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Abstract

In this paper the scattering matrix of a scattering system consisting of
two selfadjoint operators with finite dimensional resolvent difference is ex-
pressed in terms of a matrix Nevanlinna function. The problem is embedded
into an extension theoretic framework and the theory of boundary triplets
and associated Weyl functions for (in general nondensely defined) symmetric
operators is applied. The representation results are extended to dissipative
scattering systems and an explicit solution of an inverse scattering problem
for the Lax-Phillips scattering matrix is presented.
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1 Introduction

Let A and B be selfadjoint operators in a Hilbert space H and assume that the
difference of the resolvents

(B − λ)−1 − (A− λ)−1, λ ∈ ρ(A) ∩ ρ(B), (1.1)

is a trace class operator. Then it is well known that the wave operators W±(B, A)
exist; they are isometries mapping the absolutely continuous subspace of A onto that
of B. The scattering operator SAB := W+(B, A)∗W−(B, A) of the scattering system
{A, B} commutes with A and is unitary on the absolutely continuous subspace of
A. Therefore SAB is unitarily equivalent to a multiplication operator induced by
a family of unitary operators {SAB(λ)}λ∈R in the spectral representation of the
absolutely continuous part of A. The family {SAB(λ)}λ∈R is called the scattering
matrix of {A, B}.
One of the main objectives of this paper is to represent the scattering matrix of the
scattering system {A, B} with the help of an associated Nevanlinna function M(·).
We restrict ourselves to the special case of finite rank perturbations in resolvent
sense, i.e., it is assumed that the difference of the resolvents in (1.1) is a rank n
operator, where n < ∞. In this case the Nevanlinna function M(·) will be an n×n-
matrix function and it will be shown in Theorem 3.1 that the scattering matrix
{SAB(λ)}λ∈R is given by

SAB(λ) = I − 2i
√
=m (M(λ + i0)) M(λ + i0)−1

√
=m (M(λ + i0)) (1.2)

for a.e. λ ∈ R. This representation is a generalization of a recent result of the
authors from [8] and an earlier different (unitarily equivalent) expression found by
V.M. Adamyan and B.S. Pavlov in [5]. The formula (1.2) is obtained by embedding
the scattering problem into an extension theoretic framework. More precisely, we
consider the (in general nondensely defined) closed symmetric operator S = A ∩ B
which has finite equal deficiency indices (n, n). The adjoint S∗ is defined in the sense
of linear relations and a so-called boundary triplet Π = {Cn, Γ0, Γ1} for S∗ is chosen
in such a way that the selfadjoint extensions of S corresponding to the boundary
mappings Γ0 and Γ1 coincide with A and B, respectively. The function M(·) in (1.2)
is the Weyl function associated to this boundary triplet – an abstract analogon of
the classical Titchmarsh-Weyl m-function from singular Sturm-Liouville theory –
and contains the spectral information of the operator A.

Besides selfadjoint scattering systems we also consider so-called maximal dissipative
scattering systems {A, B}, that is, A is still a selfadjoint operator in H but B is
only assumed to be maximal dissipative, i.e., =m (Bf, f) ≤ 0 and the spectrum of
B is contained in C− ∪ R. As above we treat only the case of finite rank pertur-
bations in resolvent sense. Following [7, 25, 26, 27] a minimal selfadjoint dilation
L of B in the direct sum H ⊕ L2(R, Cn) is constructed and a natural larger selfad-
joint scattering system {K, L} in H ⊕ L2(R, Cn) is considered. From Theorem 3.1
and Theorem 3.2 we obtain a representation of the scattering matrix {SKL(λ)}λ∈R

2



which is closely related to the representations found earlier in [7]. We emphasize
that the lower right corner of {SKL(λ)}λ∈R in Proposition 4.4 can be interpreted
as the Lax-Phillips scattering matrix {SLP (λ)}λ∈R of the Lax-Phillips scattering
system {L,D−,D+}, where the incoming and outcoming subspaces D− and D+ are
L2(R−, Cn) and L2(R+, Cn), respectively. This also implies the well known relation
SLP (λ) = ΘB(λ−i0)∗ between the Lax-Phillips scattering matrix and the character-
istic function ΘB(·) of the maximal dissipative operator B found by V.M. Adamyan
and D.Z. Arov in [1, 2, 3, 4].

As an application of our approach on finite rank perturbations and maximal dissipa-
tive scattering systems we prove an inverse result in Section 5. Let W (·) be a purely
contractive analytic matrix function on C+. Under some mild additional assump-
tions it is shown in Theorem 5.1 that the limit {W (λ + i0)}λ∈R can be regarded
as the Lax-Phillips scattering matrix of a suitable chosen Lax-Phillips scattering
system. We point out that this statement can be obtained immediately in a more
abstract and general form by combining the results of B. Sz.-Nagy and C. Foia

’
s in

[27, Section VI] with the results of V.M. Adamyan and D.Z. Arov in [1, 2, 3, 4].
However, our approach leads to a more explicit solution of the inverse problem, in
particular, we find a maximal dissipative multiplication operator B in an L2-space
and a minimal selfadjoint dilation L of B such that the Lax-Phillips scattering ma-
trix of {L,D−,D+} coincides with the limit of the given purely contractive analytic
matrix function W (·); cf. Corollary 5.2.

The paper is organized as follows. In Section 2 we give a brief introduction in the
theory of boundary triplets for (in general nondensely defined) closed symmetric
operators. In particular, we show how a boundary triplet for the intersection S = A∩
B of two selfadjoint operators A and B with a finite dimensional resolvent difference
can be chosen. Section 3 is devoted to the representation of the scattering matrix for
a scattering system {A, B} with finite rank resolvent difference and in Section 4 the
results are extended to the case where the operator B is only maximal dissipative.
With the help of these results we propose a solution for the inverse scattering problem
in Section 5. For the convenience of the reader we add an Appendix on direct
integrals, spectral representations and scattering matrices.

Notation. The Hilbert spaces in this paper are usually denoted by H, K and H;
they are all assumed to be separable. The symbols span{·} and clospan{·} are used
for the linear span and closed linear span, respectively, of a set. The algebra of
everywhere defined bounded linear operators on a Hilbert space H with values in a
Hilbert space K is denoted by [H, K]; we write [H] if K = H. By Fn(H) we denote the
subset of [H] that consists of linear operators with range of dimension n ∈ N. The
absolutely continuous part of a selfadjoint operator A in H is denoted by Aac, the
corresponding subspace by Hac(A). The symbols ρ(·), σ(·), σp(·), σc(·), σr(·) stand
for the resolvent set, the spectrum, the point, continuous and residual spectrum,
respectively. By E(·) and Σ(·) we denote operator-valued measures defined on the
algebra of Borel sets B(R) of the real axis R. Usually, the symbol E(·) is reserved
for orthogonal operator-valued measures.
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2 Selfadjoint and maximal dissipative extensions

of nondensely defined symmetric operators

2.1 Linear relations

Let (H, (·, ·)) be a separable Hilbert space. A (closed) linear relation T in H is a
(closed) linear subspace of the Cartesian product space H × H. The set of closed

linear relations in H is denoted by C̃(H). Linear operators in H will always be
identified with linear relations via their graphs. The elements of a linear relation T
are pairs denoted by f̂ = {f, f ′} ∈ T , f, f ′ ∈ H, and the domain, kernel, range, and
the multi-valued part of T are defined as

dom (T ) = { f ∈ H : {f, f ′} ∈ T }, ker(T ) = { f ∈ H : {f, 0} ∈ T },
ran (T ) = { f ′ ∈ H : {f, f ′} ∈ T }, mul (T ) = { f ′ ∈ H : {0, f ′} ∈ T },

respectively. Note that T is an operator if and only if mul (T ) = {0}. A point
λ belongs to the resolvent set ρ(T ) of a closed linear relation T if (T − λ)−1 is
an everywhere defined bounded operator in H. The spectrum σ(T ) of T is the
complement of ρ(T ) in C.

A linear relation T in H is called dissipative if Im (f ′, f) ≤ 0 holds for all {f, f ′} ∈ T .
A dissipative relation T is said to be maximal dissipative if there exists no proper
dissipative extension of T in H. It can be shown that a dissipative relation T is
maximal dissipative if and only if C+ ⊂ ρ(T ) holds.

