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1Abstra
t. We investigate a global-in-time variational approa
h to abstra
t evolutionby means of the weighted energy-dissipation fun
tionals proposed by Mielke & Ortiz[MO08℄. In parti
ular, we fo
us on gradient �ows in Hilbert spa
es. The main resultis the 
onvergen
e of minimizers and approximate minimizers of these fun
tionals tothe unique solution of the gradient �ow. Sharp 
onvergen
e rates are provided and the
onvergen
e analysis is 
ombined with time-dis
retization. Appli
ations of the theory tovarious 
lasses of paraboli
 PDE problems are presented. In parti
ular, we fo
us on twoexamples of mi
rostru
ture evolution from [CO08℄.1. Introdu
tionAssume we are given a real Hilbert spa
e H with s
alar produ
t (·, ·) and 
orrespondingnorm |·|. Moreover, let the fun
tional φ : H → (−∞,∞] be proper, lower semi
ontinuous,bounded from below, and λ-
onvex for some λ ∈ R, i.e., u 7→ φ(u) − (λ/2)|u|2 is 
onvex.Finally, let f ∈ L2(0, T ;H), and u0 ∈ D(φ)
.

= {u ∈ H : φ(u) < ∞}. This note is
on
erned with the 
lassi
al gradient �ow(1.1) u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0.Gradient �ows 
an be regarded as the paradigm of dissipative evolution. They arisealmost ubiquitously in 
onne
tion with appli
ations and have hen
e attra
ted a 
onstantattention during the last four de
ades starting from the fundamental work by K	omura[K	om67℄, Crandall-Pazy[CP69℄, and Brezis [Bre71, Bre73b℄. It is beyond our pur-poses to even attempt to review the huge existing literature on gradient �ows. Let ushowever mention that, even restri
ting to the present quite 
lassi
al setting [Bre73b℄,relation (1.1) stems in a variety of di�erent appli
ations su
h as heat 
ondu
tion, the Ste-fan problem, the Hele-Shaw 
ell, porous media, paraboli
 variational inequalities, some
lasses of ODEs with obsta
les, degenerate paraboli
 PDEs, and the mean 
urvature �owfor Cartesian graphs, among many others [NSV00℄, see Se
tion 7 below. More re
ently,following the pioneering work by Otto [Ott01℄, an even larger 
lass of PDE problemshave been translated into gradient �ows by resorting to probability spa
es endowed withthe Wasserstein metri
. The reader is referred to the re
ent monograph by Ambrosio,Gigli, & Savaré [AGS05℄ for a 
olle
tion of results (let us however stress that the metri
theory is beyond the rea
h of the analysis presented here).The general gradient-�ow theory, although quite developed, is however not yet pro-viding a sound des
ription of the evolution of nonlinear systems that develop evolvingmi
rostru
tures. For these systems, the energy φ is generally not lower semi
ontinuousand equilibrium states whi
h minimize φ do not exist. At the stationary level, a 
lassi
alsolution to this obstru
tion is the relaxation of the fun
tional φ. Namely, one 
hanges φwith its lower semi
ontinuous envelope s
−φ and interprets the respe
tive minimizationas an e�e
tive or ma
ros
opi
 problem. In the evolution 
ase, the natural idea wouldbe to introdu
e a fun
tional on entire traje
tories whose minimizers solve the gradient�ow (1.1) and 
onsider its relaxation. Moving from these 
onsiderations Mielke & Or-tiz [MO08℄ introdu
ed a variational reformulation of evolution problems as (limits of)minimizers of a 
lass of global-in-time fun
tionals. These fun
tionals feature the sumof the (s
aled) energy and the dissipation, integrated in time via an exponentially de-
aying weight. The resulting so-
alled weighted energy-dissipation (WED) fun
tionals



2
Iε : H1(0, T ;H) → (−∞,∞] read, in the 
ase of the gradient �ow (1.1), as(1.2) Iε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

) dt.We will 
he
k in Subse
tion 2.4 that, for all ε small, the fun
tional Iε admits a uniqueminimizer in the 
losed 
onvex set K(u0ε)
.

= {v ∈ H1(0, T ;H) : v(0) = u0ε} where u0εis a suitable approximation of u0 (see below).The WED fun
tional approa
h has been originally applied in [MO08℄ to the des
riptionof rate-independent evolution, whi
h, roughly speaking, 
orresponds to repla
ing 2 by 1 in(1.2). Later on, the analysis of the rate-independent 
ase has been extended and adaptedto time-dis
retizations in [MS08℄.As for the gradient �ow situation, a dis
ussion on a linear 
ase is 
ontained in [MO08℄together with a �rst example of relaxation. More re
ently, two additional examples ofrelaxation related with mi
ro-stru
ture evolution have been provided by Conti & Ortiz[CO08℄, see Se
tion 7. In the above-mentioned papers, the problem of proving the 
on-vergen
e uε → u is left open. This question is solved here and our main result reads asfollows.Theorem 1.1 (Convergen
e). uε → u uniformly in H.In the easiest possible setting, namely the s
alar and linear 
ase of(1.3) H = R, φ(u) = −u2/2, f = 0, u0 = 1, T = 1,the 
onvergen
e result of Theorem 1.1 is illustrated in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Convergen
e in the spe
ial 
ase (1.3). As ε → 0, the minimizers of Iε (dashedlines) approa
h the solution of the gradient �ow (solid line). Note that minimizers ful�llthe arti�
ial homogeneous Neumann boundary 
ondition at T (see (1.4
)).



3Besides the stated uniform 
onvergen
e, mu
h more is true for we are in the positionof providing a quantitative statement, even in �ner topologies (see Subse
tion 5.1 below).Moreover, the assumptions on u0 
an be substantially weakened (Subse
tion 5.2) and weobtain some novel regularity results as a by-produ
t (Subse
tion 5.3). Furthermore, the
onvergen
e analysis 
an be extended to the 
ase of sequen
es of approximate minimizers(Subse
tion 5.6) and 
ombined with time-dis
retization (Se
tion 6). Finally, some appli-
ation of the abstra
t theory to a 
olle
tion of examples of linear and nonlinear paraboli
problems is provided in Se
tion 7.An important step toward the proof of Theorem 1.1 is the analysis of the Euler systemfor Iε in K(u0ε). In parti
ular, we prove that the minimizer uε ful�lls
− εu′′ + u′ + ∂φ(u) ∋ f a.e. in (0, T ),(1.4a)
u(0) = u0ε,(1.4b)
u′(T ) = 0.(1.4
)Namely, to minimize Iε is equivalent to perform an ellipti
-in-time regularization of thegradient �ow (1.1). We shall stress that, at all levels ε > 0, 
ausality is lost. Consequently,the 
onvergen
e for ε → 0 is generally referred to as the 
ausal limit of (1.4). As theproblem above is se
ond order in time, an extra boundary 
ondition (1.4
) at the �nalpoint T is needed and our 
hoi
e for a homogeneous Neumann 
ondition is motivated bysimpli
ity. Other 
hoi
es may be 
onsidered and a spe
i�
 alternative, originally proposedin [MO08℄, is 
ommented in Subse
tion 5.7.Before moving on, let us re
all that the idea of taking the 
ausal limit in an ellipti
-in-time regularization of a paraboli
 problem is not new. In the linear 
ase, some results 
anbe found in the 
lassi
al monograph by Lions & Magenes [LM72℄. As for the nonlinear
ase, this pro
edure has been followed by Ilmanen [Ilm94℄ for proving existen
e andpartial regularity of the so-
alled Brakke mean 
urvature �ow of varifolds. In [Gio96,Se
t. 4℄ a 
onje
ture suggests the weighted fun
tional

u 7→
∫

Ω×(0,∞)

e−t/ε

[

|utt|2 +
1

ε2

(

|∇u|2 + u2k
)

] dx dtas ellipti
 regularization for studying the wave equation utt = ∆u− ku2k−1.Besides the WED fun
tional approa
h here 
onsidered, a number of di�erent variationalprin
iples have been proposed for 
hara
terizing entire traje
tories of evolution systems.In the linear realm, we shall mention Biot's work on irreversible Thermodynami
s [Bio55℄and Gurtin's prin
iple for vis
oelasti
ity and elastodynami
s [Gur63, Gur64a, Gur64b℄among many others (see also the survey by Hlavá£ek [Hla69℄). In the nonlinear set-ting, a 
ru
ial result is the Brezis, Ekeland, & Nayroles prin
iple [BE76a, BE76b,Nay76a, Nay76b℄ whi
h spe
i�
ally fo
uses on the 
ase of 
onvex fun
tionals φ. The lit-erature on this prin
iple is vast and the reader is referred to the re
ent monograph byGhoussoub [Gho08℄ and the papers [Ste08a, Ste08
, Ste08b, Vis08℄ for additional infor-mation. Apart from the 
onvex 
ase, we shall re
ord the variational prin
iple from DeGiorgi, Marino, & Tosques whi
h a
tually paved the way to the analysis of gradient�ow evolution in metri
 spa
es (see [AGS05, MST89, RMS08, RSS08℄, for instan
e). Fi-nally, we mention Visintin [Vis01℄, where generalized solutions are obtained as minimalelements of a 
ertain partial-order relation on the traje
tories.



4 2. PreliminariesWe shall 
olle
t here some notation, general assumptions, and a sele
tion of 
lassi
alresults on λ-
onvex fun
tions and the 
orresponding gradient �ows.2.1. Convexity and λ-
onvexity. Throughout the paper H is a real Hilbert spa
e withs
alar produ
t (·, ·) and norm | · |. Given the fun
tional φ : H → (−∞,∞] with e�e
tivedomain D(φ) = {u ∈ H : φ(u) <∞}, we re
all that its Fré
het subdi�erential ∂φ : H →
2H is de�ned as

v ∈ ∂φ(u) i� u ∈ D(φ) and lim inf
w→u

φ(w) − φ(u) − (v, w − u)

|w − u| ≥ 0.We denote by D(∂φ) the 
orresponding domain D(∂φ)
.

= {u ∈ H : ∂φ(u) 6= ∅}. Thefun
tional φ is said to be proper if D(φ) 6= ∅ and λ-
onvex for some given λ ∈ R, if
v 7→ ψ(v) = φ(v) − λ

2
|v|2 is 
onvex.Equivalently, φ is λ-
onvex if and only if

φ(ru+ (1 − r)v) ≤ rφ(u) + (1 − r)φ(v) − λ

2
r(1 − r)|u− v|2 ∀u, v ∈ H, 0 ≤ r ≤ 1.Let us expli
itly remark that D(ψ) = D(φ), D(∂ψ) = D(∂φ), and ∂φ(v) = ∂ψ(v) + λvfor all v ∈ D(∂φ). In parti
ular, the set ∂φ(v) turns out to be 
onvex and 
losed. Hen
e,it possesses a unique element of minimal norm whi
h we indi
ate by (∂φ(u))◦.A 
ru
ial tool in Convex Analysis is the Moreau-Yosida approximation ψδ : H → R ofthe proper, 
onvex, and lower semi
ontinuous fun
tion ψ : H → (−∞,∞] given, for all

δ > 0, by
ψδ(u) = inf

v∈H

( |v − u|2
2δ

+ ψ(v)

)

∀u ∈ H.Re
all that ψδ ∈ C1,1(H) and that one has [Bre73b℄(2.1) |Dψδ(u)| ≤ |(∂ψ(u))◦| and Dψδ(u) → (∂ψ(u))◦ ∀u ∈ D(∂ψ).For any proper fun
tional φ : H → (−∞,∞] we denote by s
−φ the 
orrespondinglower semi
ontinuous envelope or relaxation, 
lassi
ally de�ned bys
−φ(u)
.

= inf
{

lim inf
k→∞

φ(uk), uk → u strongly in H
}

.2.2. Fun
tion spa
es. Standard notation for spa
es of ve
tor-valued fun
tions as Lp(0, T ;H),
C([0, T ];H), W 1,p(0, T ;H), and Hs(0, T ;H) will be used throughout, 
f. [LM72℄. More-over, we will 
onsider the following 
hara
terizations of Besov spa
es [BL76, Thm. 6.2.4,p. 142℄

Bs
p q(0, T ;H)

.

= (Lp(0, T ;H),W 1,p(0, T ;H))s,q 0 < s < 1, 1 ≤ p, q ≤ ∞,

B−s
p′ q′(0, T ;H)

.

