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A Posteriori Error Estimates 
for Elliptic Variational Inequalities 

Ralf Kornhuber 
WeierstrafJ-Institut fiir Angewandte Analysis und Stochastik Berlin 

MohrenstrajJe 39 D-10117 Berlin, Fed. Rep. of Germany 

Abstract. We derive a posteriori error estimates for elliptic variational 
inequalities. The evaluation amounts to the solution of corresponding scalar 
local subproblems. Upper bounds for the effectivity rates are given. The 
theoretical considerations are illustrated by numerical experiments. 

Zusammenfassung. Wir entwickeln a posteriori Fehlerschatzungen fiir 
elliptische Variationsungleichungen. Die Auswertung erfordert die Losung 
entsprechender skalarer, lokaler Teilprobleme. Es werden obere Schranken 
fiir die Effektivitatsraten angegeben, und wir illustrieren die numerischen 
Eigenschaften anhand typischer Beispiele. 
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1 Introduction 
A posteriori error estimates play a crucial role in the solution of partial dif-
ferential equations by adaptive finite element methods. In this paper we will 
consider hierarchical error estimates which are characterized by consisting of 
the following two steps 

• Discretize the defect problem with respect to an enlarged space. 

• Localize the discrete defect problem by domain decomposition. 

The first appearance of hierarchical error estimates that we know is in the 
work of Zienkiewicz et al. [29] in the early eighties. The intimate relation to 
preconditioning was made explicit by Deuflhard, Leinen and Y serentant [9]. 
Recently, it turned out that the hierarchical approach allows a unified view 
on a variety of apparently different concepts ( c.f. Bornemann, Erdmann and 
Kornhuber [4, 5] and Verfi.irth [27, 28]). 
Bank and Smith [3] have extended hierarchical error estimates from the ellip-
tic selfadjoint case to a variety of other situations including smooth nonlinear 
problems. Here we will concentrate on non-smooth optimization problems 
as arising in the fixed domain formulation of certain free boundary problems. 
Obstacle problems or semi-discretized Stefan problems are typical examples. 
A straightforward extension of hierarchical error estimates from the linear 
elliptic case to obstacle problems was applied successfully by Kornhuber and 
Roitzsch [22] to a special problem from semiconductor device simulation. 
However, it turned out in the subsequent analysis and numerical experiments 
( c.f. Hoppe and Kornhuber [16]) that in general the resulting local error es-
timator suffers from a certain lack of robustness. In the present paper this 
problem is remedied by a suitable choice of the underlying preconditioner. 
Moreover, our new approach covers a considerably larger class of problems. 
We derive upper bounds for the effectivity rates which at least in the linear 
selfadjoint case do not depend on the stepsize. Numerical examples illus-
trate the efficiency and reliability of the error estimates and of corresponding 
mesh-refinement strategies. 
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2 The Continuous Problem and its 
Discretization 
Let n be a bounded polygonal domain in the Euclidean space IR2

• We con-
sider the optimization problem 

J"(u) + cf>(u) ~ J"(v) + cf>(v), v E HJ(n). (2.1) 

Other boundary conditions of Neumann or mixed type and the case of three 
space dimensions can be treated in a similar way. The quadratic functional 

J"(v) = ~a(v,v)-l(v) (2.2) 

is induced by a continuous, symmetric and HJ(n)-elliptic bilinear form a(·,·) 
and a linear functional l E H-1(n). The convex functional 4> : HJ(n) -+ 
IR U { +oo} of the form 

_cf>(v) =in <I>(v(x))dx, (2.3) 

is generated by a scalar convex function <l>. We assume that <l> is chosen 
in such .a way that cf> is lower semicontinuous and proper in the sense that 
cf> ":/= oo. To fix the ideas, we give two typical examples. The first one is an 
obstacle problem generated by the indicator functional 

<l> ( z) = { 0, ~f z ~ 00 

oo, 1f z > Oo (2.4) 

with some fixed upper obstacle 00 E IR. The other example is resulting 
from the implicit time discretization of two-phase Stefan problems. Here the 
piecewise quadratic function of the form 

with suitable constants a 1 , a2 , s 1 , s2 E IR is the potential of the generalized 
enthalpy. Note that a jump of the derivative occurs at the phase transition 
temperature 00 E IR. For a variety of further examples, we refer to Crank 
[8], Duvaut and Lions [11] and others. 
It is well-known ( c.f. Glowinski (13]) that (2.1) admits a unique solution and 
can be equivalently rewritten as the following variational inequality of the 
second kind 

a( u, v - u) + c/;( v) ~ c/;( u) ~ l( v - u), v E HJ(n). (2.6) 