The adjoint T ∗ of a linear relation T in H is a closed linear relation in H defined by

T ∗ :=
{
{g, g′} : (f ′, g) = (f, g′) for all {f, f ′} ∈ T

}
. (2.1)

Observe that this definition extends the usual definition of the adjoint operator and
that mul (T ∗) = (dom (T ))⊥ holds. In particular, T ∗ is an operator if and only if
T is densely defined. A linear relation T in H is called symmetric (selfadjoint) if
T ⊂ T ∗ (T = T ∗, respectively). It follows from the polarization identity that T is
symmetric if and only if (f ′, f) ∈ R for all {f, f ′} ∈ T .

A (possibly nondensely defined) symmetric operator S in H is said to be simple if
there is no nontrivial subspace in H which reduces S to a selfadjoint operator. It is
well known that every symmetric operator S can be written as the direct orthogonal
sum Ŝ ⊕ Ss of a simple symmetric operator Ŝ in the Hilbert space

Ĥ = clospan
{
ker(S∗ − λ) : λ ∈ C\R

}
(2.2)

and a selfadjoint operator Ss in H	 Ĥ.
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2.2 Boundary triplets for nondensely defined symmetric op-
erators

Let in the following S be a (not necessarily densely defined) closed symmetric op-
erator in the separable Hilbert space H with equal deficiency indices

n±(S) = dim
(
ran (S ± i)⊥

)
= dim

(
ker(S∗ ∓ i)

)
≤ ∞.

If dom (S) is not dense in H the adjoint S∗ exists only in the sense of linear relations
and is defined as in (2.1). Therefore, if S is not densely defined the closed extensions
S ′ ⊂ S∗ of S in H may have nontrivial multi-valued parts. However, the operator
S admits also closed extensions in H which are operators. We will use the concept
of boundary triplets for the description of the closed extensions S ′ ⊂ S∗ of S in H;
see, e.g., [12, 13, 14, 15, 18, 23]. This concept also provides a convenient criterion
to check whether S ′ is an operator or not; cf. (2.4).

Definition 2.1 A triplet Π = {H, Γ0, Γ1} is called a boundary triplet for S∗ if H
is a Hilbert space and Γ0, Γ1 : S∗ → H are linear mappings such that the abstract
Green’s identity

(f ′, g)− (f, g′) = (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗ and the mapping Γ := (Γ0, Γ1)
> : S∗ →

H⊕H is surjective.

We refer to [14, 15, 18, 23] for a detailed study of boundary triplets and recall only
some important facts. First of all a boundary triplet Π = {H, Γ0, Γ1} for S∗ exists
(but is not unique) since the deficiency indices n±(S) of S are assumed to be equal.
Then n±(S) = dimH holds. A standard construction of a boundary triplet will be
given in the proof of Proposition 2.2.

Let Π = {H, Γ0, Γ1} be a boundary triplet for S∗ and let Ext(S) be the set of all
closed extensions S ′ ⊂ S∗ of S. Then S = ker(Γ) and the mapping

Θ 7→ SΘ := Γ−1Θ =
{
f̂ ∈ S∗ : {Γ0f̂ , Γ1f̂} ∈ Θ

}
(2.3)

establishes a bijective correspondence between the set C̃(H) of closed linear relations
in H and the set of closed extensions SΘ ∈ Ext(S) of S. We note that the right-
hand side of (2.3) can also be written as ker(Γ1−ΘΓ0) where the sum and product
is interpreted in the sense of linear relations. Since (SΘ)∗ = SΘ∗ holds for every

Θ ∈ C̃(H) it follows that SΘ is symmetric (selfadjoint) if and only if Θ is symmetric
(selfadjoint, respectively). In particular, the extensions A0 := ker(Γ0) and A1 :=
ker(Γ1) are selfadjoint. The selfadjoint operator or relation A0 will often play the role
of a fixed selfadjoint extension of S in H. Furthermore, an extension SΘ ∈ Ext(S) is
dissipative (maximal dissipative) if and only if Θ is dissipative (maximal dissipative,
respectively). We note that SΘ in (2.3) is an operator if and only if

Θ ∩
{
{Γ0f̂ , Γ1f̂} : f̂ = {0, f ′} ∈ S∗

}
= {0}. (2.4)
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The following proposition is a consequence of the basic properties of boundary
triplets and results from [14, 15, 23]. Since it plays an important role in this paper
we give a complete proof for the convenience of the reader. We also note that the
statement remains true if A and B are linear relations instead of operators. Recall
that Fn(H), n ∈ N, is the set of finite dimensional operators in H with ranges of
dimension n, i.e.,

Fn(H) =
{
T ∈ [H] : dim(ran (T )) = n

}
.

Proposition 2.2 Let A be a selfadjoint operator and let B be a maximal dissipative
operator in H. Assume that

(B − λ)−1 − (A− λ)−1 ∈ Fn(H)

holds for some (and hence for all) λ ∈ C+. Then the closed symmetric operator
S := A∩B has finite deficiency indices (n, n) in H and there exists a boundary triplet
Π = {Cn, Γ0, Γ1} for S∗ and a dissipative n × n-matrix D such that A = ker(Γ0)
and B = ker(Γ1 −DΓ0) holds.

Proof. Let λ0 ∈ ρ(A)∩ρ(B) and let n ∈ N, {e1, . . . , en} and {f1, . . . , fn} be linearly
independent vectors such that

(B − λ0)
−1 − (A− λ0)

−1 =
n∑

i=1

(·, ei)fi. (2.5)

The operator S = A ∩B, that is,

Sf = Af = Bf, dom S =
{
f ∈ dom A ∩ dom B : Af = Bf

}
,

is a (in general non-densely defined) symmetric operator in H and it is easy to check
that

(S − λ0)
−1 = (A− λ0)

−1 ∩ (B − λ0)
−1 (2.6)

holds. The intersection in (2.6) is understood in the sense of linear relations.
Hence (2.5) and (2.6) imply dim(ran (A − λ0)

−1)/ran (S − λ0)
−1)) = n. There-

fore dim(A/S) = n and S has deficiency indices (n, n). Note that (S − λ0)
−1 is

defined on the subspace H	 span{e1, . . . , en} which has codimension n in H.

It is not difficult to verify that S∗ coincides with the direct sum of the subspaces A
and

N̂λ0 =
{
{fλ0 , λ0fλ0} : fλ0 ∈ Nλ0 = ker(S∗ − λ0)

}
.

Let us decompose the elements f̂ ∈ S∗ accordingly, i.e.,

f̂ = {f, f ′} =
{
fA + fλ0 , AfA + λ0fλ0

}
, fA ∈ dom A, fλ0 ∈ Nλ0 , (2.7)

and denote by P0 the orthogonal projection onto the closed subspace Nλ0 . Then
Π = {Nλ0 , Γ0, Γ1}, where

Γ0f̂ := fλ0 and Γ1f̂ := P0

(
(A− λ̄0)fA + λ0fλ0

)
,
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f̂ ∈ S∗, is a boundary triplet with A = A0 := ker(Γ0). In fact, for f̂ as in (2.7) and
ĝ = {g, g′} = {gA + gλ0 , AgA + λ0gλ0} we obtain from (AfA, gA) = (fA, AgA) that

(f ′, g)− (f, g′) =
(
(A− λ̄0)fA + λ0fλ0 , gλ0

)
−

(
fλ0 , (A− λ̄0)gA + λ0gλ0

)
= (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ)

holds. The surjectivity of the mapping Γ = (Γ0, Γ1)
> : S∗ → Nλ0⊕Nλ0 follows from

λ̄0 ∈ ρ(A) since for x, x′ ∈ Nλ0 we can choose fA ∈ dom A such that (A − λ̄0)fA =

x′ − λ0x holds. Then obviously f̂ := {fA + x, AfA + λ0x} satisfies Γf̂ = (x, x′)>.
Moreover, from the definition of Γ0 we immediately obtain that the extension A0 =
ker(Γ0) coincides with the operator A. As the deficiency indices of S are (n, n) we
can identify Nλ0 with Cn.