= (Bs
p q(0, T ;H))′ 0 < s < 1, 1 ≤ p, q <∞where p′ and q′ are 
onjugate to p and q, respe
tively; and (X, Y )s,q denotes Lq interpo-lation. Let us re
all the identi�
ations [Tri95, Rem. 4, p. 179℄, for all 0 < s < 1,

Hs(0, T ;H) = Bs
2 2(0, T ;H),

Cs([0, T ];H) = (L∞(0, T ;H),W 1,∞(0, T ;H))s,∞,



5where the latter is the spa
e of Hölder 
ontinuous fun
tions endowed with the norm
‖u‖Cs([0,T ];H)

.

= ‖u‖C([0,T ];H) + sup
t6=r

|u(t) − u(r)|
|t− r| .2.3. General assumptions and well-posedness for (1.1). Unless otherwise stated,throughout this analysis we shall assume the following

φ : H → (−∞,∞] is proper, lower semi
ontinuous, bounded from belowand u 7→ ψ(u)
.

= φ(u) − λ

2
|u|2 is 
onvex,(2.2a)

f ∈ L2(0, T ;H),(2.2b)
u0 ∈ D(φ).(2.2
)Note that the lower-bound request for φ 
an be weakened and is here 
hosen for the sakeof simpli
ity only. As for the λ-
onvexity assumption, note that any C1,1 perturbation ofa 
onvex fun
tion turns out to be λ-
onvex (but see (5.6) below).We assume from the very beginning that

minψ = ψ(0) = 0.This 
an be a
hieved without loss of generality simply by repla
ing ψ (and hen
e φ), f ,and u0, by
ψ̃(u)

.

= ψ(u+ v) − (η, u)− ψ(v), f̃
.

= f − η, ũ0
.

= u0 − vfor some �xed v ∈ D(∂ψ) with η ∈ ∂ψ(v).Let us re
all that, the well-posedness of the gradient �ow (1.1) follows from the 
lassi
altheory of [K	om67, CP69, Bre71, Bre73b℄ (see also [AGS05℄). Indeed, the assumption
u0 ∈ D(φ) 
an be weakened to u0 ∈ D(∂φ). In this 
ase as well, a strong solution
u ∈ H1lo
(0, T ;H) of (1.1) uniquely exists.2.4. Well-posedness for the minimum problem. In the 
onvex 
ase

λ−
.

= max{0,−λ} = 0assumptions (2.2a)-(2.2b) guarantee that Iε admits a (unique) minimizer in K(w0) forany w0 ∈ H . As for the general λ-
onvex 
ase, existen
e and uniqueness of minimizersfollow by letting ε be small enough. More pre
isely, we have the following.Proposition 2.1 (Well-posedness for the minimum problem). Let φ : H → (−∞,∞] be
λ-
onvex, f ∈ L2(0, T ;H), and w0 ∈ H. Letting ε be small enough, the fun
tional Iε is
κε-
onvex in K(w0) with respe
t to the metri
 of H1(0, T ;H) for(2.3) κε

.

= ε2e−T/ε.In parti
ular, Iε is uniformly 
onvex in K(w0).Additionally, if φ is lower semi
ontinuous, then Iε admits a unique minimizer in K(w0).



6Proof. Let us start by de
omposing Iε into the sum of a quadrati
 part Qε and a 
onvexremainder Rε as follows.
Iε(u) =

(
∫ T

0

e−t/ε

(

1

2
|u′|2 − λ−

2ε
|u|2
))

+

(
∫ T

0

1

ε
e−t/ε

(

ψ(u) − (f, u)
)

)

.

= Qε(u) +Rε(u).(2.4)In order to handle Qε, we will exploit the auxiliary fun
tion v(t) .

= e−t/(2ε)u(t). As wereadily have that(2.5) e−t/(2ε)u′(t) = v′(t) +
1

2ε
v(t),the value Qε(u) 
an be rewritten in terms of v as

Qε(u) =

∫ T

0

(

1

2
|v′|2 +

1

2ε
(v′, v) +

1 − 4ελ−

8ε2
|v|2
)

=

∫ T

0

(

1

2
|v′|2 +

1 − 4ελ−

8ε2
|v|2
)

+
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2

.

= Vε(v) +
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2.(2.6)Moreover, by possibly letting ε be small, standard 
omputations lead to

e−T/ε‖u‖2
L2(0,T ;H) ≤ ‖v‖2

L2(0,T ;H) ≤ ‖u‖2
L2(0,T ;H),(2.7)

ε2e−T/ε‖u‖2
H1(0,T ;H) ≤ ‖v‖2

H1(0,T ;H) ≤ ε−2‖u‖2
H1(0,T ;H).(2.8)Let now θ ∈ [0, 1] and u1, u2 ∈ K(w0) be given. Moreover, de�ne vi(t)

.

= e−t/2εui(t)for i = 1, 2. Arguing as in (2.6), for all ε small enough one dedu
es that
Qε

(

θu1 + (1 − θ)u2

)

= Vε(θv1 + (1 − θ)v2) +
1

4ε
e−T/ε|θu1(T ) + (1 − θ)u2(T )|2 − 1

4ε
|w0|2

≤ θVε(v1) + (1 − θ)Vε(v2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

+
θ

4ε
e−T/ε|u1(T )|2 +

1 − θ

4ε
e−T/ε|u2(T )|2 − 1

4ε
|w0|2

= θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

≤ θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2
‖v1 − v2‖2

H1(0,T ;H).By exploiting the �rst estimate in (2.8), we have proved thatQε is κε-
onvex inK(w0) withrespe
t to the metri
 of H1(0, T ;H). As Iε = Qε +Rε and Rε is 
onvex, the κε-
onvexityof Iε follows as well.On
e the uniform 
onvexity of Iε in K(w0) is established, the existen
e of a uniqueminimizer is a 
onsequen
e of the Dire
t Method whenever lower semi
ontinuity is as-sumed. �



7The proof of Proposition 2.1 entails the existen
e of ε∗ > 0, possibly depending on λ−only, su
h that, for all ε ∈ (0, ε∗), the fun
tional Iε has a unique minimizer in K(w0). This
an be seen as a manifestation of the fa
t that, for small ε, we are 
lose to the (
ausal)initial-value problem, where we 
an expe
t existen
e and uniqueness. In the following,the parameter ε will be assumed to ful�ll ε ∈ (0, ε∗) throughout.Note that, for large values of the parameter ε, existen
e of minimizers may fail. Let usgive an example for this fa
t. In order to keep the presentation simple, we shall 
onsidera s
alar example, i.e. H = R, by dropping the lower boundedness assumption on φ. We
onsider
φ(u) = −u

2

4
, f = 0, w0 = 0.By �xing ε = 1, for simpli
ity, the 
orresponding WED fun
tional reads

I1(u)
.

=

∫ T

0

e−t

( |u′|2
2

− u2

4

)and we readily 
he
k that I1 is 2-homogeneous, namely I1(αu) = α2I1(u).Let us �rstly prove that inf I1 = −∞ in K(0), in parti
ular no global minimizer exists.To this aim it su�
es to 
onsider v(t) .

= et/2 − 1 and 
ompute
I1(v) = −T

8
+

1

4
(e−T − 1) + (1 − e−T/2)so that, for T suitably large, I1(v) < 0. Then, by homogeneity, we have that I1(αv) → −∞as α→ ∞.We now turn our attention to lo
al minimizers. The Euler equation for I1 is

−u′′ + u′ − u

2
= 0whi
h, letting u(0) = 0, is solved by uα(t)

.

= αet/2 sin(t/2) for all α ∈ R.If T 6= (3/2 + 2k)π, no 
hoi
e of α 6= 0 ful�lls u′α(T ) = 0. Namely, uα is not a lo
alminimizer for α 6= 0. Moreover, the traje
tory δv (with v as above and δ > 0 small) is anadmissible perturbation of the trivial solution and I1(δv) = δ2I1(v) < 0 = I1(0). Namely,
u = 0 is not a lo
al minimizer either.If T = (3/2 + 2k)π, all α ∈ R give rise to a solution of the Euler system and one hasthat I1(uα) = 0. Still, exa
tly as for u = 0 (see above), the fun
tions uα are not lo
alminimizers as

I1(uα + αδv) = α2I1(u1 + δv) = α2

(

I1(u1) + δ2I1(v) + δ

∫ T

0

e−t

(

u′v′ − 1

2
uv

))

= α2δ2I1(v) +
α2δ

2

∫ T

0

(e−t/2 − 1) sin(t/2) < α2δ2I1(v) < 0 = I1(uα)and uα + αδv is a stri
t 
ompetitor of uα, for δ small.Uniqueness of minimizers dire
tly follows by uniform 
onvexity if φ is 
onvex or ε issmall (see above). In the general λ-
onvex 
ase a uniqueness result for large ε is howevernot to be expe
ted. Indeed, by letting
φ(u) = IB(u) − u2

4
, f = 0, w0 = 0,



8where IB is the indi
ator fun
tion of the interval B .

= [−eT/2, eT/2], as the traje
tory vis su
h that I1(v) < 0 (for T large) and the fun
tional is even, we have that I1 has twosymmetri
 minimizers (global).2.5. Approximation of the initial datum. As we have already mentioned in the In-trodu
tion, the initial datum u0 of the gradient �ow (1.1) is approximated here by asequen
e u0ε and the minimization of Iε will take pla
e in K(u0ε). Following Brezis[Bré73a℄ (see also [BS94, Bre75℄), we introdu
e the interpolation sets Dr,p ⊂ H for
0 < r < 1, 1 ≤ p ≤ ∞ as

Dr,p = {u ∈ D(∂ψ) : ε 7→ ε−r|u− Jεu| ∈ Lp
∗(0, 1)}where Jε = (id+ ε∂ψ)−1 is the standard resolvent operator and Lp

∗(0, 1) is the Lp spa
eendowed with the Haar measure dε/ε. We will use the equivalen
e [Bré73a, Thm. 2℄
u0 ∈ Dr,p i� 









∃ε ∈ [0, 1] 7→ v(ε) : v ∈W 1,1lo
 (0, 1],
ontinuous in [0, 1], v(0) = u0, v(ε) ∈ D(∂ψ) a.e., and
ε1−r

(

|(∂ψ(v(ε)))◦| + |v′(ε)|
)

∈ Lp
∗(0, 1).As we have that u0 ∈ D(φ) ≡ D(ψ) ≡ D1/2,2 and D1/2,2 ⊂ D1/2,∞ [Bre75, Thm. 6℄, we�x from the very beginning the sequen
e u0ε

.

= v(ε) → u0 in H in su
h a way that(2.9) ε−1/2|u0 − u0ε| + ε1/2|(∂φ(u0ε))
◦| ≤ c0,for some �xed c0 > 0 (re
all that (∂φ(u))◦ = (∂ψ(u))◦ + λu). Note that the �rst term inthe left-hand side above is under 
ontrol as

|u0 − u0ε| ≤
∫ ε

0

|v′(e)| de ≤ ε1/2

(
∫ ε

0

(

|v′(e)|e1/2
)2de
e

)1/2

≤ ε1/2‖e 7→ e1/2v(e)‖L2
∗
(0,1).In parti
ular, we will use the fa
t that

φ(u0ε) = φ(u0) + ((∂φ(u0ε))
◦, u0ε − u0) ≤ φ(u0) + c20.(2.10)Note that, as we shall 
omment below, in 
ase u0 ∈ D(∂φ) no approximation u0ε isa
tually needed and the minimization of Iε 
ould be 
onsidered in the �xed K(u0) as well.A 
on
rete example of sets Dr,p is provided in Subse
tion 7.1.2.6. Time-dis
retization. In the following, we shall also be 
onsidering the 
lassi
altime-dis
retization of the gradient �ow (1.1) by means of the so-
alled impli
it Eulers
heme whi
h, given n ∈ N and the 
onstant time-step τ = T/n, 
onsists in the system(2.11) u0 = u0 and ui − ui−1

τ
+ ∂φ(ui) ∋ f i for i = 1, . . . , n.



