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Abstract

We prove local existence, uniqueness, Hölder regularity in space and time, and

smooth dependence in Hölder spaces for a general class of quasilinear parabolic

initial boundary value problems with nonsmooth data. As a result the gap be-

tween low smoothness of the data, which is typical for many applications, and high

smoothness of the solutions, which is necessary for the applicability of differential

calculus to abstract formulations of the initial boundary value problems, has been

closed. The theory works for any space dimension, and the nonlinearities are al-

lowed to be nonlocal and to have any growth. The main tools are new maximal

regularity results [19, 20] in Sobolev–Morrey spaces for linear parabolic initial

boundary value problems with nonsmooth data, linearization techniques and the

Implicit Function Theorem.

1 Introduction

This paper concerns initial boundary value problems for quasilinear second order

parabolic equations in divergence form with nonsmooth data and for weakly coupled

systems of such equations. Here nonsmooth data means that the domain can be

nonsmooth (but has to be a set with Lipschitz boundary), that the coefficients of

the equations and the boundary conditions may be discontinuous with respect to

the space and time variables (but have to be smooth with respect to the unknown

function u), and that the boundary conditions can change type (mixed boundary

conditions, where the Dirichlet and the Neumann boundary parts can touch).

The coefficients may be local or nonlocal functions of u, they can have any growth

with respect to u, and the space dimension can be arbitrary. Typical applications

are transport processes of charged particles in semiconductor heterostructures, phase

separation processes of nonlocally interacting particles, chemotactic aggregation in

heterogeneous environments as well as optimal control by means of of quasilinear

elliptic and parabolic PDEs with nonsmooth data.

The main results are Theorem 3.2 about regularity and smooth dependence and,

following from that, Theorem 3.3 about local in time existence and uniqueness and
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Theorem 3.5 about Hölder continuity of the first time derivative of the solution.

Here regularity and smooth dependence means that the solutions are Hölder con-

tinuous in space and time and depend smoothly on the data in parabolic Hölder

space norms over the space-time cylinder. So the door is open to apply the powerful

theorems of differential calculus (principle of linearized stability, analytic bifurcation

theory, existence and persistence of smooth invariant manifolds, enabling a reduction

of the study of the long-time dynamics to finite dimensions) to those initial bound-

ary value problems. In particular, Theorem 3.2 shows how to apply the classical

Newton iteration procedure with quadratic convergence rate in parabolic Hölder

space norms.

Remark that here in the introduction we formulate the results in the language

of Hölder spaces, which is satisfactory for most of the applications. But it turns

out that the proofs cannot be done by working in Hölder spaces or in Sobolev

spaces because the linearized diffential operators do not have the maximal regularity

property between such spaces in the case of general nonsmooth data and arbitrary

space dimension.

We work in parabolic Sobolev–Morrey–Campanato spaces. Those spaces

for functions are known (but much less used than Sobolev spaces) since 40 years,

but for functionals almost unknown and not used. Concerning the delicate ques-

tions about embedding theorems, traces on Lipschitz hypersurfaces and behavior

under Lipschitz transformations and pointwise multiplication, which appear nec-

essarily in the future analysis, there existed only a few results, and those mainly

under unrealistic high smoothness assumptions on the data. In [19] a general theory

was developed for parabolic Sobolev–Morrey–Campanato spaces on domains

with Lipschitz boundary and Lipschitz hypersurfaces as well for functions as

for functionals. In [20] it was shown that a general class of linear second order

parabolic differential operators has the maximal regularity property between such

spaces. Now, in the present paper we show that these maximal regularity proper-

ties together with linearization techniques and the Implicit Function Theorem give

local existence, uniqueness, regularity and smooth dependence for a general class of

quasilinear parabolic initial boundary value problems with nonsmooth data.

Remark that the authors together with K. Gröger realized the same programme

for quasilinear elliptic boundary value problems with nonsmooth data: Applica-

tions of differential calculus to nonlinear problems [23] via maximal regularity in

Sobolev–Morrey–Campanato spaces for linear problems [18] after investiga-

tion of the needed properties of the spaces [17, 22].

Let us close this introduction by some remarks concerning the so far existing

literature about quasilinear parabolic initial boundary value problems.

As far as we know up to now there did not exist any results about smoothness
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(at least continuous differentiability) of the data-to-solution map for quasilinear

parabolic initial boundary value problems with nonsmooth data.

What concerns local existence, uniqueness and continuous dependence for quasi-

linear parabolic initial boundary value problems, we learned a lot from H. Amann’s

work [2, 3, 4, 5, 6]. There the main tool is maximal Lp regularity of the correspond-

ing linear operators. The smoothness assumptions on the data are slightly, but, from

the point of view of applications, essentially stronger than ours: The leading order

coefficients of the elliptic differential operator have to be continuous in space and

time, and the Dirichlet and Neumann boundary parts in the mixed boundary

conditions are not allowed to touch. On the other hand, H. Amann’s assumptions

on the possibly nonlocal coefficient functions are weaker than ours: He includes time

delay, we do not. Remark that [3, Theorem 4.1] gives Gateaux differentialbility

of the data-to-solution map on Fréchet spaces of coefficient functions, which is a

first step to smoothness.

What concerns nonsmoothness of the data, the assumptions in [10, 24, 25] for local

existence and uniqueness for quasilinear parabolic initial boundary value problems

are as weak as ours. In particular, some domains, which are not Lipschitz domains

in the commonly used sense (like two crossing three-dimensional cuboids) are allowed

as well as nonlinear Robin or Neumann boundary conditions. Further, in [10, 24,

25] as well as in our paper the concept of Gröger’s regular sets, see [21], is used,

which enables to handle mixed boundary value problems with touching Dirichlet

and Neumann boundary parts. In [10, 24, 25] the assumptions concerning the space

dimension (they suppose n ≤ 3) and the allowed discontinuities in the leading order

coefficients are slightly more restrictive than ours (we suppose only L∞ in space and

time), but general enough for most applications.

The idea, to use maximal regularity properties together with linearization tech-

niques and the Implicit Function Theorem in order to get local existence, unique-

ness, solution regularity and smooth dependence for quasilinear parabolic problems,

is known in the case of problems with sufficiently smooth data, see, for instance,

[8, 11, 13, 26].

What concerns strongly coupled systems, it is known that Hölder regularity of

the solutions cannot be expected in the case n ≥ 3, in general. Similarly, it turns

out that one cannot expect smooth dependence in the case of nonsmooth data,

in general, if the equations contain terms which are not affine with respect to the

spatial gradient of the solution. Therefore we consider only equations and boundary

conditions, which are affine with respect to the spatial gradient. For equations, which

are nonlinear with respect to the spatial gradient, even the question of uniqueness

is much more difficult, see, for instance, [1, 14, 15, 16].
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2 Notation and setting

Let us introduce some notation. Throughout this text we assume S = (t0, t1) to be

a bounded open interval in R. For r > 0 we define the set of subintervals

Sr =
{
S ∩ (t− r2, t) : t ∈ S

}
.

The symbol | | is used for both the absolute value and the maximum norm in Rn.

We denote by Qr(x) =
{
ξ ∈ Rn : |ξ − x| < r

}
the open cube with center x ∈ Rn

and radius r > 0. For subsets Y of Rn we write Y ◦, Y and ∂Y for the topological

interior, the closure, and the boundary of Y , respectively. For r > 0 and subsets

Y ⊂ Rn we use the corresponding calligraphic letter to introduce the set

Yr =
{
Y ∩Qr(y) : y ∈ Y

}
of intersections. Let λn be the n-dimensional Lebesgue measure on the σ-algebra

of Lebesgue measurable subsets of Rn.

2.1 Function spaces and regular sets

Let X ⊂ Rn be some bounded open set. The following definition goes back to Cam-

panato [7] and Da Prato [9]: For ω ∈ [0, n+2] the Morrey space Lω
2 (S; L2(X))

consists of all u ∈ L2(S; L2(X)) such that

[u]2Lω
2 (S;L2(X)) = sup

r>0
sup

(I,Y )∈Sr×Xr

r−ω

∫
I

∫
Y

|u(s)|2 dλn ds

remains finite. The norm of u ∈ Lω
2 (S; L2(X)) is defined by

‖u‖2
Lω

2 (S;L2(X)) = ‖u‖2
L2(S;L2(X)) + [u]2Lω

2 (S;L2(X)).

Let H1
0 (X) ⊂ H ⊂ H1(X) be some closed subspace equipped with the usual scalar

product of H1(X). For ω ∈ [0, n + 2] we introduce the Sobolev–Morrey space

Lω
2 (S; H) =

{
u ∈ L2(S; H) : u ∈ Lω

2 (S; L2(X)), |∇u| ∈ Lω
2 (S; L2(X))

}
,

and we define the norm of u ∈ Lω
2 (S; H) by

‖u‖2
Lω

2 (S;H) = ‖u‖2
Lω

2 (S;L2(X)) + ‖|∇u|‖2
Lω

2 (S;L2(X)).

Note that the spaces Lω
2 (S; L2(X)) are usually denoted by L2,ω(S × X). Apart

from these, later on we use further Morrey-type function spaces. Hence, we have

decided to use a different but integrated naming scheme. The set L∞(S × X) of

bounded measurable functions is a space of multipliers for Lω
2 (S; L2(X)).
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Analogously, we consider function spaces on Lipschitz hypersurfaces in Rn. Here,

a subset M of Rn is called Lipschitz hypersurface in Rn if for each point x ∈ M

there exist a neighborhood U of x and a Lipschitz transformation Φ from U onto

the cube Q1(0) such that Φ[U ∩M ] =
{
y ∈ Rn : |y| < 1, yn = 0

}
and Φ(x) = 0.

Let M be a compact Lipschitz hypersurface in Rn. By λM we denote the (n−1)-

dimensional Lebesgue measure on the σ-algebra LM of Lebesgue measurable

subsets of M , see [12]. For κ ∈ [0, n + 1] and relatively open subsets K of M we

define the Morrey space Lκ
2 (S; L2(K)) as the set of all u ∈ L2(S; L2(K)) such that

[u]2Lκ
2 (S;L2(K)) = sup

r>0
sup

(I,Γ)∈Sr×Kr

r−κ
∫

I

∫
Γ

|u(s)|2 dλM ds

remains finite, and we introduce the norm of u ∈ Lκ
2 (S; L2(K)) by

‖u‖2
Lκ

2 (S;L2(K)) = ‖u‖2
L2(S;L2(K)) + [u]2Lκ

2 (S;L2(K)).

The set L∞(S ×K) is a space of multipliers for Lκ
2 (S; L2(K)).

For our investigations on global regularity we use a terminology of regular sets

G ⊂ Rn, which is equivalent to the version introduced by K. Gröger, see [21].

Being the natural generalization of sets with Lipschitz boundary it allows the

proper functional analytic description of elliptic and parabolic problems with mixed

boundary conditions in nonsmooth domains. For x ∈ Rn and r > 0 we introduce

the halfcubes

Q−
r (x) =

{
ξ ∈ Rn : |ξ − x| < r, ξn − xn < 0

}
,

Q+
r (x) =

{
ξ ∈ Rn : |ξ − x| < r, ξn − xn ≤ 0

}
,

Q±
r (x) =

{
ξ ∈ Q+

r (x) : ξ1 − x1 > 0 or ξn − xn < 0
}
.