Let T be a given partition of n in triangles t ET. The sets of interior nodes 
and edges are called JV and £, respectively. Discretizing (2.6) by continuous, 
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piecewise linear finite elements S C HJ(n), we obtain the finite dimensional 
problem 

us ES: a(us,v - us)+ <Ps(v) - <Ps(us) 2:: l(v - us), v ES. (2.7) 

Observe that the functional cp is approximated by the S-interpolation of the 
integrand <P( v ), giving 

cps ( v) == 1 2: <P ( v (p)) -Xp ( x) dx, 
npEN 

v ES, (2.8) 

where A == {-Xp I p E N} stands for the nodal basis of S. Of course, the 
discrete problem (2. 7) is uniquely solvable. For convergence results we refer 
for example to Brezzi et al. [6], Elliot [12] or Glowinski [13]. The efficient it-
erative solution of (2. 7) by monotone multigrid methods has been considered 
by Kornhuber [18, 19]. 
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3 Discrete Defect Problems 
Assume that ii, E S is an approximation of the finite element solution us of 
(2.7). In most applications ii, is produced by some iterative solver. We want 
to derive upper and lower bounds for the approximation error llu - ull with 
respect to the energy norm II · II = a(·, ·)112. Note that the algebraic error 
llus - ull may interfere with the discretization error llu - usll· 
Observe that the desired defect e = u - ii, is the unique solution of the defect 
problem 

e E HJ(fl): a(e,v - e) + 'lj;(v) -'lj;(e) ~ r(v - e), v E HJ(fl), (3.1) 

where we have used the translated functional 'lj; defined by 

'lj; ( v) = </J( ii, + v) = 1n <I> (ii, ( x) + v ( x)) dx, v E HJ ( fl), 
and the residual 

r = l - a(u, ·) E H-1 (fl). 

To discretize the continuous defect problem (3.1), we introduce the finite ele-
ment space of continuous, piecewise quadratic functions Q C HJ(~), spanned 
by the nodal basis 

AQ = {.Ai Ip E JVQ}· 
Here we have set N Q = N U Ne and Ne consists of the midpoints of the 
interior edges. Interpolating <I>( ii,+ v) by piecewise quadratic finite elements, 
we obtain the approximation 

'lf;Q(v) =fr L <I>(u(p) + v(p)).Ai(x)dx, v E Q, 
n pE./112 

of the defect functional 'lj;. Then eQ E Q is the unique solution of the discrete 
defect problem 

v E Q. (3.2) 

There are other interesting ways of extending the underlying finite element 
space S, in particular in the case of three space dimensions (see [5)). Cor-
recting ii, by eQ we obtain the piecewise quadratic approximation 

with respect to the triangulation T. 
We now investigate the effect of discretization on the original defect problem. 
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Theorem 3.1 Assume that UQ provides a better approximation than u in 
the sense that 

llu - UQll ~ fJllu - ull 
holds with some f3 < 1. TIJ,en we have the estimates 

(3.3) 

(3.4) 

Proof. We only show the lower bound for llu-ull which immediately follows 
from (3.3) and the triangle inequality 

II 

The crucial condition (3.3) with f3 = f3'r < 1 is a consequence of the satura-
tion assumption 

(3.5) 

and the weakened best approximation property 

llu-usll ~ 1llu-ull, r < 1/(3'. (3.6) 

The saturation assumption (3.5) states that the larger finite element space 
Q provides a better approximation than the original space S. In the case of 
elliptic selfadjoint problems, (3.5) is also a necessary condition for the upper 
estimate in (3.4) ( c.f. [5]). For sufficiently regular problems the piecewise 
quadratic solution UQ is even an approximation of higher order (see for in-
stance [6]). In this case (3.5) clearly holds for sufficiently fine triangulations. 
On the other hand, there are simple examples showing that (3.5) may be vi-
olated, if the mesh is not properly chosen. In this sense reliable a posteriori 
error estimates still involve a certain amount of a pr~ori information. See [5] 
for a detailed discussion. 
Assuming that (3.5) is satisfied, the accuracy assumptiOn 

llus - ull ::; r'llu - usll, 0 ~ [ 1 < 1 - (3', 

implies the weakened best approximation property (3.6). For elliptic selfad-
joint problems the condition (3.6) always holds with')'= 1 < 1/ {3'. 

