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Abstract

Structural adaptive smoothing provides a new concept of edge-preserving non-
parametric smoothing methods. In imaging it employs qualitative assumption on
the underlying homogeneity structure of the image. The chapter describes the main
principles of the approach and discusses applications ranging from image denoising to
the analysis of functional and diffusion weighted Magnetic Resonance experiments.

1 Introduction

Images are often characterized by qualitative properties of their spatial structure, e.g.

spatially extended regions of homogeneity that are separated by discontinuities. Images or

image data with such a property are the target of the methods considered in this chapter.

Alternative geometric characterizations using orientation or channels in feature space are

discussed in [22, 21, 26, 19, 28] and could be combined with the approach pursued here.

The methods summarized under the term structural adaptive smoothing try to employ a

qualitative assumption on the spatial structure of the data to simultaneously describe the

structure and efficiently estimate parameters like image intensities. Structural adaptive

smoothing generalizes several concepts in non-parametric regression. These include kernel

smoothing and local polynomials, see e.g. [73, 20, 61] or [9], the filter proposed by Lee [42],

bilateral smoothing [68] and scale space methods, see e.g. [51, 12]. Relations probably exist

to diffusion methods in the Beltrami framework.

Our approach provides an alternative to non-linear diffusion methods, see e.g. [60, 74], and

generalizes linear diffusion in a different way. Information on the error distribution and

qualitative assumptions on the underlying structure are effectively coded by the definition

of statistical penalties. The methods are designed to provide intrinsic balance between

variability and bias of the reconstruction results. In contrast to diffusion methods this

leads to a meaningful limit for increasing bandwidth, or correspondingly diffusion time.

An approach derived from a related idea is described in [59].

A first attempt to use the idea of structural adaptive smoothing was proposed in [52]

under the name adaptive weights smoothing. This was generalized and refined especially

in [53] providing a theory for the case of one-parameter exponential families. Several
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extentions have been made to cover locally smooth images [54], color images [55] and special

applications like functional Magnetic Resonance Imaging (fMRI) [66, 56] and Diffusion

Tensor Imaging (DTI) [64, 57].

The next section introduces the general approach. We then illustrate how this translates

to different imaging modalities and problems like image denoising in 2D and 3D, signal

detection in fMRI and smoothing in DTI. Within the summary we give some information

on implementations and numerical complexity of the algorithms.

2 Structural adaptive smoothing

Within this chapter we assume the following data structure. We denote by x1, . . . , xn ∈
X ⊆ IRp the experimental design. In imaging xi usually will be a point on a p dimensional

grid, although this assumption is not necessary for the approach. At each design point xi

we assume to observe a scalar or vector Yi ∈ Y ⊆ IRq.

We assume that the observed values Yi follow a probability distribution Pθ(xi) from a

family P = {Pθ; θ ∈ ×} and that we are interested in estimating θ or some function g(θ)

as a function of x. Traditional methods in non-parametric regression allow for varying

parameters but usually assume that θ(x) is a smooth function in x. This is violated for

image data characterized by strong discontinuities.

Instead we try to describe the image by its local homogeneity structure. We assume that

there exists a partitioning

X =
M⋃

m=1

Xm (1)

such that

θ(x) ≈ θ(xi) ⇔ ∃m : x ∈ Xm ∧ xi ∈ Xm

i.e. that θ is approximately constant on each Xm. This assumption is very weak in the

sense that the number M of partitions may be large and that there are no restrictions on

the form of the sets Xm. Nevertheless the assumption will prove helpful if there exists a

partitioning with M << n and where the Xm have some spatial extend. This structural

assumption is used within an iterative procedure.

We do not directly enforce the partitioning (1). Instead, for each design point xi, describe

a set U(xi) containing xi by a weighting scheme

W (xi) = (w1(xi), . . . , wn(xi)) = (wi1 . . . , win).

A positive weight wij will be assigned if the estimates of θj and θi are not significantly

2



different. In this case xj would be contained in U(xi). Within the iteration process U(xi)

can be sought of as being a subset or an estimate of a set Xm containing xi from the

assumed partition. U(xi) and U(xj) will usually not coincide at any stage of the process

even if the structural assumption is valid exactly and xi and xj belong to the same set Xm.