9Whenever a suitable approximation (f 1, . . . , fn) ∈ Hn of f is given, the latter systemturns out to admit a unique solution (u0, u1, . . . , un) ∈ Hn+1 for τ small. In fa
t, (2.11)is equivalent to the su

essive minimization problems(2.12) u0 = u0 and ui = Argmin
u∈H

( |u− ui−1|2
2τ

+ φ(u) − (f i, u)

) for i = 1, . . . , n,where all of the fun
tionals above are uniformly 
onvex (for small τ) and lower semi
on-tinous.Given any ve
tor (v0, . . . , vn) ∈ V n+1 (V = H, R), we will denote by vτ : (0, T ] → Vand vτ : [0, T ] → V the 
orresponding ba
kward pie
ewise 
onstant and pie
ewise a�neinterpolants on the time-partition. Namely, we have
vτ (t) = vi, vτ (0) = v0, vτ (t) = αi(t)v

i + (1 − αi(t))v
i−1for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , n,where αi(t) = (t−(i−1)τ)/τ , for i = 1, . . . , n. Finally, we will also set δvi = (vi−vi−1)/τ ,so that, in parti
ular, δvτ = v′τ . A basi
 
onvergen
e result for (2.11) is 
ombined withthe error analysis by Ambrosio, Gigli, & Savaré [AGS05℄ (see also [NSV00℄) in thefollowing.Lemma 2.2 (Convergen
e of time-dis
retizations). Let (f 1

τ , . . . , f
n
τ ) be su
h that f τ → fstrongly in L2(0, T ;H) and (u0

τ , . . . , u
n
τ ) solve (2.11). Then uτ → u strongly in H1(0, T ;H)where u solves (1.1).By letting f ≡ 0 and τ small enough (in parti
ular λτ > −1), we have that(2.13) |(u− uτ )(t)| ≤ c1

√
τφ(u0)e

−2λτ t where λτ
.

= ln

(

1 + λτ

τ

)where c1 depends solely on λ. Moreover, if u0 ∈ D(∂φ) we also have(2.14) |(u− uτ )(t)| ≤ c2τ |(∂φ(u0))
◦|e−2λτ twhere c2 depends solely on λ.Note that the fa
tor e−2λτ t in (2.13)-(2.14) essentially plays the role of the exponential

e−2λt. In parti
ular, if λ > 0 the error 
onstant de
ays whereas if λ < 0 it deterioratesexponentially with time. Although we restri
t here to the error 
ontrol for f ≡ 0 for thesake of simpli
ity, the non-homogeneous 
ase 
an be 
onsidered as well. The reader isreferred to [NSV00℄ for some results in this dire
tion.3. Euler equationAs already mentioned in the Introdu
tion, our analysis relies on the spe
i�
 stru
tureof the Euler equation for Iε, namely its linearity with respe
t to the time-derivatives. Theaim of this se
tion is to provide some detail on the Euler system and we shall start formthe following.



10Theorem 3.1 (Euler equation). Let uε minimize Iε in K(u0ε). Then, uε ∈ H2(0, T ;H)and there exists a fun
tion ξε ∈ L2(0, T ;H) su
h that
− εu′′ε + u′ε + ξε = f a.e. in (0, T ),(3.1)
uε(0) = u0ε,(3.2)
u′ε(T ) = 0,(3.3)
ξε ∈ ∂φ(uε) a.e. in (0, T ).(3.4)3.1. Analysis of a regularized 
onvex problem. For the sake of proving Theorem3.1, we fo
us on a regularized problem �rst. Let ψδ be the Yosida approximation of ψ atlevel δ > 0. We have the following.Lemma 3.2. There exists a unique uδ ∈ H2(0, T ;H) su
h that

− εu′′δ + u′δ + Dψδ(uδ) = f a.e. in (0, T ),(3.5)
uδ(0) = u0ε,(3.6)
u′δ(T ) = 0.(3.7)Proof. By possibly rede�ning Dψδ as Dψδ(· + u0ε), we assume with no loss of generalitythat u0ε = 0. Let V = {u ∈ H1(0, T ;H) : u(0) = 0} and denote by V ′ the 
orrespondingdual. A weak formulation of (3.5)-(3.7) is provided by the equation Au+Bu = ℓ, where

A, B : V → V ′ and ℓ ∈ V ′ are given, for all v ∈ V , by
〈Au, v〉 .

= ε

∫ T

0

(u′, v′) +

∫ T

0

(u′, v),

〈Bu, v〉 .

=

∫ T

0

(Dψδ(u), v),

〈ℓ, v〉 .

=

∫ T

0

(f, v)where 〈·, ·〉 denotes the duality pairing between V ′ and V . The linear operator A is
oer
ive as
〈Au, u〉 = ε

∫ T

0

|u′|2 +
1

2
|u(T )|2 ∀u ∈ V.On the other hand, B is 
learly monotone and 
ontinuous. Hen
e, A + B is maximalmonotone and 
oer
ive [Bar76, Cor. 1.1, p. 39℄. Namely, Au +Bu = ℓ admits at least asolution u ∈ V [Bar76, Cor. 1.3, p. 48℄. Finally, as A is strongly monotone, this solutionis unique.Equation Au+Bu = ℓ reads(3.8) ε

∫ T

0

(u′, v′) =

∫ T

0

(−u′ −Dψδ(u) + f, v) ∀v ∈ VBy 
hoosing v ∈ V su
h that v(T ) = 0 we re
over u ∈ H2(0, T ;H) and that relation (3.5)holds. Hen
e, again from (3.8), by using the already established (3.5) one also has that
ε
(

− u′(T ), v(T )
)

= 0 for all v ∈ V and (3.7) follows. �The forth
oming dis
ussion of Subse
tion 4.1 will in parti
ular entail the validity ofthe following estimate.



11Lemma 3.3 (Estimate on uδ). Let uδ solve (3.5)-(3.7). Then(3.9) ‖uδ‖H2(0,T ;H) ≤ cwhere c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, and ε but not on δ.3.2. Proof of Theorem 3.1. Let us assume with no loss of generality λ = −λ− ≤ 0,de
ompose the fun
tional Iε into its 
onvex and its non-
onvex part as Iε = Cε +Nε, andextend it to the whole L2(0, T ;H), namely, for v ∈ L2(0, T ;H), we let
Cε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

ψ(v) − (f, v)
)

) for v ∈ K(u0ε) and ∞ otherwise,
Nε(v)

.

= −λ
−

2ε

∫ T

0

e−t/ε|v|2.We shall now 
ompute subdi�erentials in the weighted spa
e L2(0, T, e−t/εdt;H). As Nεis 
learly C1, one has that
∂Iε = ∂Cε + DNε in L2(0, T, e−t/εdt;H).As the minimality of u implies that 0 ∈ ∂Iε(u), what is now needed is a des
ription ofthe set ∂Cε(u) as, 
learly, DNε(u) = −λ−u/ε. We shall prove that ∂Cε(u) = Aε(u) wherethe possibly multivalued operator Aε is de�ned on D(Aε)

.

= {v ∈ H2(0, T ;H)∩K(u0ε) :
v′(T ) = 0} as

Aε(u)
.

=
1

ε

(

− εu′′ + u′ + ∂Ψε(u) − f
)

.In the latter, the integral fun
tional Ψε : L2(0, T ;H) → (−∞,∞] is given by
Ψε(u)

.

=







∫ T

0

e−t/εψ(u) dt if t 7→ ψ(u(t)) ∈ L1(0, T ),

∞ else,and the subdi�erential ∂Ψε is again taken in L2(0, T, e−t/εdt;H).Let us �rstly 
he
k that Aε(u) ⊂ ∂Cε(u). Let η ∈ L2(0, T ;H) su
h that η ∈ ∂Ψε(u),namely η ∈ ∂ψ(u) almost everywhere. For all w ∈ K(u0ε) we 
ompute that
1

ε

∫ T

0

e−t/ε
(

− εu′′ + u′ + η − f, w − u
)

=

∫ T

0

(

(−e−t/εu′)′, w − u
)

+
1

ε

∫ T

0

e−t/ε
(

η − f, w − u
)

=

∫ T

0

e−t/ε
(

u′, w′ − u′
)

+
1

ε

∫ T

0

e−t/ε
(

η − f, w − u
)

=
1

2

∫ T

0

e−t/ε
(

|w′|2 − |u′ − w′|2 − |u′|2
)

+
1

ε

∫ T

0

e−t/ε
(

ξ − f, w − u
)

η∈∂Ψ(u)

≤ 1

2

∫ T

0

e−t/ε
(

|w′|2 − |u′|2
)

+
1

ε

(

Ψε(w) − Ψε(u)
)

− 1

ε

∫ T

0

e−t/ε
(

f, w − u
)

= Cε(w) − Cε(u).



12 In order to prove the 
onverse in
lusion ∂Cε(u) ⊂ Aε(u) we shall 
he
k that the mono-tone operator Aε is maximal [Bre73b℄, namely that, for all g ∈ L2(0, T ;H), the problem
(id + Aε)(uε) ∋ gadmits a (unique) solution uε. We pro
eed by regularization and passage to the limit.Let ψδ be the Yosida approximation of ψ at level δ > 0. Let now uδ solve (3.5)-(3.7) with

ψδ(·) repla
ed by ψδ(·) + ε| · |2/2 and f repla
ed by f + εg. Namely, we have that(3.10) −εu′′δ + u′δ + Dψδ(uδ) + εuδ = f + εg a.e. in (0, T )The bound (3.9) still holds, independently of δ (but depending on g) and we 
an extra
tsubsequen
es, without relabeling, in su
h a way that
uδ → uε weakly in H2(0, T ;H),(3.11) Dψδ(uδ) → ηε weakly in L2(0, T ;H),(3.12)pass to the limit for δ → 0 in (3.10) and (3.7), and get(3.13) −εu′′ε + u′ε + ηε + εuε = f + εg a.e. in (0, T )and (3.3), respe
tively. As the initial 
ondition (3.2) is 
learly satis�ed, one is left withthe proof of the in
lusion (3.4). To this aim, let us test the regularized equation (3.10)by uδ and pass to the lim sup as δ → 0. We obtain by lower semi
ontinuity that

lim sup
δ→0

∫ T

0

(Dψδ(uδ), uδ)

= lim sup
δ→0

(

− ε

∫ T

0

|u′δ|2 − ε(u′δ(0), u0ε) −
1

2
|uδ(T )|2 +

1

2
|u0ε|2

− ε

∫ T

0

|uδ|2 +

∫ T

0

(f + εg, uδ)

)

≤ − ε

∫ T

0

|u′ε|2 − ε(u′ε(0), u0ε) −
1

2
|uε(T )|2 +

1

2
|u0ε|2 − ε

∫ T

0

|uε|2 +

∫ T

0

(f + εg, uε)(3.13)
=

∫ T

0

(ηε, uε).The above lim sup estimate is su�
ient for identifying the limit ηε [Bre73b, Prop. 2.5,p. 27℄. In parti
ular, we have proved that uε solves (id+Aε)(uε) ∋ g and the assertion ofthe Theorem follows. 4. Proof of Theorem 1.14.1. Key estimate. Given the minimizer uε of Iε in K(u0ε) we have 
he
ked that uεsolves (3.1)-(3.4). The proof of Theorem 1.1 
onsists in a dire
t 
ontrol of the distan
ebetween uε and the solution u of the gradient �ow (1.1). This 
he
k is performed inSubse
tion 4.2. The key step in the 
omputation is the validity of some estimates on uεwhi
h are independent of ε. Let us state this 
ru
ial point in the following lemma.



