerations and balancing arguments as well as numerical simula-
tions we identify in section 3 three di�erent scaling regimes for the self-similar
phases of the rupture for the models with large slip. One of these regimes turns
out to be of second kind, and for this regime, we analyze the similarity ODE and
determine the similarity exponent. This regime lends itself to a rigorous analysis
with respect to �nite-time blow-up, which we prove in section 4. Conclusions and
outlook on future work are given in section 5.

2 Formulation

The problem of a viscous, incompressible layer of �uid in the domain

ΩT = {(X,Z) ∈ R2 : 0 ≤ Z ≤ H(X, T ),−L ≤ X ≤ L}

with the free boundary {Z = H(X, T )} is modeled by the Navier-Stokes equations

ρ(UT + UUX + WUZ) = µ∇2U − (P + F )X ,

ρ(WT + WWX + WWZ) = µ∇2W − PZ ,

UX + WZ = 0.

The potential energy F = AH−3 (A > 0, Hamaker constant) describes the at-
tractive van der Waals interaction between the free boundary and the solid�liquid
interface at {Z = 0}.
These equations in the bulk are supplemented by the kinematic condition and a
tangential and normal stress balance at the free boundary, which are

HT −W + UHX = 0,

(UZ + WX)(1−H2
X) + 2HX(WZ − UX) = 0,

P − 2µ
(1−H2

X)WZ −HX(UZ + WX)

1 + H2
X

+ σ
HXX

(1 + H2
X)

3/2
= 0,
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respectively. At the solid�liquid interface we assume impermeability and a Navier-
slip condition

W = 0 and U = BUZ ,

whereas at the arti�cial boundary {X = ±L} we prescribe a contact angle π/2
and impose a no-�ux condition

HX |±L = 0 and U |±L = 0.

We introduce a scale for each variable,

Z = H̃ z, H = H̃ h, B = H̃ b, X = L̃ x, L = L̃l,

U = Ũ u, W = W̃ w, T = T̃ t, P + F = P̃ p, F = P̃ φ.

The scale H̃ represents the typical �lm thickness, whereas L̃ is a scale for the
typical length. For our particular choice of scales the van der Waals pressure,
which drives the �lm rupture, and the pressure from surface tension, which tends
to counteract it, are simultaneously present. Balancing pressure with the van der
Waals and the surface term, respectively, yields

L̃ =
( σ

A

)1/2

H̃2, and P = σ
H̃

L̃2
.

The velocity scales arise from balancing UZZ with the pressure gradient and by
balancing the two terms in the continuity equation; the time scale is set by the
kinematic condition

Ũ =
P̃ H̃2

µL̃
, W̃ =

H̃

L̃
Ũ , and T̃ =

L̃

Ũ
. (1)

For thin-�lm theory to be applicable the ration of height scale to length scale must
be small, i.e.

ε =
H

L
=

(A/σ)1/2

H̃
¿ 1;

under this condition, we can expand the Navier-Stokes equations in terms of the
small parameter ε. It was shown in [21] that, depending on the relative magnitude
of the two other paremeters, namely, the Reynolds-number and the scaled slip,
which are, respectively

Re∗ =
ρσH̃

µ2
and b =

B

H̃
,

not one but a whole family of leading order models arise.
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If we generally assume that Re∗ is O(1), there are two distinguished limits for
ε → 0: The weak slip model

ht = −
[(

1

3
h3 + bh2

) (
hxx − h−3

)
x

]

x

. (2)

is obtained for moderate slip length, i.e.
if b is held �xed at O(1) as ε → 0. For

b = ν/ε2, where ν = O(1)

�xed, the choice of velocity and time scales (1) is not consistent with the limit
ε → 0. Rather, the proper choice results from balancing the pressure and WZZ

term in the second component of the Navier-Stokes equations, that is,

Ũ =
P̃ L̃

µ
, W̃ =

H̃

L̃
Ũ and T̃ =

L̃

Ũ
. (3)

Then, ε → 0 results in the strong slip model,
ht + (hu)x = 0, (4a)

Re∗(ut + uux) =
4

h
(hux)x +

(
hxx − h−3

)
x
− u

ν h
. (4b)

which describes the dynamics of the �lm pro�le and average �ow velocity for large
(strong) slippage.

The models that we derived for other relative magnitudes of b can be obtained as
limits of these two models. If b is small, we get the no-slip lubrication equation
that is simply (2) with b set to zero. In the scaling regime with 1 ¿ b ¿ ε−2 and
appropriate velocity and time scales, we get the intermediate slip model

ht = − [
h2

(
hxx − h−3

)
x

]
x
, (5)

which arises in the limit ν → 0 from the strong slip model (after rescaling time
and velocity appropriately) or b̃ → ∞ from the weak slip model (after rescaling
time with b). Finally, in the model for very large slip, i.e. ε−2 ¿ b or equivalently
1 ¿ ν, the last term in (4b) drops out,

ht + (hu)x = 0,

Re∗(ut + uux) =
4

h
(hux)x +

(
hxx − h−3

)
x
.

This �free slip� model describes freely suspended �lms, i.e. the slip length is in�nite.
They are discussed by Vaynblat et al. [26] with respect to their similarity structure.