We try to determine the structure, e.g. sets of similar parameters, and estimate the

parameters in an iterative procedure. We start at each design point with an initial estimate,

if possible solely obtained from the observation at this point, and initialize a bandwidth h

such that a ball of radius h just contains some neighboring points. We will formalize this

later. We now alternate the following steps. At all design points xi and for all design points

xj within a ball of radius h we assign a positive weight wij if θ̂(xj) belongs to a confidence

region for θ(xi) and a zero weight for all other points, thereby creating a new weighting

scheme Wi = W (xi). This means we employ information from the estimates to learn on

the underlying structure. We then use the generated weighting scheme to obtain a new

estimate θ̂(xi) by weighted local likelihood or minimizing a weighted risk. Before continuing

we synchronize and increase the bandwidth h thereby allowing for more positive weights

and for a decrease in variability of the estimates. We stop iterating when a prespecified

bandwidth, corresponding to a maximal possible variance reduction, is reached.

We now more formally describe how we generate the weighting schemes. Let xi be

fixed and θ̂(xi) be obtained employing a weighting scheme W (k−1)(xi) = W
(k−1)
i =

(w(k−1)
i1 , . . . w

(k−1)
in ). We consider all xj such that ||xi−xj ||2/h2 ≤ 1. New weights w(k)

ij are

then generated as the product of two terms

w
(k)
ij = Kloc(lij)Kst(s

(k−1)
ij )

where

lij = ||xi − xj ||2/h2 and s
(k−1)
ij =

Ni

λ
T (θ̂(xj), θ̂(xi)) with Ni =

n∑
j=1

w
(k−1)
ij

are two penalties measuring the spatial distance between the two design points and the

difference between the two estimates. Both terms depend on kernel functions Kloc and

Kst respectively. The second term should reflect both the difference of the estimated

parameters and the variability of the parameter estimate at point xi. Such a statistics

T (θ̂(xj), θ̂(xi)) can often be derived as the Kullback-Leibler distance K(θ̂j , θ̂i) distance

between the probability distributions Pθ̂i
and Pθ̂j

. As an alternative, if θ̂(xi) is obtained

by minimization of a risk R(Y,Wi; θ) we may define

T (θ̂(xj), θ̂(xi)) = 2(R(Y,Wi; θ̂(xj))−R(Y,Wi; θ̂(xi)))

which in case of a logarithmic likelihood corresponds to using likelihood profiles.
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Given a weighting scheme Wi we estimate parameters by either weighted (local) likelihood

θ̂(xi) = arg max
θ
l(Y,Wi; θ) = arg max

θ

n∑
j=1

wijp(Yj ; θ)

or weighted (local) risk minimization, e.g. least squares,

θ̂(xi) = arg min
θ
R(Y,Wi; θ) = arg min

θ

n∑
j=1

wij ||Yj − f(θ)||2

where f : Θ 7→ IRq is a suitable function on the parameter space. A formal description of

the algorithm is then given as

• Initialization: Set k = 0, W (0)
i such that w(0)

ij = δij , θ̂(0)(xi) defined as a weighted

likelihood or least squares estimate, h(0) = 1.

• Adaptation: ∀i, j define

w
(k)
ij = Kloc(l

(k)
ij )Kst(s

(k−1)
ij )

• Estimation: ∀i define

θ̂(k)(xi) = arg max
θ
l(Y,W (k)

i ; θ) ( or arg min
θ
R(Y,W (k)

i ; θ))

• Iterate: Stop if k ≥ k∗, else select h(k+1) such that
∑

j Kloc(l
(k+1)
ij ) = ch

∑
j Kloc(l

(k)
ij )

(ch = 1.25), set k := k + 1, and continue with adaptation.