Since B is a maximal dissipative extension of the symmetric operator S, B ∈ Ext(S).
Hence B ⊂ dom (Γ) and the linear relation

D := ΓB =
{
{Γ0f̂ , Γ1f̂} : f̂ = {f, Bf} ∈ B

}
is maximal dissipative in Cn and B coincides with the maximal dissipative extension
SD via (2.3). We claim that D is a matrix, i.e., mul (D) = {0}. In fact, assume that

D is multi-valued, that is, there exists f̂ = {f, Bf} ∈ B such that {0, Γ1f̂} ∈ D with

Γ1f̂ 6= 0. In particular, Γ0f̂ = 0, i.e., f̂ ∈ A0 = A and therefore f̂ ∈ A ∩ B = S =
ker(Γ0, Γ1)

>, however, this is a contradiction. Thus D is a dissipative n× n-matrix
and it follows from (2.3) that B = ker(Γ1 −DΓ0) holds. �

2.3 Weyl functions and Krein’s formula

Again let S be a (in general nondensely defined) closed symmetric operator in H

with equal deficiency indices as in the previous section. If λ ∈ C is a point of regular
type of S, i.e., (S − λ)−1 is a bounded operator, we denote the defect subspace of S
at λ by Nλ = ker(S∗ − λ) and we agree to write

N̂λ =
{
{f, λf} : f ∈ Nλ

}
⊂ S∗.

Let Π = {H, Γ0, Γ1} be a boundary triplet for S∗ and let A0 = ker(Γ0) be the fixed
selfadjoint extension of S. Recall that for every λ ∈ ρ(A0) the relation S∗ is the

direct sum of the selfadjoint relation A0 and N̂λ and denote by π1 the orthogonal
projection onto the first component of H⊕ H. The operator valued functions

γ(·) : ρ(A0) → [H, H], λ 7→ γ(λ) = π1

(
Γ0 �N̂λ

)−1

and
M(·) : ρ(A0) → [H], λ 7→ M(λ) = Γ1

(
Γ0 �N̂λ

)−1

7



are called the γ-field and the Weyl function, respectively, corresponding to the
boundary triplet Π = {H, Γ0, Γ1}; see, e.g., [13, 14, 15, 23]. It can be shown that
both γ(·) and M(·) are holomorphic on ρ(A0) and that the identities

γ(µ) =
(
I + (µ− λ)(A0 − µ)−1

)
γ(λ), λ, µ ∈ ρ(A0), (2.8)

and
M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.9)

are valid; see [14, 23]. The identity (2.9) yields that M(·) is a [H]-valued Nevanlinna
function, that is, M(·) is holomorphic on C\R, =m (M(λ)) is a nonnegative operator
for all λ ∈ C+ and M(λ) = M(λ̄)∗ holds for all λ ∈ C\R. Moreover, it follows from
(2.9) that 0 ∈ ρ(=m (M(λ))) for all λ ∈ C\R and, in particular,

=m (M(λ))

=m (λ)
= γ(λ)∗γ(λ), λ ∈ C\R. (2.10)

The following inverse result is essentially a consequence of [21], see also [15, 23].

Theorem 2.3 Let M : C\R → [H] be a Nevanlinna function such that 0 ∈
ρ(=m (M(λ))) for some (and hence for all) λ ∈ C\R and assume that the condition

lim
η→+∞

1

η
(M(iη)h, h) = 0 (2.11)

holds for all h ∈ H. Then there exists a separable Hilbert space H, a closed simple
symmetric operator S in H and a boundary triplet Π = {H, Γ0, Γ1} for the adjoint
relation S∗ such that A0 = ker(Γ0) is a selfadjoint operator and the Weyl function
of Π coincides with M(·) on C\R. The symmetric operator S is densely defined if
and only if the conditions (2.11) and

lim
η→+∞

η=m (M(iη)h, h) = ∞, h ∈ H, h 6= 0,

are satisfied.

The spectrum and the resolvent set of closed extensions in Ext(S) can be described
with the help of the Weyl function. More precisely, if SΘ ∈ Ext(S) is the extension

corresponding to Θ ∈ C̃(H) via (2.3), then a point λ ∈ ρ(A0) belongs to ρ(SΘ)
(σi(SΘ), i = p, c, r) if and only if 0 ∈ ρ(Θ −M(λ)) (0 ∈ σi(Θ −M(λ)), i = p, c, r,
respectively). Moreover, for λ ∈ ρ(A0) ∩ ρ(SΘ) the well-known resolvent formula

(SΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ̄)∗ (2.12)

holds, see [14, 23]. Formula (2.12) and Proposition 2.2 imply the following statement
which will be used in Section 4.
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Corollary 2.4 Let A be a selfadjoint operator and let B be a maximal dissipative
operator in H such that

(B − λ)−1 − (A− λ)−1 ∈ Fn(H)

holds for some (and hence for all) λ ∈ C+. Let Π = {Cn, Γ0, Γ1} be the boundary
triplet from Proposition 2.2 such that A = ker(Γ0) and B = ker(Γ1 − DΓ0) holds
with some dissipative n× n-matrix D and denote the γ-field and the Weyl function
of Π by γ(·) and M(·), respectively. Then

(B − λ)−1 − (A− λ)−1 = γ(λ)
(
D −M(λ)

)−1
γ(λ̄)∗ (2.13)

holds for all λ ∈ ρ(B) ∩ ρ(A).

If the maximal dissipative operator B in Proposition 2.2 and Corollary 2.4 is even
selfadjoint the representation of the resolvent difference in (2.13) can be further
simplified.

Corollary 2.5 Let A and B be selfadjoint operators in H such that

(B − λ)−1 − (A− λ)−1 ∈ Fn(H)

holds for some (and hence for all) λ ∈ C\R. Then the closed symmetric operator
S = A∩B has finite deficiency indices (n, n) in H and there exists a boundary triplet
Π = {Cn, Γ0, Γ1} for S∗ such that A = ker(Γ0) and B = ker(Γ1) holds. Moreover, if
γ(·) and M(·) denote the γ-field and Weyl function of Π, then

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ̄)∗

holds for all λ ∈ ρ(B) ∩ ρ(A).

Proof. According to Proposition 2.2 there is a boundary triplet Π′ = {Cn, Γ′0, Γ
′
1}

for S∗ such that A = ker(Γ′0) and B = ker(Γ′1 −DΓ′0). Here the dissipative matrix
D is even symmetric since B is selfadjoint. A simple calculation shows that Π =
{Cn, Γ0, Γ1}, where

Γ0 := Γ′0 and Γ1 := Γ1 −DΓ0,

is also a boundary triplet for S∗. If M(·) is the Weyl function corresponding to the
boundary triplet Π′, then λ 7→ M(λ)−D is the Weyl function corresponding to the
boundary triplet Π. This together with Proposition 2.2 and Corollary 2.4 implies
the statement. �

3 A representation of the scattering matrix

In this section we consider scattering systems {A, B} consisting of two selfadjoint
operators A and B in a separable Hilbert space H and we assume that the difference
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of the resolvents of A and B is a finite rank operator, that is, for some n ∈ N we
have

(B − λ)−1 − (A− λ)−1 ∈ Fn(H) (3.1)

for one (and hence for all) λ ∈ ρ(A) ∩ ρ(B). Then the wave operators

W±(B, A) := s- lim
t→±∞

eitBe−itAP ac(A),

exist and are complete, where P ac(A) denotes the orthogonal projection onto the
absolutely continuous subspace Hac(A) of A. Completeness means that the ranges
of W±(B, A) coincide with the absolutely continuous subspace Hac(B) of B; cf.
[6, 19, 28, 29]. The scattering operator SAB of the scattering system {A, B} is
defined by

SAB := W+(B, A)∗W−(B, A).

Since the scattering operator commutes with A it follows that SAB is unitarily
equivalent to a multiplication operator induced by a family {SAB(λ)}λ∈R of unitary
operators in a spectral representation of Aac := A � dom (A) ∩ Hac(A). The aim of
this section is to generalize a representation result of this so-called scattering matrix
{SAB(λ)}λ∈R from [8].