5 



4 Preconditioned Discrete Defect Problems 
In general, the solution of the discrete defect problem (2. 7) is not available at 
reasonable computational cost. This motivates further simplifications, which 
should preserve the desired estimates (3.4). 
Extending well-known results from the elliptic selfadjoint case [3, 4, 5, 9], we 
will now investigate the effect of preconditioning on the solution eQ of (2. 7). 
For this reason we consider the variational inequality 

v E Q, (4.1) 

with some symmetric and positive definite bilinear form b(·, ·)on Q. Observe 
that the preconditioned defect problem ( 4.1) is uniquely solvable and that the 
preconditioner b(-, ·)induces a norm I· I= b(·, ·)112 on Q. 

Theorem 4.1 Assume that the norm equivalence 

rob( v, v) :::; a( v, v) :::; 1'ib( v, v ), v E span{ eQ, eb}, ( 4.2) 

holds with nonnegative constants 1'o, 1'l. Then we have the estimates 

(4.3) 

Proof. By symmetry arguments it is sufficient .to establish only the right 
inequality in ( 4.3). Inserting v = eb in the original discrete problem (2. 7), 
some elementary calculations and ( 4.2) yield 

The assertion now follows from 

Inserting v = eQ in ( 4.1) and using the Cauchy-Schwarz inequality, we get 

so that it is sufficient to show 

(4.5) 

In order to prove ( 4.5), we insert v = eb in (3.2) and v = eQ in the precondi-
tioned problem (4.1). Adding the two resulting inequalities we obtain 
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which can be reformulated as 

The assertion now follows from the Cauchy-Schwarz inequality and ( 4.2). 11 

In the light of Theorem 4.1, we are left with the problem to select a precon-
ditioner b( ·, ·) which combines reasonable constants 'Yo, 'Yi with a cheap eval-
uation of eb. In analogy to the linear selfadjoint case one might be tempted 
to construct a preconditioner based on the hierarchical splitting 

(4.6) 

where the difference space V = span{.Ai Ip E Ne} consists of the, quadratic 
bubble functions associated with the edges £ ( c.f. [5, 9]). 
However, in contrast to the linear case the unknowns now become coupled 
with respect to the functional 'l/;Q as soon as the corresponding hierarchical 
basis is used. Even in simple cases, this coupling cannot be ignored without 
loosing the reliability·of the resulting error: estimate [16]. On.the other hand, 
the global preconditioned problem is not solvable with reasonable computa-
tional effort. 
To find a way out of this dilemma, observe that the constants 'Yo, 'Yi appearing 
in the estimate ( 4.3) depend only on the local quality of the preconditioner 
b(·, ·)on the subspace span {eQ, eb} C Q. As a consequence, we can expect 
good results even from very simple preconditioners like the diagonal scaling 

b(v, w) = I: v(p)w(p)a(.A;, .Ai), v, w E Q, (4.7) 
pEJVg 

if it is known a priori that eQ and eb are high frequency functions. 
Moreover, the preconditioned defect equation ( 4.1) resulting from the diag-
onal scaling ( 4. 7) can be decomposed in separate local subproblems for the 
nodal values of eb. For piecewise quadratic scalar functions <P these sub-
problems can be solved explicitly. 
This heuristic approach can be justified in the special case of linear elliptic 
problems. 

Proposition 4.1 Let the preconditioner b( ·, ·) be given by (4. 7). Assume 
that <P = 0 and that the discrete problem {2. 7) has been solved exactly1 i. e. 
ii,= us. Then the estimates (4.3) hold with constants depending only on the 
ellipticity of a(·,·) and on the shape regularity of T. 

Proof. Let us consider the hierarchical splitting ( 4.6). For some given 
v E Q the superscripts S and V will indicate the contributions vs E S and 
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vV E V of the unique decomposition v == vs + vv. We will make use of the 
bilinear forms 

a(v,w) == a(v8 ,v8 ) + L vv(p)wv(p)a(A;, Ai) 
pENe 

and 

b(v,w) == L v8 (p)ws(p)a(A;,A;) + L vv(p)wv(p)a(A;,A;) 
pEN pENe 

defined on Q. Observe that both preconditioners are based on the hierarchi-
cal splitting ( 4.6) and subsequent diagonalization. Using the standard affine 
transformation technique in a similar way as for example in [5, 9], it can be 
shown that the norm equivalences 

b( v' v) ~ b( v' v)' a(v,v) ~ a(v,v) (4.8) 

hold for all v E Q. Here the abbrevation x ~ y stands for the estimates 
cy ~ ·x ~ Cy with constants c, C depending only on the ellipticity of a(·,·) 
and on the shape regularity of T. Using the preconditioners a(., ·) and b(., ·) 
in the preconditioned defect problem (4.1), we obtain the corrections ea and 
eg, respectively. Now the estimates 