The proposed procedure involves several parameters. The most important one is the scale

parameter λ in the statistical penalty sij . The special case λ = ∞ simply leads to a

kernel estimate with bandwidth hmax = h(k∗). We propose to choose λ as the smallest

value satisfying a propagation condition 2 [53]. This condition requires that, if the local

assumption is valid globally, i.e. θ(x) ≡ θ does not depend on x, then with high probability

and for all k the estimate coincides at every point with the nonadaptive estimate. More

formally we request that in this case for each iteration k

E
n∑

i=1

|θ̂(k)(xi)− θ̌(k)(xi)| < αE
n∑

i=1

|θ̌(k)(xi)− θ| (2)

for a specified constant α > 0. Here

θ̌(k)(xi) =
∑

j

Kloc(l
(k)
ij )Yj/

∑
j

Kloc(l
(k)
ij )
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denotes the non-adaptive kernel estimate employing the bandwidth h(k) from step k. The

value λ provided by this condition usually does not depend on the unknown model pa-

rameter θ and can therefore be found by simulation in a global parametric situation. This

enables us to select default values for λ depending on the specified family of the probabil-

ity distribution P = (Pθ, θ ∈ Θ) and the chosen statistics T . Default values for λ in the

examples below are selected for a value of α = 0.2.

The second parameter of interest is the maximal bandwidth hmax which controls both

numerical complexity of the algorithm and smoothness within homogeneous regions.

Additionally we specify a number of parameters and kernel functions that have less influ-

ence on the resulting estimates. As a default the kernel functions are chosen as Kloc(x) =

(1− x2)+ and Kst(x) = min(1, 2(1− x))+. If the design is on a grid, e.g. for images, the

initial bandwidth h(0) is chosen as the distance between neighboring pixel.

Applications usually require an appropriate description of the statistical model, the struc-

tural assumption and a corresponding definition of the statistical penalty sij . Table 1

provides an overview of currently implemented models and the corresponding software

packages for the R environment for statistical computing [58].

3 Image denoising

The algorithm described in the last section is essentially dimension free. It can be easily

applied to reconstruct 2D and 3D images. We illustrate this using a 3D-MR image of a

head.

We apply adaptive weights smoothing assuming a model with additive Gaussian errors

Yi = θ(xi) + εi,

to describe the gray value in voxel xi. The statistical penalty used is

sij = Ni
2λσ2 (θ̂i − θ̂j)2. The error variance σ2 is estimated from the image. We employ

a maximal bandwidth hmax = 6. The value of λ = 3.45 fulfills the propagation condition

for α = 0.1. Special interest in this example is in detection and/or enhancement of tissue

borders. We illustrate the results in Fig. 1. Additionally to the image we provide the

results in terms of absolute values of a Laplacian filter which illustrates the gain in edge

detection.

Within this example we essentially assumed that the image intensity is locally constant.

This assumption may be to rigid and can be replaced, at the cost of sensitivity to disconti-
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Figure 1: Top: Original (left) and reconstruction (right) of an 3D-MR-image. Bottom:

Corresponding absolute values of a Laplacian edge filter.
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Table 1: Statistical model, corresponding statistical penalty and R-package.

Model penalty sij R-package

1D-, 2D- and 3D- regression models Ni
2λσ2 (θ̂i − θ̂j)2 aws / adimpro

1D-, 2D- and 3D- exponential families Ni
λ K(θ̂j , θ̂i) aws

1D-, 2D- local polynomial regression Ni
λ (R(Y,Wi; θ̂j)−R(Y,Wi; θ̂i)) aws / adimpro

1D-, 2D- and 3D- Gaussian mod-

els with parametric mean-variance

model g(x, θ, η) (η-global parame-

ter)

Ni
2λσ̂2(xi)

(θ̂i − θ̂j)2

σ(xi) = g(xi, θi, η)
aws

Color images with constant and lin-

ear parametric mean-variance model

and spatial correlation

Ni
λC(h,g)(θ̂i − θ̂j)T Σ̂−1

i (θ̂i − θ̂j) adimpro

functional MR (smoothing of SPM’s) λ−1(Var θ̂i)−1(θ̂i − θ̂j)2 fmri

Diffusion tensor imaging (DTI) Ni
λ [R(Y,Wi; θ̂j)−R(Y,Wi; θ̂i)] dti

nuities, by assuming the image to consist of locally smooth regions. The Propagation-

Separation approach from [53] assumes that within a homogeneous region containing

xi = (ih, iv), i.e. for xj ∈ U(xi), the gray value or color Yjh,jv can be modelled as