According to (3.1) and Corollary 2.5 the (possibly nondensely defined) closed sym-
metric operator S = A∩B has deficiency indices (n, n) and there exists a boundary
triplet Π = {Cn, Γ0, Γ1} for S∗ such that A = ker(Γ0) and B = ker(Γ1). The Weyl
function M(·) corresponding to the boundary triplet Π is a [Cn]-valued Nevanlinna
function. Therefore the limit

M(λ) := M(λ + i0) = lim
ε→+0

M(λ + iε) (3.2)

from the upper half-plane C+ exists for a.e. λ ∈ R; see [16, 17]. As =m (M(λ)) is
uniformly positive (uniformly negative) for all λ ∈ C+ (λ ∈ C−, respectively) the
inverses M(λ)−1 exist for all λ ∈ C\R and −M(·)−1 is also a [Cn]-valued Nevanlinna
function. Hence it follows that the limit limε→0+ M(λ + iε)−1 exists for a.e. λ ∈ R
and coincides with the inverse of M(λ) in (3.2) for a.e. λ ∈ R.

In the following theorem we find a representation of the scattering matrix
{SAB(λ)}λ∈R of the scattering system {A, B} in the direct integral L2(R, dλ,Hλ),
where

Hλ := ran (=m (M(λ + i0)) for a.e. λ ∈ R, (3.3)

cf. Appendix A. We will formulate and prove our result first for the case of a
simple symmetric operator S = A ∩ B and discuss the general case afterwards in
Theorem 3.2. For the special case that the simple symmetric operator S = A∩B is
densely defined Theorem 3.1 reduces to [8, Theorem 3.8]. We remark that the proof
of Theorem 3.1 differs from the proof of [8, Theorem 3.8]. Here we make use of the
abstract representation result Theorem A.2.

Theorem 3.1 Let A and B be selfadjoint operators in H such that (3.1) is satisfied,
suppose that the symmetric operator S = A∩B is simple and let Π = {Cn, Γ0, Γ1} be

10



a boundary triplet for S∗ such that A = ker(Γ0) and B = ker(Γ1); cf. Corollary 2.5.
Let M(·) be the corresponding Weyl function and define the spaces Hλ for a.e. λ ∈ R
as in (3.3).

Then L2(R, dλ,Hλ) performs a spectral representation of Aac such that the scattering
matrix {SAB(λ)}λ∈R of the scattering system {A, B} admits the representation

SAB(λ) = IHλ
− 2i

√
=m (M(λ)) M(λ)−1

√
=m (M(λ)) ∈ [Hλ] (3.4)

for a.e. λ ∈ R, where M(λ) = M(λ + i0).

Proof. In order to verify the representation (3.4) of the scattering matrix
{SAB(λ)}λ∈R we will make use of Theorem A.2. For this let us first rewrite the
difference of the resolvents (B− i)−1 and (A− i)−1 as in (A.3). According to Corol-
lary 2.5 we have

(B − i)−1 − (A− i)−1 = −γ(i)M(i)−1γ(−i)∗. (3.5)

Using (2.8) we find

(B − i)−1 − (A− i)−1 = −(A + i)(A− i)−1γ(−i)M(i)−1γ(−i)∗.

and hence the representation (A.3) follows if we set

φ(t) :=
t + i

t− i
, t ∈ R, C = γ(−i) and G = −M(i)−1. (3.6)

Moreover, since S is simple it follows from (2.2) that

H = clospan
{
ker(S∗ − λ) : λ ∈ C\R

}
holds. As ran C = ran γ(−i) = ker(S∗ + i) one concludes in the same way as in the
proof of [8, Lemma 3.4] that the condition

Hac(A) = clospan
{
Eac

A (δ)ran (C) : δ ∈ B(R)
}

is satisfied.

Next we express the [Cn]-valued function

λ 7→ K(λ) =
d

dλ
C∗EA((−∞, λ))C

and its square root λ 7→
√

K(λ) in terms of the Weyl function M(·) for a.e. λ ∈ R.
We have

K(λ) = lim
ε→+0

1

2πi
γ(−i)∗

(
(A− λ− iε)−1 − (A− λ + iε)−1

)
γ(−i)

= lim
ε→+0

ε

π
γ(−i)∗(A− λ− iε)−1(A− λ + iε)−1γ(−i)

(3.7)

11



and on the other hand by (2.10)

=m (M(λ + iε)) = εγ(λ + iε)∗γ(λ + iε).

Inserting γ(λ + iε) = (I + (λ + iε + i)(A− λ− iε)−1γ(−i)) (cf. (2.8)) we obtain

=m (M(λ + iε)) = εγ(−i)∗(I + A2)(A− λ− iε)−1(A− λ + iε)−1γ(−i) (3.8)

and by comparing (3.7) and (3.8) we find

=m (M(λ)) = lim
ε→0+

=m (M(λ + iε)) = π(1 + λ2)K(λ) (3.9)

for a.e. λ ∈ R. In particular, the finite-dimensional subspaces ran (K(λ)) in The-
orem A.2 coincide with the spaces Hλ = ran (=m (M(λ))) for a.e. λ ∈ R and
therefore L2(R, dλ,Hλ) is a spectral representation of Aac and the scattering matrix
{SAB(λ)}λ∈R admits the representation (A.4). Inserting the square root

√
K(λ)

from (3.9) into (A.4) we find

SAB(λ) = IHλ
+ 2i(1 + λ2)

√
=m (M(λ))Z(λ)

√
=m (M(λ)) (3.10)

and it remains to compute

Z(λ) =
1

λ + i
Q∗Q +

φ(λ)

(λ + i)2
G + lim

ε→0+
Q∗(B − λ− iε)−1Q, (3.11)

where Q = φ(A)CG = −γ(i)M(i)−1, cf. (A.5), (3.6) and (3.5).

It follows from [8, Lemma 3.2] that

Q∗(B − λ− i0)−1Q =
1

1 + λ2

(
M(i)−1 −M(λ)−1

)
+

1

λ + i
=m (M(i)−1) (3.12)

holds for a.e. λ ∈ R and from (2.10) we obtain

Q∗Q = (M(i)−1)∗γ(i)∗γ(i)M(i)−1 = (M(i)−1)∗=m (M(i))M(i)−1

= −=m (M(i)−1).
(3.13)

Therefore we conclude from (3.13) and (3.6) that (3.11) takes the form

Z(λ) = − 1

λ + i
=m (M(i)−1)− 1

1 + λ2
M(i)−1 + Q∗(B − λ− i0)−1Q

and by inserting (3.12) we find Z(λ) = −(1+λ2)−1M(λ)−1. Hence (3.10) turns into
the representation (3.4) of the scattering matrix {SAB(λ)}. �

In general it may happen that the operator S = A ∩ B is not simple, that is, there
is a nontrivial decomposition of the Hilbert space H = Ĥ⊕ K such that

S = Ŝ ⊕H, (3.14)
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where Ŝ is simple symmetric operator in Ĥ and H is a selfadjoint operator in K, cf.
Section 2.1. Then there exist selfadjoint extensions Â and B̂ of Ŝ in Ĥ such that

A = Â⊕H and B = B̂ ⊕H. (3.15)

The next result extends the representation of the scattering matrix in Theorem 3.1
to the case of a non-simple S.

Theorem 3.2 Let A and B be selfadjoint operators in H such that (3.1) is satisfied,
let S = A ∩ B be decomposed as in (3.14) and let Π = {Cn, Γ0, Γ1} be a boundary
triplet for S∗ such that A = ker(Γ0) and B = ker(Γ1); cf. Corollary 2.5. Further-
more, let L2(R, dλ,Kλ) be a spectral representation of the absolutely continuous part
Hac of the selfadjoint operator H in the Hilbert space K.

Then L2(R, dλ,Hλ⊕Kλ) is a spectral representation of Aac and the scattering matrix
{SAB(λ)}λ∈R is given by

SAB(λ) =

(
S bA, bB(λ) 0

0 IKλ

)
∈

[
Hλ ⊕Kλ

]
for a.e. λ ∈ R, where Hλ = ran (=m (M(λ + i0))), M(·) is the Weyl function
corresponding to the boundary triplet Π and

S bA bB(λ) = IHλ
− 2i

√
=m (M(λ))M(λ)−1

√
=m (M(λ)) ∈ [Hλ]

is the scattering matrix of the scattering system {Â, B̂} from (3.15).