( 4.9) 

are an immediate consequence of Theorem 4.1. The crucial question is how 
to relate b( eb, eb) to a( ea, ea). 
Here we make heavily use of the assumption q> = 0. In this case the defect 
problem (3.2) reduces to the variational equality 

a(eQ,v) == r(v), v E Q. ( 4.iO) 

Replacing a(·,·) by the preconditioner b(·, ·), the linear and the quadratic 
contribution of eg == ef +et are completely decoupled. The same happens 
if the other hierarchical preconditioner a(·,·) is used. Applying in addition 
that r( v) = 0 holds for all v E S (a consequence of the second assumption 
u ==us), we get 

ef == e~ == 0, ( 4.11) 

This clearly yields b( eg, eg) == a( ea, ea) and the assertion follows from ( 4.9). II 

Proposition 4.1 can be extended to variational inequalities under severe re-
strictions on the behavior of the discrete free boundary (see [20]). The main 
difficulty is that the equations ( 4.11) are no longer valid because now the 
linear and the quadratic parts of eg and ea remain coupled with respect to 
the nonlinear functional 'l/;Q· This is the same problem as mentioned above. 
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Nevertheless Proposition 4.1 gives some motivation to assume that the cor-
rection eQ is a high frequency function. Then Theorem 4.1 assures that lebl 
provides reasonable lower and upper bounds for the exact correction lleQll· 
This heuristic reasoning is strengthened by our numerical experiments re-
ported below. Recall that there are no such results for the comparable local 
error estimate considered in [16, 22]. 
To increase the robustness (and unfortunately the computational costs) of the 
a posteriori error estimation we may consider the following iterative scheme 

v+ 1 _ v + B ( v) _ 0 1 e -e e , v- , , ... , e0 - 0 - ' ( 4.12) 

where B is intended to generalize the role of a preconditioner to nonlinear 
problems. In this case, the resulting error estimate II e1 II depends on the con-
vergence rates of the iteration ( 4.12). We refer to [20] for further information. 
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5 Numerical Experiments 
A posteriori estimates are typically used as part of an adaptive multilevel 
method in order to provide stopping criteria for the complete algorithm and 
local error indicators for the adaptive refinement. Based on the global esti-
mate I eb I as resulting from ( 4.1) with diagonal scaling . ( 4. 7) we select local 
error indicators as follows. 
Using the hierarchical splitting ( 4.6) we decompose eb according to 

eb = e~ + e~, e~ E S, e~ E V. 

Here et and e~ represent the low and high frequency parts of eb. In analogy 
to the linear selfadjoint case we want to refine the given triangulation Tin 
such regions where the high frequency contributions deteriorate the overall 
accuracy. Hence, the local contributions T/p, 

of !erl2 = EpElVe 'f/p are used as local error indicators. If T/p exceeds a certain 
threshold fj then the two triangles containing p are marked for refinement. 
The threshold fj is computed by extrapolation [1]. Marked triangles are 
subdivided into four congruent subtriangles. Additional refinement may be 
necessary for structural reasons. See for example Bank [2] or Deu:flhard, 
Leinen and Y serentant [9] for further information. 
An adaptive cycle consists of discretization, iterative solution and adaptive 
refinement of the given triangulation. An adaptive algorithm is producing 
a sequence of triangulations 0, of corresponding approximations Uj and of 
error estimates lei!, j = 0, ... , by inductive application of adaptive cycles to 
an intentionally coarse initial triangulation To. The algorithm stops if the 
estimated error is bounded by some prescribed accuracy TOL, 

!eti :::; TOL. (5.1) 