In this paper we will be mostly concerned with the slip lengths that lie in the strong
slip regime, including the limiting situation of intermediate slip, and assume that
we are considering very viscous liquids where Re∗ ¿ 1.
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3 Phases of Rupture

3.1 Onset of rupture

We consider here the situation where rupture is initiated by a small perturbation
of the �at state h ≡ 1, u ≡ 0. Letting

h(x, t) = 1 + δh0 exp(ikx + λt) and u(x, t) = δu0 exp(ikx + λt)

in (4) one obtains to O(δ) the eigenvalue problem

iku0 + λh0 = 0,

−4k2u0 − ik3h0 + 3ikh0 − ν−1u0 − Re∗λu0 = 0,

which has the two solutions

λ±(k) =
1

2νRe∗

(
−1− 4νk2 ±

√(
1 + 4νk2

)2 − 4 Re∗ ν2 k2
(
k2 − 3

))
.

The eigenmode that corresponds to the minus sign is always stable, while the other
eigenmode is unstable if 0 < k2 < 3.

For ν → 0 and Re∗ ¿ ν−2, i.e. in particular for small and moderate Reynolds
number Re∗, the dominant growth rate is given by

λ+(k)

ν
= 3k2 − k4. (6)

Except for a rescaling in time, this is exactly the eigenmode resulting from a linear
stability analysis for the intermediate slip model (5) and is therefore the adequate
model for the early evolution of the perturbation. Note that the wavenumber
km for which the growth rate is maximal is km =

√
3/2. The typical growth of

a perturbation with an eigenmode compared to a solution of the fully nonlinear
model can be seen in �gure 1.
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Figure 1: The evolution of minx h(x, t) for b = Re∗ = 1 compared to linearization
has (−t)1/3 behavior as it quickly approaches zero at t = t∗ = 0.

3.2 Similarity analysis for the nonlinear evolution

As the perturbation grows, nonlinear terms in the model become important so
that at later stages, we solve the model equations (4) numerically using a �nite
di�erence scheme using adaptive time-stepping and a non-uniform grid that is
regularly remeshed to concentrate points near where the �lm thickness is minimal.
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Boundary conditions were hx = 0 and u = 0 at x = 0, l.

Unless stated otherwise, we set Re∗ = 10−5, ν = 10−8 and use the initial data
h(x, 0) = 1 + 0.2 cos(πx/4) and u(x, 0) = 0 on the �nite interval 0 < x < l with
l = 8. We impose the boundary conditions

hx(x, 0) = 0, hx(x, l) = 0, u(x, 0) = 0, u(x, l) = 0.
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Figure 2: Solutions h(x, t) and u(x, t) during the early stage of rupture.

The numerical solution in �gure 2 shows that the decay of the global minimum of
h, hmin = minx h(x, t) = h(x∗, t) with x∗ = 4 initially follows the prediction from
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the linear stability but then accelerates and tends to zero as t approaches a �nite
time t∗.

Moreover, appropriate rescalings of x, h and u in time suggests that the solutions
follow a self-similar behavior in a neighborhood of x∗ as t → t∗. We therefore make
the ansatz

h(x, t) = (t∗ − t)αH(η), u(x, t) = (t∗ − t)γU(η), (7)

where η = (x−x∗)/(t∗− t)β and with α > 0, β > 0. Note that the variables H and
U are distinct from those used in section 2. The restrictions on α and β ensure
that h and the lateral length scale shrink as τ → 0.

Upon inserting (7) into (4), it becomes immediately apparent that this system of
equations does not permit an exact self-similar scaling, so it is necessary to identify
which terms determine the evolution near rupture.

We consider as before the case when ν ¿ 1 and Re∗ ¿ 1. It turns out that rupture
passes through three di�erent similarity regimes. All three regimes balance the
terms in the mass conservation equation (4a), which, upon inserting (7), enforces
γ = β − 1.

In view of the linear stability results we expect that the �rst self-similar regime is
governed by the terms that appear in the intermediate slip model, i.e. that surface
tension and the �nite slip term enter the dominant balance at least initially if ν is
small and Re∗ is not too large. Setting the exponents of the τ -powers for these two
terms to zero entails α = 1/6, β = 1/3 and thus γ = −2/3. The remaining powers
of t∗− t then have exponents −5/6 for the inertial terms and −1/2 for the Trouton
term. Therefore, this similarity regime, which we label regime I, cannot persist
inde�nitely but the time period where it is valid can be increased if ν and Re∗
are decreased. A similar self-similar regime was studied by Witelski and Berno�
[12]. Using the no-slip condition at the liquid�solid interface they �nd α = 1/5
and β = 2/5.

If Re∗ is su�ciently small, the Trouton term will be the �rst to enter the dominant
balance; after that, we achieve a new self-similar state which includes this new
term.
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Inserting (7) into (4) using γ = β − 1 yields

αH − βηH ′ − (HU)′ =0, (8a)

Re∗τ 3α+2β−2(βηU ′ − (β − 1)U + UU ′) =4τ 3α−1 (HU ′)′

H
+ τ 4α−2βH ′′′

+ 3
H ′

H4
− τ 2α+2β−1 U

νH
(8b)

If Re∗ is su�ciently small, inertia does not enter the dominant balance in this
regime. Furthermore if the Trouton term has to be in the dominant balance for
this second self-similar regime, we must have α = 1/3. Another balance is needed
to �x β, but it is unclear at this stage which (if any) is the appropriate balance,
so we treat β = βII as a yet unknown parameter. We can, however, place some
bounds on βII ; to ensure that the exponents for the surface tension and �nite slip
term are non-negative, we must require 1/6 ≤ βII ≤ 2/3. Qualitatively similar
behavior has been studied by [10] and by Brenner et al. [11], but so far was not
studied for thin-�lm rupture.