Proof. It follows from the decomposition (3.15) that the absolutely continuous
subspaces Hac(A) and Hac(B) can be written as the orthogonal sums

Hac(A) = Ĥac(Â)⊕ Kac(H) and Hac(B) = Ĥac(B̂)⊕ Kac(H)

of the absolutely continuous subspaces of Â and B̂, and the absolutely continuous
subspace Kac(H) of the selfadjoint operator H in K. Therefore the wave operators of
W±(B, A) of the scattering system {A, B} can be written with the wave operators

W±(B̂, Â) of the scattering system {Â, B̂} in the form

W±(B, A) = W±(B̂, Â)⊕ IKac(H).

This implies the corresponding decomposition of the scattering operator SAB in S =
S bA bB⊕ IKac(H) and hence the scattering matrix {SAB(λ)}λ∈R of the scattering system
{A, B} coincides with the orthogonal sum of the scattering matrix {S bA bB(λ)}λ∈R of

the scattering system {Â, B̂} and the identity operator in the spectral representation
L2(R, dλ,Kλ) of Hac.

It is not difficult to see that Π̂ = {Cn, Γ̂0, Γ̂1}, where Γ̂0 and Γ̂1 denote the restrictions

of the boundary mappings Γ0 and Γ1 from S∗ = (Ŝ)∗ ⊕H onto (Ŝ)∗, is a boundary

triplet for (Ŝ)∗ such that Â = ker(Γ̂0) and B̂ = ker(Γ̂1). Moreover, the Weyl

function corresponding to Π̂ coincides with the Weyl function M(·) corresponding
to Π. Hence, by Theorem 3.1 the scattering matrix {S bA bB(λ)}λ∈R is given by (3.4).

�
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4 Dissipative and Lax-Phillips scattering systems

In this section we consider a scattering systems {A, B} consisting of a selfadjoint
operator A and a maximal dissipative operator B in the Hilbert space H. As above
it is assumed that

(B − λ)−1 − (A− λ)−1 ∈ Fn(H), λ ∈ ρ(A) ∩ ρ(B), (4.1)

holds for some n ∈ N. Then the closed symmetric operator S = A ∩B is in general
not densely defined and its deficiency indices are (n, n). By Corollary 2.4 there
exists a boundary triplet Π = {Cn, Γ0, Γ1} for S∗ and a dissipative n× n-matrix D
such that A = ker(Γ0), B = ker(Γ1 −DΓ0) and

(B − λ)−1 − (A− λ)−1 = γ(λ)
(
D −M(λ)

)−1
γ(λ̄)∗

holds. For our later purposes in Section 5 it is sufficient to investigate the special
case ker(=m (D)) = {0}, the general case can be treated in the same way as in [7, 9].

For the investigation of the dissipative scattering system {A, B} it is useful to con-
struct a so-called minimal selfadjoint dilation L of the maximal dissipative operator
B. For the explicit construction of L we will use the following lemma which also
shows how the constant function C+ 3 λ 7→ −i=m (D), λ ∈ C+, can be realized as
a Weyl function. A detailed proof of Lemma 4.1 can be found in [7].

Lemma 4.1 Let T be the first order differential operator in the Hilbert space
L2(R, Cn) defined by

(Tg)(x) = −ig′(x), dom (T ) =
{
g ∈ W 1

2 (R, Cn) : g(0) = 0
}
.

Then the following holds.

(i) T is a densely defined closed simple symmetric operator with deficiency indices
(n, n).

(ii) The adjoint operator is

(T ∗g)(x) = −ig′(x), dom (T ∗) = W 1
2 (R−, Cn)⊕W 1

2 (R+, Cn).

(iii) The triplet ΠT = {Cn, Υ0, Υ1}, where

Υ0ĝ :=
1√
2
(−=m (D))−

1
2

(
g(0+)− g(0−)

)
,

Υ1ĝ :=
i√
2
(−=m (D))

1
2

(
g(0+) + g(0−)

)
, ĝ = {g, T ∗g},

is a boundary triplet for T ∗ and T0 = ker(Υ0) is the selfadjoint first order
differential operator in L2(R, Cn) defined on W 1

2 (R, Cn).
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(iv) The Weyl function τ(·) corresponding to the boundary triplet ΠT =
{Cn, Υ0, Υ1} is given by

τ(λ) =

{
−i=m (D), λ ∈ C+,

i=m (D), λ ∈ C−.

Let S = A∩B and let T be the first order differential operator from Lemma 4.1. It
is clear that (

S 0
0 T

)
(4.2)

is a closed symmetric operator in the Hilbert space H ⊕ L2(R, Cn) with deficiency
indices (2n, 2n) and the adjoint of (4.2) is the orthogonal sum of the relation S∗

and the operator T ∗ from Lemma 4.1. The next theorem, which is a variant of
[7, Theorem 3.2], shows how a minimal selfadjoint dilation of the dissipative op-
erator B = ker(Γ1 − DΓ0) can be constructed. For the particular case of Sturm-
Liouville operators with dissipative boundary conditions this construction goes back
to B.S. Pavlov; cf. [25, 26].

Theorem 4.2 Let A be a selfadjoint operator and let B be a maximal dissipative
operator in H such that (4.1) holds. Let Π = {Cn, Γ0, Γ1} be a boundary triplet for
S∗, S = A∩B, and let D be a dissipative n×n-matrix with ker(=m (D)) = {0} such
that A = ker(Γ0) and B = ker(Γ1−DΓ0); cf. Proposition 2.2. If ΠT = {Cn, Υ0, Υ1}
is the boundary triplet of T ∗ introduced in Lemma 4.1, then the operator

L

(
f
g

)
=

(
f ′

T ∗g

)
, f̂ = {f, f ′} ∈ S∗, ĝ = {g, T ∗g},

with domain

dom (L) =

{(
f
g

)
∈ dom (S∗)⊕ dom (T ∗) :

Γ0f̂ −Υ0ĝ = 0

(Γ1 −<e (D)Γ0)f̂ = −Υ1ĝ

}
is a minimal selfadjoint dilation of the maximal dissipative operator B, that is, for
all λ ∈ C+

PH

(
L− λ

)−1
�H= (B − λ)−1

holds and the condition H⊕L2(R, Cn) = clospan{(L−λ)−1H : λ ∈ C\R} is satisfied.

Proof. Besides the assertion that L is an operator the proof of Theorem 4.2 is
essentially the same as the proof of [7, Theorem 3.2]. The fact that the restriction L
of the relation S∗⊕T ∗ is an operator can be seen as follows: Suppose that f̂⊕ ĝ ∈ L,
where {0, f ′} ∈ S∗, {0, g′} ∈ T ∗. Since T ∗ is an operator we have g′ = 0 and this
implies ĝ = 0. Therefore we obtain from the boundary conditions in dom (L) that

Γ0f̂ = Υ0ĝ = 0
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holds. Hence f̂ = {f, f ′} belongs to A = ker(Γ0) which is an operator. Therefore
f ′ = 0 and L is an operator. �

Let L be the minimal selfadjoint dilation of the maximal dissipative operator B from
Theorem 4.2 and define a selfadjoint operator K in H⊕ L2(R, Cn) by

K :=

(
A 0
0 T0

)
, (4.3)

where T0 = ker(Υ0) is the selfadjoint first order differential operator from
Lemma 4.1. In the following theorem we consider the scattering system {K, L}
in the Hilbert space H⊕L2(R, Cn). The operator R := K ∩L is symmetric and may
have a nontrivial selfadjoint part H which acts in the Hilbert space(

H⊕ L2(R, Cn)
)
	 clospan

{
ker(R∗ − λ) : λ ∈ C\R

}
.

Hence the operators K and L admit the decompositions

K = K̂ ⊕H and L = L̂⊕H,

with selfadjoint operators K̂ and L̂ in clospan{ker(R∗− λ) : λ ∈ C\R} and we have

R = R̂⊕H, where R̂ = K̂∩L̂. In particular, K̂ and L̂ are both selfadjoint extensions
of the closed simple symmetric operator R̂. We remark that the symmetric operator
R is an n-dimensional extension of the orthogonal sum in (4.2); this follows easily
from the next theorem. In the following we assume that L2(R, dλ,Kλ) is a spectral
representation of the absolutely continuous part Hac of H.