The refinement level j counts the number of adap.tive cycles while the re-
finement depth of 0 denotes the maximal number of successive refinements 
applied to an initial triangle t E To. For selfadjoint elliptic problems a theo-
retical justification of the described adaptive approach was recently given by 
Derfler [10]. 
In the following numerical examples, we always require an estimated accuracy 
of 5. %. More precisely, the computation is stopped if (5.1) is satisfied with 
TOL = 0.05 · lluill· The approximate solutions Uj of the discrete problems 
(2. 7) are computed up to an accuracy of 0.53 using monotone multigrid 
methods as introduced by ·Kornhuber [18, 19]. The implementation was 
carried out in the framework of a recent C++ version of the finite element 
toolbox KASKADE. 
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Example 5.1: Obstacle Problem We consider the numerical solution of 
the obstacle problem 

uEJC: :T(u)::; :T(v), v E JC, (5.2) 

where :J is defined in (2.2) and the closed convex set JC is given by 

JC= {v E H~(n) I v(x)::; cp(x) a.e. inn} 

with some obstacle function cp E HJ(!t). It is easily checked that (5.2) can 
be rewritten in the form of our general problem (2.1) with the scalar function 
~ given by (2.4). 
In our numerical computations we select the quadratic form a(·, ·) and the 
right hand side .f.(·) according to 

a(v,w) = k 81v81w + 82v82w dx, l(v) = 20 k v dx 

and the obstacle function is given by cp(x) = dist(x,8!1), x En. Finally let 
n = (0,1) x (0,1). 
The resulting obstacle problem (5.2) is modeling the elasto-plastic torsion 
of a cylindrical bar with cross-section n. The active points (where u( x) = 
<list( x, an)) characterize the plastic region, while the material is considered 
elastic in inactive points. The solution u represents the stress potential and 
the applied twist angle is expressed by the parameter C. We refer for example 
to Rodrigues [26] for further information. 
The inactive region is located along the diagonals of n and becomes arbi-
traryly small with increasing C. This leads to various numerical difficulties so 
that (5.2) has become a well-established test example [13, 14, 15, 16, 18, 23]. 
Following [16], we chose the parameter C = 15 and the initial triangulation 
To as depicted in Figure 5.1. 
Starting with To, our adaptive algorithm generates a sequence of succes-
sively refined triangulations To, ... , /g and of corresponding approximations 
u0 , •.• , u9 • The final triangulation /g is depicted in the left picture of Figure 
5.2. The right picture shows the (discrete) free boundary of the final ap-
proximation u9 • Observe that /g is almost uniformly refined in the inactive 
region and as coarse as possible in the remaining part of n. As the solution 
is smooth and the (piecewise linear) obstacle is represented exactly by the 
finite element approximations, this triangulation is well-suited to the actual 
problem. The very thin inactive region has no adequate representation on 
the coarse grids. Even if To is uniformly refined, all nodal points remain 
active up to the 3rd refinement level. Hence, the detection and location of 
the inactive region is a quite challenging task for an adaptive scheme. 
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Figure 5.1: Initial Triangulation To 

Figure 5.2: Final Triangulation /g and Approximate Free Boundary 

To check the quality of the global error estimate let! on each refinement level 
j == 0, ... , 9, we consider the effectivity index K-j 

K-j == letl/llu - uill, j == 1,. ·., 9. (5.3) 

A computable approximation of K-j is obtained by replacing the exact solution 
u by the approximation resulting from two further uniform refinements of the 
final triangulation ~-
The complete refinement history is reported in Table 1. 
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Level Depth Nodes est. Error Eff ecti vi ty 
0 0 1 38.4 % 2.53 
1 1 5 38.4 % 2.53 
2 2 13 27.4 % 1.80 
3 3 53 21.8 % . 1.51 
4 4 93 17.8 % 1.24 
5 5 277 13.4 % 1.02 
6 5 357 12.8 % 1.02 
7 5 713 10.8 % 1.52 
8 6 1577 5.4 % 1.61 
9 7 5905 2.8 % 1.69 

Table 1. Refinement History 

Observe that the resulting effectivity indices can be interpreted as 

j = 0, ... ,9, 

with even better results on the fine levels. Hence, our error estimate works 
satisfactory throughout the approximation. A comparable a posteriori error 
estimate [16, 21, 22] fails for this example. More precisely, this estimator 
does nof detect the inactive region so that it simply provides the error esti-
mate zero on the first levels. It is interesting that the refinement history is 
very similar as in [16] where a considerably more expensive semi-local error 
estimate has been used. 