Yjh,jv = θ(xi)>Ψ(jh − ih, jv − iv) + εjh,jv ,

where the components of Ψ(δh, δv) contain values of basis functions

ψm1,m2(δh, δv) = (δh)m1(δv)m2

for integers m1,m2 ≥ 0, m1 + m2 ≤ p and some polynomial order p. For a given local

model W (xi) estimates of θ(xi) are obtained by local Least Squares as

θ̃(xi) = B−1
i

∑
j

wijΨ(jh − ih, jv − iv)Yjh,jv ,
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Figure 2: From left to right: noisy image, local constant reconstruction and local quadratic

reconstruction (hmax = 12)

with

Bi =
∑

j

wijΨ(jh − ih, jv − iv)Ψ(jh − ih, jv − iv)>.

The parameters θ(xi) are defined with respect to a system of basis functions centered in

xi. Parameter estimates θ̂(xj , xi) employing the local model W (xj) with basis functions

centered at xi can be obtained by a linear transformation from θ̂(xj). In iteration k a

statistical penalty can now be defined as

s
(k)
ij =

1
λ2σ2

(
θ̂(k−1)(xi)− θ̂(k−1)(xj , xi)

)>
Bi

(
θ̂(k−1)(xi)− θ̂(k−1)(xj , xi)

)
.

For a more detailed description and discussion of the resulting algorithm see [54].

Figure 2 illustrates results obtained by local constant and a quadratic structural adaptive

smoothing for a piecewise smooth image. The local constant reconstruction gives a car-

toonlike impression which is due to the use of an, for this image, inappropriate structural

assumption.

In digital color images the information in each pixel consists of a vector of three values.

Each value is a intensity in one channel of a three dimensional color space, usually the

RGB space.

If the image was recorded under bad light conditions, employing a high sensitivity of the

sensor, such images can carry a substantial noise. This noise is usually spatially correlated,

i.e. colored. Additionally we observe a correlation between the noise components in the

three RGB channels.
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1

Figure 3: Noisy image (upper left) and reconstruction by the proposed algorithm (band-

width hmax = 6, upper right). The bottom row shows details from both images and the

sum of weights Ni in each voxel.

An appropriate model to describe such a situation is given by

Yih,iv = θ(xi) + εih,iv ,

where the components of xi = (ih, iv) are the horizontal and vertical image coordinates.

Yih,iv , θ(xi) and εih,iv take values in R3. The errors follow a distribution with Eεih,iv = 0,

Var εih,iv = Σ and Eεcih,iv
εcih+1,iv

= Eεcih,iv
εcih,iv+1 = ρ for each color channel c. The

covariance matrix Σ may vary with the value of θih,iv .
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Structural adaptive smoothing can be applied in this situation with a statistical penalty

s
(k)
ij =

N
(k−1)
i

2λC(g, h)
(
θ̂
(k−1)
i − θ̂

(k−1)
j

)>Σ−1
(
θ̂
(k−1)
i − θ̂

(k−1)
j

)
where C(g, h) is a correction term for spatial correlation, see [55].

Figure 3 illustrates the effect of structural adaptive smoothing for color images. The lower

row provides details for the regions marked in the original and the reconstructed image as

well as an image of sum of weights Ni that illustrates the adaptivity of the approach.

4 Signal detection in functional MR

Functional Magnetic Resonance Imaging (fMRI) is nowadays a standard tool for in-vivo

examination of human brain function with plenty of applications both in research as well

as in clinical practice such as diagnosis and treatment of brain lesions. Data obtained in

human fMRI consists of time series of three dimensional datasets of the brain. The interscan

interval is usually in the order of seconds, while the spatial resolution is commonly in the

millimeter range [38, 39] with recent studies entering the submillimeter domain [13, 37, 36].

An interesting fact about fMRI is, that the blood oxygenation serves as a natural contrast

making the method non-invasive [46, 47]. This effect is known as the BOLD-effect and can

be used for example to localize cognitive functions within the brain. When performing a

cognitive task, the MR signal in some voxels is increased due to the higher oxygenation level

at the active site. Other voxels remain in their resting state. The increase of the signal can

be described by the hemodynamic response function, which has been extensively studied

in the past years. The BOLD-effect leads to the creation of various typical experimental

designs, mainly block- or event-related. In recent years it has also been proposed that even

the resting state pattern of the brain contains valuable information about the working

brain and hence has attracted much interest [44].