If βII < 1/2, the exponent of the τ -power for the inertial terms is negative and
this term will become of order one when τ ∼ Re1/(1−2β)

∗ . This suggests a third
self-similar regime, regime III, where inertia enters the dominant balance, thus
3α + 2β − 2 = 0. Including the �nite slip term in the dominant balance yields
β < 0, which violates the local nature of rupture in (7), and including surface
tension would yield a negative exponent for the τ coe�cient for the Trouton term,
which is also inconsistent. Thus, the only consistent choice is to balance inertia
and the Trouton term, 3α − 1 = 0, therefore, α = 1/3 and β = 1/2. Self-similar
solutions for this balance have been found and studied in some detail by Vaynblat
et al. [6] and by Ida and Miksis [4].

Summarizing, we expect to see up to three self-similar regimes if ν ¿ 1 and Re∗
small enough. In all regimes we have γ = β − 1, whereas the other two exponents
are α = 1/6 and β = 1/3 in regime I, α = 1/3 and β = βII in regime II, and
α = 1/3 and β = 1/2 in regime III. Note that βII is not yet determined. The three
regimes are traversed in order I→II→III, if βII < 1/2 and Re∗ is small enough.

We now investigate our numerical results more closely to verify the above consid-
erations and also to determine what happens with β = βII in the second regime.

Figure 3 shows a double-log plot of hxx(x∗, t) and ux(x∗, t) versus h(x∗, t). In time
regimes where the solution evolves self-similarly according to (7), the graph for
hxx(x∗, t) and ux(x∗, t) will be straight lines with slope (α − 2β)/α and −1/α,
respectively. We can clearly distinguish three di�erent regimes where both lines
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are straight, connected by two relatively sharp transitions connecting these lines.
This clearly suggests that we have three di�erent self-similar regimes.

We now compare these slopes with our predictions for each of the three regimes,
and, in the case of regime II, extract the missing value for βII . In regimes I and III,
we expect the slopes to be (α − 2β)/α = −3, −1/α = −6 and (α − 2β)/α = −2,
−1/α = −3. Dashed auxiliary piecewise straight lines that have these slopes in
each regime are shown in �gure 3 close to the corresponding graphs and good
agreement of the slopes can be seen.

In regime II, we know that the line for ux(x∗, t) must have a slope −1/α = −3 and
the auxiliary line with this slope is indeed parallel to the graph for ux(x∗, t). From
the other line, we can determine the slope by a linear �t. To obtain higher accuracy,
we carried out another numerical simulation with Re∗ = 0 which eliminates the
third regime and then continued the calculation to very small values of hmin =
h(x∗, t). The linear �t with the line hxx(x∗, t) resulted in the value βII = 0.248930±
3× 10−6.

This value di�ers markedly from 1/6 or 2/3 for which either the �nite slip or the
surface tension term would enter the balance of the dominant terms, respectively.
For the value of βII found, these terms are subdominant, leaving no possibility for
another balance. The self-similar behavior in this regime is therefore an example
for a self-similar solution of the second kind [27]. For these solutions, the missing
exponent cannot be found from a simple application of balancing of terms or
conservation law, but by actually solving the similarity ODE system where β = βII

enters as an unknown.

3.3 Second kind similarity solution

We start with the system (4) and drop all terms that we have found to be sub-
dominant in our previous considerations; speci�cally, in (4b), we only retain the
Trouton viscosity and the van der Waals term. Then we introduce the self-similar
ansatz (7) with α = 1/3 and γ = β − 1 but keeping β = βII as an unknown pa-
rameter. After integrating and rearranging the equations, we obtain the following
second-order ODE system

Uη =
3

8H3
+

C

H
, (9a)

Hη =
H

U + βη

(
1

3
−

[
3

8H3
+

C

H

])
, (9b)
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where C is an arbitrary constant of integration. The self-similar solution is an
inner solution that describes the evolution near x∗ as t approaches the rupture
time, i.e. for small τ . Matching to the outer solution requires

lim
η→±∞

U(η) = 0. (10)

From this we can conclude that the denominator in (9b) must be zero for some
η = η0. For H to be analytic there, the term in parentheses must be zero, which
implies

C =
H(η0)

3
− 3

8H(η0)2

and Uη(η0) = 1/3. This also implies that η0 is unique, i.e. U + βη is zero only
for this value of η = η0. If we focus only on solutions for which H is symmetric
(and U anti-symmetric), we must have η0 = 0. If we introduce H0 = H(0), we can
formulate the problem of �nding the self-similar solution at this stage as follows:
Solve (9a), (9b) with

C =
H0

3
− 3

8H2
0

(11)

and initial conditions
U(0) =

1

3
, H(0) = H0, (12)

and �nd H0 and β such that (10) is satis�ed for η → ∞. This imposes only
one condition for two free parameters, and indeed upon solving the ODE system
numerically it turns out that for each H0 we can �nd exactly one β = β1(H0)
for which the solution of (9a), (9b) and (12) satis�es (10). We note that β1 is a
monotonic increasing function of H0.

A second condition arises from the requirement that U and H are analytic at
η = 0, i.e. U and H can be written as Taylor series

U(η) =
∞∑

n=0

Unη
n+1, H(η) =

∞∑
n=0

Hnη
n.