Example 5.2: A Semidiscrete Stefan Problem The nonlinear evolu-
tion equation :t 1-l(U) - ~U = F, inn x (0, T), (5.4) 

with suitable initial and boundary conditions describes the heat conduction 
in n undergoing a change of phase. F is a body heating term and the 
generalized enthalpy 1-l is a scalar maximal monotone multifunction, 

if z <Ba 
if z =Ba, 
if z >Ba 

z E IR, (5.5) 

which is set-valued at the phase change temperature Ba. The unknown gener-
alized temperature U is resulting from the standard Kirchhoff transformation 
U = k1 B for B < Ba and U = k2 B for U > Ba of the physical temperature B. 
The positive constants ci, ki, i = 1, 2, describe the thermal properties in the 
two different phases and L > 0 stands for the latent heat. 
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Discretizing (5.4) in time by the backward Euler scheme with respect to some 
step size T > 0, the spatial problems at the different time levels tk = kr can 
be identified with problems of the form (2.1). The solution u = Ur(-, tk) 
is the approximation at the actual time step, the bilinear form a( v, w) = 
r(\7 v, \7 w) is generated by the Laplacian and the functional £ is given by 
l!.(v) = (rFk+Hk_ 1 ,v) with Fk = F(·, tk) and an appropriate selection Hk-1 E 
H(Ur(·, tk_1)). The convex, scalar function <I> is chosen in such a way that 
H = 8<I> is the subdifferential of <I>. Note that <I> is a piecewise quadratic 
function of the form (2.5). This semi-discretization has been used to establish 
existence and uniqueness of a weak solution U (see for example Jerome [17]) 
and also provides a general framework for a variety of numerical methods. 
Adaptive techniques for the two-phase Stefan problem have been derived 
by Nochetto, Paolini and Verdi (24, 25]. In contrast to our approach which 
is aiming at the adaptive solution of the spatial problems up to a certain 
accuracy, their local error indicators concentrate exclusively on an efficient· 
resolution of the free boundary. 
We will consider a model problem due to Ciavaldini [7]. The space-time 
domain n x (0, T) is given by n = (0, 1) x (0, 1) and T = 0.5. The physical 
data are c1 = 2, k1 = 1, c2 = 6, k2 = 2 and 80 = 0, L = 1. Using the right 
hand side 

( ) 
_ { c1 exp( -4t) - 4k1 if fJ < 0 

F x, t - C2exp(-4t) - 4k2 if f) > 0 ' x En, t > o, 

the Kirchhoff transform U of the physical temperature fJ given by 

B(x1, X2, t) = (x1 - 0.5)2 + (x2 - 0.5)2 - exp(-4t)/4, (x1, x2) En, t ~ 0, 

is the exact solution of (5.4) with the corresponding initial and boundary 
conditions. For the semi-discretization we choose the uniform time step T = 
0.0125. 
Recall that an estimated accuracy of 5. % is required on each time level. We 
always start with initial triangulation To as shown in Figure 1. 
The evolution of the solution is shown in Figure 5.3 showing the discrete 
interface and the approximate physical solution along the diagonal x1 = X2 
for the first and the last time step. The corresponding final triangulations 
are depicted in Figure 5.4. In both cases the refinement concentrates on the 
lack of regularity at the interface. 
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Figure 5.3: Discrete Interfaces and Diagonal Cuts for the First and the Last Time Step 

Figure 5.4: Final Triangulations for the First and the Last Time Step 
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The complete refinement history for the first time step is given in Table 2 
where the e:ffectivity rates are computed according to (5.3). On the subse-
quent time levels we found similar results. 

Level Depth Nodes est. Error E:ff ecti vi ty 
0 0 1 l.6e2 % 0.14 
1 1 5 l.9e2 % 0.65 
2 2 25 l.9e2 % 2.0 
3 3 65 56.8 % 0.80 
4 4 261 36.7 % 1.76 
5 5 409 24.0 % 0.96 
6 5 517 17.2 % 0.84 
7 6 717 13.1 % 0.90 
8 7 1225 7.9 % 0.62 
9 7 1629 6.9 % 0.98 
10 7 2133 5.9 % 1.04 
11 7 3149 4.4 % 0.92 

Table 2. History for the First Time Step 

As in the previous example th~ results show a similar efficiency and reliability 
as for related linear selfadjoint problems. 

Acknowledgements. The author is deeply indebted to P. Deuflhard and 
my former colleagues from the Konrad-Zuse-Center in Berlin for numerous 
fruitful discussions during the preparation of this work. Special thanks to 
R. Beck and B. Erdmann for invaluable computational assistance. 