13Lemma 4.1 (Key estimate). Let uε minimize Iε in K(u0ε). For all ε small there existsa 
onstant c > 0 depending on ‖f‖L2(0,T ;H), |u0|, and c0, but independent of ε su
h that
ε ‖u′′ε‖L2(0,T ;H) + ε1/2 ‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c,(4.1)where ξε is de�ned in Theorem 3.1.The full proof of this result will be a
hieved by means of a time-dis
retization te
hniqueand is postponed to Subse
tion 6.5. Let us however provide here a simpli�ed argumentin 
ase we have(4.2) ξε ∈W 1,1(0, T ;H) and ξε(0) = (∂φ(u0ε))

◦.Note that the latter, being false in general, dire
tly follows from uε ∈ H2(0, T ;H) as soonas φ is smooth, say φ ∈ C1,1.Hen
eforth the symbol c will denote a positive 
onstant, possibly varying from line toline and depending on ‖f‖L2(0,T ;H), |u0|, and c0 but independent of ε.From equation (3.1) we 
learly have that −εu′′ε + u′ε + ξε is in L2(0, T ;H). Our aim isnow to dedu
e separate bounds for the three terms above. We argue as follows
∫ T

0

|εu′′ε |2 +

∫ T

0

|u′ε|2 +

∫ T

0

|ξε|2

=

∫ T

0

| − εu′′ε + u′ε + ξε|2 + 2

∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2

∫ T

0

(εu′′ε , ξε)

=

∫ T

0

|f |2 + 2

∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2

∫ T

0

(εu′′ε , ξε)

=

∫ T

0

|f |2 + ε|u′ε(T )|2 − ε|u′ε(0)|2 − 2φ(uε(T )) + 2φ(u0ε) + 2

∫ T

0

(εu′′ε , ξε).The last term above may be 
ontrolled by virtue of (4.2) as
2

∫ T

0

(εu′′ε , ξε) = −2ε
(

u′ε(0), ξε(0)
)

− 2ε

∫ T

0

(u′ε, ξ
′
ε)

≤ ε|u′ε(0)|2 + ε|ξε(0)|2 − 2ελ

∫ T

0

|u′ε|2(4.3)where we have used u′(T ) = 0 and the λ-
onvexity of φ. Hen
e, by 
olle
ting these
omputations we have that
1

2

∫ T

0

|εu′′ε |2 +
1 + 2ελ

2

∫ T

0

|u′ε|2 +
1

2

∫ T

0

|ξε|2 + φ(uε(T ))

≤ φ(u0ε) +
ε

2
|ξε(0)|2 +

1

2

∫ T

0

|f |2 ≤ c+ cε|ξε(0)|2,where, in the last inequality, we have used (2.10). Now, by taking ε small with respe
t to
λ in su
h a way that(4.4) 2ελ− ≤ 1/2,we 
on
lude that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c+ cε1/2|(∂φ(u0ε))
◦|.(4.5)



14 Classi
al interpolation between L2(0, T ;H) andH1(0, T ;H) (
f. [LM72, BL76℄ or equiv-alently by Gagliardo-Nirenberg) we obtain
‖u′ε‖C0([0,T ];H) ≤ c‖u′ε‖1/2

L2(0,T ;H)‖u′ε‖
1/2

H1(0,T ;H)

= c
(

‖u′ε‖L2(0,T ;H) + ‖u′ε‖1/2

L2(0,T ;H)‖u′′ε‖
1/2

L2(0,T ;H)

)

≤ c
(

1 + |(∂φ(u0ε))
◦|
)

,(4.6)so that (4.1) follows from (2.9).Besides the regular 
ase φ ∈ C1,1, the above argument 
an be easily adapted to thesituation where ∂φ is single-valued. This 
an be done my means of a nested approximationargument via Moreau-Yosida approximations in (4.3).4.2. Proof of Theorem 1.1. The strategy of this proof is elementary. We shall dire
tly
ompare the minimizer uε of Iε and the unique solution u of the gradient �ow (1.1).In parti
ular, take the di�eren
e between (1.1) and the Euler equation (3.1), test it on
wε

.

= u− uε, and integrate in time getting
ε

∫ t

0

|w′
ε|2 +

1

2
|wε(t)|2 +

∫ t

0

(ξ − ξε, wε)

=
1

2
|u0 − u0ε|2 + ε

∫ t

0

(u′, w′
ε) − ε(u′ε(t), wε(t)) + ε(u′ε(0), u0 − u0ε),(4.7)where ξ ∈ ∂φ(u) almost everywhere. Using λ-
onvexity we �nd

ε

∫ t

0

|w′
ε|2 +

1

2
|wε(t)|2 + λ

∫ t

0

|wε|2

= |u0 − u0ε|2 + ε

∫ t

0

(

|u′|2 + |w′
ε|2
)

+ ε2|u′ε(t)|2 +
1

4
|wε(t)|2 +

ε2

2
|u′ε(0)|2.Owing to Lemma 4.1 and applying Gronwall's Lemma, we readily 
ompute that

ε

2

∫ t

0

|w′
ε|2 +

1

4
|wε(t)|2

≤ c

(

|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2 + ε2|u′ε(0)|2
)

≤ cε,(4.8)where now c depends on λ− as well. The strong 
onvergen
e uε → u in C([0, T ];H) follows.Let us observe that, by inspe
ting the proof of Lemma 4.1, in 
ase u0 ∈ D(∂φ) one realizesthat no approximation of the initial datum is a
tually needed and the 
onvergen
e resultholds for minimizers of Iε in K(u0) as well.5. Extensions and 
omments5.1. Sharper statements. The proof of Theorem 1.1 
an be made pre
ise in two di�erentdire
tions. Firstly, the 
onvergen
e proof is quantitative for we have obtained an expli
it
onvergen
e rate. Se
ondly, we 
an exploit real interpolation in order to 
he
k 
onvergen
ein some �ner topology as well.



15Let us refer to [BL76℄ for notation and results on real interpolation between Bana
hspa
es, in parti
ular for the de�nition of (C([0, T ];H), H1(0, T ;H))η,1 whi
h is used inthe following result.Theorem 5.1 (Sharper 
onvergen
e result). For 0 < η < 1 we have that
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ cε(1−η)/2,(5.1)where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.Proof. By interpolation we have that
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ c‖u− uε‖1−η
C([0,T ];H)‖u− uε‖η

H1(0,T ;H)(4.8)
≤ cε(1−η)/2ε0 = cε(1−η)/2,(5.2)and the result is established. �Let us make 
on
rete this dis
ussion in the Hilbert s
ale Hs(0, T ;H). Re
alling that

(C([0, T ];H), H1(0, T ;H))η,1 ⊂ (L2(0, T ;H), H1(0, T ;H))η,2

= Bη
2 2(0, T ;H) = Hη(0, T ;H),we get the following.Corollary 5.2 (Strong 
onvergen
e in Hη(0, T ;H)). For 0 < η < 1 we have that(5.3) ‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.5.2. Weaker assumptions. The above results 
an be easily extended to the 
ase when(5.4) u0 ∈ Dr,∞ for some 0 < r < 1.Let us ask for a sequen
e u0ε ∈ D(∂φ) su
h that u0ε → u0 strongly in H and (see (2.9))(5.5) ε−r|u0 − u0ε| + ε1−r|(∂φ(u0ε))

◦| ≤ c0,for some c0 > 0. The arguments leading to the key estimate (4.1) still holds (note that(2.10) is ful�lled) and we dedu
e that
ε‖u′′ε‖L2(0,T ;H) + ε1/2‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ cεr−1/2.In parti
ular, estimate (4.8) turns out to be
ε

2

∫ t

0

|w′
ε|2 +

1

4
|wε(t)|2 ≤ c

(

|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2
)

≤ cε2r,and uniform 
onvergen
e holds for all r > 0. Of 
ourse, the 
onvergen
e rates of Theorem5.1 are to be modi�ed as follows
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ c‖u− uε‖Hη(0,T ;H) ≤ cεr−η/2.Some 
on
retization of this 
onstru
tion in the frame of linear paraboli
 PDEs is given inSubse
tion 7.1.The λ-
onvexity assumption on the fun
tional 
an be relaxed to(5.6) ∃λ : [0,∞) → R su
h that φ is λ(r)-
onvex on {|u| ≤ r} for all r ≥ 0.



16This assumption in
ludes the 
ase of a C2 fun
tional whi
h is not C1,1. Indeed, by testing(3.1) by u′ε and taking the integral on (0, T ), one has that
ε

2
|u′(0)|2 +

∫ T

0

|u′ε|2 + φ(uε(T )) = φ(u0ε) +

∫ T

0

(f, u′ε).In parti
ular, a bound in H1(0, T ;H) for uε, independent of ε, follows and it su�
es to�x r .

= supε,t |uε(t)| in (5.6) and repeat the argument of Lemma 4.1 with λ = λ(r) �xed.5.3. Regularity result. A regularity theory for the gradient �ow (1.1) in the Hölders
ale Cs([0, T ];H) has been outlined by Savaré in [Sav96℄ where he proves that
u0 ∈ D(∂φ) and f ∈ B

−1/2
2 1 (0, T ;H) ⇒ u ∈ C([0, T ];H),

u0 ∈ D(∂φ) and f ∈ B
1/2
2 1 (0, T ;H) ⇒ u ∈W 1,∞(0, T ;H).Although 
lassi
al nonlinear interpolation [Tar70, Tar72℄ does not dire
tly apply to thepresent situation, some intermediate regularity is expe
ted. At level 1/2, we readily havethat

D1/2,2 = D(φ),

(B
−1/2
2 1 (0, T ;H), B

1/2
21 (0, T ;H))1/2,2 = L2(0, T ;H),

(C([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = C1/2([0, T ];H)and nothing has to be proved for the intermediate regularity
u0 ∈ D(φ) and f ∈ L2(0, T ;H) ⇒ u ∈ C1/2([0, T ];H)follows at on
e from H1(0, T ;H) ⊂ C1/2([0, T ];H).On the other hand, we are in the position of 
ompleting this regularity theory forweaker assumptions on the initial data u0 (but keeping f ∈ L2(0, T ;H) �xed). Indeed,we have that the following regularity result, whi
h is, to our knowledge, new even in the
lassi
al 
onvex setting for φ.Lemma 5.3 (Regularity).
u0 ∈ Dr,∞, f ∈ L2(0, T ;H) =⇒ u ∈ Cr([0, T ];H).The result follows easily from the fa
t that, in 
ase u0 ∈ Dr,∞, one has

ε1−r‖uε‖W 1,∞(0,T ;H) + ε−r‖u− uε‖C([0,T ];H) ≤ c,as the latter entails in parti
ular that
u ∈ (C([0, T ];H),W 1,∞(0, T ;H))s,∞ = Cs([0, T ];H).5.4. Sharpness of the 
onvergen
e rates. Although spe
i�
 situations (see below)exhibit a stronger 
onvergen
e rate, in general the above proved error bounds are sharpas the estimates (re
all (4.8))

‖u− uε‖C([0,T ];H) ≤ cε1/2+δ(5.7)
‖u− uε‖H1(0,T ;H) ≤ cεδ(5.8)are false for all δ > 0.



17We shall prove this fa
t by 
ontradi
ting the maximal regularity u ∈ H1(0, T ;H) viainterpolation. In parti
ular, assume (5.7). From (4.8) we have that, for all 0 < η < 1,
‖u− uε‖Cη/2([0,T ];H) ≤ c‖u− uε‖(C([0,T ];H),C1/2([0,T ];H))η,∞

≤ c‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ c ε(1−η)(1/2+δ).Choosing η su
h that(5.9) 1/2 = (1 − η)(1/2 + δ)and re
alling (4.1) we get that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−1/2‖u− uε‖Cη/2([0,T ];H) ≤ c.Hen
e, by interpolation we have that
u ∈ (Cη/2([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = Cs([0, T ];H) for s =

1

2

η

2
+

1

2
1 >

1

2
.On the other hand, as we surely have that, for any s > 1/2, there exist fun
tions in

H1(0, T ;H) whi
h do not belong to Cs([0, T ];H), this 
learly amounts to a 
ontradi
tion.A similar (easier) argument proves the sharpness in H1(0, T ;H). Indeed, assume (5.8).Then, estimate (4.1) ensures that
ε1/2‖uε‖W 1,∞(0,T ;H) + ε−δ‖u− uε‖H1(0,T ;H) ≤ c.Choosing the interpolation level 0 < δ < 1 we obtain

u ∈ (H1(0, T ;H),W 1,∞(0, T ;H))δ,∞

⊂ (C1/2([0, T ];H),W 1,∞(0, T ;H))δ,∞

= Cr([0, T ];H) with r = δ +
1 − δ

2
=

1 + δ

2
>

1

2
,whi
h again is 
ontradi
ting the maximal regularity u ∈ H1(0, T ;H).Note that the above proofs rely on the 
hoi
e of a general datum f ∈ L2(0, T ;H) anda more regular setting 
ould give rise to better 
onvergen
e rates. Let us stress that wedo not presently know if strong 
onvergen
e holds in H1(0, T ;H). On the other hand, wehave just proved that no rate in H1(0, T ;H) 
an be expe
ted.5.5. Spe
ial 
ase of (1.3). In the spe
i�
 situation of the s
alar and linear 
ase of (1.3),some improved 
onvergen
e rate of uε is available. In parti
ular, one 
an expli
itly provethat

|(u− uε)(t)| = ε
(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 2ε

e
,so that a linear 
onvergen
e rate is a
hieved in C([0, T ];H), see Figure 2.Moreover, strong 
onvergen
e in H1(0, 1) holds with rate 1/2 as we have that

‖u− uε‖H1(0,1) ∼
√
ε

(

1

2e2
+

2

e

)