Due to symmetry, all terms with odd n must vanish in both series. Inserting this
ansatz into (9a) and (9b) yields the recursion relation

(
H3

0 (k + 1) H2
0 − 2CH0

0 H2
0 (β + 1

3
)k −H2

0 + 2CH0

)(
Uk

Hk

)
=

(
αk

βk

)
, (13)

where αk and βk are homogeneous functions of the previous coe�cients Un, Hn

with n < k. Speci�cally, α2 = 0 and β2 = 0. If the matrix on the left hand

13



n β H0

2 0.2489306 0.9663168
4 0.1280401 0.7915672
6 0.0877860 0.6992785

Table 1: Solutions for higher n with corresponding β and H0 values.

side of (13) is non-singular for all k, this implies that all coe�cients of the Taylor
expansions must vanish for n > 1 leading to trivial solutions. Therefore, the
determinant of the matrix must vanish for at least one k = n ≥ 2, which implies
that

β = β2(H0; n) ≡ 9− 4H3
0 (n− 1)

12H3
0n

(14)

for this n. Upon choosing an even n, this provides the second condition on β and
H0. The function β2 of H0 is monotonic decreasing, thus for each even n there
is exactly one pair of β and H0 for which the solution of (9a), (9b), (12) satis�es
both (10) and (14). Numerically obtained values for β and H0 for the �rst three
values of n are shown in table 1.

We note that β seems to be monotonic decreasing with increasing n and that for
n ≤ 4 the values of β < 1/6. This would lead to an inconsistency i.e. the �nite
slip term in (8b) would have a coe�cient with a negative power of τ . For n = 2,
the resulting value for β is in excellent agreement with the value for βII extracted
from the numerical solution of the PDE near rupture.

The di�erence to the formal approach for similarity solutions of �rst kind, as
for example in [6, 26], is that the approach for second kind self-similar solutions
contains an additional parameter β. This parameter is �xed by requiring the
recursion matrix for the formal power-expansion to be singular, as it is done in
[10, 11].
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4 Finite-time singularity formation

4.1 Lagrangian formulation

In regime II, where viscosity dominates, inertia is negligible, and the slip parameter
is in�nite, the evolution is described by the PDE

ht + (hu)y = 0, (15a)
4

h
(huy)y −

(
h−3

)
y

= 0. (15b)

The singularity occurs already after a �nite time, i.e. there exists a �nite time t∗,
such that the quantity

1

min h(y, t)

is unbounded as the time t approaches t∗.

As it was done by Renardy [14] we now pass over to a Lagrangian formulation1
for (15). To this end, we introduce the transformation φ(·, t) : [0, 1] → [0, 1] via

φt(x, t) = u(φ(x, t), t),

φ(x, 0) = φ0(x),

where φ0 : [0, 1] → [0, 1] is a continuously di�erentiable monotonic mapping of
[0, 1] onto itself; we will make a more speci�c choice later on. In particular we
have y = φ(x, t). The spatial derivative s(x, t) ≡ φx(x, t) satis�es

st(x, t) = ux(φ(x, t), t) s(x, t),

s(x, 0) = φ0,x(x),

from which we conclude that s(x, t) > 0 for all x ∈ [0, 1] and t ≥ 0. This in
turn implies that φ(·, t) : [0, 1] → [0, 1] is a monotonic mapping. Moreover, the
boundary conditions imposed on u(0, t) and u(1, t) and the fact that φ0(0) = 0,
φ0(1) = 1 imply that it is a one-on-one mapping of [0, 1] onto itself, for all t ≥ 0,
from which we also deduce that

∫ 1

0

s(x, t) dx = 1 for t ≥ 0. (16)

1From now on x is a Lagrangian coordinate; previously it was the Eulerian one.
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Letting h̄(x, t) ≡ h(φ(x, t), t) and ū(x, t) ≡ u(φ(x, t), t), application of the chain
rule and (15) and integration shows that h̄ and ū satisfy

h̄(x, t) s(x, t) = c(x), (17)
st(x, t)

s(x, t)
=

3

8

(
1

h̄(x, t)3
− C(t)

h̄(x, t)

)
(18)

where c(x) and C(t) arise as constants of integration that do not depend on t or
x, respectively. We can use (17) to eliminate h̄ from (18). For this purpose, it is
useful to choose φ0 as

φ0(x) =

∫ x

0

C1

h̄(ξ, 0)
dξ with C1 =

[∫ 1

0

C1

h̄(ξ, 0)
dξ

]−1

. (19)

Then,
s(x, 0) = φ0,x(x) =

C1

h̄(x, 0)
(20)

and therefore c(x) = C1 is independent of x, so that

s(x, t) =
C1

h̄(x, t)
. (21)

Using this to eliminate h̄ from (18) we get

st(x, t) = s(x, t)2
(
s(x, t)2 − C1C(t)

)
.

Integrating this equation with respect to x from x = 0 to x = 1 and using (16)
�nally yields

st(x, t) = s(x, t)2
(
s(x, t)2 − s2

0(t)
)
, (22a)

where

s2
0 (t) =

∫

Ω

s(x, t)4 dx
/ ∫

Ω

s(x, t)2 dx, (22b)

where we have introduced Ω ≡ [0, 1]. In addition, we need to supply initial data
s(0, x) = si(x) for x ∈ Ω. Since s(0, x) is obtained from the initial data for h̄ via
(20), we may assume that si(x) is non-negative, bounded and normalized in the
sense ∫

Ω

si(x) dx = 1. (23)
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Let smax(t) ≡ maxx s(x, t). Since the evolution de�ned by (22) is locally Lips-
chitz, unique solutions exist by virtue of the Picard-Lindelöf theorem and can be
extended as long smax(t) remains �nite.