16 



Bibliography 
[1] I. Babuska and W.C. Rheinholdt. Error estimates for adaptive finite 

element computations. SIAM J. Numer. Anal., 15:736-754, 1978. 

[2] R.E. Bank. PLTMG - A Software Package for Solving Elliptic Partial 
Differential Equations, User's Guide 6. 0. Frontiers in Applied Mathe-
matics. SIAM, Philadelphia, 1990. 

[3] R.E. Bank and R.K. Smith. A posteriori error estimates based on hier-
archical bases. SIAM J. Num. Anal., 30:921-935, 1993. 

[4] F.A. Bornemann, B. Erdmann, and R. Kornhuber. Adaptive multilevel 
methods in three space dimensions. J. Numer. Meth. Engrg., 36:3187-
3203, 1993. 

[5] F.A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori error 
estimates for elliptic problems in two and three space dimensions. SIAM 
J. Numer. Anal., to appear. 

[6] F. Brezzi, W.W. Hager, and P.A. Raviart. Error estimates for the finite 
element solution of variational inequalities I. Numer. Math., 28:431-443, 
1977. 

[7] J .F. Ciavaldini. Analyse numerique d'un probleme de Stefan a deux 
phases par une methode d'elements finis. SIAM J.Numer.Anal., 12:464-
487, 1975. 

[8] J. Crank. Free and Moving Boundary Problems. Oxford University 
Press, Oxford, 1988. 

[9] P. Deuflhard, P. Leinen, and H. Y serentant. Concepts of an adaptive 
hierarchical finite element code. IMPACT Gomput. Sci. Engrg., 1:3-35, 
1989. 

[10] W. Derfler. Orthogonale fehlermethoden. Manuscript, 1993. 

[11] G. Duvaut and J.L. Lions. Les inequations en mecanique et en physique. 
Dunaud, Paris, 1972. 

[12] C.M. Elliot. Error analysis of the enthalpy method for the Stefan prob-
lem. IMA J. Numer. Anal., 7:61-71, 1987. 

[13] R. Glowinski. Numerical lvlethods for Nonlinear Variational Problems. 
Springer-Verlag, New York, 1984. 

17 



[14] R. Glowinski, J .L. Lions, and Tremolieres. Numerical Analysis of Vari-
ational Inequalities. North-Holland, Amsterdam, 1981. 

[15] R.H.W. Hoppe. Multigrid algorithms for variational inequalities. SIAM 
J. Numer. Anal., 24:1046-1065, 1987. 

[16] R.H.W. Hoppe and R. Kornhuber. Adaptive multilevel-methods for 
obstacle problems. SIAM J. Numer. Anal., 31(2):301-323, 1994. 

[17] J.W. Jerome. Approximation of Nonlinear Evolution Equations. Aca-
demic Press, New York, 1983. 

[18] R. Kornhuber. Monotone :rp.ultigrid methods for elliptic variational in-
equalities I. Numer. Math., to appear. 

[19] R. Kornhuber. Monotone multigrid methods for elliptic variational in-
equalities II. Numer. Math~, submitted. 

[20] R. Kornhuber. Adaptive monotone multigrid methods for nonlinear 
variational problems. Habilitationsschrift, FU Berlin, 1995. 

[21] R. Kornhuber and R. Roitzsch. Self adaptive computation of the break-
down voltage of planar pn-junctions with multistep field plates. In 
Fichtner W. and Aemmer D.; editors, Simulation of Semiconductor De-
vices and Processes, pages 535-543, Konstanz, 1991. Hartung-Garre. 

[22] R. Kornhuber and R. Roitzsch. Self adaptive finite element simulation 
of bipolar, strongly reverse biased pn-junctions. Comm. Num. Meth. in 
Engrg., 9:243-250, 1993. 

[23] Y. Kuznetsov, P. Neittaanmaki, and P. Tarvainen. Overlapping blqck 
relaxation and schwarz methods for the obstacle problem with a convec-
tion diffusion operator. Technical Report Report 4/1993, University of 
Jyvaskyla, 1993. 

[24] R. H. Nocchetto, M. Paolini, and C. Verdi. An adaptive finite element 
method for two-phase Stefan problems in two space dimensions. Part I 
Stability and error estimates. Math. Comp., 57(195):73-108, 1991. 