.
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Figure 2: The 
onvergen
e rate in C[0, T ] in the spe
ial 
ase (1.3). The solid line is thefun
tion ε 7→ max[0,T ] |u− uε| and the dashed line is linear in ε (log-log s
ale).5.6. Approximate minimizers, relaxation. The 
onvergen
e result of Theorem 1.1
an be extended to the 
ase of quali�ed sequen
es of approximate minimizers of thefun
tional Iε.Theorem 5.4 (Convergen
e for approximate minimizers). Let vε ∈ K(u0ε) be su
h that(5.10) Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.Then vε → u in C([0, T ];H).Note that the above statement 
an be generalized in the many dire
tions 
ommentedabove. In parti
ular, a 
onvergen
e rate in C([0, T ];H) 
an be derived and the requirementon αε 
an be weakened in 
ase φ is 
onvex.Proof. Let vε ful�ll (5.10) and ε be small enough. Moreover, let uε denote the minimizerof Iε in K(u0ε). By using the κε-
onvexity of Iε from Proposition 2.1 we readily obtainthat, for all θ ∈ [0, 1),
Iε(uε) ≤ Iε

(

θuε + (1 − θ)vε

)

≤ θIε(uε) + (1 − θ)Iε(vε) −
θ(1 − θ)

2
κε‖uε − vε‖2

H1(0,T ;H).Dividing by 1 − θ and taking θ → 1 we get that
κε

2
‖uε − vε‖2

H1(0,T ;H) ≤ Iε(vε) − min
K(u0ε)

Iε ≤ αε.As αε = o(κε) for ε → 0, we have 
he
ked that uε − vε → 0 in H1(0, T ;H) and theassertion follows from Theorem 1.1. �



19The 
onvergen
e result of Theorem 5.4 may be extended in the dire
tion of relaxation.In parti
ular, sequen
es of approximate minimizers 
onverge even if φ is not λ-
onvexnor lower semi
ontinuous, provided that s
−Iε is itself a WED fun
tional for a λ-
onvexand lower semi
ontinuous potential. This is the 
ase, for instan
e, for the two relaxationexamples of Subse
tions 7.5-7.6 below.Corollary 5.5 (Convergen
e without 
onvexity and lower semi
ontinuity). Assume thats
−Iε is a WED fun
tional ful�lling (2.2a)-(2.2b). Moreover, let vε ∈ K(u0ε) be su
h that
Iε(vε) ≤ inf

K(u0ε)
Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.Then vε → u in C([0, T ];H).Proof. Let uε be the unique minimizer of s
−Iε in K(u0ε). As we 
learly have thats
−Iε(vε) ≤ Iε(vε) ≤ inf

K(u0ε)
Iε + αε = s
−Iε(uε) + αε,we are in the position of applying dire
tly Theorem 5.4 to the fun
tional s
−Iε and 
on-
lude. �5.7. Another 
hoi
e for the arti�
ial boundary 
ondition in T . The 
hoi
e of thehomogeneous Neumann boundary 
ondition in T for (1.4a) is just motivated by the sake ofsimpli
ity and one may wonder if other possibilities would give rise to better 
onvergen
eresults. We shall not dis
uss here this issue in full generality but rather 
onsider theoriginal setting by Mielke & Ortiz [MO08℄ where the fun
tional Īε : H1(0, T ;H) →

(−∞,∞] given by
Īε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

) dt+ e−T/ε
(

φ(v(T )) − (fT , v(T ))
)

,for a given fT ∈ H , are 
onsidered instead. The 
orresponding Euler system in
ludes(1.4a)-(1.4b) along with the boundary 
ondition(5.11) u′(T ) + ∂φ(u(T )) ∋ fT .By 
hoosing fT = f(T ) for f regular, the above 
ondition is enfor
ing, independently of
ε, the attainment of the gradient �ow equation (1.1) at the �nal time T .The results of this paper 
an be equivalently stated for minimizers vε of Īε in K(u0ε)and the 
orresponding proofs just follow from the (sometimes te
hni
al) adaptation of thepresent ones to that 
ase. In parti
ular, the 
onvergen
e vε → u in C([0, T ];H) holds.The di�eren
e in 
onsidering vε may be related to the fa
t that we impose no arti�
ial
onstraint on the �rst time-derivative in T . On the other hand, by asking for (5.11) weare (formally) imposing v′′ε (T ) = 0.Despite the fa
t that the very same analyti
al results are available for the two di�erent
hoi
es of boundary 
onditions in T (and that the same sharpness of 
onvergen
e rates
an be 
he
ked, see Subse
tion 5.4), the use of Īε instead of Iε 
ould show some advantagein some situation. In the very spe
i�
 s
alar and linear 
ase of (1.3) an illustration of theuniform 
onvergen
e of vε is given in Figure 3. The plots in Figures 1 and 3 are produ
edby the same 
hoi
es of ε. In parti
ular, it is evident that that the traje
tory vε are 
loser
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Figure 3: The 
onvergen
e result in the spe
ial 
ase (1.3). As ε → 0, the minimizers of
Īε (dashed lines) approa
h the solution of the gradient �ow (solid line).
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Figure 4: The fun
tions ε 7→ ‖u − uε‖C[0,T ](solid) and ε 7→ ‖u − vε‖C[0,T ] (dashed) in a
log-log s
ale.
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Figure 5: The fun
tions ε 7→ ‖u− uε‖H1(0,T )(solid) and ε 7→ ‖u− vε‖H1(0,T ) (dashed) in alog-log s
ale.to u than the former uε. Expli
it 
onvergen
e rates 
an be easily 
omputed for vε in thespe
i�
 
ase of (1.3) from
|(u− vε)(t)| ∼ 4ε2

(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 4ε2

e
,

‖u− vε‖H1(0,1) ∼
2
√

2ε

e
.The 
omparison between the 
onvergen
e rates for uε and vε are reported in Figures 4-5.



215.8. Cau
hy argument. An alternative strategy for the proof of Theorem 1.1 is that ofdire
tly 
he
king that uε is a Cau
hy sequen
e in C([0, T ];H). By taking the di�eren
ebetween the Euler equation (3.1) at level ε and the same equation at level µ, testing it on
w

.

= uε − uµ, and integrating in time one gets that
ε

∫ t

0

|w′|2 +
1

2
|w(t)|2 +

∫ t

0

(ξε − ξµ, w)

= ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2 + (ε− µ)

∫ t

0

(u′′µ, w).Let us now exploit λ-
onvexity and integrate by parts the last term in the above right-handside obtaining
ε

∫ t

0

|w′|2 +
1

2
|w(t)|2 + λ

∫ t

0

|w|2

≤ ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2

+ (ε− µ)(u′µ(t), w(t)) − (ε− µ)(u′µ(0), w(0))− (ε− µ)

∫ t

0

(u′µ, w
′)

=
1

2
|w(0)|2 + (εu′ε(t) − µu′µ(t), w(t)) − (εu′ε(0) − µu′µ(0), w(0))− (ε− µ)

∫ t

0

(u′µ, w
′)

≤ |w(0)|2 +
1

4
|w(t)|2 + cε2‖u′ε‖2

C([0,T ],H) + cµ2‖u′µ‖2
C([0,T ],H)

+ (ε+ µ)‖u′µ‖L2(0,T ;H)‖w′‖L2(0,T ;H)where we have exploited Lemma 4.1. In parti
ular, we have that
ε

∫ t

0

|w′|2 +
1

4
|w(t)|2 + λ

∫ t

0

|w|2 ≤ c(ε+ µ)and the Cau
hy 
hara
ter in C([0, T ];H) follows by Gronwall's Lemma. On
e uε is provedto admit a strong limit u it is standard to 
he
k that indeed u solves (1.1).The advantage of this argument with respe
t to the former proof of Theorem 1.1 isthat it does not rely on the well-posedness of the limiting gradient �ow (1.1). This fa
tallows us to state a modi�
ation of Theorem 1.1 as follows.Proposition 5.6 (Convergen
e without lower semi
ontinuity). Let φ be proper, boundedbelow, λ-
onvex but not ne
essarily lower semi
ontinuous. Moreover let f ∈ L2(0, T ;H),
u0 ∈ D(φ), u0ε ful�ll (2.9), and uε solve the Euler system (3.1)-(3.3). Then, uε → ustrongly in C([0, T ];H) and weakly in H1(0, T ;H) where u is the only solution of thegradient �ow(5.12) u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0,where ∂φ is the strong × weak 
losure of ∂φ in H ×H, namely
∂φ(u)

.

= {ξ ∈ H : ∃(uk, ξk) → (u, ξ) strongly × weakly in H ×H and ξk ∈ ∂φ(uk)}.Proof. As the 
ompa
tness of the sequen
e uε in C([0, T ];H) (has well as its boundednessin H1(0, T ;H)) has been already established, owing to Lemma 4.1 and by passing to thelimit in (3.1) we get the assertion. �



22 For the sake of illustrating the above result, let us remark that(5.13) ∂φ ⊂ ∂(s
−ψ),the in
lusion being stri
t. First of all, we have that ∂φ = ∂ψ + λ id, where ∂ψ is the
orresponding 
losure of ∂ψ (note that ∂ψ does not 
oin
ide with ∂ψ as ψ may be notlower semi
ontinuous).On the one hand, by exploiting the very de�nition of subdi�erential and relaxation wereadily get that ∂ψ ⊂ ∂(s
−ψ). Indeed, let η ∈ ∂ψ(u). Then there exists (uk, ηk) → (u, η)strongly × weakly su
h that
(ηk, wk − uk) ≤ ψ(wk) − ψ(uk) ≤ ψ(wk) − s
−ψ(uk) ∀wk ∈ H.Fix now w ∈ H and 
hoose wk → w to be su
h that ψ(wk) → s
−ψ(w). By passing tothe lim inf in the above inequality we get that η ∈ ∂(s
−ψ)(u).On the other hand, let H = R and φ be de�ned by

φ(u)
.

=







0 for u < 0
1 for u = 0
∞ otherwiseso that we immediately 
ompute the relaxations
−φ(u) =

{

0 for u ≤ 0
∞ otherwise.The 
orresponding subdi�erentials read

∂φ(u) =

{

0 for u < 0
∅ otherwise,

∂φ(u) =

{

0 for u ≤ 0
∅ otherwise,

∂(s
−φ)(u) =







0 for u ≤ 0
[0,∞) for u = 0
∅ otherwise.In parti
ular, the in
lusion in (5.13) is stri
t.Note that, from the one hand, Proposition 5.6 is more general than Theorem 1.1 as thelower semi
ontinuity assumption on φ is dropped. This would in prin
iple open the way torelaxation. On the other hand, Proposition 5.6 dire
tly assumes the existen
e of solutionsto the Euler system (3.1)-(3.3), a 
ir
umstan
e that we 
he
k for lower semi
ontinuousfun
tionals only (see Theorem 3.1).6. Time-dis
retizationThe 
onvergen
e result of Theorem 1.1 
an be e�
iently 
ombined with time-dis
retizationwhi
h, in turn, provides a sound frame for the proof of Lemma 4.1 out of the regular 
aseof (4.2).



23We start by re
alling the notation for the 
onstant time-step τ = T/n and introdu
ingthe fun
tional Iετ de�ned on dis
rete traje
tories (v0, . . . , vn) ∈ Hn+1 as
Iετ(v

0, . . . , vn) =

n
∑

i=1

ρi
ετ

τ

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

φ(vi) − (f i, vi)
)

.Here, the weights (ρ1
ετ , . . . , ρ

n
ετ ) are given by(6.1) ρi

ετ =

(

ε

τ + ε

)i for i = 1, . . . , n.In parti
ular, (ρ1
ετ , . . . , ρ

n
ετ ) is nothing but the solution of the 
onstant time-step impli
itEuler dis
retization of the problem ρ′ + ρ/ε = 0 with initial 
ondition ρ(0) = 1. As this
hoi
e ensures that, for i = 1, . . . , n− 1,(6.2) ρi

ετ − ρi+1
ετ =

τ

ε
ρi+1

ετ > 0,and we have by Lemma 2.2 that ρετ (t) → e−t/ε uniformly as τ → 0 for ε > 0 �xed, thefun
tional Iετ may be regarded as a quadrature of the time-
ontinuous fun
tional Iε.Before moving on, let us motivate our spe
i�
 
hoi
e for the fun
tional Iετ . First ofall, we re
all that the in
remental minimization s
heme of (2.12) in equivalent to
u0 = u0 and ui = Argmin

u∈H

(

1

2

∣

∣

∣

∣

u− ui−1

τ

∣

∣

∣

∣

2

+
φ(u) − (f i, u)

τ
− φ(ui−1) − (f i−1, ui−1)

τ

)for i = 1, . . . , n.(6.3)Indeed, the latter is nothing but (2.12) where, at ea
h level i, we have added the in
onse-quential term −(φ(ui−1)− (f i−1, ui−1))/τ . Here, the point f 0 ∈ H is assumed to be given(its a
tual value being irrelevant).The latter minimization problems are usually solved sequentially. On the other hand,a dire
t 
omputation shows that
Iετ (v

0, . . . , vn)

=
n
∑

i=1

ρi
εττ

(

1

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+
φ(vi) − (f i, vi)

τ
− φ(vi−1) − (f i−1, vi−1)

τ

)

− ρn
ετ

(

φ(vn) − (fn, vn)
)

+ ρ1
ετ

(

φ(v0) − (f 0, v0)
)

.(6.4)Hen
e, the minimization of Iετ in Kτ (u0ε)
.