A bounded set G ⊂ Rn is called regular if for each x ∈ ∂G we find some neighborhood

U of x in Rn and a Lipschitz transformation Φ from U onto Q1(0) such that

T [U ∩G] ∈
{
Q−

1 (0), Q+
1 (0), Q±

1 (0)
}

and Φ(x) = 0.

Regular sets G = X ∪ Γ are to be understood as the union of some open set

X ⊂ Rn with Lipschitz boundary and some relatively open Neumann part Γ of

the boundary ∂G. From now on we keep in mind this notation.

We define function spaces associated with relatively open subsets Y of regular sets

G ⊂ Rn. By H1
0 (Y ) we denote the closure of

C∞
0 (Y ) =

{
u|Y ◦ : u ∈ C∞

0 (Rn), supp(u) ∩ (Y \ Y ) = ∅
}

in the space H1(Y ◦), and we write H−1(Y ) for the dual space of H1
0 (Y ). Let I ⊂ R

be an open subinterval of S. If ZG : H1
0 (Y ) → H1

0 (G) is the zero extension map,
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then we define ZS,G : L2(I; H1
0 (Y )) → L2(S; H1

0 (G)) by

(ZS,Gu)(s) =

{
ZGu(s) if s ∈ I,

0 otherwise,
for u ∈ L2(I; H1

0 (Y )).

Note that ZS,Y is a linear isometry from L2(I; H1
0 (Y )) into L2(S; H1

0 (G)).

In the same spirit as the well-established Morrey spaces of functions, in [19]

we have constructed a new scale of Sobolev–Morrey spaces of functionals as

subspaces of L2(S; H−1(G)).

To localize a functional f ∈ L2(S; H−1(G)) we define the assignment f 7→ LI,Y f

from L2(S; H−1(G)) into L2(I; H−1(Y )) as the adjoint operator to the zero extension

map ZS,G : L2(I; H1
0 (Y )) → L2(S; H1

0 (G)):

〈LI,Y f, w〉L2(I;H1
0 (Y )) = 〈f, ZS,Gw〉L2(S;H1

0 (G)) for w ∈ L2(I; H1
0 (Y )).

As usual, we denote by 〈 , 〉 and ( | ) dual pairings and scalar products, respec-

tively. Using the isometric property of ZS,G, we get

‖LI,Y f‖L2(I;H−1(Y )) ≤ ‖f‖L2(S;H−1(G)) for all f ∈ L2(S; H−1(G)).

For ω ∈ [0, n + 2] we define the Sobolev–Morrey space Lω
2 (S; H−1(G)) as the

set of all elements f ∈ L2(S; H−1(G)) for which

[f ]2Lω
2 (S;H−1(G)) = sup

r>0
sup

(I,Y )∈Sr×Gr

r−ω

∫
I

‖(LI,Y f)(s)‖2
H−1(Y ) ds

has a finite value. We introduce the norm of f ∈ Lω
2 (S; H−1(G)) by

‖f‖2
Lω

2 (S;H−1(G)) = ‖f‖2
L2(S;H−1(G)) + [f ]2Lω

2 (S;H−1(G)).

The assignment (g, g0, gΓ) 7→ Ψ(g, g0, gΓ) defined by〈
Ψ(g, g0, gΓ), ϕ

〉
=

∫
S

∫
X

g(s) · ∇ϕ(s) dλn ds

+

∫
S

∫
X

g0(s) ϕ(s) dλn ds +

∫
S

∫
Γ

gΓ(s) ϕ(s) dλΓ ds (2.1)

for ϕ ∈ L2(S; H1
0 (G)), generates a linear continuous operator

Ψ : [Lω
2 (S; L2(X))]n × Lω−2

2 (S; L2(X))× Lω−1
2 (S; L2(Γ)) → Lω

2 (S; H−1(G)), (2.2)

and its norm depends on n and G, only, see [19, Theorem 5.6].

Based upon the preceeding definitions, in [19] we have constructed new function

classes suitable for the regularity theory of second order parabolic boundary value
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problems with nonsmooth data, see [20]. Here, we present a version being adequate

for systems of equations with m ∈ N unknowns. In particular, for the modelling

of instationary drift-diffusion problems we are interested in dealing with nonsmooth

capacity-like coefficients a1, . . . , am ∈ L∞(X), which are supposed to be δ-definite

with respect to X and δ ∈ (0, 1], that means, we assume that

δ ≤ ess inf
x∈X

aα(x), esssup
x∈X

aα(x) ≤ 1
δ

for all α ∈ {1, . . . ,m}. (2.3)

We consider the linear continuous operator E =
(
E1, . . . ,Em

)
from [L2(S; H1(X))]m

into [L2(S; H−1(G))]m being defined componentwise by

〈Eαv, ϕ〉 =

∫
S

∫
X

aαv(s)ϕ(s) dλn ds, α ∈ {1, . . . ,m}, (2.4)

for ϕ ∈ L2(S; H1
0 (G)). For ω ∈ [0, n + 2] and every α ∈ {1, . . . ,m} we intro-

duce the Sobolev–Morrey space W ω
Eα(S; H1(X)) as the set of all functions v ∈

Lω
2 (S; H1(X)), such that the weak time derivative (Eαv)′ of Eαv ∈ L2(S; H−1(G))

exists and belongs to Lω
2 (S; H−1(G)). We define the norm of v ∈ W ω

Eα(S; H1(X)) by

‖v‖2
W ω

Eα (S;H1(X)) = ‖v‖2
Lω

2 (S;H1(X)) + ‖(Ev)′‖2
Lω

2 (S;H−1(G)),

and consider the following closed subspaces:

W ω
Eα(S; H1

0 (G)) =
{
v ∈ W ω

Eα(S; H1(X)) : v ∈ Lω
2 (S; H1

0 (G))
}
,

W ω
0Eα(S; H1

0 (G)) =
{
v ∈ W ω

Eα(S; H1
0 (G)) : v(t0) = 0

}
.

Finally, as a natural generalization, we set

W ω
E (S; H1(X)) = W ω

E1(S; H1(X))× · · · ×W ω
Em(S; H1(X)),

W ω
E (S; H1

0 (G)) = W ω
E1(S; H1

0 (G))× · · · ×W ω
Em(S; H1

0 (G)),

W ω
0E(S; H1

0 (G)) = W ω
0E1(S; H1

0 (G))× · · · ×W ω
0Em(S; H1

0 (G)),

and equip these spaces with the maximum norm of the components, respectively.

For ω = 0 we drop superscripted indices.

Note that for ω ∈ (n, n + 2] and β = (ω − n)/2 the space W ω
Eα(S; H1(X)) is

continuously embedded into the space C0,β/2(S; C(X))∩C(S; C0,β(X)) of functions,

which are Hölder continuous is space and time. This embedding is completely

continuous, whenever 0 < β < (ω − n)/2.

2.2 Formulation of the problem

Let G = X ∪ Γ be a regular set, U an open subset in [C(S; C(X))]m, Λ a Banach

space, and V an open subset in Λ. We look for solutions

(u, λ) =
(
u1, . . . , um, λ

)
∈

(
U ∩WE(S; H1(X))

)
× V
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of weakly coupled systems of quasilinear operator equations

(Eαuα)′ + B(Aα(u, λ), uα) = Fα(u, λ), α ∈ {1, . . . ,m}, (2.5)

of order m ∈ N, where λ ∈ V plays the role of a control parameter, which includes,

for instance, inhomogeneities of the problem. The linear continuous operator

E = (E1, . . . ,Em) : [L2(S; H1(X))]m → [L2(S; H−1(G))]m

was already defined in (2.4) via δ-definite leading order coefficients a1, . . . , am ∈
L∞(X), see (2.3). The bilinear continuous map

B : L∞(S ×X; Rn×n)× L2(S; H1(X)) → L2(S; H−1(G))

is given by

〈B(A, v), ϕ〉 =

∫
S

∫
X

A(s)∇v(s) · ∇ϕ(s) dλn ds (2.6)

for ϕ ∈ L2(S; H1
0 (G)).

Concerning the nonlinearities we suppose that

Aα ∈ C1
(
U × V ; L∞(S ×X; Rn×n)

)
, (2.7)

Fα ∈ C1
(
U × V ; Lω0

2 (S; H−1(G))
)

(2.8)

are Volterra operators with respect to u, where ω0 > n is a common Morrey

exponent for all α ∈ {1, . . . ,m}. Note, that for all (u, λ) ∈ U × V the linear

continuous operators

∂Aα

∂u
(u, λ) : [C(S; C(X))]m → L∞(S ×X; Rn×n)), (2.9)

∂Fα

∂u
(u, λ) : [C(S; C(X))]m → Lω0

2 (S; H−1(G)), (2.10)

have the Volterra property, too.

2.3 Homogenization and linearization of the problem

Let W be an open subset in W ω0

E (S; H1(X)) containing regular inhomogeneities we

are interested in, and let Uh be a neighborhood of 0 in [C(S; C(X))]m such that

{uh + w : uh ∈ Uh, w ∈ W} ⊂ U . We define nonlinear Volterra operators

Aα
h ∈ C1

(
Uh ×W × V ; L∞(S ×X; Rn×n)

)
,

Fα
h ∈ C1

(
Uh ×W × V ; Lω0

2 (S; H−1(G))
)
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by setting

Aα
h(uh, w, λ) = Aα(uh + w, λ),

Fα
h (uh, w, λ) = Fα(uh + w, λ)−B(Aα(uh + w, λ), wα)− (Eαwα)′,

for (uh, w, λ) ∈ Uh × W × V and α ∈ {1, . . . ,m}. These have the same mapping

properties as Aα and Fα, respectively, where the old control parameter λ ∈ V has

to be replaced by the new control parameter (w, λ) ∈ W × V . Moreover, if

(uh, w, λ) ∈
(
Uh ∩W0E(S; H1

0 (G))
)
×W × V

is a solution to the system

(Eαuα
h)′ + B(Aα

h(uh, w, λ), uα
h) = Fα

h (uh, w, λ), α ∈ {1, . . . ,m},

then the pair (u, λ) = (uh + w, λ) ∈
(
U ∩WE(S; H1(X))

)
× V solves problem (2.5).

Hence, for given inhomogeneities w ∈ W , we can restrict ourselves to look for

homogeneous solutions (u, λ) ∈
(
U ∩W0E(S; H1

0 (G))
)
× V of problem (2.5).

Besides of the nonlinear operator equation (2.5) we also consider solutions v ∈
U ∩W0E(S; H1

0 (G)) of its linearization

(Eαvα)′ + B(Aα(u0, λ0), v
α)

= ∂Fα

∂u
(u0, λ0) v −B

(
∂Aα

∂u
(u0, λ0) v, uα

0

)
, α ∈ {1, . . . ,m}, (2.11)

at (u0, λ0) ∈
(
U ∩ W0E(S; H1

0 (G))
)
× V . In addition to that, we investigate the

linear operator equations, determining the sequence of Newton iterations uk+1 ∈
U ∩W0E(S; H1

0 (G)) for given uk by

(Eαuα
k+1)

′ + B
(
Aα(uk, λ0), u

α
k+1

)
+ B

(
∂Aα

∂u
(uk, λ0)(uk+1 − uk), u

α
k

)
= Fα(uk, λ0) + ∂Fα

∂u
(uk, λ0)(uk+1 − uk), α ∈ {1, . . . ,m}. (2.12)

3 Abstract quasilinear parabolic problems

The following maximal regularity result for linear parabolic boundary value problems

in Sobolev–Morrey spaces will serve as the main tool of our considerations. It

generalizes the results [20, Theorem 6.8 and Theorem 7.5] to weakly coupled systems

of linear parabolic equations including nonlocal operators.