Theorem 4.3 Let A be a selfadjoint operator and let B be a maximal dissipative
operator in H such that (4.1) holds. Let Π = {Cn, Γ0, Γ1} be a boundary triplet for
S∗, S = A∩B, and let D be a dissipative n×n-matrix with ker(=m (D)) = {0} such
that A = ker(Γ0) and B = ker(Γ1 −DΓ0); cf. Proposition 2.2. If L is the minimal
self-adjoint dilation of B in Theorem 4.2 and K is given by (4.3), then

(K − λ)− (L− λ)−1 ∈ Fn, λ ∈ C\R. (4.4)

Moreover, if L2(R, dλ,Kλ) is a spectral representation of Hac, where H is the max-
imal self-adjoint part of R = K ∩L, then L2(R, dλ, Cn ⊕Kλ) is a spectral represen-
tation of K and the scattering matrix {SKL(λ)}λ∈R of the scattering system {K, L}
admits the representation

SKL(λ) =

(
S bK bL(λ) 0

0 IKλ

)
∈

[
Cn ⊕Kλ

]
for a.e. λ ∈ R, where

S bK bL(λ) = ICn − 2i
√
=m (M(λ)−D)

(
M(λ)−D

)−1√=m (M(λ)−D)

is the scattering matrix of the scattering system {K̂, L̂}, M(·) is the Weyl function
of the boundary triplet Π and M(λ) = M(λ + i0).
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Proof. We are going to apply Theorem 3.2 to the scattering system {K, L}. For
this we consider the symmetric operator R = K ∩ L and note that the operator
K is given by ker(Γ0) ⊕ ker(Υ0). Hence the boundary condition Γ0f̂ − Υ0ĝ = 0 in
dom (L) is automatically fulfilled and this implies that the intersection R = K ∩ L
given by

R

(
f
g

)
= K

(
f
g

)
= L

(
f
g

)
dom (R) =

{(
f
g

)
∈ dom K : (Γ1 −<e (D)Γ0)f̂ = −Υ1ĝ

}
,

where f̂ = {f, Af} and ĝ = {g, T0g}. It is not difficult to verify that the adjoint
operator R∗ has the form

R∗ =
{

f̂ ⊕ ĝ ∈ S∗ ⊕ T ∗ : Γ0f̂ = Υ0ĝ
}

and Π̃ = {Cn, Γ̃0, Γ̃1}, where

Γ̃0(f̂ ⊕ ĝ) = Γ0f̂ and Γ̃1(f̂ ⊕ ĝ) = (Γ1 −<e (D)Γ0)f̂ + Υ1ĝ,

is a boundary triplet for R∗. Observe that K = ker(Γ̃0) and L = ker(Γ̃1). This also
implies that the difference of the resolvents of K and L in (4.4) is a rank n operator;
cf. Corollary 2.5.

Let us compute the Weyl function M̃ corresponding to the boundary triplet Π̃. For
λ ∈ C+ and f̂ ⊕ ĝ ∈ N̂λ,R∗ we have f̂ ∈ N̂λ,S∗ , ĝ ∈ N̂λ,T ∗ and Γ0f̂ = Υ0ĝ. Hence the
definition of the Weyl function and Lemma 4.1 imply

M̃(λ)Γ̃0(f̂ ⊕ ĝ) = Γ̃1(f̂ ⊕ ĝ) = Γ1f̂ −<e (D)Γ0f̂ + Υ1ĝ

= M(λ)Γ0f̂ −<e (D)Γ0f̂ − i=m (D)Υ0ĝ

= (M(λ)−D)Γ0f̂ = (M(λ)−D)Γ̃0(f̂ ⊕ ĝ)

and therefore M̃(λ) = M(λ) − D for λ ∈ C+. As D is a dissipative matrix and
ker(=m (D)) = {0} by assumption it follows that

=m (M̃(λ + i0)) = =m (M(λ + i0))−=m (D)

is uniformly positive and hence ran (=m (M̃(λ + i0))) = Cn. Now Theorem 3.2

applied to the boundary triplet Π̃ and the corresponding Weyl function M̃ yields
the statement of Theorem 4.3. �

For our later purposes it is useful to express the scattering matrix {SKL(λ)}λ∈R
in Theorem 4.3 in a slightly different form. The following proposition extends [7,
Theorem 3.6] to the case where S = A ∩ B is not necessarily densely defined. The
proof is almost the same and will not be repeated.
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Proposition 4.4 Let the assumptions of Theorem 4.3 be satisfied, assume, in ad-
dition, that S = A ∩ B is simple and let L2(R, dλ,Hλ), Hλ = ran (=m (M(λ))),
M(λ) := M(λ + i0), be a spectral representation of Aac.

Then L2(R, dλ,Hλ ⊕ Cn) is a spectral representation of Kac = Aac ⊕ T0 such that
the scattering matrix {SKL(λ)}λ∈R of the scattering system {K, L} can be expressed
by

SKL(λ) =

(
IHλ

0
0 ICn

)
+ 2i

(
S11(λ) S12(λ)
S21(λ) S22(λ)

)
∈

[
Hλ ⊕ Cn

]
for a.e. λ ∈ R, where

S11(λ) =
√
=m (M(λ))

(
D −M(λ)

)−1√=m (M(λ)),

S12(λ) =
√
=m (M(λ))

(
D −M(λ)

)−1√−=m (D),

S21(λ) =
√
−=m (D)

(
D −M(λ)

)−1√−=m (M(λ)),

S22(λ) =
√
−=m (D)

(
D −M(λ)

)−1√−=m (D).

Remark 4.5 If S = A∩B is simple we find by combining Theorem 4.3 with Proposi-
tion 4.4 that dim(Kλ) = dim(Hλ) holds for a.e. λ ∈ R, i.e., the spectral multiplicity
of Hac, where H is the maximal self-adjoint part of R = K∩L is equal to the spectral
multiplicity of Aac.

In the following we are going to interpret the right lower corner I + 2iS22 of the
scattering matrix {SKL(λ)}λ∈R in Proposition 4.4 as the scattering matrix corre-
sponding to a Lax-Phillips scattering system; see, e.g., [6, 22] for further details.
For this purpose we decompose L2(R, Cn) into the orthogonal sum of the subspaces

D− := L2(R−, Cn) and D+ := L2(R+, Cn),

and denote the natural embeddings of D± into H ⊕ L2(R, Cn) by J±. The sub-
spaces D+ and D− are called outgoing and incoming subspaces, respectively, for the
selfadjoint dilation L in H⊕ L2(R, Cn), i.e.

e−itLD± ⊆ D±, t ∈ R±, and
⋂
t∈R

e−itLD± = {0}

hold. The system {L,D−,D+} is called Lax-Phillips scattering system and the cor-
responding Lax-Phillips wave operators are defined by

Ω± := s- lim
t→±∞

eitLJ±e−itT0 : L2(R, Cn) → H⊕ L2(R, Cn);

cf. [6]. Since s-limt→±∞ J∓e−itT0 = 0 the restrictions of the wave operators
W±(L, K) of the scattering system {K, L} onto L2(R, Cn) coincide with the Lax-
Phillips wave operators Ω± and hence the Lax-Phillips scattering operator SLP :=
Ω∗+Ω− is given by SLP = PL2SKL ιL2 , where SKL is the scattering operator of the
scattering system {K, L}, PL2 is the orthogonal projection from H⊕L2(R, Cn) onto
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L2(R, Cn) and ιL2 denotes the canonical embedding. Hence the Lax-Phillips scat-
tering operator SLP is a contraction in L2(R, Cn) and commutes with the selfadjoint
differential operator T0. Therefore SLP is unitarily equivalent to a multiplication
operator induced by a family {SLP (λ)}λ∈R of contractive operators in L2(R, Cn);
this family is called the Lax-Phillips scattering matrix.

The above considerations together with Proposition 4.4 immediately imply the fol-
lowing corollary on the representation of the Lax-Phillips scattering matrix; cf. [7,
Corollary 3.10].