= {(v0, . . . , vn) ∈ Hn+1 : v0 = u0ε}roughly 
orresponds to 
olle
t all the minimization problems in (6.3) in a single 
on-strained minimization problem for the entire dis
rete traje
tory (u0, . . . , un). This inparti
ular motivates our referen
e to the values ρi
ετ as Pareto weights in analogy withthe 
orresponding notion in multi-obje
tive optimization [Cla90℄. More spe
i�
ally, as

ρ1
ετ ≫ ρ2

ετ ≫ · · · ≫ ρn
ετ for ε → 0, it turns out that, by minimizing Iετ , a mu
h largerpriority is a

orded to the �rst minimum problem in (6.3) with respe
t to the se
ond, tothe se
ond with respe
t to the third, and so on. Hen
e, the limit ε → 0 again formally
orresponds to 
ausality restoring, see also [MS08℄.Exa
tly as in the time-
ontinuous situation, in 
ase φ is 
onvex, the fun
tional Iετ turnsout to be uniformly 
onvex for all ε. In parti
ular, a unique minimizer of Iετ in Kτ (w0)



24exists for all w0 ∈ H . The same holds true for general λ-
onvex fun
tionals whenever εand τ are 
hosen to be small enough. Indeed, we have the following.Proposition 6.1 (Well-posedness of the dis
rete minimum problem). For ε and τ smalland all w0 ∈ H, the fun
tional Iετ admits a unique minimizer in Kτ (w0).Proof. This argument is the dis
rete analogue of the proof of Proposition 2.1. In parti
-ular, we start by de
omposing Iετ into a quadrati
 part Qετ and a 
onvex remainder Rετas
Iετ (u

0, . . . , un)

=

(

n
∑

i=1

τ

2
ρi

ετ

∣

∣δui
∣

∣

2 −
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
λ−

2
|ui|2

)

+

(

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

ψ(ui) − (f i, ui)
)

)

.

= Qετ (u
0, . . . , un) +Rετ (u

0, . . . , un).The result follows by 
he
king that, for small ε and τ , the fun
tional Qετ is uniformly
onvex on Kτ (w0). To this aim, for all (u0, . . . , un) ∈ K(w0) let (v0, . . . , vn) be de�ned as
vi .

=
√

ρi
ετu

i. Then, we 
ompute that (see (2.5))
δui =

1
√

ρi−1
ετ

δvi + viδ

(

1
√

ρi
ετ

)

=
1

√

ρi
ετ

(

rετδv
i +

1 − rετ

τ
vi

)where rετ
.

=
√

ε/(ε+ τ). By observing that ρi
ετ−ρi+1

ετ = ρi
ετ (1−r2

ετ ), the valueQετ (u
0, . . . , un)
an hen
e be rewritten as

Qετ (u
0, . . . , un) =

n
∑

i=1

τ

2

(

r2
ετ |δvi|2 +

(1 − rετ )
2

τ 2
|vi|2 +

2rετ(1 − rετ)

τ
(δvi, vi)

)

−
n−1
∑

i=1

(1 − r2
ετ)λ

−

2
|vi|2

=
n
∑

i=1

τr2
ετ

2
|δvi|2 +

(1 − rετ )
2

2τ
|vn|2 +

n−1
∑

i=1

[

(1 − rετ )
2

2τ
− (1 − r2

ετ)λ
−

2

]

|vi|2

+
rετ (1 − rετ )

τ

(

1

2
|vn|2 +

1

2

n
∑

i=1

|vi − vi−1|2 − 1

2
|w0|2

)

.As we readily 
he
k that
[

(1 − rετ )
2

2τ
− (1 − r2

ετ )λ
−

2

]

→ 1

2τ
− λ−

2
as ε→ 0,for all ε and τ small (depending on λ− only), the fun
tional Qετ turns out to be uniformly
onvex in K(w0). �The main result of this se
tion is the 
onvergen
e of minimizers of the time-dis
retefun
tional Iετ to solutions of the gradient �ow (1.1) as the time-step τ and the 
ausalparameter ε go to 0. To this aim, we assume for the very beginning that f τ → f stronglyin L2(0, T ;H). This 
onvergen
e holds, for instan
e, if f τ is built on lo
al means. Wehave the following.



25Theorem 6.2 (Convergen
e + dis
retization). uετ → u in C([0, T ];H) as ε+ τ → 0.6.1. Dis
rete Euler equation. The fun
tional Iετ is the quadrati
 perturbation of a
onvex fun
tional. Hen
e, its Fré
het subdi�erential is readily 
omputed and, letting
(u0

ε, . . . , u
n
ε ) be the minimizer of Iετ in Kτ (u0ε), from 0 ∈ ∂Iετ (u

0
ε, . . . , u

n
ε ) we have thatthere exist ξi

ε ∈ ∂φ(ui
ε), i = 1, . . . , n− 1, su
h that

0 ∈
n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) +

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) ∀(v0, . . . , vn) ∈ Kτ (0).The �rst term in the above right-hand side reads (re
all that v0 = 0)

n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) =
n−1
∑

i=1

(ρi
ετδu

i
ε − ρi+1

ετ δui+1
ε , vi) + ρn

ετ (δu
n
ε , v

n),and, by using (6.2), we have that
ρi

ετδu
i
ε − ρi+1

ετ δui+1
ε = (ρi

ετ − ρi+1
ετ )δui

ε + ρi+1
ε (δui

ε − δui+1
ε )

=
τ

ε
ρi+1

ετ δui
ε + ρi+1

ετ (δui
ε − δui+1

ε ).On the other hand, again form (6.2) we have that
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) =

n−1
∑

i=1

τ

ε
ρi+1

ε (ξi
ε − f i, vi).Hen
e, the minimizer (u0

ε, . . . , u
n
ε ) of Iετ in Kτ (u0ε) ful�lls the dis
rete Euler equation (see(3.1)-(3.4))

− ε
δui+1

ε − δui
ε

τ
+ δui

ε + ξi
ε = f i for i = 1, . . . , n− 1,(6.5a)

u0
ε = u0ε,(6.5b)
δun

ε = 0,(6.5
)
ξi
ε ∈ ∂φ(ui

ε) for i = 1, . . . , n− 1.(6.5d)
6.2. Key estimate at the dis
rete level. Our next aim is to reprodu
e at the dis
retelevel the key estimate (4.1). Note that the regularity in time in (4.2) is not needed hereas integration by parts is here repla
ed by summation.Let us �x with no loss of generality ξ0

ε = (∂φ(u0ε))
◦. For the sake of notationalsimpli
ity, we let vi

ε = δui+1
ε for i = 1, . . . , n− 1. The Euler equation (6.5a) ensures that
n−1
∑

i=1

τ
∣

∣−εδvi
ε + δui

ε + ξi
ε

∣

∣

2
=

n−1
∑

i=1

τ |f i|2



26and we shall now pro
eed to the proof of separate bounds on the three terms in theleft-hand side above. In parti
ular, we have that
n−1
∑

i=1

τ
(

ε2|δvi
ε|2 + |δui

ε|2 + |ξi
ε|2
)

=
n−1
∑

i=1

τ | − εδvi
ε + δui

ε + ξi
ε|2 + 2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε)

=
n−1
∑

i=1

τ |f i|2 + 2ε
n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε).

(6.6)We now aim at 
ontrolling the last three terms in the above right-hand side. We havethat
2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) = −ε|δu1

ε|2 − ε
n−1
∑

i=1

|vi
ε − vi−1

ε |.(6.7)Moreover, by exploiting λ-
onvexity, one 
omputes that
−2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) = 2

n−1
∑

i=1

(ui−1
ε − ui

ε, ξ
i
ε)

≤ 2

n−1
∑

i=1

(

ψ(ui−1
ε ) − ψ(ui

ε) −
λ

2
|ui

ε|2 +
λ

2
|ui−1

ε |2 − λ

2
|ui

ε − ui−1
ε |2

)

= 2φ(u0ε) − 2φ(un−1
ε ) − λ

n−1
∑

i=1

|ui
ε − ui−1

ε |2

= 2φ(u0ε) − 2φ(un−1
ε ) − λτ

n−1
∑

i=1

τ |δui
ε|2.(6.8)Finally, again λ-
onvexity ensures that

2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε) = −2ε(δu1

ε, ξ
1
ε) − 2ε

n−1
∑

i=2

τ(δui
ε, δξ

i
ε)

≤ −2ε(δu1
ε, ξ

0
ε ) − 2λε

n−1
∑

i=1

τ |δui
ε|2.(6.9)Now, taking into a

ount (6.7)-(6.8), estimate (6.6) be
omes

1

2

n−1
∑

i=1

τ
(

ε2|δvi
ε|2 +

(

1 + λ(2ε+ τ)
)

|δui
ε|2 + |ξi

ε|2
)

+
ε

2
|δu1

ε|2 +
ε

2

n−1
∑

i=1

|vi
ε − vi−1

ε | + φ(un−1
ε )

≤ 1

2

n−1
∑

i=1

τ |f i|2 − ε(δu1
ε, ξ

0
ε) + φ(u0ε).(6.10)



27In parti
ular, as soon as λ−(2ε+ τ) ≤ 1/2 (see (4.4)), we re
all (2.9)-(2.10) and 
on
ludethat
ε2

n−1
∑

i=1

τ
∣

∣δvi
ε

∣

∣

2
+

n
∑

i=1

τ |δui
ε|2 +

n−1
∑

i=1

τ |ξi
ε|2 ≤ c,(6.11)where c depends on ‖f‖L2(0,T ;H), |u0|, and c0.We now aim at reprodu
ing estimate (4.6). Let for brevity zi

ε = δui
ε = vi−1

ε . Estimate(6.11) yields that both zετ and εv′ετ are bounded in L2(0, T − τ ;H) independently of εand τ . Let us now handle the di�eren
e zετ − vετ as follows.
‖zετ − vετ‖2

L2(0,T−τ ;H) =

n−1
∑

i=1

∫ iτ

(i−1)τ

|zi
ε − (αi(t)zi+1

ε + (1 − αi(t))zi
ε)|2dt

=

n−1
∑

i=1

(
∫ iτ

(i−1)τ

(αi(t))2dt) |zi+1
ε − zi

ε|2 =
τ 2

3

n−1
∑

i=1

τ

∣

∣

∣

∣

zi+1
ε − zi

ε

τ

∣

∣

∣

∣

2

=
τ 2

3

n−1
∑

i=1

τ |δvi|2 =
τ 2

3
‖v′ετ‖2

L2(0,T−τ ;H).(6.12)In parti
ular, we have that
‖vετ‖L2(0,T−τ ;H) ≤ ‖zετ‖L2(0,T−τ ;H) +

τ√
3
‖v′ετ‖L2(0,T−τ ;H) ≤ c

(

1 +
τ

ε

)Hen
e, we have
‖vετ‖C0([0,T−τ ];H) ≤ c‖vετ‖1/2

L2(0,T−τ ;H)‖vετ‖1/2

H1(0,T−τ ;H)

≤ c
(

1 +
τ

ε

)1/2
(

(

1 +
τ

ε

)2

+
1

ε2

)1/4

≤ c

(

1 +
τ 1/2

ε1/2

)(

1 +
τ 1/2

ε1/2
+

1

ε1/2

)

≤ c

(

1 +
1

ε1/2
+
τ 1/2

ε

)

.(6.13)This bound is the dis
rete 
ounterpart to (4.6) (re
all (2.9)).6.3. Proof of Theorem 6.2. This argument is nothing but the dis
rete analogue ofthe proof of Theorem 1.1. Let (u0, u1, . . . , un) solve the impli
it Euler s
heme (2.11) and
(u0

ε, u
1
ε, . . . , u

n
ε ) minimize Iετ lo
ally in Kτ (u0ε). Test (2.11) by wi

ε = ui − ui
ε getting

(δui, wi
ε) + φ(ui) +

λ

2
|wi

ε| ≤ φ(ui
ε) + (f i, wi

ε) for i = 1, . . . , n− 1.Test now (6.5a) by −wi
ε and obtain that

−ε
τ
(δui+1

ε − δui
ε,−wi

ε) + (δui
ε,−wi

ε) + φ(ui
ε) +

λ

2
|wi

ε| ≤ φ(ui) − (f i, wi
ε)for i = 1, . . . , n− 1.(6.14)Take the sum of the last two inequalities, multiply it by τ , and sum for i = 1, . . . , m ≤ n−1getting