Analogously to the notion of δ-definiteness with respect to X and δ ∈ (0, 1] of

scalar coefficient functions a ∈ L∞(X), see (2.3), a matrix valued coefficient function

A ∈ L∞(S ×X; Rn×n) is called δ-definite with respect to S, X, and δ ∈ (0, 1] if

δ ‖ξ‖2 ≤ ess inf
s∈S, x∈X

A(s, x)ξ · ξ, esssup
s∈S, x∈X

A(s, x)ξ · ξ ≤ 1
δ
‖ξ‖2, (3.1)

holds true for all ξ ∈ Rn.
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Theorem 3.1. Suppose that S = (t0, t`) is an open interval. Further, assume that

Nα : [C(S; C(X))]m → Lω0
2 (S; H−1(G)), α ∈ {1, . . . ,m}, (3.2)

are linear continuous Volterra operators having the Morrey exponent ω0 > n

in common. Further, assume that for all α ∈ {1, . . . ,m} the leading coefficients

aα ∈ L∞(X) and Aα ∈ L∞(S × X; Rn×n) are δ-definite with respect to S, X, and

δ ∈ (0, 1]. Then there exists ω̄ ∈ (n, ω0] such that for every ω ∈ (n, ω̄) the assignment

v 7→
(
(E1v1)′ + B(A1, v1) + N1v, . . . , (Emvm)′ + B(Am, vm) + Nmv

)
(3.3)

generates a linear isomorphism from W ω
0E(S; H1

0 (G)) onto [Lω
2 (S; H−1(G))]m.

Proof. 1. In view of the maximal regularity result in [20, Theorem 6.8], there exists

some exponent ω̄ = ω̄(δ,G) ∈ (n, ω0] such the linear parabolic operator

v 7→
(
(E1v1)′ + B(A1, v1), . . . , (Emvm)′ + B(Am, vm)

)
is an isomorphism from W ω

0E(S; H1
0 (G)) onto [Lω

2 (S; H−1(G))]m for every ω ∈ (n, ω̄).

Due to the completely continuous embedding of W ω
0E(S; H1

0 (G)) into [C(S; C(X))]m,

see [19, Theorem 6.9], the operator Nα maps W ω
0E(S; H1

0 (G)) completely continuous

into Lω
2 (S; H−1(G)) for α ∈ {1, . . . ,m}. Hence, the map defined in (3.3) is a Fred-

holm operator of index zero from W ω
0E(S; H1

0 (G)) into [Lω
2 (S; H−1(G))]m. For the

assertion of the theorem, it suffices to prove the injectivity of this map.

2. Suppose that v ∈ W ω
0E(S; H1

0 (G)) is a solution to the system of homogeneous

initial boundary value problems

(Eαvα)′ + B(Aα, vα) + Nαv = 0, α ∈ {1, . . . ,m}. (3.4)

For fixed t1 ∈ S we consider the subinterval S1 = (t0, t1) of S, the restriction

v1 ∈ W ω
0E(S1; H

1
0 (G)) of v to S1 and the restrictions (Nαv)|S1 ∈ Lω

2 (S1; H
−1(G)) of

Nαv ∈ Lω
2 (S; H−1(G)) to S1. Due to [20, Remark 6.2] we get estimates

‖v1‖W ω
0E(S1;H1

0 (G)) ≤ c1 sup
1≤α≤m

‖(Nαv)|S1‖Lω
2 (S1;H−1(G)), (3.5)

where the constant c1 > 0 may depend on S but not on t1. To estimate the right

hand side of (3.5) we arbitrarily choose t∗1 ∈ S with t∗1 > t1 and some cut-off function

ϑ ∈ C∞(R) with

0 ≤ ϑ ≤ 1, ϑ(s) = 1 for all s ≤ t1, ϑ(s) = 0 for all t ≥ t∗1.

The Volterra property of the maps Nα : [C(S; C(X))]m → Lω
2 (S; H−1(G)) and

the definition of the norm in Lω
2 (S; H−1(G)) for all α ∈ {1, . . . ,m} yield that

‖(Nαv)|S1‖Lω
2 (S1;H−1(G)) = ‖(Nα(ϑv))|S1‖Lω

2 (S1;H−1(G))

≤ ‖Nα(ϑv)‖Lω
2 (S;H−1(G)) ≤ c2‖ϑv‖[C(S;C(X))]m , (3.6)
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where

c2 = sup
{
‖Nαw‖Lω

2 (S;H−1(G)) : ‖w‖[C(S;C(X))]m ≤ 1, α ∈ {1, . . . ,m}
}

is the maximum of the operator norms of N1, . . . ,Nm. In view of the continuity of

the embedding from W ω
0E(S; H1

0 (G)) into the Hölder space [C0,β(S; C(X))]m for

β = (ω − n)/4, see [19, Theorem 3.4, Theorem 6.8], for all s ∈ [t1, t
∗
1] we get

‖v(s)‖[C(X)]m ≤ ‖v(s)− v(t1)‖[C(X)]m + ‖v(t1)‖[C(X)]m

≤ (t∗1 − t1)
β‖v‖[C0,β(S;C(X))]m + ‖v1‖[C(S1;C(X))]m ,

and, hence,

‖ϑv‖[C(S;C(X))]m ≤ (t∗1 − t1)
β‖v‖[C0,β(S;C(X))]m + ‖v1‖[C(S1;C(X))]m .

Together with (3.6), for all α ∈ {1, . . . ,m} this leads to

‖(Nαv)|S1‖Lω
2 (S1;H−1(G)) ≤ c2(t

∗
1 − t1)

β‖v‖[C0,β(S;C(X))]m + c2‖v1‖[C(S1;C(X))]m .

Since t∗1 ∈ S, t∗1 > t1 was arbitrarily fixed at the beginning, we arrive at

‖(Nαv)|S1‖Lω
2 (S1;H−1(G)) ≤ c2‖v1‖[C(S1;C(X))]m for all α ∈ {1, . . . ,m}. (3.7)

To estimate the left hand side of (3.5) we consider the shifted interval S0 =

(t1 + t0 − t`, t1) which contains S1 and has the same length than S, and we define

the zero extension v0 ∈ W ω
0E(S0; H

1
0 (G)) of v1 to S0 by

v0(s) =

{
v(s) if s ∈ S1,

0 if s ∈ S0 \ S1.

Using the continuity of the embedding from W ω
0E(S0; H

1
0 (G)) into the Hölder space

[C0,β(S0; C(X))]m for β = (ω − n)/4, and the definition of the norms in the corre-

sponding Morrey and Hölder spaces, the above construction yields

‖v1‖[C0,β(S1;C(X))]m ≤ ‖v0‖[C0,β(S0;C(X))]m ≤ c3‖v0‖W ω
0E(S0;H1

0 (G)) ≤ c3‖v1‖W ω
0E(S1;H1

0 (G)),

where the constant c3 > 0 may depend on S but not on t1. Together with (3.5) and

(3.7) this leads to the key estimate

‖v1‖[C0,β(S1;C(X))]m ≤ c4‖v1‖[C(S1;C(X))]m , (3.8)

where the constant c4 = c1c2c3 ≥ 0 does not depend on t1.
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3. Because t1 ∈ S was arbitrarily fixed at the beginning we may choose

tk = t0 + k
`
(t` − t0) for k ∈ {1, . . . , `},

where ` ∈ N, ` > 1 is large enough to satisfy the condition

2c4(t` − t0)
β < `β. (3.9)

Furthermore, for k ∈ {1, . . . , `} we introduce the intervals Sk = (tk−1, tk) and the

restrictions vk ∈ W ω
0E(Sk; H

1
0 (G)) of v to Sk.

We prove that for every k ∈ {1, . . . , ` − 1} from v(tk−1) = 0 it follows that

v(s) = 0 for all s ∈ Sk. To do so, we proceed by induction: Starting from k = 1 and

using (3.8), condition (3.9) ensures that for all s ∈ S1 we have

‖v(s)− v(t0)‖[C(X)]m ≤ (s− t0)
β‖v1‖[C0,β(S1;C(X))]m ≤ 1

2
‖v1‖[C(S1;C(X))]m .

Since v(t0) = 0 this leads to v(s) = 0 for all s ∈ S1.

Assuming that v(tk−1) = 0 holds true for some k ∈ {1, . . . , `− 1}, we apply (3.8)

and (3.9) to vk ∈ W ω
0E(Sk; H

1
0 (G)) to get

‖v(s)− v(tk−1)‖[C(X)]m ≤ (s− tk−1)
β‖vk‖[C0,β(Sk;C(X))]m ≤ 1

2
‖vk‖[C(Sk;C(X))]m

for all s ∈ Sk. Therefore, v(tk−1) = 0 yields v(s) = 0 for all s ∈ Sk.

Hence, we have proved, that v = 0 is the unique solution of the homogeneous

problem (3.4) in the space W ω
0E(S; H1

0 (G)). Due to Step 1, the proof is finished.

3.1 Regularity and smooth dependence

We continue our considerations with the existence, uniqueness and regularity of

solutions to the nonlinear problem (2.5) in the neighborhood of a known solution

(u0, λ0) ∈
(
U∩W0E(S; H1

0 (G))
)
×V . Moreover, we prove that the solution u depends

smoothly on the parameters λ of the problem.

Theorem 3.2. Let (u0, λ0) ∈
(
U ∩ W0E(S; H1

0 (G))
)
× V be a solution to (2.5) and

suppose that there exists some constant ε ∈ (0, 1] such that aα ∈ L∞(X) and

Aα(u0, λ0) ∈ L∞(S × X; Rn×n) are ε-definite with respect to S and X for all α ∈
{1, . . . ,m}. Then we find a parameter ω ∈ (n, ω0] and a neighborhood U0 of u0 in

[C(S; C(X))]m with U0 ⊂ U such that the following holds true:

1. There exists a neighborhood V0 of λ0 in Λ with V0 ⊂ V and a solution map

Φ ∈ C1
(
V0; W

ω
0E(S; H1

0 (G))
)

such that (u, λ) ∈ U0 × V0 is a solution to (2.5) if and

only if u = Φ(λ). In particular, for each solution (u, λ) ∈ U0 × V0 to (2.5) we get

u ∈ W ω
0E(S; H1

0 (G)).
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2. If for all α ∈ {1, . . . ,m} the maps

u ∈ U 7→ ∂Aα

∂u
(u, λ0) ∈ L

(
[C(S; C(X))]m; L∞(S ×X; Rn×n)

)
,

u ∈ U 7→ ∂Fα

∂u
(u, λ0) ∈ L

(
[C(S; C(X))]m; Lω0

2 (S; H−1(G))
)
,

are locally Lipschitz continuous, then for each u1 ∈ U0 ∩W ω
0E(S; H1

0 (G)) the equa-

tions (2.12) define a sequence of Newton iterations uk ∈ U0 for k ∈ N, k ≥ 2,

which converges to u0 in W ω
0E(S; H1

0 (G)) for k →∞.