In view of (21), a blow-up of s is equivalent to minx h̄(x, t) → 0, i.e. pinch-o�
of the �lm. We will therefore focus on the question if and when smax(t) grows
unboundedly and if so, if and when the blow-up occurs in �nite time.

4.2 Examples and properties

Blow-up of s does not occur for all initial data. In the following example we show
that one can easily construct stationary solutions; these solutions are in particular
bounded. For example consider the following class of solutions of (22)

s(x, t) =

{
1
δ

in ω ⊂ Ω

0 elsewhere
(24)

where the size of the set ω such that is |ω| = δ > 0. Solutions with positive initial
data that can be decomposed

si(x) =

{
smax(0) in ω ⊂ Ω

si(x) < smax(0) elsewhere
(25)

along with property (23) and |ω| > 0 are bounded in time and converge to these
stationary solutions. Note that this initial data is not necessarily continuous in
x, and the problem formulation (22) does not really require it to be continuous,
though in physically motivated situations we may choose to restrict our consider-
ations to this case or even smoother initial data.

In �gure 4 we show two numerical solutions of (22). The solution which is shown
in the left panel of �gure 4 is bounded, s(x, t) < 2, and seems to converge to

s(x, t) →
{

2 x ∈ [0, 1/2]

0 x ∈ (1/2, 1]

as t goes to in�nity. The solution shown in the right panel of �gure 4 diverges
increasingly fast until the numerical scheme is unable to resolve the singularity of
s(x, t) at x = 0. Later we will analyze this type of singular solutions quantitatively.

Examining properties of equation (22) will be helpful to prove blow-up of s later.
The properties proven here are generic for this type of integro-di�erential equation
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and do not depend too much on the special form of the equation. Some rather
simple observations are that (22) conserves the property

∫

Ω

s(x, t) dx ≡ 1 ∀ t ∈ [0, t∗),

that s0 = 1 if and only if s = 1 almost everywhere in Ω, and that ∂tsmax ≥ ∂ts.

Lemma 4.1. (Properties of solutions) Solutions of the integro-di�erential equation
(22) and the related functions smax(t) and s0(t) obey the following properties:

1. Estimate from above and below:

smax(t) ≥ s0(t) ≥ 1. (26a)

2. Monotonicity of smax and s0:

∂tsmax(t) ≥ 0 and ∂ts0(t) ≥ 0. (26b)

3. For continuous solutions smax(t) > s0(t) > 1 if and only if the set

Mε(t) =
{
x ∈ Ω : ε < s(x, t) < s0(t)− ε

}

has strictly positive measure for some ε > 0.

Proof.

1. The �rst inequality follows from
∫

s4 dx ≤ s2
max

∫
s2 dx , while the second is

shown using Cauchy-Schwarz inequalities

s2
0 =

∫
s4 dx∫
s2 dx

≥
∫

Ω

s2 dx ≥
(∫

Ω

s dx

)2

= 1. (27)

2. The �rst part is trivial. For the second part consider ∂t(s
2
0) explicitly

2s0∂ts0 =
4
∫

(∂ts)s
3 dx∫

s2 dx
− 2

∫
(∂ts)s dx

∫
s4 dx

(
∫

s2 dx)2

=

(∫

Ω

s2 dx

)−1 (
2s4

0

∫

Ω

s3 dx− 6s2
0

∫

Ω

s5 dx + 4

∫

Ω

s7 dx
)

≡
(∫

Ω

s2 dx

)−1 (
As4

0 + B s2
0 + C

)
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This expression is non-negative, if s2
0 ≤ (−B −√B2 − 4AC) / 2A. Using

B2 − 4AC = 36

(∫

Ω

s5 dx

)2

− 32

∫

Ω

s3 dx

∫

Ω

s7 dx
C.S.≤ 4

(∫

Ω

s5 dx

)2

one �nds
s2
0 ≤

(∫

Ω

s5 dx

) / (∫

Ω

s3 dx

)
⇔ ∂ts0 ≥ 0.

The assertion follows directly from Cauchy-Schwarz inequalities
(∫

Ω

s4dx

)2

≤
∫

Ω

s5dx

∫

Ω

s3dx and
(∫

Ω

s3dx

)2

≤
∫

Ω

s4dx

∫

Ω

s2dx.

3. The implication s0 > 1 follows from the property, that s0 = 1 if and only if
s = 1 almost everywhere. Assume smax = s0, then

0 = s2
max − s2

0 =

∫
s2(s2

max − s2) dx∫
s2 dx

implies that s(x, t) ∈ {0, smax} almost everywhere, contrary to the assump-
tion that Mε has a �nite measure. On the other hand suppose Mε is empty
for all ε > 0, then s is either zero or s0 ≤ s ≤ smax. Since the integrand in

0 =

∫

Ω

s2(s2 − s2
0) dx =

∫

Ω\M0

s2(s2 − s2
0) dx ≥ 0,

is nonnegative, this expression can only be zero if s ∈ {0, s0} almost every-
where, which implies smax = s0.