Many different methods exist to analyze fMRI data depending on the experiment or the

focus of the scientific questions, ranging from correlation analysis, ICA, spatio-temporal

to fully Bayesian models, see [40] for an overview. Since from the knowledge of the design

of an experiment the expected BOLD response is known, the linear model for fMRI data

has perhaps become the most widely used approach.

Any analysis method however has to consider the fact, that fMRI data suffers from sig-

nificant noise. Signal detection in fMRI data inherently involves a severe multiple test

problem. In common experiments decisions have to be made at more than 100 000 voxel,

leading either to high thresholds (low sensitivity) or a high number of false positives (low
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specitivity). Analysis methods in fRMI use the fact, that activated areas have a spatial

extend of several voxel. Spatial correlation, as introduced by smoothing, significantly re-

duces the number of independent tests. Under the hypothesis of no activation and in a

linear model based analysis spatial smoothing of fMRI data results in statistical paramet-

ric maps (SPM) that form random t- or F -fields. Results on excursion sets of random

fields [2, 77] can be therefore be used to define suitable thresholds for signal detection,

see e.g. [79, 78]. However, common non-adaptive smoothing methods involve a significant

loss of information on spatial structure and shape of activated areas. Several algorithms

based on different methodology, from noise reduction with anisotropic diffusion processes,

Bayesian approaches using spatial priors, region growing methods as established for image

segmentation, and others, have been suggested to circumvent this.

Recently we proposed the use of structural adaptive smoothing [66], to avoid the loss of

spatial information. The algorithm was developed in the context of the linear model for

the BOLD-fMRI data [29, 76] but can easily be translated to other contexts. Our approach

for smoothing fMRI data is mainly based on the observation that the structures of interest

are defined by areas in which the parameter values corresponding to the BOLD signal are

similar and differ significantly from zero. The common non-adaptive filtering approaches

smooth the data cube at each time step separately, without making use of the information

contained in the time series. We therefore suggested to first evaluate the linear model

Yi = Xβi + εi

for the time series Yi = (Yit)t=1...T at each voxel i. The design matrix X contains the

expected BOLD response evaluated at scan acquisition times and nuisance parameters

such as a slowly varying drift. After performing some appropriate prewhitening proce-

dure, the error vector εi = (εit)t=1...T can be assumed to have zero expectation and to be

approximately uncorrelated in time.

We obtain fields of least squares estimates β̂i for the parameter value βi and, what is most

important, its error variance Var β̂i. Equipped with these the development of a specific

structural adaptive smoothing algorithm as outlined in previous sections is canonical. First,

we define a structural assumption of spatial homogeneity, which should be valid for the field

of the true parameter βi. In non-activated areas the parameter value is assumed to be zero.

This serves as the null hypothesis and allows to again use Random Field Theory [2, 77] for

signal detection, see [66]. In areas which are activated during the scan the parameter values

differ from zero and are similar, provided that the BOLD %-changes are similar. Hence, our

structural assumption is a local constant model for the BOLD-parameter. Activated areas

may consist of more than one region with similar parameters. Based on this assumption,
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we use an iterative smoothing algorithm for the statistical parametric map (SPM) that is

based on pairwise tests of homogeneity. The result is a smoothed SPM where the shape

and borders of the activation structure are preserved. As a consequence, in contrast to

other non-adaptive smoothing methods, the procedure does reduce noise while preserving

the resolution of the scan as required by many modern applications.

The main parameter of our procedure is the maximum achievable variance reduction or

equivalently a maximum achievable smoothness. Both can be specified by selecting a

maximum bandwidth. Oversmoothing is avoided in the algorithm by construction as long

as differences between the parameter values of two homogeneity regions are statistically

significant. The largest homogeneous region is expected to be the non-activation area,

where parameter values do not significantly differ from zero. Therefore we can choose the

maximum bandwidth larger than in non-adaptive smoothing and achieve a larger amount

of variance reduction without blurring. This has the effect of lowering the thresholds

for signal detection, since the smoothness in non-activation areas, which determine the

threshold under the hypothesis of no signal, is directly proportional to the bandwidth.