Proof. 1. Let us prove the first assertion. Because of (3.1) there exists some δ ∈ (0, 1]

such that aα ∈ L∞(X) and Aα(u, λ) ∈ L∞(S ×X; Rn×n) are δ-definite with respect

to S and X for all u, which are close to u0 in [C(S; C(X))]m, all λ, which are close

to λ0 in Λ, and all α ∈ {1, . . . ,m}. Hence, Theorem 3.1 yields that there exist an

exponent ω ∈ (n, ω0] and neighborhoods U0 of u0 in [C(S; C(X))]m with U0 ⊂ U

and V0 of λ0 in Λ with V0 ⊂ V such that for all solutions (u, λ) ∈ U0 × V0 we get

u ∈ W ω
0E(S; H1

0 (G)), in particular, u0 ∈ W ω
0E(S; H1

0 (G)). Hence, close to the solution

(u0, λ0) it is equivalent to look for solutions (u, λ) ∈
(
U0 ∩W ω

0E(S; H1
0 (G))

)
× V0 of

problem (2.5). To do so, we will apply the classical Implicit Function Theorem.

Note that W ω
0E(S; H1

0 (G)) is continuously embedded into [C(S; C(X))]m for ω > n.

Therefore, U0 ∩W ω
0E(S; H1

0 (G)) is open in W ω
0E(S; H1

0 (G)). Moreover, since

B : L∞(S ×X; Rn×n)× Lω
2 (S; H1

0 (G)) → Lω
2 (S; H−1(G))

is a bilinear continuous map, see (2.1), (2.2), for every α ∈ {1, . . . ,m} the operator

(u, λ) 7→ Pα(u, λ) = (Eαuα)′ + B(Aα(u, λ), uα)− Fα(u, λ)

is a C1-map from
(
U0∩W ω

0E(S; H1
0 (G))

)
×V0 into Lω

2 (S; H−1(G)). Its partial deriva-

tive with respect to u at the solution (u0, λ0) is the linear continuous map from

W ω
0E(S; H1

0 (G)) into Lω
2 (S; H−1(G)) given by

∂Pα

∂u
(u0, λ0) v = (Eαvα)′ + B(Aα(u0, λ0), v

α) + B
(

∂Aα

∂u
(u0, λ0) v, uα

0

)
− ∂Fα

∂u
(u0, λ0) v

for v ∈ W ω
0E(S; H1

0 (G)); it corresponds to the linearization (2.11). Applying Theo-

rem 3.1, the derivative

v 7→
(

∂P1

∂u
(u0, λ0), . . . ,

∂Pm

∂u
(u0, λ0)

)
, (3.10)

generates a linear isomorphism from W ω
0E(S; H1

0 (G)) onto [Lω
2 (S; H−1(G))]m, because

the map Nα defined by

Nαv = B
(

∂Aα

∂u
(u0, λ0) v, uα

0

)
− ∂Fα

∂u
(u0, λ0) v for v ∈ [C(S; C(X))]m,
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is a linear continuous Volterra operator from [C(S; C(X))]m into Lω
2 (S; H−1(G))

for every α ∈ {1, . . . ,m}, see (2.1), (2.2), (2.6), (2.9) and (2.10). Hence, the Implicit

Function Theorem, see [27, Theorem 4.B], works for the first assertion.

2. Finally, we prove the second assertion of the theorem. Remembering (2.12),

the sequence of Newton iterations is defined by

(Eαuα
k+1)

′ + B
(
Aα(uk, λ0), u

α
k+1

)
+ B

(
∂Aα

∂u
(uk, λ0) uk+1, u

α
k

)
− ∂Fα

∂u
(uk, λ0) uk+1

= B
(

∂Aα

∂u
(uk, λ0) uk, u

α
k

)
+ Fα(uk, λ0)− ∂Fα

∂u
(uk, λ0) uk, α ∈ {1, . . . ,m}. (3.11)

Starting the iteration with k = 1 and u1 ∈ U ∩W ω
0E(S; H1

0 (G)), the right hand side

of (3.11) belongs to Lω
2 (S; H−1(G)). Since we have

∂Pα

∂u
(u, λ0) v = (Eαvα)′ + B(Aα(u, λ0), v

α) + B
(

∂Aα

∂u
(u, λ0) v, uα

)
− ∂Fα

∂u
(u, λ0) v

for all v ∈ W ω
0E(S; H1

0 (G)) and α ∈ {1, . . . ,m}, the derivative

v 7→
(

∂P1

∂u
(u, λ0), . . . ,

∂Pm

∂u
(u, λ0)

)
, (3.12)

is close to the isomorphism defined by (3.10) with respect to the operator norm

in the space L
(
W ω

0E(S; H1
0 (G)); [Lω

2 (S; H−1(G))]m
)

and, therefore, an isomorphism

from W ω
0E(S; H1

0 (G)) onto [Lω
2 (S; H−1(G))]m, too, whenever u is sufficiently close to

u0 in W ω
0E(S; H1

0 (G)). Hence, if u1 is sufficiently close to u0 in W ω
0E(S; H1

0 (G)), then

the new iteration u2 is uniquely defined by (3.11), belongs to W ω
0E(S; H1

0 (G)) and

is close to u0 in W ω
0E(S; H1

0 (G)). Now, the classical Newton iteration procedure,

see [27, Proposition 5.1], works for problem (2.5), since the norm of the map (3.12)

in L
(
W ω

0E(S; H1
0 (G)); [Lω

2 (S; H−1(G))]m
)

depends even Lipschitz continuously on

u in a neighborhood of u0 in W ω
0E(S; H1

0 (G)).

3.2 Local existence and uniqueness

One cannot expect that solutions (u, λ) ∈
(
U ∩ W0E(S; H1

0 (G))
)
× V to prob-

lem (2.5) exist on arbitrarily long time intervals S = (t0, t1) without imposing

further structural or growth conditions on the nonlinear operators Aα and Fα. Set-

ting Uτ = {u|Sτ : u ∈ U}, our next assertion deals with the fact, that in the case

(0, λ) ∈ U × V we can always find a solution (uτ , λ) ∈
(
Uτ ∩W0E(Sτ ; H

1
0 (G))

)
× V

to the problem

(Eα
τ uα

τ )′ + Bτ

(
Aα

τ (uτ , λ), uα
τ

)
= Fα

τ (uτ , λ), α ∈ {1, . . . ,m}, (3.13)

restricted to the subinterval Sτ = (t0, t0 +τ) of S, whenever we choose τ ∈ (0, t1−t0]

small enough. For α ∈ {1, . . . ,m} and leading order coefficients aα ∈ L∞(X) and

Aα
τ ∈ L∞(Sτ ×X; Rn×n), the linear continuous operator

Eα
τ : L2(Sτ ; H

1(X)) → L2(Sτ ; H
−1(G))
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as well as the bilinear continuous map

Bτ : L∞(Sτ ×X; Rn×n)× L2(Sτ ; H
1(X)) → L2(Sτ ; H

−1(G))

are defined analogously to (2.4) and (2.6). Furthermore, using the Volterra prop-

erty of Aα and Fα with respect to u, both the nonlinear operators

Aα
τ ∈ C1

(
Uτ × V ; L∞(Sτ ×X; Rn×n)

)
,

Fα
τ ∈ C1

(
Uτ × V ; Lω0

2 (Sτ ; H
−1(G))

)
,

are uniquely defined by the identities

Aα
τ (u|Sτ , λ) = Aα(u, λ)|Sτ , Fα

τ (u|Sτ , λ) = Fα(u, λ)|Sτ ,

for (u, λ) ∈ U × V and α ∈ {1, . . . ,m}.

Theorem 3.3. Assume that (0, λ) belongs to U × V , and let ε ∈ (0, 1] be a constant

such that aα ∈ L∞(X) and Aα(0, λ) ∈ L∞(S ×X; Rn×n) are ε-definite with respect

to S and X for all α ∈ {1, . . . ,m}.
Then we find a parameter ω ∈ (n, ω0] and some τ ∈ (0, t1 − t0] such that there

exists a solution (uτ , λ) ∈
(
Uτ ∩W ω

0E(Sτ ; H
1
0 (G))

)
× V to (3.13) on the subinterval

Sτ = (t0, t0 + τ) of S.

Proof. 1. Because Fα(0, λ) ∈ Lω0
2 (S; H−1(G)) holds true for every α ∈ {1, . . . ,m},

the maximal regularity result in [20, Theorem 6.8] yields some ω̄ = ω̄(ε, G) ∈ (n, ω0]

such that the solution w ∈ W0E(S; H1
0 (G)) of the linear auxiliary problem

(Eαwα)′ + B(Aα(0, λ), wα) = Fα(0, λ), α ∈ {1, . . . ,m}, (3.14)

belongs to W ω̄
0E(S; H1

0 (G)).

2. We choose two neighborhoods Uλ and Vλ of 0 in [C(S; C(X))]m such that the

inclusion
{
u + v : (u, v) ∈ Uλ × Vλ

}
⊂ U holds true. Now, we look for solutions

(u, v) ∈
(
Uλ ∩W0E(S; H1

0 (G))
)
× Vλ of the nonlinear auxiliary problem

(Eαuα)′ + B(Aα
λ(u, v), uα) = Fα

λ(u, v), α ∈ {1, . . . ,m}, (3.15)

where the Volterra operators Aα
λ ∈ C1

(
Uλ × Vλ; L

∞(S × X; Rn×n)
)

and Fα
λ ∈

C1
(
Uλ × Vλ; L

ω̄
2 (S; H−1(G))

)
are defined by

Aα
λ(u, v) = Aα(u + v, λ), (3.16)

Fα
λ(u, v) =

(
Fα(u + v, λ)− Fα(0, λ)

)
−B

(
Aα(u + v, λ)−Aα(0, λ), wα

)
, (3.17)

for (u, v) ∈ Uλ × Vλ and α ∈ {1, . . . ,m}. Because of Aα
λ(0, 0) = Aα(0, λ) and

Fα
λ(0, 0) = 0, the pair (u, v) = (0, 0) ∈ Uλ × Vλ is a solution of (3.15).
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In view of Theorem 3.2 we find a parameter ω ∈ (n, ω̄], two neighborhoods U0

and V0 of 0 in [C(S; C(X))]m with U0 × V0 ⊂ Uλ × Vλ and a solution map Φ ∈
C1

(
V0; W

ω
0E(S; H1

0 (G))
)

such that (u, v) ∈ U0 × V0 is a solution of (3.15) if and

only if u = Φ(v). In particular, for each solution (u, v) ∈ U0 × V0 of (3.15) we get

u ∈ W ω
0E(S; H1

0 (G)).

3. Next, we make use of the fact that the solution w ∈ W ω̄
0E(S; H1

0 (G)) of (3.14)

is small in the norm of [C(St; C(X))]m on subintervals St = (t0, t0 + t) of S, when-

ever t ∈ (0, t1 − t0] is small enough: Indeed, due to the continuous embedding of

W ω̄
0E(S; H1

0 (G)) into [C0,β(S; C(X))]m, see [19, Theorem 3.4, Theorem 6.8], for all

t ∈ (0, t1 − t0] and s ∈ St we get

‖w(s)− w(t0)‖[C(X)]m ≤ (s− t0)
β‖w‖[C0,β(S;C(X))]m ≤ c1t

β‖w‖W ω̄
0E(S;H1

0 (G)),

where β = (ω̄ − n)/4 and the constant c1 > 0 does not depend on τ > 0. Since

w(t0) = 0 holds true, we can find some τ , t ∈ (0, t1 − t0] with τ < t and a cut-off

function ϑ ∈ C∞(R) with

0 ≤ ϑ ≤ 1, ϑ(s) = 1 for all s ≤ t0 + τ , ϑ(s) = 0 for all s ≥ t0 + t,

such that v = ϑw ∈ [C(S; C(X))]m belongs to V0. Now, we apply the result of

Step 2 to get a solution (u, v) ∈ U0 × V0 of (3.15) with u = Φ(v) ∈ W ω
0E(S; H1

0 (G)).