4.3 Unboundedness of solutions

Conservation of mass
∫ 1

0
s(x, t) dx = 1, non-negativity s(x, t) ≥ 0, and uniqueness

of solutions imply that solutions are bounded if the maximum is attained on a
�nite interval. Figure 4 showed a numerical example for such a behavior.

Before we proceed, we give a short motivation why it is not very restrictive to
consider only decreasing initial data. This assumption is however very useful to
make the forthcoming analysis much more concise.
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Remark. For given s ∈ C([0, 1];R+) think of s̄ ∈ C([0, 1];R+) being de�ned as
follows: Let xs(r) = µ

(
y ∈ [0, 1] : s(y) ≥ r

)
and let s̄ be the largest decreasing,

function on [0, 1] with
s̄
(
xs(r)

)
= r. (28)

This mapping retains some key properties of s, i.e. ess sup s = ess sup s̄, s0 = s̄0,
which is even true for solutions of (22) with initial data si and s̄i. The solution
map s 7→ s(t, ·) and the ordering map (28) s 7→ s̄ commute.

From now on we will only consider decreasing initial data; uniqueness of solution
of (22) implies that s(x, t) is decreasing in x for all t. Therefore de�ne the set

P (t) = [0, p(t)] = {x ∈ Ω : s(x, t) ≥ s0(t)}

and N(t) = Ω \ P (t) = (p(t), 1] the complement of P (t) in Ω = [0, 1].

In the following theorem it is shown that if the maximum of si is only attained in
a single point, i.e. at zero, then smax(t) is unbounded.

Theorem 4.2. (Unboundedness of solutions) If the decreasing initial data of (22)
obeys smax(0) > si(x) for x > 0, then smax(t) is unbounded in time.

Proof. Conversely assume that s is bounded for all times. Due to the monotonicity
property (26b) s0 and smax converge and must have the same limits s0, smax → K <
∞. Using P (t) and N(t) volume conservation yields

1 =

∫

Ω

s(x, t) dx ≤ p(t) K +

∫

N(t)

s(x, t) dx. (29)

Suppose p(t) is bounded from below by a positive δ. For any 0 < x ≤ δ < p(t)
the de�nition of ∂ts in (22) implies that that smax(t) − s(x, t) increases in time
and thus the inequality smax(t) − s0(t) ≥ smax(t) − s(δ, t) ≥ smax(0) − si(δ) > 0,
is a contradiction to convergence s0, smax → K showing that p(t) must converge
to zero. One easily sees that s(x, t) → 0 for any �xed x ∈ N(t) as t → ∞ so
that both terms on the right-hand side of (29) go to zero. This shows that the
assumption is wrong and smax(t) must be unbounded.

The time-dependent maximum smax(t) is unbounded, if the maximal value of si(x)
is attained only in a single point. Unfortunately this proof does not produce any
quantitative information about the speed of the blow-up of s. If more information
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about the initial data are available, in particular about the behavior near the
maximum, one can compute an upper bound on the blow-up time and a lower
bound for the blow-up rate explicitly. Suppose si(x) is bounded from above near
the maximum at x = 0 like

si(x) ≤ smax(0)− f(x),

where f(x) is increasing with f(0) = 0. We are going to prove that smax(t) is
unbounded for some �nite time if there exists an upper bound with f(x) = Cxn

for some C, n > 0. The proof is quite explicit and reproduces the blow-up rates of
the corresponding self-similar solution.

4.4 Finite-time blow-up

In the introduction we claimed that in many thin-�lm models rupture occurs after
a �nite time. We showed that this is the case for all numerical solution of the
intertialess strong-slip equation. Now we prove that the corresponding simpli�ed
integro-di�erential equation (22) has this feature as well and we will check whether
the singularity develops at the same rate.

The strategy of our proof consists of two steps: First we consider a general bound
si(x) ≤ smax(0) − f(x) for the initial data and de�ne a time evolution for f such
that

s(x, t) ≤ smax(t)− f(x, t).

For x ∈ P (t) we estimate f(x, t) from below.

Second, since P (t) is decreasing, we should �nd an e�cient estimate on p(t) from
below, i.e. 0 < p̃(t) ≤ p(t). Then it holds that

smax(t) ≥ smax(t)− s0(t) ≥ f
(
t, p(t)

) ≥ f
(
t, p̃(t)

)
.

If one expresses p̃(t) in terms of smax(t) and t and integrates both sides of the
inequality it turns out that the right hand side diverges after a �nite time. Hence
smax(t) diverges after a �nite time. For some parts of this proof we follow and
generalize the ideas of Renardy [14].

The computation of a lower bound is quite simple; as before s(x, t) denotes the
exact solution of problem (22) and s0(t) is the functional de�ned in (22b). For
any x with si(x) ≤ smax(0)− f(x) de�ne f(x, t) = smax(t)− σ(x, t), where σ(x, t)
is the solution of the ordinary di�erential equation

σt = σ2
(
σ2 − s2

0(t)
)
. (30)
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with initial data smax(0)−f(x). Uniqueness of solutions implies that f(x, t) de�nes
an upper bound in terms of s(x, t) ≤ smax(t)− f(x, t). The following lemma gives
an explicit lower bound for f(x, t).