ε
m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) +

m
∑

i=1

τ(δwi
ε, w

i
ε) + λ

m
∑

i=1

τ |wi
ε|2 ≤ 0.(6.15)



28We easily handle the �rst term above by 
omputing
ε

m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) = −ε

m
∑

i=1

τ(δui
ε, δw

i
ε) + ε(δum+1

ε , wm
ε ) − ε(δu1

ε, w
0
ε).Hen
e, (6.15) entails that

ε
m
∑

i=1

τ |δwi
ε|2 +

1

2
|wm

ε |2

≤ 1

2
|w0

ε |2 + λ−
m
∑

i=1

τ |wi
ε|2 + ε

m
∑

i=1

τ(δui, δwi
ε) − ε(δum+1

ε , wm
ε ) + ε(δu1

ε, w
0
ε).In parti
ular, by letting 4λ−τ < 1, as u′τ is bounded in L2(0, T ;H) independently of τ ,we have proved by the dis
rete Gronwall Lemma that

|wm
ε |2 ≤ c

(

ε+ ε2|δum+1
ετ |2 + ε2|δu1

ε|2
)for some 
onstant c > 0 depending also on λ− but independent of ε and τ . Re
all nowthe bound (6.13) and obtain that

|wm
ε |2 ≤ c

(

ε+ ε2

(

1 + ε−1/2 +
τ 1/2

ε

)2
)

≤ c(ε+ τ).Hen
e, we have 
he
ked that maxi=1,...,n−1 |wi
ε| ≤ c(ε + τ). In fa
t, this bound 
an beextended to i = n as wn

ε = wn−1
ε . In parti
ular, we have proved that wετ → 0 in

C([0, T ];H) as ε+ τ → 0. Finally, the strong 
onvergen
e uετ → u in C([0, T ];H) followsfrom Lemma 2.2.More spe
i�
ally, in 
ase φ is lower semi
ontinuous and f ≡ 0, by exploiting the error
ontrol in (2.13)-(2.14), we have proved the joint 
onvergen
e rates
‖u− uετ‖C([0,T ];H) ≤ c

(

ε+ τ
)1/2

.Note that, in this 
ase, the sub-optimality of the rate τ 1/2 is already expe
ted for theEuler s
heme (re
all (2.13)). Namely, the present fun
tional approa
h is not deteriorat-ing 
onvergen
e with respe
t to the time-step size. Let us mention that the above joint
onvergen
e result 
an be spe
ialized for establishing quantitative 
onvergen
e in interpo-lation spa
es and allowing for less-regular initial data in the spirit of Subse
tions 5.1 and5.2.6.4. Limit τ → 0 for ε > 0: 
onvergen
e to the Euler equation. By letting λ ≥ 0and ε > 0 be �xed and passing to the limit in the time-step τ we 
an prove the following.Theorem 6.3 (τ → 0 for ε > 0). Let λ ≥ 0 and (u0
ε, . . . , u

n
ε ), (ξ1

ε , . . . , ξ
n−1
ε ) solve (6.5).Then, there exists non-relabeled subsequen
es su
h that uετ → uε weakly in H1(0, T ;H)and ξετ → ξ weakly in L2(0, T ;H) where (uε, ξε) solves (3.1)-(3.4).Sket
h of the proof. Let (ui

ε, ξ
i
ε) ∈ HN+1 × HN−1 solve (6.5) and de�ne vi

ε = δui+1
ε for

i = 1, . . . , n − 1. Our �rst aim is to pass to the limit in the dis
rete equations (6.5a),



29(6.5
)-(6.5d) written in the 
ompa
t form
− εv′ετ + u′ετ + ξετ = f ετ a.e. in (0, T − τ),(6.16)
vετ (T − τ) = 0,(6.17)
ξετ ∈ ∂φ(uετ ) a.e. in (0, T − τ).(6.18)Owing to estimates (6.11)-(6.12) we �nd a pair (uε, ξε) su
h that, by extra
ting not rela-beled subsequen
es (and possibly 
onsidering standard proje
tions for t > T − τ),

uετ → uε weakly in H1(0, T ;H),

vετ → u′ε weakly in H1(0, T ;H),

ξετ → ξε weakly in L2(0, T ;H).The above 
onvergen
es su�
e for ensuring that equations (3.1)-(3.3) hold. Moreover, wehave
lim sup

τ→0

∫ T−τ

0

(ξετ , uετ )

≤ lim sup
τ→0

(

− ε

∫ T−τ

0

|u′ετ |2 − ε(vετ(0), u0ε) −
1

2
|uετ(T − τ)|2 +

1

2
|u0ε|2 +

∫ T−τ

0

(f τ , uετ )
)

≤ −ε
∫ T

0

|u′|2 − ε(u′(0), u0ε) −
1

2
|u(T )|2 +

1

2
|u0ε|2 +

∫ T

0

(f, u)

=

∫ T

0

(ξ, u),

(6.19)and the in
lusion (3.4) follows again from the 
lassi
al [Bre73b, Prop. 2.5, p. 27℄. �Note that the above proof 
an be adapted to the non-
onvex 
ase λ < 0 by additionallyrequiring some 
ompa
tness on the sublevels of φ. Hen
e, the extra
ted sequen
es wouldful�ll the strong 
onvergen
e [Sim87, Cor. 4℄, namely
uετ → uε strongly in C([0, T ];H).This 
onvergen
e su�
es in order to pass to the limit in
ξετ − λuετ ∈ ∂ψ(uετ ) a.e. in (0, T )and get that
ξε − λuε ∈ ∂ψ(uε) a.e. in (0, T ).Namely, in
lusion (3.4) holds.6.5. Proof of the key estimate. Let us �nally 
ome to the proof of Lemma 4.1. Byre
onsidering the argument of Subse
tion 6.2 and Theorem 6.3 we readily have that, given

g ∈ L2(0, T ;H), the solution (uε, ηε) ∈ H2(0, T ;H) × L2(0, T ;H) of
− εu′′ε + u′ε + ηε = g a.e. in (0, T ),(6.20)
uε(0) = u0ε,(6.21)
u′ε(T ) = 0,(6.22)
ηε ∈ ∂ψ(uε) a.e. in (0, T )(6.23)



30is the limit (the 
omponent uε being unique) of a dis
rete problem whi
h in turn ful�llsthe expe
ted estimates. In parti
ular, by passing to the limit we �nd that there exists apositive 
onstant c > 0 depending on |g|L2(0,T ;H), |u0|, and c0 su
h that
ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ηε‖L2(0,T ;H) ≤ c.(6.24)Moreover, arguing exa
tly as in Subse
tion 4.1, we also have that(6.25) ε1/2 ‖u′ε‖L∞(0,T ;H) ≤ c.Take now uε to be the minimizer of Iε on K(u0ε). Owing to Theorem 3.1 we have that,indeed, uε solves (6.20)-(6.23) (along with the asso
iated sele
tion ηε = ξε − λuε) withthe datum g repla
ed by f − λuε. Hen
e, in order to 
on
lude for Lemma 4.1, what weare a
tually left to prove is that the norm ‖uε‖L2(0,T ;H) is uniformly bounded in terms ofdata for all minimizers. This is however a standard estimation argument. Test (3.1) by

uε + αu′ε (α ≥ 0 to be determined later) and integrate in time getting
αε

2
|u′ε(0)|2 + (ε+ α)

∫ T

0

|u′ε|2 +
1

2
|uε(T )|2 − λ−

∫ T

0

|uε|2 + αφ(uε(T ))

≤ −ε(u′ε(0), u0ε) +

∫ T

0

(f, uε + αu′ε) +
1

2
|u0ε|2 + αφ(u0ε).(6.26)By taking α large enough (pre
isely, by taking α/λ− (for λ 6= 0) stri
tly larger than the�rst eigenvalue of the one-dimensional Lapla
ian in (0, T ) with non-homogeneous Diri
hletand homogeneous Neumann 
onditions in 0 and T , respe
tively) we 
on
lude for

‖uε‖H1(0,T ;H) ≤ cwhere now c > 0 depends on |f |L2(0,T ;H), |u0|, c0, and λ−.7. Appli
ations7.1. Linear paraboli
 PDEs. Let the bounded Lips
hitz domain Ω ⊂ R
n be given and

f ∈ L2(Ω × (0, T )) and u0 ∈ H2(Ω) ∩ H1
0 (Ω). Then, the minimizers uε in K(u0) of theWED fun
tionals given by

u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))

∞ otherwise
onverge to the solution of the heat equation(7.1) ut − ∆u = f a.e. in Ω × (0, T )supplemented with the initial 
ondition and with homogeneous Diri
hlet 
onditions (otherboundary 
onditions 
an be 
onsidered as well) in the following sense
max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cε1/2,(7.2)
‖u− uε‖Hη(0,T ;L2(Ω)) ≤ cε(1−η)/2 for all 0 < η < 1.(7.3)Note that, given (7.2), 
onvergen
e (7.3) is equivalent to

(

∫ T

0

∫ T

0

‖(u− uε)(t) − (u− uε)(s)‖2
L2(Ω)

|t− s|1+2η
dt ds)1/2

≤ cε(1−η)/2 for all 0 < η < 1.



31Analogous 
on
lusions hold for more general initial data u0. De�ne φ to be the Diri
hletintegral
φ(u)

.

=
1

2

∫

Ω

|∇u|2, D(φ)
.

= H1
0 (Ω).We readily 
hara
terize the 
orresponding interpolation set Dr,2 for 0 < r < 1. Indeed,one has that [Bre75, Thm. 2℄ u0 ∈ Dr,2 i� there exists ε 7→ v(ε) ∈ H2(Ω) ∩ H1

0 (Ω) su
hthat ε 7→ ε1−r‖∆v(ε)‖L2(Ω) ∈ L2
∗(0, 1), and ε 7→ ε−r‖u0 − v(ε)‖L2(Ω) ∈ L2

∗(0, 1). Thispre
isely amounts to say that
u0 ∈

(

L2(Ω), H2(Ω) ∩H1
0 (Ω)

)

r,2
≡







H2r(Ω) for 0 < r < 1/4

H
1/2
0 0 (Ω) for r = 1/4

H2r
0 (Ω) for 1/4 ≤ r < 1

(7.4)where Hs
0(Ω), 1/2 < s < 2 and H1/2

0 0 (Ω) 
lassi
ally denote the spa
es of fun
tions whosetrivial extension to R
n belongs to Hs(Rn) and H1/2(Rn), respe
tively [LM72℄ (note that

Hs
0(Ω), 1/2 < s < 2 is the 
losure in Hs(Ω) of the spa
e of 
ompa
tly supported smoothfun
tions whereas H1/2

0 0 (Ω) is not).Choose now u0 ful�lling (7.4) for some 0 < r < 1 and let ε 7→ u0ε ∈ H2(Ω) ∩ H1
0 (Ω)be su
h that ε 7→ ε1−r‖u0ε‖H2(Ω), ε 7→ ε−r‖u0 − u0ε‖L2(Ω) ∈ L2

∗(0, 1). Then, the uniqueminimizers uε of the WED fun
tionals over K(u0ε) ful�ll
max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cεrand quantitative 
onvergen
e in Hη(0, T ;L2(Ω)) holds as well. Obvious modi�
ationslead to the more general linear paraboli
 equation ut − div(A∇u) = f where the boundedfun
tion A : Ω → R
n×n takes symmetri
 and uniformly positive de�nite values.Let now Ω be C1,1 or 
onvex, u0 ∈ H2(Ω)∩H1

0 (Ω), and u0ε be suitable approximationsin the same spirit above. De�ne
u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∆u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω))

∞ otherwise.The minimizers to the latter, 
onstrained to ful�ll uε(·, 0) = u0ε almost everywhere in Ω,ful�ll (7.2)-(7.3) where u is the solution of the biharmoni
 equation
ut + ∆2u = f a.e. in Ω × (0, T )subje
t to the initial 
ondition, homogeneous Diri
hlet 
onditions on u and homogeneousNeumann 
onditions on ∆u (again other boundary 
onditions may be 
onsidered).We may re
olle
t the above examples (as well as a variety of other symmetri
 paraboli
problems of order 2k) in the following abstra
t setting. Let the Hilbert spa
es H and Vbe given with the inje
tion V ⊂ H being dense. Moreover, let the bilinear and symmetri
form a : V × V → R be 
oer
ive and 
ontinuous and de�ne

u 7→







∫ T

0

e−t/ε

(

1

2
|u′|2 +

1

2ε
a(u, u) − 1

ε
(f, u)

) for u ∈ L2(0, T ;V )

∞ otherwise.Then, the minimizers of the above WED fun
tionals (suitably 
onstrained to ful�ll initial
onditions) 
onverge in H , uniformly with respe
t to time, to a solution of the abstra
t



32linear equation
u′ + Au = f a.e. in (0, T )where the linear operator A : H → H is de�ned by (Au, v)

.