Because w ∈ W ω̄
0E(S; H1

0 (G)) solves problem (3.14), by (3.16) and (3.17) we arrive

at the identity

(Eα(uα + wα))′ + B(Aα(u + v, λ), uα + wα) = Fα(u + v, λ), α ∈ {1, . . . ,m}.

Note, that uτ = (u + v)|Sτ = (u + w)|Sτ belongs to W ω
0E(Sτ ; H

1
0 (G)). Hence, re-

stricting the functionals on both sides of the last identity to the subinterval Sτ , the

Volterra property of the maps Eα, Aα, B, Fα and the definition of their restric-

tions Eα
τ , Aα

τ , Bτ , Fα
τ to Sτ yield the fact, that (uτ , λ) ∈

(
Uτ ∩W ω

0E(Sτ ; H
1
0 (G))

)
×V

is a solution of problem (3.13).

3.3 Additional temporal regularity

In this subsection we formulate assumptions on the nonlinearities (2.7) and (2.8),

which ensure an additional temporal regularity of solutions to (2.5). To do so, we

consider C∞-isotopies T : Σ×S → S, where Σ = (−σ1, σ1) and S = (t0, t1) are open

intervals. Introducing the notation

Tσ(t) = T (σ, t) for σ ∈ Σ and t ∈ S,
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we assume that both the families {Tσ}σ∈Σ and {T−1
σ }σ∈Σ of monotone diffeomor-

phisms from S onto itself have uniformly bounded derivatives of arbitrary order.

Moreover, we suppose that T0 : S → S is the identity.

In the following, for σ ∈ Σ we consider maps, which assign functions w : S → H

with values in a Hilbert space H to its temporal transformation

t ∈ S 7→ w(Tσ(t)) ∈ H.

As a simple consequence of the change of variables formula and the uniform prop-

erties of the above families, these maps generate linear isomorphisms

T0
σ from L2(S; L2(X)) onto itself, TΓ

σ from L2(S; L2(Γ)) onto itself,

Tσ from L2(S; H1
0 (G)) onto itself, Mσ from L2(S; L2(X; Rn×n)) onto itself,

as well as their adjoint operators,

Tσ
0 from L2(S; L2(X)) onto itself, Tσ

Γ from L2(S; L2(Γ)) onto itself,

Tσ from L2(S; H−1(G)) onto itself, Mσ from L2(S; L2(X; Rn×n)) onto itself.

Obviously, T0
σ maps C(S; C(X)) isomorphically onto itself. Moreover, we get

Lemma 3.4. For ω ∈ [0, n + 2], κ ∈ [0, n + 1], and σ ∈ Σ the following holds true:

1. T0
σ and Tσ

0 map Lω
2 (S; L2(X)) isomorphically onto itself.

2. TΓ
σ and Tσ

Γ map Lκ
2 (S; L2(Γ)) isomorphically onto itself.

3. Tσ maps Lω
2 (S; H1

0 (G)) isomorphically onto itself.

4. Tσ maps Lω
2 (S; H−1(G)) isomorphically onto itself.

5. Let Eα ∈ L
(
L2(S; H1(X)); L2(S; H−1(G))

)
be defined as in (2.4). Then, Tσ

maps W ω
Eα(S; H1

0 (G)) isomorphically onto itself, and for all w ∈ W ω
Eα(S; H1

0 (G)) we

have the identity

Tσ(EαTσw)′ = (Eαw)′. (3.18)

6. Mσ and Mσ map L∞(S × X; Rn×n) isomorphically onto itself. Furthermore,

we get the transformation rule

TσB(A, Tσw) = B(MσA, w) (3.19)

for all A ∈ L∞(S ×X; Rn×n) and w ∈ Lω
2 (S; H1

0 (G)).

Proof. Suppose that L ≥ 1 is a Lipschitz constant for both the transformations

Tσ and T−1
σ . Since the map Tσ and its inverse T−1

σ have the same differential and

topological properties, for the above isomorphism results it is enough to prove the

continuity of the operator under consideration or the continuity of its inverse.
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For the proof of the desired results in Morrey spaces we arbitrarily fix some

radius r > 0 and corresponding subsets

Sr ∈
{
S ∩ (t− r2, t) : t ∈ S

}
, Xr ∈

{
X ∩Qr(x) : x ∈ X},

Γr ∈
{
Γ ∩Qr(x) : x ∈ Γ

}
, Gr ∈

{
G ∩Qr(x) : x ∈ G

}
.

Setting δ = Lr we can always choose suitable intersections

Sδ ∈
{
S ∩ (t− δ2, t) : t ∈ S

}
, Xδ ∈

{
X ∩Qδ(x) : x ∈ X},

Γδ ∈
{
Γ ∩Qδ(x) : x ∈ Γ

}
, Gδ ∈

{
G ∩Qδ(x) : x ∈ G

}
,

with Sr ⊂ Tσ[Sδ], Xr ⊂ Xδ, Γr ⊂ Γδ, and Gr ⊂ Gδ. In the following we only

derive the essential estimates on these intersections. As usual, the final step to get

estimates in Morrey spaces consists of multiplying both sides of the inequality

under consideration with radial weights and of taking the suprema over all these

radii and intersections on both sides of the inequality.

1. By a change of variables for u ∈ Lω
2 (S; L2(X)) and v ∈ Lκ

2 (S; L2(Γ)) we get∫
Sr

∫
Xr

∣∣u(T−1
σ (s))

∣∣2 dλn ds ≤ L

∫
Sδ

∫
Xδ

|u(t)|2 dλn dt,∫
Sr

∫
Γr

∣∣v(T−1
σ (s))

∣∣2 dλΓ ds ≤ L

∫
Sδ

∫
Γδ

|v(t)|2 dλΓ dt,

which yields the continuity of the map (T0
σ)−1 from Lω

2 (S; L2(X)) into itself and of

the map (TΓ
σ )−1 from Lκ

2 (S; L2(Γ)) into itself.

2. For u ∈ Lω
2 (S; L2(X)) and ϕ ∈ L2(S; L2(X)), which satisfy ϕ|(S \ Sr) = 0 and

ϕ(s)|(X \Xr) = 0 for almost all s ∈ S, we obtain

∫
Sr

∫
Xr

(Tσ
0 u)(s) ϕ(s) dλn ds =

∫
S

∫
X

(Tσ
0 u)(s) ϕ(s) dλn ds

=

∫
S

∫
X

u(t) (T0
σϕ)(t) dλn dt =

∫
Sδ

∫
Xδ

u(t) (T0
σϕ)(t) dλn dt,

which leads to the estimate∫
Sr

∫
Xr

∣∣(Tσ
0 u)(s)

∣∣2 dλn ds ≤ ‖T0
σ‖2

∫
Sδ

∫
Xδ

|u(t)|2 dλn ds,

where ‖T0
σ‖ is the norm of the operator T0

σ mapping L2(S; L2(X)) into itself. Con-

sequently, Tσ
0 is a linear continuous operator from Lω

2 (S; L2(X)) into itself.
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For all u ∈ Lκ
2 (S; L2(Γ)) and ϕ ∈ L2(S; L2(Γ)) satisfying ϕ|(S \ Sr) = 0 and

ϕ(s)|(Γ \ Γr) = 0 for almost all s ∈ S, we have∫
Sr

∫
Γr

(Tσ
Γu)(s) ϕ(s) dλΓ ds =

∫
S

∫
Γ

(Tσ
Γu)(s) ϕ(s) dλΓ ds

=

∫
S

∫
Γ

u(t) (TΓ
σϕ)(t) dλΓ dt =

∫
Sδ

∫
Γδ

u(t) (TΓ
σϕ)(t) dλΓ dt,

which leads to the estimate∫
Sr

∫
Γr

∣∣(Tσ
Γu)(s)

∣∣2 dλΓ ds ≤ ‖TΓ
σ‖2

∫
Sδ

∫
Γδ

|u(t)|2 dλΓ ds,

where ‖TΓ
σ‖ is the norm of the operator TΓ

σ mapping L2(S; L2(Γ)) into itself. Hence,

Tσ
Γ is a linear continuous operator from Lκ

2 (S; L2(Γ)) into itself.

3. Due to a change of variables for all u ∈ Lω
2 (S; H1

0 (G)) we obtain∫
Sr

∫
Gr

∣∣∇u(T−1
σ (s))

∣∣2 dλn ds ≤ L

∫
Sδ

∫
Gδ

|∇u(t)|2 dλn dt.

Together with Step 1 this proves the continuity of T−1
σ from Lω

2 (S; H1
0 (G)) into itself.

4. For all f ∈ Lω
2 (S; H−1(G)) and v ∈ L2(Sr; H

1
0 (Gr)) the properties of the zero

extension map ZS,G and the localization operators ensure that the identity∫
Sr

〈(LSr,GrT
σf)(s), v(s)〉H1

0 (Gr) ds =

∫
S

〈(Tσf)(s), (ZS,Gv)(s)〉H1
0 (G) ds

=

∫
S

〈f(t), (TσZS,Gv)(t)〉H1
0 (G) dt =

∫
Sδ

〈(LSδ ,Gδ
f)(t), (RSδ ,Gδ

TσZS,Gv)(t)〉H1
0 (Gδ) dt

holds true, which yields the estimate∫
Sr

‖(LSr,GrT
σf)(s)‖2

H−1(Gr) ds ≤ ‖Tσ‖2

∫
Sδ

‖(LSδ ,Gδ
f)(t)‖2

H−1(Gδ) dt,

where ‖Tσ‖ is the norm of the operator Tσ mapping L2(S; H1
0 (G)) into itself. Hence,

Tσ is a linear continuous operator from Lω
2 (S; H−1(G)) into itself.

5. If u = Tσw ∈ W ω
Eα(S; H1

0 (G)), then w = T−1
σ u belongs to Lω

2 (S; H1
0 (G)) due to

Step 3. Furthermore, for all ϑ ∈ C∞
0 (S) and ϕ ∈ H1

0 (G) we have∫
S

〈
∂
∂t

(EαTσw)(t), (ϑϕ)(Tσ(t))
〉
dt = −

∫
S

〈
(Eαw)(Tσ(t)), ∂ϑ

∂s
(Tσ(t))ϕ

〉
∂T
∂t

(σ, t) dt

= −
∫

S

〈
(Eαw)(s), ∂ϑ

∂s
(s)ϕ

〉
ds.
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Hence, Step 4 yields the identity (Eαw)′ = Tσ(EαTσw)′ ∈ Lω
2 (S; H−1(G)) and, there-

fore, w ∈ W ω
Eα(S; H1

0 (G)) with a corresponding norm estimate. If, additionally, we

have u(t0) = 0, this implies w(t0) = 0.