Lemma 4.3. For any x in a small neighborhood of x = 0, let σ be a solution of
Equation (30) with initial data σ(0) = smax(0)− f(x). Let s(x, t) be decreasing in
x and s0(t) given by (22b). Then the time-dependent bound

f(x, t) = smax(t)− σ(t)

can be estimated from below by the inequality

f(x, t) ≥ f(x) exp

(∫ t

0

smax(t
′)3 dt′

)
∀x ∈ U(t). (31)

Proof. We estimate the time derivative of σ by a series of steps:

∂tsmax(t)− ∂tf(x, t) = (smax − f)2
(
(smax − f)2 − s2

0

)
x∈P≤ s2

max(s
2
max − s2

0 − 2f̃ smax + f 2)

f≤smax≤ ∂tsmax − fs3
max.

Now one can subtract ∂tsmax(t) and the assertion follows after using Gronwall's
lemma for f(x, t). In the last step we used f(x, t) ≤ smax(t), which follows again
from positivity of σ in (30). When we simpli�ed the ordinary di�erential equation
and found an explicit expression for f(x, t), we also reduced the size of the set
where the bound is valid. At time t the inequality holds in U(t) = U ∪ P (t).

But as we will see, this rough estimate su�ces in order to show blow-up of s in
�nite time for a huge class of initial data. The following lemma provides the lower
bound p̃(t) < p(t) that we need in order to prove the �nite time blow-up of s.

Lemma 4.4. Let the initial data be such that smax(0) > s0(0) > 1, then p(t) is
bounded from below by

p(t) ≥ C1 (t + C2)
−2smax(t)

−8. (32)
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Proof. Using Mε = {x ∈ Ω : ε < si(x) < s0(t)− ε} the time-derivative is bounded
by ∂ts ≥ −s2

0s
2 ≥ −s2

maxs
2, which in turn implies

s(x, t) ≥ 1

ε−1 + ts2
max

≥ c1 s−2
max(t + c2)

−1 (t ≥ 0,∀x ∈ Mε). (33)

where it was used that
∫ t

0
smax(s)ds < tsmax(t). Note that the size of the set

m(t) = |Mε| is an increasing function. Then we use the integro-di�erential equation
to bound p(t) as follows

p(t)s4
max ≥ p(t)∂tsmax ≥

∫

P

∂ts dx

= −
∫

N

∂ts dx ≥ −
∫

Mε

∂ts dx

≥
∫

Mε

s2(s2
0 − (s0 − ε)2) dx ≥ c3

∫

Mε

s2

≥ m(0) c3 min
Mε

s2
(33)
≥ C1 s−4

max(t + C2)
−2

which was to be shown.

In the next lemma we combine both lemmas to show blow-up of s. It remains an
open question, to which extent this proof can be extended if the maximum is unique
but the solution is not bounded by such a power law, e.g., si(x) = αn(e−1/xn − e−1)
initial data (αn is the normalization factor). For su�ciently large n the estimates
in our proof do not su�ce to show blow-up of s in a �nite time.

Theorem 4.5. Let s(x, t) be a solution of (22) with non-negative, decreasing
initial data si(x). Suppose, in a small neighborhood of x = 0 we have an upper
bound

si(x) ≤ smax(0)− Cxn

for some arbitrary C, n > 0. Then smax(t) blows up after a �nite time.

Proof. First of all, volume conservation implies

p(t)s0(t) ≤ 1. (34)

In Theorem 4.2 we showed that smax(t) is unbounded. Suppose s0(t) is bounded,
then the integro-di�erential equation immediately implies blow-up of s after a
�nite time. Suppose s0 is unbounded, then (34) reveals that P (t) ⊂ U holds after
a �nite time. Presume that this is already true initially at t = 0 and apply (31) from
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Lemma 4.3 with time-dependent x = p(t). The upper bound si(x) < smax(0)−Cxn

implies smax > s0 > 1 which makes the application of (32) from Lemma 4.4
possible. Thus we obtain the inequality

smax(t) ≥ smax(t)− s(p(t), t) ≥ f(t, p(t))

≥ f(p(t)) exp

(∫ t

0

smax(t
′)3 dt′

)

≥ f
(
C1s

−8
max(t + C2)

−2
)

exp

(∫ t

0

smax(t
′)3 dt′

)

= C Cn
1 s−8n

max(t + C2)
−2n exp

(∫ t

0

smax(t
′)3 dt′

)
.

In order to rewrite this inequality in terms of a di�erential inequality, which is
easier to deal with, de�ne q(t) =

∫ t

0
smax(t

′)3 dt′ and insert it into the previous
estimate. This yields the di�erential inequality

(∂tq)
8n+1

3 ≥ CCn
1 (t + C2)

−2n exp (q) for t ≥ 0,

with q(0) = 0. We end up with the following convenient expression after rescaling
t and q with a �nite but n dependent scale

∂tq ≥ (t + c)−α exp (q) (35)

with α = 6n
8n+1

< 1. By explicit integration we get

q(t) ≥ − log

(
1− (t + c)1−α − c1−α

1− α

)
, (36)

which has a blow-up after a �nite time.

The estimates that are used in this proof are quite rough. Therefore we check the
leading order singular behavior of our estimate and compare with the expectation
h(x∗, t) ∼ (t∗ − t)1/3. Di�erentiating the lower bound

q(t) = − log

(
1− (t + c)1−α − c1−α

1− α

)
= − log

(
w(t)

)
,

with respect to time gives

smax(t)
3 = ∂tq(t) ∼ w′(0)

t∗∗ − t
+ O(1),

the expected behavior2 and justi�es our rough estimates.
2Note that t∗∗ denotes the zero of w(t).
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4.5 Finite-time pinch-o� for a very viscous jet

As it was mentioned earlier, basic ideas and notion of the previous proof are lend
from the paper by Renardy on jet pinch-o� in �nite time [14]. In his proof Renardy
assumed di�erentiability of the initial data and used an essential auxiliary lemma,
which unfortunately turned out to be incorrect (and also the corrigendum in [28]).