= a(u, v) for all v ∈ V and
u ∈ D(A)

.

= {v ∈ V : sup|z|=1 a(v, z) < ∞}. Indeed, in the same spirit of (7.2)-(7.3),mu
h more is true as we have that
max
t∈[0,T ]

‖u(t) − uε(t)‖H ≤ cε1/2,(7.5)
‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 for all 0 < η < 1.(7.6)7.2. Paraboli
 variational inequalities. Under the above assumptions, let now g ∈

H1(Ω) be given with g ≤ 0 on ∂Ω and 
onsider the WED fun
tionals
u 7→























∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))with u(·, t) ≥ g(·) a.e.

∞ otherwise.Then, (suitably 
onstrained) minimizers 
onverge in C([0, T ];H) to a solution of theparaboli
 obsta
le problem
∫

Ω

ut(u− v) +

∫

Ω

∇u · ∇(u− v) ≤
∫

Ω

f(u− v) ∀v ∈ K, a.e. in (0, T )where the 
onvex set K is de�ned by K .

= {v ∈ H1
0 (Ω) : v ≥ g a.e.}. More pre
isely, theerror estimates (7.2)-(7.3) hold. Within the abstra
t setting introdu
ed in the previoussubse
tion, a variety of other 
onstraints 
an be dis
ussed as well.Next, letW : R → R be a λ-
onvex and smooth fun
tion. Then, (suitably 
onstrained)minimizers of

u 7→















∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 +

1

2ε
W (u) − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))

∞ otherwise
onverge in the sense of (7.2)-(7.3) to solutions of the rea
tion-di�usion equation
ut − ∆u+W ′(u) = f a.e. in Ω × (0, T ).The 
hoi
e W (u) = (u2 − 1)2 
orresponds to the so-
alled Allen-Cahn equation.7.3. Quasi-linear paraboli
 PDEs. Let F : Ω × R

n → [0,+∞) be su
h that:
F (x, ·) ∈ C1(Rn) for a.e. x ∈ Ω,(7.7)
F (x, ·) is 
onvex and F (x, 0) = 0 for a.e. x ∈ Ω,(7.8)
F (·, ξ) is measurable for all ξ ∈ R

n.(7.9)Then, we 
an set b .

= ∇ξF : Ω×R
n → R

n. We assume that, for a given p > 1, F satis�esthe growth 
onditions
∃c, C > 0 su
h that F (x, ξ) ≥ c|ξ|p − C,

|b(x, ξ)| ≤ C(1 + |ξ|p−1) for a.e. x ∈ Ω and all ξ ∈ R
n.(7.10)



33Let us now 
onsider the WED fun
tionals
u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

ε
F (·,∇u)− 1

ε
fu

) for u ∈ L2(0, T ;L2(Ω) ∩W 1,p
0 (Ω))

∞ otherwise.In the latter, homogeneous Diri
hlet 
onditions are 
onsidered, other 
hoi
es being pos-sible. The present analysis ensures that minimizers of the above fun
tionals, suitably
onstrained as for initial values, 
onverge in the sense of (7.2)-(7.3) to a solution of thequasilinear equation
ut − div b(·,∇u) = f a.e. in Ω × (0, T ).In parti
ular, the 
hoi
e F (x, ξ)

.

= |ξ|p/p gives rise to the so-
alled p-Lapla
ian equation,whereas the 
hoi
e F (x, ξ)
.

= (1 + |ξ|2)1/2 
orresponds to the mean 
urvature �ow forCartesian surfa
es (note however that the latter does not dire
tly �t into this theorybe
ause of a la
k of lower semi
ontinuity).7.4. Degenerate paraboli
 PDEs. Assume we are given β : R → R monotone and
ontinuous with β(0) = 0 and superlinear growth at in�nity [Bre73b℄. De�ne j to bethe only 
onvex fun
tion su
h that β = j′ and j(0) = 0. We now introdu
e the WEDfun
tionals on H1(0, T ;H−1(Ω)) given by
u 7→























∫ T

0

e−t/ε

(

1

2
‖ut‖2

H−1(Ω) +
1

ε

∫

Ω

(

j(u) − fu
)

) for u ∈ L2(0, T ;L2(Ω))with j(u) ∈ L1(Ω × (0, T ))

∞ otherwise.Quali�ed minimizers of the latter fun
tional 
onverge in H−1(Ω), uniformly in time, to asolution of the following degenerate paraboli
 equation
ut − ∆β(u) = f in Ω × (0, T )in a distributional sense, along with homogeneous Diri
hlet boundary 
onditions for β(u).More pre
isely, we have that (7.5)-(7.6) hold for H = H−1(Ω). In parti
ular, the 
hoi
e

β(u)
.

= (u−1)+−u− 
orresponds to the 
lassi
al two-phase Stefan problem, β(u)
.

= |u|m−2ufor m > 2 leads to the porous medium equation. The multivalued 
ase β(u) = ∂I[0,1](subdi�erential of the indi
ator fun
tion of the interval [0, 1]), related to the Hele-Shaw
ell equation, 
an be handled as well.7.5. Evolution of mi
rostru
ture in a bistable bar. In [CO08℄ Conti & Ortiz
onsider the WED fun
tionals
Fε(u)

.

=







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t −
1

ε
fu

) if |ux| = 1 a.e.
∞ elsesuggested by a modelization of bran
hing in martensite in a one-dimensional bar o

upyingthe referen
e domain Ω = (0, 1). The fun
tion u : Ω × (0, T ) → R represents the bardispla
ement, the system is 
onstrained in the two phases ux = 1 and ux = −1, no
ontribution from the interfa
ial energy is 
onsidered, and f stands for an applied bodyfor
e (see [KM94℄).



34 For �xed ε > 0, the fun
tional Fε fails to be lower semi
ontinuous with respe
t to theweak topology of H1(0, T ;L2(Ω)). The argument in [CO08, Thm. 3.1℄ entails thats
−Fε(u) =

∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t + I[−1,1](ux) −
1

ε
fu

)where the relaxation is taken with respe
t to the weak topology in H1(0, T ;L2(Ω)) (notethat the a
tual proof in [CO08℄ is 
on
erned with the weak topology in H1(Ω × (0, T ))instead) and I[−1,1] is the indi
ator fun
tion of the interval [−1, 1]. This 
omputation isby no means trivial as the interplay between energy and dissipation has to be 
arefullytaken into a

ount. In this spe
i�
 
ase, s
−Fε 
oin
ides with the 
onvexi�
ation of Fε.Note however that this is not the 
ase in general, see [MO08, Se
. 5.1℄.From this 
omputation, Conti & Ortiz 
onje
ture that the WED formalism 
an be ofsome use for des
ribing mi
rostru
ture evolution. In parti
ular, at a �xed level ε > 0, thenet e�e
t of relaxation is that of allowing solutions u with |ux| < 1 whi
h may thereforebe interpreted as the weak limit of a �ne evolving mi
rostru
ture.The analysis in [CO08℄ left open the issue of 
onsidering ε → 0, namely of extendingthe above interpretation to the 
ausal limit. We are in the position of �lling this gap. Fixan initial 
ondition (say u0 = 0 as in [CO08℄, for simpli
ity) and homogeneous Diri
hletboundary 
onditions. Note that s
−Fε is 
oer
ive with respe
t to the weak topologyin H1(0, T ;L2(Ω)) on K(0) (see again [CO08, Thm. 3.1℄). Hen
e, at ea
h level ε, thefun
tional s
−Fε admits a unique minimizer uε inK(0) (along with homogeneous Diri
hletboundary 
onditions) and, by applying our results, uε 
onverges uniformly in L2(Ω) andweakly in H1(0, T ;L2(Ω)) to a fun
tion u solving(7.11) u′ + ∂IC(u) ∋ f a.e. in (0, T ), u(0) = 0.Here IC is the indi
ator fun
tion of the nonempty 
onvex and 
losed set
C

.

= {u ∈ H1
0 (Ω) : |ux| ≤ 1 a.e.}.In parti
ular, the latter entails that u : [0, T ] → H1

0 (Ω) ful�lls
∫ 1

0

(
∫ x

0

(ut − f)

)

(p− ux) ≤ 0 ∀p ∈ L2(Ω) with |p| ≤ 1 a.e. in Ω and ∫

Ω

p = 0,a.e. in (0, T ), u(·, 0) = 0 a.e. in Ω.Moreover, our 
onvergen
e analysis may be extended to the 
ase of approximate mini-mizers of the original unrelaxed fun
tional Fε. In parti
ular, as s
−Fε turns out to be theWED fun
tional 
orresponding to the 
onvex and lower semi
ontinuous potential
u 7→

∫

Ω

(

I[−1,1](ux) −
1

ε
fu

)

,we are in the position of applying Corollary 5.5 and dedu
e that all (quali�ed) sequen
esof approximate minimizers of Fε 
onverge to the unique solution of (7.11) in the sense of(7.2)-(7.3).An illustration of this solution for a 
onstant body for
e f is given in [CO08, Fig.4℄.



357.6. Surfa
e roughening by island growth. A se
ond example of relaxation in [CO08℄
on
erns the WED fun
tionals
Fε(u)

.

=







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t −
1

ε
fu

) if ∇u ∈ K a.e.
∞ elsewhere Ω

.

= [0, 1]2 and
K

.

= {(0,±1), (±1, 0)}.These fun
tionals are 
onsidered in 
onne
tion with the phenomenon of island growth and
oarsening during the epitaxial growth of thin �lms. In parti
ular, u : Ω → R representsthe height of the thin �lm surfa
e, f is a given deposition rate, andK is the set of preferredslopes (see [ORS99℄)For �xed ε > 0 the relaxation of Fε with respe
t to the weak topology ofH1(0, T ;L2(Ω))reads [CO08, Thm. 4.1℄s
−Fε(u)
.

=

∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t + I
oK(∇u) − 1

ε
fu

)where I
oK is the indi
ator fun
tion of the 
onvex hull 
oK of K, namely
oK = {(x, y) ∈ R
2 : |x| + |y| ≤ 1}.By inspe
ting the spe
i�
 form of s
−Fε, in [CO08℄ the ma
ros
opi
 behavior of theevolving thin �lm in the 
ausal limit ε→ 0 is 
onje
tured to 
orresponds to the gradient�ow along with the 
hoi
e

φ(u)
.

= −
∫

Ω

fu if ∇u ∈ 
oK and φ(u)
.

= ∞ else,the e�e
t of the mi
rostru
ture being that of relaxing the original 
onstraint ∇u ∈ Kto the weaker ∇u ∈ 
oK (in parti
ular, solutions with ∇u ∈ int 
oK are interpreted asweak limits of evolving mi
rostru
tures).This fa
t is 
on�rmed by our 
onvergen
e result. Indeed, the fun
tionals s
−Fε are(
onvex and) lower semi
ontinuous. Hen
e, they admit unique minimizers uε in K(0) (theinitial 
ondition 0 is 
hosen for simpli
ity and referen
e with [CO08℄) and the sequen
e
uε 
onverges uniformly in L2(Ω) to the unique gradient �ow(7.12) u′ + ∂IM (u) ∋ f a.e. in (0, T ), u(0) = 0where M .

= {v ∈ H1
0 (Ω) : ∇v ∈ 
oK}.Convergen
e also holds for approximate minimizers of the original unrelaxed fun
tional

Fε. Indeed, as the relaxation s
−Fε is the WED fun
tional related to the 
onvex and lowersemi
ontinuous potential
u 7→

∫

Ω

(

I
oK(∇u) − 1

ε
fu

)

,Corollary 5.4 ensures that all (quali�ed) sequen
es of approximate minimizers of Fε 
on-verge to the unique solution of (7.12) in the sense of (7.2)-(7.3). The reader is referred to[CO08, Fig. 5℄ for an illustration of a thin �lm evolution developing island growth undera 
onstant deposition rate.
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