6. Clearly, the operator Mσ maps L∞(S×X; Rn×n) into itself. Using a change of

variables, for matrix functions A ∈ L∞(S ×X; Rn×n) and B ∈ C(S ×X; Rn×n)) we

obtain the estimate∫
S

∫
X

A : (MσB) dλn dt ≤ ‖A‖∞ ‖(MσB)‖1 ≤ L ‖A‖∞ ‖B‖1,

Here we have denoted by ‖A‖∞ and ‖B‖1 the norms of A and B in L∞(S×X; Rn×n)

and L1(S × X; Rn×n), respectively. A density argument shows that Mσ is a linear

continuous operator from L∞(S ×X; Rn×n) into itself.

7. By definition for all A ∈ L∞(S×X; Rn×n), w ∈ Lω
2 (S; H1

0 (G)), ϑ ∈ C∞
0 (S) and

v ∈ C∞
0 (G) we get the identity

〈
B(A, Tσw), Tσ(ϑv)

〉
=

∫
S

∫
X

A : Mσ(∇w ⊗∇(ϑv)) dλn dt

=

∫
S

∫
X

(MσA) : (∇w ⊗∇(ϑv)) dλn ds =
〈
B(MσA, w), ϑv

〉
.

Using a density argument, we see that (3.19) holds true.

Theorem 3.5. Let (u, λ) ∈
(
U ∩ W0E(S; H1

0 (G))
)
× V be a solution to (2.5) and

assume that there exists a constant ε ∈ (0, 1] such that aα ∈ L∞(X) and Aα(u, λ) ∈
L∞(S ×X; Rn×n) are ε-finite with respect to S and X for all α ∈ {1, . . . ,m}.

Moreover, let W be some neighborhood of u in [C(S; C(X))]m such that(
T0

σw
1, . . . ,T0

σw
m

)
∈ U for all w ∈ W and σ ∈ Σ,

and suppose that the nonlinear Volterra operators, defined by

Aα
λ(w, σ) = MσAα(T0

σw
1, . . . ,T0

σw
m, λ), (3.20)

Fα
λ(w, σ) = TσFα(T0

σw
1, . . . ,T0

σw
m, λ), (3.21)

for (w, σ) ∈ W ×Σ and α ∈ {1, . . . ,m}, are continuously differentiable in the sense

Aα
λ ∈ C1

(
W × Σ; L∞(S ×X; Rn×n)

)
, (3.22)

Fα
λ ∈ C1

(
W × Σ; Lω0

2 (S; H−1(G))
)
. (3.23)

Then, we can find a parameter ω ∈ (n, ω0] such that both the solution u and the

time derivative of the weighted solution ∂T
∂σ

(0) u belongs to W ω
0E(S; H1

0 (G)).
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Proof. 1. Because the temporal transformations Tσ are close to identity for small

σ ∈ Σ, from u ∈ W it follows that there exists a neighborhood Σ1 of 0 in R with

Σ1 ⊂ Σ, such that the temporally transformed function satisfies

w =
(
T−1

σ u1, . . . ,T−1
σ um

)
∈ W ∩W0E(S; H1

0 (G)) for every σ ∈ Σ1.

If we apply the adjoint operator Tσ to the functionals on both sides of

(Eαuα)′ + B(Aα(u, λ), uα) = Fα(u, λ), α ∈ {1, . . . ,m},

then, following Lemma 3.4 and the transformation rules (3.18) and (3.19), for all

σ ∈ Σ2 and α ∈ {1, . . . ,m} we get

(Eαwα)′ + B
(
MσAα(Tσw

1, . . . ,Tσw
m, λ), wα

)
= Tσ(Eαuα)′ + TσB(Aα(u, λ), uα) = TσFα(u, λ) = TσFα(Tσw

1, . . . ,Tσw
m, λ).

Hence, the pair (w, σ) ∈
(
W ∩W0E(S; H1

0 (G))
)
×Σ solves the transformed problem

(Eαwα)′ + B
(
Aα

λ(w, σ), wα
)

= Fα
λ(w, σ), α ∈ {1, . . . ,m}. (3.24)

Note, that the pair (w, σ) = (u, 0) is a solution of both the problems (2.5) and (3.24).

In view of (3.22) and (3.23) we can apply Theorem 3.2 to find some Morrey

exponent ω ∈ (n, ω0] and a neighborhood W0 of u in [C(S; C(X))]m with W0 ⊂ W

such that the following holds true: There exists a neighborhood Σ0 of 0 in R with

Σ0 ⊂ Σ1 and a solution map Φ ∈ C1
(
Σ0; W

ω
0E(S; H1

0 (G))
)

such that (w, σ) ∈ W0×Σ0

is a solution to (3.24) if and only if w = Φ(σ). Because of the above construction

this yields Φ(σ) =
(
T−1

σ u1, . . . ,T−1
σ um

)
for all σ ∈ Σ0.

2. To prove the temporal regularity of the solution we calculate the derivative
∂Φ
∂σ

(0) ∈ W ω
0E(S; H1

0 (G)): For every α ∈ {1, . . . ,m}, σ ∈ Σ0, ϑ ∈ C∞
0 (S) and

ϕ ∈ H1
0 (G) we obtain

∂
∂σ

∫
S

(
uα(T−1

σ (s))
∣∣ϕ)

ϑ(s) ds =

∫
S

(
uα(t)

∣∣ϕ)
∂
∂σ

(
ϑ(Tσ(t))∂T

∂t
(σ, t)

)
dt

=

∫
S

(
uα(t)

∣∣ϕ) (
∂ϑ
∂s

(Tσ(t))∂T
∂σ

(σ, t)∂T
∂t

(σ, t) + ϑ(Tσ(t)) ∂
∂σ

∂T
∂t

(σ, t)
)
dt

and, furthermore,∫
S

(
uα(t)

∣∣ϕ)
∂ϑ
∂s

(Tσ(t))∂T
∂σ

(σ, t)∂T
∂t

(σ, t) dt =

∫
S

(
uα(T−1

σ (s)) ∂T
∂σ

(σ, T−1
σ (s))

∣∣ϕ)
∂ϑ
∂s

(s) ds.

Specifying σ = 0, from both identities it follows that∫
S

(
∂Φ
∂σ

(0, t)− u(t) ∂
∂t

∂T
∂σ

(0, t)
∣∣ϕ)

ϑ(t) dt =

∫
S

(
u(t)∂T

∂σ
(0, t)

∣∣ϕ)
∂ϑ
∂t

(t) dt
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for all ϑ ∈ C∞
0 (S) and ϕ ∈ H1

0 (G), in other words,

∂
∂t

(
∂T
∂σ

(0) u
)

= u ∂
∂t

∂T
∂σ

(0)− ∂Φ
∂σ

(0) ∈ W ω
0E(S; H1

0 (G)), (3.25)

which finishes the proof.

Example 3.6. Let S = (t0, t1) be a bounded open time interval and fix σ1 > 0 such

that 2σ1(t1 − t0) < 1. Given an open interval Σ = (−σ1, σ1) of parameters, we

consider the polynomial T : Σ × S → R and the corresponding family of temporal

transformations Tσ : S → R defined by

Tσ(t) = T (σ, t) = t + σ(t− t0)(t1 − t) for σ ∈ Σ and t ∈ S. (3.26)

Since we have the uniform estimate

∂T
∂t

(σ, t) = 1 + σ
(
(t1 − t)− (t− t0)

)
∈

(
1
2
, 3

2

)
for all σ ∈ Σ and t ∈ S,

every transformation Tσ is a monotone diffeomorphism from S onto itself and all

derivatives of the families {Tσ}σ∈Σ and {T−1
σ }σ∈Σ are uniformly bounded. Obvi-

ously, T0 is the identity. Further partial derivatives being of interest with respect to

Theorem 3.5 and (3.25) are given by

∂T
∂σ

(σ, t) = (t− t0)(t1 − t), ∂
∂t

∂T
∂σ

(σ, t) = (t1 − t)− (t− t0) for σ ∈ Σ and t ∈ S.

Note, that the function t 7→ ∂T
∂σ

(σ, t) degenerates at the endpoints of the interval S.

Nevertheless, on compact subintervals of S this function is uniformly bounded from

below and from above by positive constants.

Corollary 3.7. Let (u, λ) ∈
(
U ∩W0E(S; H1

0 (G))
)
×V be a solution of problem (2.5).

Suppose that the assumptions of Theorem 3.5 are satisfied with respect to the family

{Tσ}σ∈Σ given by (3.26).

Then, there exists an exponent ω ∈ (n, ω0] such that the solution u as well as

the time derivative of the weighted solution t 7→ (t − t0)(t1 − t)u(t) belongs to

W ω
0E(S; H1

0 (G)). In particular, on compact subintervals I of S the time derivative of

the restricted solution u|I ∈ W ω
E (I; H1

0 (G)) is an element of W ω
E (I; H1

0 (G)), too.

4 Examples of nonlinear operators

In this section we indicate some classes of nonlinear operators, which are candidates

for the leading order coefficient maps Aα and the right hand sides Fα occuring in

the operator equations in Sections 2 and 3.
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4.1 Leading order coefficients

In place of the maps Aα and Aα
λ of Section 3 we consider superposition operators

A(u, λ)(t, x) = A(t, x, u(t, x), λ) for almost all (t, x) ∈ S ×X. (4.1)

C(u, λ, σ)(t, x) = A(Tσ(t), x, u(t, x), λ) for almost all (t, x) ∈ S ×X. (4.2)

Here, A : S×X×Ω×V → R is the function, generating the superposition operators,

Ω is an open subset in Rm, and V is an open subset of the Banach space Λ.

Introduced in Section 3, we consider the family of diffeomorphisms Tσ : S → S with

uniform properties with respect to σ ∈ Σ = (−σ1, σ1). In view of applications to

parabolic systems we will consider vector valued functions u : S ×X → Rm.

We define U as the subset of all u ∈ [C(S; C(X))]m, for which we can find a

compact set F ⊂ Ω such that u(t, x) ∈ F for all (t, x) ∈ S × X. Obviously, U is

open in [C(S; C(X))]m. Next, we state conditions on the function A, which ensure

that A ∈ C1
(
U × V ; L∞(S ×X)

)
and C ∈ C1

(
U × V × Σ; L∞(S ×X)

)
:

Theorem 4.1. Let us formulate the following C1-Carathéodory conditions on A:

(C1) (ξ, λ) 7→ A(t, x, ξ, λ) belongs to C1(Ω×V ) for almost all (t, x) ∈ S×X, and

(t, x) 7→ ∂A
∂ξ

(t, x, ξ, λ) and (t, x) 7→ ∂A
∂λ

(t, x, ξ, λ) are measurable for all (ξ, λ) ∈ Ω×V .

(C2) For all λ ∈ V and compact sets F ⊂ Ω there exists a % > 0 such that∣∣∂A
∂ξ

(t, x, ξ, λ)
∣∣ +

∥∥∂A
∂λ

(t, x, ξ, λ)
∥∥

Λ∗
+

∣∣A(t, x, ξ, λ)
∣∣ ≤ %

for almost all (t, x) ∈ S ×X and all ξ ∈ F .

(C3) For all λ ∈ V , compact sets F ⊂ Ω and ε > 0 there exists a δ > 0 such that∣∣∂A
∂ξ

(t, x, ξ, λ)− ∂A
∂ξ

(t, x, η, µ)
∣∣ +

∥∥∂A
∂λ

(t, x, ξ, λ)− ∂A
∂λ

(t, x, η, µ)
∥∥

Λ∗

+
∣∣A(t, x, ξ, λ)− A(t, x, η, µ)

∣∣ < ε,

for almost all (t, x) ∈ S×X and all ξ ∈ F , (η, µ) ∈ F×V with |ξ−η|+‖λ−µ‖Λ < δ.