[25] R. H. Nocchetto, M. Paolini, and C. Verdi. An adaptive finite element 
method for two-phase Stefan problems in two space dimensions. Part II 
Implementation and numerical experiments. SIAM J. Sci. Stat. Com-
put., 12(5):1207-1244, 1991. 

[26] J.F. Rodrigues. Obstacle Problems in Mathe'f!l,atical Physics. Number 
134 in Mathematical Studies. North-Holland, Amsterdam, 1987. 

18 



[27] R. Verfiirth. A review of a posteriori error estimation and adaptive 
mesh-refinement techniques. Manuscript, 1993. 

[28] R. Verfiirth. A posteriori error estimation and adaptive mesh-refinement 
techniques. J. Comp. Appl. Math., 50:67-83, 1994. 

[29] O.C. Zienkiewicz, J.P. De S.R. Gago, and D.W. Kelly. The hierarchical 
concept in finite element analysis. Computers €:1 Structures, 16:53-65, 
1983. 

•19 



Recent publications of the 
Weierstrafi-Institut fiir Angewandte Analysis und Stochastik 

Preprints 1994 

112. Henri Schurz: A note on pathwise approximation of stationary Ornstein-
Uhlenbeck processes with diagonalizable drift. 

113. Peter Mathe: On the existence of unbiased Monte Carlo estimators. 

114. Kathrin Biihring: A quadrature method for the hypersingular integral equa-
tion on an interval. 

115. Gerhard Hackl, Klaus R. Schneider: Controllability near Takens-Bogdanov 
points. 

116. Tatjana A. Averina, Sergey S. Artemiev, Henri Schurz: Simulation of stochas-
tic auto-oscillating systems through variable stepsize algorithms with small 
n01se. 

117. Joachim Forste: Zurn Einfl.u:B der Warmeleitung und der Ladungstragerdif-
fusion auf das Verhalten eines Halbleiterlasers. 

118. Herbert Gajewski, Konrad Groger: Reaction-diffusion processes of electri-
cally charged species. 

119. Johannes .Elschner, Siegfried Prossdorf, Ian H. Sloan: The qualocation meth-
od for Symm's integral equation on a polygon. 

120. Sergej Rjasanow, Wolfgang Wagner: A stoch~stic weighted particle method 
for the Boltzmann equation. 

121. Ion G. Grama: On moderate deviations for martingales. 

122. Klaus Fleischmann, Andreas Greven: Time-space analysis of the cluster-
formation in interacting diffusions. 

123. Grigori N. Milstein, Michael V. Tret'yakov: Weak approximation for stochas-
tic differential equations with small noises. 

124. Gunter Albinus: Nonlinear Galerkin methods for evolution equations with 
Lipschitz continuous strongly monotone operators. 

125. Andreas Rathsfeld: Error estimates and extrapolation for the numerical so-
lution of Mellin convolution equations. 



126. Mikhail S. Ermakov: On lower bounds of the moderate and Cramer type large 
. deviation probabilities in statistical inference. 

127. Pierluigi Colli, Jurgen Sprekels: Stefan problems and the Penrose-Fife phase 
field model. 

128. Mikhail S. Ermakov: On asymptotic minimaxity of Kolmogorov and omega-
square tests. 

129. Gunther Schmidt, Boris N. Khoromskij: Boundary integral equations for the 
biharmonic Dirichlet problem on nonsmooth domains. 

130. Hans Babovsky: An inverse model problem in kinetic theory. 

131. Dietmar Hornberg: Irreversible phase transitions in steel. 

132. Hans Gunter Bothe: How 1-dimensional hyperbolic attractors determine their 
basins. 

133. Ingo Bremer: Waveform iteration and one-sided Lipschitz conditions. 

134. Herbert Gajewski, Klaus Zacharias: A mathematical model of emulsion poly-
merization. 

135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of inter-
acting diffusions and an application to their ergodic theory. 

136. Andreas Juhl: Secondary Euler characteristics of locally symmetric spaces. 
Results and Conjectures. 

137. Nikolai N. Nefedov, Klaus R. Schneider, Andreas Schuppert: Jumping beha-
vior in singularly perturbed systems modelling bimolecular reactions. 

138. Roger Tribe, Wolfgang Wagner: Asymptotic properties of stochastic particle 
systems with Boltzmann type interaction. 

Preprints 1995 

139. Werner Horn, Jan Sokolowski, Jurgen Sprekels: Control problems with state 
constraints for the Penrose-Fife phase-field model. 

140. Hans Babovsky: Simulation of kinetic boundary layers. 