As statistical penalty we use

s
(k)
ij =

1

λVar β̂(k−1)
i

(β̂(k−1)
i − β̂

(k−1)
j )2

where β̂(k−1)
i is the estimated BOLD-parameter from the previous iteration step. Its vari-

ance Var β̂(k−1)
i is estimated from the spatially smoothed residuals of the time series. From

the final estimates for k = k? a random t-field β̂(k?)
i /(Var β̂(k?)

i )1/2 can be constructed such

that again Random Field Theory can be applied for signal detection [66].

We now consider an application of this algorithm and compare it with the signal detection

using no smoothing and Gaussian filtering. Experiments were performed on healthy vol-

unteers and approved by the Institutional Review Board of Weill Cornell Medical College.

Data was acquired on a 3.0 T General Electric (Milwaukee, WI) Signa Excite MRI scanner,

using two-dimensional gradient echo echo planar imaging pulse sequences (GE-EPI) on an

eight-channel head receive-only coil. A somatosensory motor task was performed by one

male subject. For functional MRI, a GE-EPI sequence with TE/TR = 40/2000 ms was

used and 20 axial slices of 4 mm thickness were acquired. We used a field-of-view of 24 cm

with a matrix size of 128×128, yielding voxel dimensions of 1.88 mm, respectively. A task

was performed in three blocks of 60 s duration; each block consisted of 30 s task and 30 s

rest. The first 4 scans before these block were discarded, yielding in total 105 scans. The

task consisted of bimanual tapping of the thumb against all fingers of the same hand, one

by one and in quick succession. In Fig. 4 the effect of smoothing and structural adaptive

smoothing in particular is demonstrated. While without smoothing only very few active
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Figure 4: Signal detection in an fMRI experiment: without smoothing (left), with Gaussian

filtering (center) and structural adaptive smoothing (right).

voxels can be detected, smoothing in general leads to better detection results. However the

significant and inherent blurring with Gaussian filtering can be avoided using structural

adaptive smoothing. It has been recently shown, that this procedure is especially helpful

in high resolution scans [63]. Structural adaptive smoothing in fMRI is capable to fully use

high resolution, to correctly locate activation at tumor borders for pre-surgical planning,

and to extract information on spatial structure and shape of the activation areas. For

successfull applications see e.g. [65, 72, 63].

5 Diffusion Tensor Imaging

Since the early times of nuclear magnetic resonance, it has been known that this phe-

nomenon is sensitive to, and thus can be used to measure, diffusion of molecules in complex

systems [11]. The basic principles of magnetic resonance diffusion weighted imaging (DWI)

were introduced in the 1980’s [8, 45, 67]. Since then, DWI has evolved into a versatile tool

for in-vivo examination of tissues in the human brain and spinal cord, leading to a plethora

of clinical and neuroscience applications. The broad interest in this technique grows from

the fact that DWI probes microscopic structures well beyond typical image resolutions

through water molecule displacement, which can be used in particular to characterize the

integrity of neuronal tissue in the central nervous system.

Diffusion in neuronal tissue is usually not isotropic but depends on the particular micro-

scopic structure of the tissue. Different diffusion directions can be probed by application

of corresponding bipolar magnetic field diffusion gradients [62]. Compared to the non-
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diffusion weighted images S0 the diffusion weighted images S~b
for gradients in direction ~b

are exponentially attenuated

S~b
= S0 exp(−bD(~b)). (3)

with the apparent diffusion coefficient D(~b) depending on the tested direction ~b and the “b-

value” b depending on the magnetic field gradient parameters. In DTI [4, 5] this information

is reduced to a three dimensional Gaussian distribution model for diffusion. Within this

model, diffusion is completely characterized by the diffusion tensor D, a symmetric positive

definite 3× 3 matrix with six independent components. Eq. 3 thus generalizes to

S~b
= S0 exp(−b ·~b>D~b).