(C4) For all λ ∈ V and compact sets F ⊂ Ω there exists an L > 0 such that∣∣∂A
∂ξ

(t, x, ξ, λ)− ∂A
∂ξ

(t, x, η, λ)
∣∣ ≤ L|ξ − η|,

for almost all (t, x) ∈ S ×X and all ξ, η ∈ F .

(C5) t 7→ A(t, x, ξ, λ) belongs to C1(S) for almost all x ∈ X and all (ξ, λ) ∈ Ω×V ,

and x 7→ ∂A
∂s

(t, x, ξ, λ) is measurable for all t ∈ S and (ξ, λ) ∈ Ω× V .

(C6) For all λ ∈ V and compact sets F ⊂ Ω there exists a % > 0 such that∣∣∂A
∂s

(t, x, ξ, λ)
∣∣ ≤ %

for almost all x ∈ X, all t ∈ S and ξ ∈ F .
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(C7) For all λ ∈ V , compact sets F ⊂ Ω and ε > 0 there exists a δ > 0 such that

∣∣∂A
∂ξ

(t, x, ξ, λ)− ∂A
∂ξ

(s, x, η, µ)
∣∣ +

∥∥∂A
∂λ

(t, x, ξ, λ)− ∂A
∂λ

(s, x, η, µ)
∥∥

Λ∗

+
∣∣∂A

∂s
(t, x, ξ, λ)− ∂A

∂s
(s, x, η, µ)

∣∣ +
∣∣A(t, x, ξ, λ)− A(s, x, η, µ)

∣∣ < ε

for almost all x ∈ X, all s, t ∈ S and all ξ ∈ F , (η, µ) ∈ F × V , which satisfy the

conditions |s− t| < δ and |ξ − η|+ ‖λ− µ‖Λ < δ.

1. If conditions (C1), (C2), and (C3) are satisfied, then the operator A defined

by (4.1) belongs to C1
(
U × V ; L∞(S ×X)

)
. Moreover, we have(

∂A
∂u

(u, λ) v
)
(t, x) = ∂A

∂ξ
(t, x, u(t, x), λ) v(t, x), (4.3a)(

∂A
∂λ

(u, λ) µ
)
(t, x) = ∂A

∂λ
(t, x, u(t, x), λ) µ, (4.3b)

for almost all (t, x) ∈ S ×X, all (u, λ) ∈ U × V , v ∈ [C(S; C(X))]m, and µ ∈ Λ.

2. If, additionally, (C4) holds true, then u 7→ ∂A
∂u

(u, λ) is locally Lipschitz

continuous from U into L
(
[C(S; C(X))]m; L∞(S ×X)

)
for all λ ∈ V .

3. If conditions (C1), (C2), (C3), and (C5), (C6), (C7) are satisfied, then the

operator C defined by (4.2) belongs to C1
(
U × V × Σ; L∞(S ×X)

)
, and we get

(
∂C
∂u

(u, λ, σ) v
)
(t, x) = ∂A

∂ξ
(Tσ(t), x, u(t, x), λ) v(t, x), (4.4a)(

∂C
∂λ

(u, λ, σ) µ
)
(t, x) = ∂A

∂λ
(Tσ(t), x, u(t, x), λ) µ, (4.4b)

∂C
∂σ

(u, λ, σ)(t, x) = ∂A
∂s

(Tσ(t), x, u(t, x), λ) ∂T
∂σ

(σ, t), (4.4c)

for almost all (t, x) ∈ S ×X and all (u, λ, σ) ∈ U × V ×Σ, v ∈ [C(S; C(X))]m, and

µ ∈ Λ.

Proof. For the sake of simplicity let us denote by ‖ ‖C the norm in [C(S; C(X))]m.

1. From the definition of the set U and from conditions (C1) and (C2) it follows

that A maps U × V into L∞(S ×X).

In order to prove (4.3a) we fix a pair (u, λ) ∈ U×V and ε > 0. Again, the definition

of U and conditions (C1) and (C2) yield that the operator, which assigns v to

(t, x) 7→ ∂A
∂ξ

(t, x, u(t, x), λ) v(t, x),

is a linear continuous map from [C(S; C(X))]m in to L∞(S × X). Since U is an

open subset of [C(S; C(X))]m, we can choose a compact set F ⊂ Ω and some δ > 0

such that for all v ∈ [C(S; C(X))]m with ‖v‖C < δ we have both u(t, x) ∈ F and

(u+v)(t, x) ∈ F for almost all (t, x) ∈ S×X. Taking δ small enough we can assume
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that this δ corresponds to λ, F and ε with respect to condition (C3). Hence, for all

v ∈ [C(S; C(X))]m with ‖v‖C < δ and almost all (t, x) ∈ S ×X we obtain∣∣A(t, x, (u + v)(t, x), λ)− A(t, x, u(t, x), λ)− ∂A
∂ξ

(t, x, u(t, x), λ) v(t, x)
∣∣

=
∣∣ ∫ 1

0

(
∂A
∂ξ

(t, x, (u + τv)(t, x), λ)− ∂A
∂ξ

(t, x, u(t, x), λ)
)
dτ v(t, x)

∣∣ ≤ ε‖v‖C ,

which proves (4.3a) and the differentiability of A in U × V with respect to u.

To show that (4.3b) holds true, we fix a pair (u, λ) ∈ U × V and ε > 0. From

the definition of the set U and from conditions (C1) and (C2) it follows that the

operator, which assigns µ to

(t, x) 7→ ∂A
∂λ

(t, x, u(t, x), λ) µ,

is a linear continuous map from Λ into L∞(S × X). We choose F ⊂ Ω such that

u(t, x) ∈ F for almost all (t, x) ∈ S ×X. Additionally, we take δ > 0 small enough

such that λ + µ ∈ V holds true for all µ ∈ Λ with ‖µ‖Λ < δ and we suppose that

this δ is suitable for λ, F and ε > 0 from condition (C3). Then, for all µ ∈ Λ with

‖µ‖Λ < δ and almost all (t, x) ∈ S ×X we get∣∣A(t, x, u(t, x), λ + µ)− A(t, x, u(t, x), λ)− ∂A
∂λ

(t, x, u(t, x), λ) µ
∣∣

=
∣∣ ∫ 1

0

(
∂A
∂λ

(t, x, u(t, x), λ + τµ)− ∂A
∂λ

(t, x, u(t, x), λ)
)
dτ µ

∣∣ ≤ ε‖µ‖Λ,

which leads to (4.3b) and the differentiability of A in U × V with respect to λ.

2. In order to prove that ∂A
∂u

and ∂A
∂λ

are continuous maps, we fix a pair (u, λ) ∈
U ×V and some ε > 0. Because U is open in [C(S; C(X))]m, we can find a compact

set F ⊂ Ω and some δ > 0 such that for all v ∈ [C(S; C(X))]m with ‖v‖C < δ we have

both u(t, x) ∈ F and (u + v)(t, x) ∈ F for almost all (t, x) ∈ S ×X. Taking δ small

enough we ensure that this δ corresponds to λ, F and ε with respect to condition

(C3) and that λ + µ ∈ V holds true for all µ ∈ Λ with ‖µ‖Λ < δ. Hence, for all

v ∈ [C(S; C(X))]m and µ ∈ Λ with ‖v‖C + ‖µ‖Λ < δ, for all ϕ ∈ [C(S; C(X))]m and

χ ∈ Λ and almost all (t, x) ∈ S ×X, condition (C3) yields∣∣(∂A
∂u

(u + v, λ + µ) ϕ− ∂A
∂u

(u, λ) ϕ
)
(t, x)

∣∣
=

∣∣(∂A
∂ξ

(t, x, (u + v)(t, x), λ + µ)− ∂A
∂ξ

(t, x, u(t, x), λ)
)
ϕ(t, x)

∣∣ ≤ ε‖ϕ‖C ,

and∣∣(∂A
∂λ

(u + v, λ + µ) χ− ∂A
∂λ

(u, λ) χ
)
(t, x)

∣∣
=

∣∣(∂A
∂λ

(t, x, (u + v)(t, x), λ + µ)− ∂A
∂λ

(t, x, u(t, x), λ)
)
χ
∣∣ ≤ ε‖χ‖Λ,
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in other words, ∂A
∂u

and ∂A
∂λ

are continuous on U × V .

3. Next, we show that u 7→ ∂A
∂u

is locally Lipschitz continuous, whenever all the

conditions (C1), (C2), (C3), and (C4) are satisfied. To do so, we fix (u, λ) ∈ U ×V ,

and, again, we choose a compact set F ⊂ Ω and some δ > 0 such that for all

v ∈ [C(S; C(X))]m with ‖v‖C < δ we have both u(t, x) ∈ F and (u+v)(t, x) ∈ F for

almost all (t, x) ∈ S ×X. Let L > 0 be the Lipschitz constant, which corresponds

to λ and F in condition (C4). Then, for all v ∈ [C(S; C(X))]m with ‖v‖C < δ, for

all ϕ ∈ [C(S; C(X))]m and almost all (t, x) ∈ S ×X, we arrive at∣∣(∂A
∂u

(u + v, λ) ϕ− ∂A
∂u

(u, λ) ϕ
)
(t, x)

∣∣
=

∣∣(∂A
∂ξ

(t, x, (u + v)(t, x), λ)− ∂A
∂ξ

(t, x, u(t, x), λ)
)
ϕ(t, x)

∣∣ ≤ L‖v‖C‖ϕ‖C ,

which leads to the local Lipschitz continuity of u 7→ ∂A
∂u

(u, λ).

4. Analogously to Step 1, we can use the definition of the set U and conditions

(C1), (C2), (C3), (C5), (C6), and (C7) to show that C maps U × V × Λ into

L∞(S × X), that C is differentiable with respect to u and λ in U × V × Σ, and

that (4.4a) and (4.4b) are the corresponding derivatives.

5. To prove the remaining assertions, we make use of the uniform properties of

the family of temporal transformations: We take M > 0 such that
∣∣∂T

∂σ
(σ, t)

∣∣ ≤ M

for all t ∈ S and σ ∈ Σ.

In order to show that ∂C
∂u

and ∂C
∂λ

are continuous operators, we fix a triple (u, λ, σ) ∈
U × V × Σ and ε > 0. Since U is an open subset of [C(S; C(X))]m, there exists

a compact set F ⊂ Ω and some δ > 0 such that for all v ∈ [C(S; C(X))]m with

‖v‖C < δ we have both u(t, x) ∈ F and (u+v)(t, x) ∈ F for almost all (t, x) ∈ S×X.