Corollary 4.6 Let the assumptions of Proposition 4.4 be satisfied. If {L,D−,D+}
is the Lax-Phillips scattering system from above, then the Lax-Phillips scattering
matrix {SLP (λ)}λ∈R admits the representation

SLP (λ) = ICn + 2i
√
−=m (D)

(
D −M(λ)

)−1√−=m (D)

for a.e. λ ∈ R, where M(λ) = M(λ + i0).

We mention that Corollary 4.6 also implies a well-known result of Adamyan and
Arov in [1, 2, 3, 4] on the relation of the Lax-Phillips scattering matrix with the
characteristic function of the maximal dissipative operator B; see [7] for further
details.

5 An inverse scattering problem

Let W : C+ → [Cn] be a contractive analytic matrix function defined on the upper
half-plane C+. Then the limit

W (λ) = W (λ + i0) = lim
y→+0

W (λ + iy)

exists for a.e. λ ∈ R. In the following theorem we show that under some mild
additional conditions the limit of the function W can be regarded as the scattering
matrix of a Lax-Phillips scattering system {L,D−,D+}, where L is the minimal
selfadjoint dilation of some maximal dissipative operator in a Hilbert space H as in
the previous section.

Theorem 5.1 Let W : C+ → [Cn] be a contractive analytic function such that the
conditions

ker(I −W (η)∗W (η)) = {0}, η ∈ C+, (5.1)

and

lim
y→+∞

1

y
(I −W (iy))−1 = 0 (5.2)

are satisfied. Then the following holds:
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(i) There exists a separable Hilbert space H, a (in general nondensely defined)
simple symmetric operator S with deficiency indices (n, n) in H, a boundary
triplet Π = {Cn, Γ0, Γ1} for S∗ with Weyl function M(·) and a dissipative
matrix D ∈ [Cn] with ker(=m (D)) = {0} such that W (·) admits the represen-
tation

W (µ) = I + 2i
√
−=m (D)

(
D −M(µ)

)−1√−=m (D) (5.3)

for all µ ∈ C+ and a.e. µ ∈ R, where W (µ) = W (µ + i0) and M(µ) =
M(µ + i0).

(ii) The function R 3 µ 7→ W (µ) is the Lax-Phillips scattering matrix of the
Lax-Phillips scattering system {L,D−,D+}, where L is the minimal selfad-
joint dilation of the maximal dissipative extension B = ker(Γ1 −DΓ0) of S in
Theorem 4.2 and the incoming and outgoing subspaces are D± = L2(R±, Cn).

(iii) If, in addition, the condition

lim
y→+∞

y1/2
∥∥∥√

I −W (iy)∗W (iy) (I −W (iy))−1h
∥∥∥ = ∞ (5.4)

holds for all h ∈ H, h 6= 0, then the symmetric operator S is densely defined.

(iv) If W (·) is an inner function, i.e. W (µ + i0) is unitary for a.e. µ ∈ R, then
the spectrum of the selfadjoint operator A = ker(Γ0) is purely singular and the
absolutely continuous part Aac of A is trivial.

Proof. (i) Observe that condition (5.1) together with ‖W (η)‖ ≤ 1 implies that
ker(I −W (η)) = {0} holds for all η ∈ C+. Indeed, for x ∈ ker(I −W (η)) we have
‖W (η)x‖ = ‖x‖ and hence (

(I −W (η)∗W (η))x, x
)

= 0

which yields x = 0. We define a function M : C+ → [Cn] by

C+ 3 η 7→ M(η) := i(I + W (η))(I −W (η))−1 (5.5)

and we extend M to the lower half-plane by C− 3 η 7→ M(η) := M(η̄)∗. Then M is
analytic and a straightforward computation shows

=m (M(η)) = (I −W (η)∗)−1(I −W (η)∗W (η))(I −W (η))−1 ≥ 0. (5.6)

for η ∈ C+. Hence M is a Nevanlinna function and condition (5.1) implies
ker(=m (M(η))) = {0}. From condition (5.2) we obtain

s- lim
y→+∞

1

y
M(iy) = s- lim

y→+∞

i

y
(I + W (iy))(I −W (iy))−1 = 0.

By Theorem 2.3 there exists a separable Hilbert space H, a (in general nondensely
defined) simple symmetric operator S with deficiency indices (n, n) and a boundary
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triplet Π = {Cn, Γ0, Γ1} for S∗ such that M is the corresponding Weyl function. For
η ∈ C+ we have

W (η) = I − 2i(M(η) + i)−1, η ∈ C+. (5.7)

Setting D := −iI we have
√
−=m (D) = I and hence the representation (5.3)

follows from (5.7).

(ii) From Corollary 4.6 one immediately gets that W can be regarded as the Lax-
Phillips scattering matrix of the Lax-Phillips scattering system {L,D−,D+}.

(iii) Making use of (5.6) one easily verifies that the condition (5.4) yields

lim
y→∞

y=m (M(iy)h, h) = ∞, h ∈ H \ {0}.

Hence the operator S is densely defined by Theorem 2.3.

(iv) We consider the analytic function w(η) := det(I −W (η)), η ∈ C+. Since the
limit W (λ + i0) := limy→+0 W (λ + iy) exists for a.e. λ ∈ R the limit w(λ + i0) :=
limy→+0 w(λ + iy) exist for a.e. λ ∈ R, too. If the Lebesgue measure of the set
{λ ∈ R : w(λ + i0) = 0} is different from zero, then w(η) ≡ 0 for all η ∈ C+ by the
Lusin-Privalov theorem [20, Section III] but this is impossible by assumption (5.1),
cf. proof of (i). Hence, the set {λ ∈ R : w(λ + i0) = 0} has Lebesgue measure zero.
Therefore, the operator (I −W (λ + i0))−1 exist for a.e. λ ∈ R. Using (5.6) we find
that limy→+0=m (M(λ + iy)) = 0 for a.e. λ ∈ R. By [11, Theorem 4.3(iii)] we get
that the selfadjoint operator A = ker(Γ0) has no absolutely continuous spectrum,
i.e., the absolutely continuous part of A is trivial. �

We remark, that the representation (5.3) can also be obtained from [15, Proposi-
tion 7.5]. In fact, in the special case considered here some parts of the proof of
Theorem 5.1 (i) coincide with the proof of [15, Proposition 7.5].

The Lax-Phillips scattering system and the selfadjoint dilation L in Theorem 5.1 can
be made more explicit. Let W : C+ → [Cn] be as in the assumptions of Theorem 5.1
and define the function M by

M(η) = i(I + W (η))(I −W (η))−1, η ∈ C+

and M(η) = M(η̄)∗ as in (5.5). Then M is [Cn]-valued Nevanlinna function and
hence M admits an integral representation of the form

M(η) = α +

∫
R

(
1

t− η
− t

1 + t2

)
dΣ(t), η ∈ C\R, (5.8)

where α is a symmetric matrix and t 7→ Σ(t) is a [Cn]-valued nondecreasing sym-
metric matrix function on R such that

∫
(1+ t2)−1dΣ(t) ∈ [Cn]. We note that due to

condition (ii) in Theorem 5.1 the linear term in the integral representation (5.8) is
absent. Let L2

Σ(R, Cn) be the Hilbert space of Cn-valued functions as in [10, 18, 24].
It was shown in [24] that the mapping

f 7→
∫

R
dΣ(t)f(t)
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defined originally on the space C0(R, Cn) of (strongly) continuous functions with
compact support admits a continuous extension to an operator from L2

Σ(R, Cn) into
Cn. According to [15, 24] the adjoint of the (in general nondensely defined) closed
symmetric operator

(Sf)(t) = tf(t),

dom (S) =

{
f ∈ L2

Σ(R, Cn) : tf(t) ∈ L2
Σ(R, Cn),

∫
R

dΣ(t)f(t) = 0

}
,

is given by the linear relation

S∗ =

{{
f(t) +

t

1 + t2
h, tf(t)− 1

1 + t2
h

}
: f(t), tf(t) ∈ L2

Σ(R, Cn), h ∈ Cn

}
,

and that {Cn, Γ0, Γ1}, where

Γ0f̂ := h and Γ1f̂ := αh +

∫
R

dΣ(t)f(t),

f̂ = {f(t) + t(1 + t2)−1h, tf(t) − (1 + t2)−1h} ∈ S∗, is a boundary triplet for S∗

with corresponding Weyl function M(·). Note that here A0 = ker(Γ0) is the usual
maximal multiplication operator in L2

Σ(R, Cn).