The tensor itself is not invariant against rotations of the observation frame. Hence, only

rotationally invariant quantities derived from the tensor contain physically meaningful

measures. They are mainly based on the eigenvalues µi (i = 1, 2, 3) of the tensor D with

µi > 0 for positive definite tensors. Mainly used are the trace, corresponding to the

mean diffusivity 〈µ〉, and the fractional (FA) or geodetic anisotropy (GA) measuring the

anisotropy of the tensor:

〈µ〉 =
1
3

3∑
i=1

µi .

FA =

√
3
2

√√√√ 3∑
i=1

(µi − 〈µ〉)2 /
3∑

i=1

µ2
i

GA =

√√√√ 3∑
i=1

(log(µi)−
1
3

3∑
i=1

log(µi)

The diffusion tensor can be visualized as an ellipsoid with the length of main axis corre-

sponding to the eigenvalues and the eigenvectors to the direction in space. Furthermore,

the eigenvector for the largest eigenvalue directs in the main fiber direction. Evaluating

the components of the vector as three components in a color space like RGB lead to color-

coded directional maps with high diagnostic value due to its high contrast for interesting

structures.

The diffusion tensor model describes diffusion completely if the microscopic diffusion prop-

erties within a voxel are homogeneous. In the presence of partial volume effects, like cross-

ing or bifurcating fibers, the Gaussian model is only an approximation. Such effects are

addressed in High Angular Resolution Diffusion Imaging (HARDI) [71, 27], see also [26, 18]

within this book. For HARDI more sophisticated models exist, e.g. Q-ball [69, 16], higher

order tensors [48], multi-tensor models [70] and tensor distribution functions [34, 43]. In
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this chapter, we restrict ourselves to the Gaussian diffusion tensor model for anisotropic

diffusion, as used in DTI.

The diffusion tensor can be estimated by non-linear regression minimizing the risk:

R(S·,i, θ,D) =
∑
~b

(S~b,i
− θ exp(−b ·~b>D~b)2

σ2
~b,i

(4)

with respect to the non-diffusion weighted parameter θ and the diffusion tensor D with the

variability σ2
~b,i

of the diffusion weighted images.

DTI suffers from significant noise which may render subsequent analysis or medical deci-

sions more difficult. This is especially important in low signal-to-noise applications, such

as high-resolution DTI or DTI with high b-values [15, 80, 35]. It has been shown that noise

may induce a systematically biased assessment of features. For example, a well known

phenomenon is the biased estimation of anisotropy indices in the presence of noise [6, 32].

At high noise levels, in addition to the common random errors, the order of the diffusion

eigenvectors is subject to a sorting bias. Noise reduction is therefore essential. Several ap-

proaches have been proposed for smoothing diffusion tensor data. They include common

methods such as Gaussian smoothing [75], anisotropic kernel estimates [41], and methods

based on non-linear diffusion [51, 74, 49, 17] or splines [33].

Procedures proposed within this book include coherence enhancing diffusion for matrix

fields [10] and tensor regularization methods [31]. Smoothing of tensor data requires to

choose a Riemannian [24, 50, 81, 82, 25] or log-Euclidian metric in the tensor space [3, 23].

We see some conceptional advantages in smoothing the diffusion weighted images instead of

the tensor estimates. Estimating the tensor by Eq. (4) from noisy data leads, with a certain

probability, to results outside the tensor space. This requires some kind of regularization.

Reducing the noise level in the diffusion weighted images allows for a reduction of this

probability in case of an underlying non-degenerate tensor. In case of high noise level in

the diffusion weighted images, both the Rician distribution and the non-linearity of Eq. (3)

lead to a bias in the tensor estimate. This bias can be reduced by smoothing the diffusion

weighted images, but is not addressed if smoothing is performed in the tensor space itself.

A correction for Rician bias [30, 7, 57] can be incorporated.

We therefore developed a structural adaptive smoothing algorithm for DWI data in the

context of the diffusion tensor model [64] with extensions to include Rician bias correction

and non-linear tensor estimation. Our underlying structural assumption is that for every

voxel there is a neighborhood of this voxel in which the diffusion tensor is nearly constant.