We use (31) to estimate the upper bound. This approach di�erent because it
makes no use of the property used in Renardy's auxiliary lemma, and it's more
general because no di�erentiability of initial data is required.

The same technique can be applied to the jet pinch-o� model very easily, be-
cause the model di�ers only slightly from (22). Consider the following equations
describing inertialess pinching of a liquid thread [10, 14]

∂ts(x, t) = s(x, t)3/2

(√
s(x, t)

s0(t)
− 1

)
, (37a)

s
1/2
0 (t) =

∫

Ω

s(x, t)2 dx
/ ∫

Ω

s(x, t)3/2 dx. (37b)

The initial data are non-negative, decreasing and normalized as in (23).

All properties of Lemma 4.1 can be carried over to (37). The computation of
∂ts0 > 0 can be found in [14]. For jet pinch-o� we compare solutions with solutions
of the auxiliary ordinary di�erential equation

∂tσ = σ3/2

(
σ1/2

s
1/2
0

− 1

)
, (38)

and obtain the following lemma.

Lemma 4.6. Let σ(x, t) be a solution of (38) and de�ne f(x, t) = smax(t)−σ(x, t)
for every x ∈ U . Then the following estimate holds:

f(x, t) ≥ f(x) exp

(
1

2

∫ t

0

smax(t
′)1/2 dt′

)
, ∀x ∈ U ∩ P (t). (39)

Note that P (t) is shrinking.
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Proof. With the previous de�nition of σ and f the following steps are obvious:

∂tsmax(t)− ∂tf(x, t) = ∂tσ = (smax − f)3/2

[(
smax − f

s0

)1/2

− 1

]

x∈P≤ s3/2
max

[(
smax − f

s0

)1/2

− 1

]

≤ s3/2
max

[(
smax

s0

)1/2 (
1− f

2smax

)
− 1

]

= ∂tsmax − f

2

smax

s0
1/2

.

The assertion follows again after applying Gronwall's lemma to the di�erential
inequality and using the initial data f(0, x) = f(x).

Similar to the previous theorem we need a lower bound to the size of p(t).
Lemma 4.7. If smax(0) > s0(0) > 1, then p is bounded by

p(t) ≥ C1 s−2
max (t + C2)

−3 for t ≥ 0 (40)

Proof. Analogous to proof of (32).
Theorem 4.8. Let s(x, t) be a solution of (37) with non-negative, decreasing
initial data si(x). In an neighborhood of x = 0 we have

si(x) ≤ smax(0)− Cxn

for some C, n > 0. Then smax(t) blows up after a �nite time.

Proof. Like in the proof for rupture in �nite time we �nd

smax(t) ≥ f(x, t) ≥ C (p(t))n exp

(
1

2

∫ t

0

smax(t
′)1/2 dt′

)

≥C Cn
1 s−2n

max(t + C2)
−3n exp

(
1

2

∫ t

0

smax(t
′)1/2 dt′

)
.

and de�ne q(t) =
∫ t

0
smax(t

′)1/2 dt′. After rescaling q and t we obtain the di�erential
inequality ∂tq ≥ (t + c)−(3n)/(4n+2) exp (q) which implies pinch-o� after a �nite
time.

Analogous to the previous proof we �nd that the estimate reproduces the known
leading order singular behavior smax(t) ' C(t∗∗ − t)−2 [8, 10].
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5 Conclusions and Outlook

In this paper, we study the evolution of the rupture process for a dewetting �lm
with large e�ective slip at the liquid�solid interface. We identify three di�erent
regimes, each with its own dominant balances and similarity solutions with dif-
ferent exponents. For regime II, we have a similarity solution of the second kind.
By solving a boundary value problem for a nonlinear ODE system, we determine
the similarity exponents; in fact, we obtain a discrete set of exponents for which
an analytic similarity pro�le exists and is suggested to be unique. A formal proof
is given in the upcoming work described further below. Of this discrete family
of solutions, only the �lowest order� is consistent with the terms neglected in the
dominant balance considered in regime II.

Another important question in this paper was to prove that the solution s in
regime II blows up after a �nite time. This depends very much on the local
behavior of the initial data near the maximum. If the maximum is attained in a
�nite interval, then the solution stays bounded. In all other cases solutions are
unbounded. For initial data are that bounded from above like

si(x) ≤ smax(0)− Cxn,

for some C, n > 0 we proved that the blow-up occurs after a �nite time. In the
proof we obtain a lower bound on the blow-up rate which reproduces the known
rate for jet pinch-o� and the rate h(x∗, t) ∼ (t∗ − t)1/3 for thin-�lm rupture that
we found in the third section.

Slight changes of the initial data near the maximum of si(x) can change the later
behavior qualitatively. In the theory of Ostwald ripening self-similar solutions show
a similar sensitive dependence on the initial data; this dependence is associated
with the term weak selection [29, 30]. In an upcoming paper [31, 32] we explain how
the local behavior of the initial data in�uences the emerging self-similar solutions
for second-kind similarity solutions of (22).
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