Corollary 5.2 Let W : C+ → [Cn] be a contractive analytic function which satisfies
the conditions (5.1) and (5.2) in Theorem 5.1. Then there exists a symmetric matrix
α ∈ [Cn] and a [Cn]-valued nondecreasing symmetric matrix function Σ(·) on R such
that

W (µ) = I − 2i

(
α + i +

∫
R

(
1

t− µ
− t

1 + t2

)
dΣ(t)

)−1

holds for all µ ∈ C+ and
∫

(1 + t2)−1dΣ(t) ∈ [Cn]. The function W (·) coincides
with the Lax-Phillips scattering matrix of the system {L,D−,D+}, where D± =
L2(R±, Cn) and

L

(
f(t) + t

1+t2
h

g

)
=

(
tf(t)− 1

1+t2
h

ig′

)
,

f(t), tf(t) ∈ L2
Σ(R, Cn), h ∈ Cn,

g ∈ W 1
2 (R−, Cn)⊕W 1

2 (R+, Cn),

dom (L) =

{(
f(t) + t

1+t2
h

g

)
:

1√
2
(g(0+)− g(0−)) = h

i√
2
(g(0+) + g(0−)) = αh +

∫
dΣ(t)f(t)

}
is the minimal selfadjoint dilation in L2

Σ(R, Cn) ⊕ L2(R, Cn) of the maximal dissi-
pative multiplication operator B = ker(Γ1 + iΓ0) in L2

Σ(R, Cn).

A Spectral representations and scattering matrix

Let A be a selfadjoint operator in the separable Hilbert space H and let E(·) be the
corresponding spectral measure defined on the σ-algebra B(R) of Borel subsets of
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R. The absolutely continuous and singular part of the measure E(·) is denoted by
Eac(·) and Es(·), respectively. If C ∈ [H, H] is a Hilbert-Schmidt operator, then by
[6, Lemma I.11]

Σ(δ) := C∗E(δ)C, δ ∈ B(R),

is a trace class valued measure on B(R) of finite variation. This measure admits a
unique decomposition

Σ(·) = Σs(·) + Σac(·)
into a singular measure Σs(·) = C∗Es(·)C and an absolutely continuous measure
Σac(·) = C∗Eac(·)C. According to [6, Proposition I.13] the trace class valued func-
tion λ 7→ Σ(λ) := C∗E((−∞, λ))C admits a derivative K(λ) := d

dλ
Σ(λ) ≥ 0 in the

trace class norm for a.e. λ ∈ R with respect to the Lebesgue measure dλ and

Σac(δ) =

∫
δ

K(λ)dλ, δ ∈ B(R)

holds. By Hλ := ran (K(λ)) ⊆ H we define a measurable family of subspaces in
H. Let P (λ) be the orthogonal projection from H onto Hλ and define a measurable
family of projections by

(Pf)(λ) := P (λ)f(λ), f ∈ L2(R, dλ,H).

Then P is an orthogonal projection in L2(R, dλ,H) and we denote the range of P
by L2(R, dλ,Hλ). In the following we regard L2(R, dλ,Hλ) as the direct integral of
the measurable family of subspaces {Hλ}λ∈R.

Lemma A.1 Let A, E, C and K(λ) be as above and assume that the absolutely
continuous subspace Hac(A) satisfies the condition

Hac(A) = clospan{Eac(δ)ran (C) : δ ∈ B(R)}.

Then the linear extension of the mapping

Eac(δ)Cf 7→ χδ(λ)
√

K(λ)f for a.e. λ ∈ R, f ∈ H, (A.1)

onto the dense subspace span{Eac(δ)ran (C) : δ ∈ B(R)} of Hac(A) admits a unique
continuation to an isometric isomorphism from Φ : Hac(E) → L2(R, dλ,Hλ) such
that

(ΦEac(δ)g)(λ) = χδ(λ)(Φg)(λ), g ∈ Hac(A), (A.2)

holds for any δ ∈ B(R).

Proof. For f ∈ H and δ ∈ B(R) we have

‖χδ(·)
√

K(·)f‖2 =

∫
δ

‖
√

K(λ)f‖2
Hdλ = ‖Eac(δ)Cf‖2

H

and hence the extension of the mapping (A.1) onto the subspace
span{Eac(δ)ran (C) : δ ∈ B(R)} is an isometry into L2(R, dλ,Hλ). Then the
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unique extension Φ : Hac(A) → L2(R, dλ,Hλ) is isometric and it remains to show
that Φ is onto. Suppose that there exists h ∈ L2(R, dλ,Hλ) such that

0 = (ΦEac(δ)Cf, h) =

∫
δ

(
√

K(λ)f, h(λ))H dλ

holds for all δ ∈ B(R) and f ∈ H. This implies (
√

K(λ)f, h(λ))H = 0 for a.e. λ ∈ R
and hence h(λ) ⊥ Hλ for a.e. λ ∈ R, thus h(λ) = 0 for a.e. λ ∈ R. Hence Φ is
surjective. The relation (A.2) for Φ follows from (A.1). �

From (A.2) we immediately get that the maximal multiplication operator Q in
L2(R, dλ,Hλ),

(Qf)(λ) := λf(λ),

f ∈ dom (Q) := {f ∈ L2(R, dλ,Hλ) : λf(λ) ∈ L2(R, dλ,Hλ)}.

satisfies QΦ = ΦAac and ϕ(Q)Φ = Φϕ(Aac) for any bounded Borel measurable
function ϕ(·) : R −→ R. In other words, the direct integral L2(R, dλ,Hλ) performs
a spectral representation of the absolutely continuous part Aac of the selfadjoint
operator A.

Suppose now that B is also a selfadjoint operator in H and assume that the difference
of the resolvents

(B − i)−1 − (A− i)−1

is a trace class operator. Then the wave operators

W±(B, A) := s− lim
t→±∞

eitBe−itAP ac(A)

exists and are complete; cf., e.g., [6, Theorem I.1]. The scattering operator SAB :=
W+(B, A)∗W−(B, A) regarded as an operator in Hac(A) is unitary and commutes
with A. Therefore there is a measurable family {SAB(λ)}λ∈R of unitary operators
SAB(λ) ∈ [Hλ] such that SAB is unitarily equivalent to the multiplication operator
SAB induced by {SAB(λ)}λ∈R in L2(R, dλ,Hλ), that is, SAB = ΦSABΦ−1. The
measurable family {SAB(λ)}λ∈R is called the scattering matrix of the scattering
system {A, B}.
The following theorem on the representation of the scattering matrix is an important
ingredient in the proof of Theorem 3.1. A detailed proof of Theorem A.2 will appear
in a forthcoming paper.

Theorem A.2 Let A and B be selfadjoint operators in the separable Hilbert space
H and suppose that the resolvent difference admits the factorization

(B − i)−1 − (A− i)−1 = φ(A)CGC∗ = QC∗,

where C ∈ [H, H] is a Hilbert-Schmidt operator, G ∈ [H], φ(·) : R → R is a bounded
continuous function and Q = φ(A)CG. Assume that the condition

Hac(A) = clospan
{
Eac(δ)ran (C) : δ ∈ B(R)

}
(A.3)
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is satisfied and let K(λ) = d
dλ

C∗E((−∞, λ))C and Hλ = ran (K(λ)) for a.e. λ ∈ R.

Then L2(R, dλ,Hλ) is a spectral representation of Aac and the scattering matrix
{SAB(λ)}λ∈R of the scattering system {A, B} has the representation

SAB(λ) = IHλ
+ 2πi(1 + λ2)2

√
K(λ)Z(λ)

√
K(λ) ∈ [Hλ] (A.4)

for a.e. λ ∈ R, where

Z(λ) =
1

λ + i
Q∗Q +

φ(λ)

(λ + i)2
G + QB(λ + i0) (A.5)

and the limit QB(λ+i0) := limε→+0 Q∗(B−λ−iε)−1Q is taken in the Hilbert-Schmidt
norm.
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