We choose δ small enough such that it corresponds to λ, F and ε with respect to

condition (C7) and that λ + µ ∈ V and σ + κ ∈ Σ hold true for all µ ∈ Λ with

‖µ‖Λ < δ and all κ ∈ R with |κ| < δ
M

. Consequently, for all v ∈ [C(S; C(X))]m,

µ ∈ Λ, and κ ∈ R with ‖v‖C + ‖µ‖Λ < δ and |κ| < δ
M

, for all ϕ ∈ [C(S; C(X))]m

and χ ∈ Λ, and almost all (t, x) ∈ S ×X, we obtain∣∣(∂C
∂u

(u + v, λ + µ, σ + κ) ϕ− ∂C
∂u

(u, λ, σ) ϕ
)
(t, x)

∣∣
=

∣∣(∂A
∂ξ

(Tσ+κ(t), x, (u + v)(t, x), λ + µ)− ∂A
∂ξ

(Tσ(t), x, u(t, x), λ)
)
ϕ(t, x)

∣∣ ≤ ε‖ϕ‖C ,

and∣∣(∂C
∂λ

(u + v, λ + µ, σ + κ) χ− ∂C
∂λ

(u, λ, σ) χ
)
(t, x)

∣∣
=

∣∣∂A
∂λ

(Tσ+κ(t), x, (u + v)(t, x), λ + µ) χ− ∂A
∂λ

(Tσ(t), x, u(t, x), λ) χ
∣∣ ≤ ε‖χ‖Λ,

which means, ∂C
∂u

and ∂C
∂λ

are continuous on U × V .
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6. For the proof of (4.4c) we fix a triple (u, λ, σ) ∈ U ×V ×Σ and ε > 0. Because

of conditions (C1), (C2), (C5), and (C6) the function

(t, x) 7→ ∂A
∂s

(Tσ(t), x, u(t, x), λ) ∂T
∂σ

(σ, t),

belongs to L∞(S ×X). We choose a compact set F ⊂ Ω such that u(t, x) ∈ F for

almost all (t, x) ∈ S × X and some bound % > 0 corresponding to λ and F with

respect to (C6). Furthermore, we can find some δ > 0 such that for all κ ∈ R
with |κ| < δ

M
we have both σ + κ ∈ Σ and

∣∣Tσ+κ(t) − Tσ(t) − ∂T
∂σ

(σ, t)κ
∣∣ < ε|κ|.

Simultaneously, we take δ small enough such it corresponds to λ, F and ε from

condition (C7). For all ξ ∈ F and κ ∈ R with |κ| < δ
M

and almost all (t, x) ∈ S×X

this leads to

A(Tσ+κ(t), x, ξ, λ)− A(Tσ(t), x, ξ, λ)− ∂A
∂s

(Tσ(t), x, ξ, λ) ∂T
∂σ

(σ, t)κ

=
∫ 1

0
∂A
∂s

(
(1− τ)Tσ(t) + τTσ+κ(t), x, ξ, λ

)
dτ

(
Tσ+κ(t)− Tσ(t)− ∂T

∂σ
(σ, t)κ

)
+

∫ 1

0

(
∂A
∂s

(
(1− τ)Tσ(t) + τTσ+κ(t), x, ξ, λ

)
− ∂A

∂s
(Tσ(t), x, ξ, λ)

)
dτ ∂T

∂σ
(σ, t)κ,

which yields

∣∣A(Tσ+κ(t), x, u(t, x), λ)− A(Tσ(t), x, u(t, x), λ)− ∂A
∂s

(Tσ(t), x, u(t, x), λ) ∂T
∂σ

(σ, t)κ
∣∣

≤ (% + M)ε|κ| for all κ ∈ R with |κ| < δ
M

and almost all (t, x) ∈ S ×X.

This proves (4.4c) and the differentiability of C in U × V × Σ with respect to σ.

7. Finally, we show that ∂C
∂σ

is continuous: We fix a triple (u, λ, σ) ∈ U × V × Σ

and some ε > 0. Because U is open in [C(S; C(X))]m, we can find a compact set

F ⊂ Ω and some δ > 0 such that for all v ∈ [C(S; C(X))]m with ‖v‖C < δ we have

u(t, x) ∈ F and (u + v)(t, x) ∈ F for almost all (t, x) ∈ S ×X. In view of (C6) we

take some bound % > 0 depending on λ and F , and we choose δ small enough such

that it corresponds to λ, F and ε with respect to condition (C7), that λ + µ ∈ V ,

σ + κ ∈ Σ and
∣∣∂T

∂σ
(σ + κ, t)− ∂T

∂σ
(σ, t)

∣∣ < ε hold true for all µ ∈ Λ with ‖µ‖Λ < δ all

κ ∈ R with |κ| < δ
M

, and all t ∈ S. Consequently, for all v ∈ [C(S; C(X))]m, µ ∈ Λ,

and κ ∈ R with ‖v‖C +‖µ‖Λ < δ and |κ| < δ
M

, and almost all (t, x) ∈ S×X, we get

∣∣(∂C
∂σ

(u + v, λ + µ, σ + κ)− ∂C
∂σ

(u, λ, σ)
)
(t, x)

∣∣
≤

∣∣(∂A
∂s

(Tσ+κ(t), x, (u + v)(t, x), λ + µ)− ∂A
∂s

(Tσ(t), x, u(t, x), λ)
)

∂T
∂σ

(σ + κ, t)
∣∣

+
∣∣∂A

∂s
(Tσ(t), x, u(t, x), λ)

(
∂T
∂σ

(σ + κ, t)− ∂T
∂σ

(σ, t)
)∣∣ ≤ (M + %)ε,

which finishes the proof.
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4.2 Right hand sides

In this subsection we consider operators F ∈ C1
(
U × V ; Lω

2 (S; H−1(G))
)
, which are

candidates for the right hand sides Fα of problem (2.5). Please, remember that the

notation G = X ∪ Γ indicates the decomposition of the regular set G ⊂ Rn into its

interior X ⊂ Rn and its Neumann boundary part Γ ⊂ ∂G.

Theorem 4.2. If ω ∈ [0, n + 2] and

G` ∈ C1
(
U × V ; Lω

2 (S; L2(X))
)
,

G0 ∈ C1
(
U × V ; Lω−2

2 (S; L2(X))
)
,

GΓ ∈ C1
(
U × V ; Lω−1

2 (S; L2(Γ))
)
,

are Volterra operators for ` ∈ {1, . . . , n}, then the following statements hold true:

1. The map F, defined by

〈
F(u, λ), ϕ

〉
=

∫
S

∫
X

n∑
`=1

G`(u, λ)(s) ∂ϕ
∂x`

(s) dλn ds

+

∫
S

∫
X

G0(u, λ)(s) ϕ(s) dλn ds +

∫
S

∫
Γ

GΓ(u, λ)(s) ϕ(s) dλΓ ds (4.5)

for (u, λ) ∈ U × V and ϕ ∈ L2(S; H1
0 (G)), belongs to C1

(
U × V ; Lω

2 (S; H−1(G))
)

and admits the Volterra property.

2. If, for certain λ ∈ V and all ` ∈ {1, . . . , n} the maps

u ∈ U 7→ ∂G`

∂u
(u, λ) ∈ L

(
[C(S; C(X))]m; Lω

2 (S; L2(X))
)
, (4.6a)

u ∈ U 7→ ∂G0

∂u
(u, λ) ∈ L

(
[C(S; C(X))]m; Lω−2

2 (S; L2(X))
)
, (4.6b)

u ∈ U 7→ ∂GΓ

∂u
(u, λ) ∈ L

(
[C(S; C(X))]m; Lω−1

2 (S; L2(Γ))
)
, (4.6c)

are locally Lipschitz continuous, then the operator

u ∈ U 7→ ∂F
∂u

(u, λ) ∈ L
(
[C(S; C(X))]m; Lω

2 (S; H−1(G))
)
, (4.7)

is also locally Lipschitz continuous.

3. Let W be an open set in [C(S; C(X))]m such that
(
T0

σw
1, . . . ,T0

σw
m

)
∈ U

holds true for every w ∈ W and σ ∈ Σ, and assume that for some λ ∈ V and all

` ∈ {1, . . . , n} the assignments

(w, σ) 7→ Tσ
0 G`(T0

σw
1, . . . ,T0

σw
m, λ), (4.8a)

(w, σ) 7→ Tσ
0 G0(T0

σw
1, . . . ,T0

σw
m, λ), (4.8b)

(w, σ) 7→ Tσ
ΓGΓ(T0

σw
1, . . . ,T0

σw
m, λ), (4.8c)
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generate continuously differentiable operators

G`
λ ∈ C1

(
W × Σ; Lω

2 (S; L2(X))
)
,

G0
λ ∈ C1

(
W × Σ; Lω−2

2 (S; L2(X))
)
,

GΓ
λ ∈ C1

(
W × Σ; Lω−1

2 (S; L2(Γ))
)
,

respectively. Then the map (w, σ) 7→ TσF(T0
σw

1, . . . ,T0
σw

m, λ) defines a Volterra

operator Fλ ∈ C1
(
W × Σ; Lω

2 (S; H−1(G))
)
.

Proof. 1. Due to (2.1), (2.2) the assignment (g, g0, gΓ) 7→ Ψ(g, g0, gΓ), defined by〈
Ψ(g, g0, gΓ), ϕ

〉
=

∫
S

∫
X

g(s) · ∇ϕ(s) dλn ds

+

∫
S

∫
X

g0(s) ϕ(s) dλn ds +

∫
S

∫
Γ

gΓ(s) ϕ(s) dλΓ ds (4.9)

for ϕ ∈ L2(S; H1
0 (G)), generates a linear continuous operator

Ψ : [Lω
2 (S; L2(X))]n × Lω−2

2 (S; L2(X))× Lω−1
2 (S; L2(Γ)) → Lω

2 (S; H−1(G)),

and its norm depends on n and G, only. Since (4.5) holds true, we obtain

F(u, λ) = Ψ
(
G1(u, λ), . . . ,Gn(u, λ), G0(u, λ), GΓ(u, λ)

)
for all (u, λ) ∈ U × V .

Hence, as a superposition of continuously differentiable operators, the map F be-

longs to C1
(
U × V ; Lω

2 (S; H−1(G))
)
. Moreover, for all (u, λ) ∈ U × V and v ∈

[C(S; C(X))]m we get identity

∂F
∂u

(u, λ) v = Ψ
(

∂G1

∂u
(u, λ) v, . . . , ∂Gn

∂u
(u, λ) v, G0(u, λ), GΓ(u, λ)

)
+ Ψ

(
G1(u, λ), . . . ,Gn(u, λ), ∂G0

∂u
(u, λ) v, GΓ(u, λ)

)
+ Ψ

(
G1(u, λ), . . . ,Gn(u, λ), G0(u, λ), ∂GΓ

∂u
(u, λ) v

)
. (4.10)

2. For ` ∈ {1, . . . , n} the maps u 7→ ∂G`

∂u
(u, λ), u 7→ ∂G0

∂u
(u, λ), and u 7→ ∂GΓ

∂u
(u, λ)

are locally Lipschitz continuous in the sense of (4.6) by assumption. Applying the

mean value theorem, the maps u 7→ G`(u, λ), u 7→ G0(u, λ), and u 7→ GΓ(u, λ) are

locally Lipschitz continuous in the sense of (4.6), too. Now, it is an easy conse-

quence of (4.10) that the operator u 7→ ∂F
∂u

(u, λ) given by (4.7) is locally Lipschitz

continuous.

3. Because of (4.8) and (4.9) for all (w, σ) ∈ W × Σ we obtain

Fλ(w, σ) = Ψ
(
G1

λ(w, σ), . . . ,Gn
λ(w, σ), G0

λ(w, σ), GΓ
λ(w, σ)

)
.

As a superposition of continuously differentiable maps, the operator Fλ belongs to

C1
(
W × Σ; Lω

2 (S; H−1(G))
)
.
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