This assumption reflects the fact that the structures of interest are regions with a homo-

geneous fractional anisotropy, a homogeneous diffusivity, and a locally constant direction
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field. The shape of this neighborhood can be quite different for different voxels and cannot

be described by few simple characteristics like bandwidth or principal directions.

The algorithm involves the statistical penalty

s
(k)
ij =

N
(k−1)
i

λ

[
R

(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,j , D̂

(k−1)
j

)
−R

(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,i , D̂

(k−1)
i

)]
based on previous estimates for the diffusion tensor and its variability. The corresponding

weighting schemes are then directly applied to the diffusion weighted images, from which

new estimates for the tensors with lower variability can be estimated.

In contrast to non-linear diffusion methods [81, 82, 50, 10] or non-adaptive smoothing [25,

3, 23] this algorithm takes the variablity of the tensor estimates into account and effectively

uses the estimated underlying local structure to restrict the averaging process.

In Fig. 5 we demonstrate the effect of this procedure on experimental data. We use a

DWI data set [14] made available by the NIH/NCRR Center for Integrative Biomedical

Computing, P41-RR12553. This data set contains twelve diffusion weighted volumes and

one non-diffusion-weighted (b = 0) reference volume. The data has a spatial resolution of

1.5 mm on each axis. The front of the head is at the top of the image. The scan goes from

the top of the head down to about the middle of the brain, below the corpus callosum, but

above the eyes.

The DTI data was collected on a 3 Tesla MRI scanner in the W.M. Keck Laboratory

for Functional Brain Imaging and Behavior by Dr. Andrew Alexander, Departments of

Medical Physics and Psychiatry, University of Wisconsin, Madison, funding: NIH RO1

EB002012.

6 Implementations

The structural adaptive smoothing procedures described in this chapter have been mainly

implemented as packages for the R environment for statistical computing [58].

Basic algorithms for denoising 1D- 2D and 3D structures using one parameter exponential

family models and local polynomial models are implemented in the package aws.

The image processing of two dimensional color images has become omnipresent in the past

years due to the availability of digital cameras. With the package adimpro we provide

basic image processing functions, from reading/writing and color space transformations to

structural adaptive smoothing.

The package fmri provides functions for reading and writing medical imaging formats and

16



Figure 5: Real DWI data example: The upper row shows the estimated color-coded di-

rectional map weighted with FA for the slices 22-24 of the CIBC-dataset [14]. White

square marks the extent of the region specified for the lower row. There, the noisy (left)

and smoothed (bandwidth 4, right) tensors are shown. The structural adaptive smooth-

ing apparently leads to a homogenization of the regions without blurring the structural

borders.

performing an analysis of BOLD-fMRI on the basis of the linear model. This includes

the structural adaptive smoothing procedure described in the previous sections as well as

signal detection based on Random Field Theory.

The package dti implements the structural adaptive smoothing in the context of the diffu-

sion tensor model for diffusion weighted data. Table 2 compares the computing times and
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Dimensions 101× 146× 38 72× 100× 50 146× 193× 47

# gradients 13 201 150

# voxel in mask 211235 255257 863134

CPU-time for sdpar 41 s 27 s 126 s

CPU-time for dtiTensor 16 s 118 s 156 s

CPU-time for dti.smooth (hmax = 2) 220 s 667 s 893 s

CPU-time for dti.smooth (hmax = 4) 415 s 1256 s 2140 s

CPU-time for dtiIndices 3.1 s 3.7 s 11 s

Mean Ni (hmax = 2/4) 3.67/16.5 1.20/1.87 1.55/4.32

Table 2: Computing time for three DWI data sets. The first column corresponds to the

CIBC-dataset [14], the second to a data set kindly made available by A. Anwander, and a

third data set kindly made available by H.U. Voss.

mean sum of weights for different datasets. The package also features extended visualiza-

tion functions in two and three dimensions based on the R-interface to OpenGL provided

by the R-package rgl [1].

7 Summary

Structural adaptive smoothing as described in this chapter can be very helpful in many

contexts to remove noise without blurring interesting structures. While the main idea of

structural adaptation in the Propagation-Separation approach is common for all applica-

tions, the resulting algorithms may be quite different and depend on the specific properties

of the data and the application.
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