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AbstratThis paper onerns seond-order analysis for a remarkable lass of variational sys-tems in �nite-dimensional and in�nite-dimensional spaes, whih is partiularly im-portant for the study of optimization and equilibrium problems with equilibrium on-straints. Systems of this type are desribed via variational inequalities over polyhedralonvex sets and allow us to provide a omprehensive loal analysis by using appropriategeneralized di�erentiation of the normal one mappings for suh sets. In this paper wee�iently ompute the required oderivatives of the normal one mappings exlusivelyvia the initial data of polyhedral sets in re�exive Banah spaes. This provides the maintools of seond-order variational analysis allowing us, in partiular, to derive neessaryand su�ient onditions for robust Lipshitzian stability of solution maps to param-eterized variational inequalities with evaluating the exat bound of the orrespondingLipshitzian moduli. The e�ient oderivative alulations and haraterizations ofrobust stability obtained in this paper are the �rst results in the literature for the prob-lems under onsideration in in�nite-dimensional spaes. Most of them are also new in�nite dimensions.1 IntrodutionIt has been well reognized in optimization and variational analysis, starting with the sem-inal work by Robinson [23℄, that a number of the most interesting variational systems andvariational onditions an be desribed via the normal one mapping N(x; Θ) to onvexsets Θ ⊂ X as well as their subdi�erential ounterparts and further nononvex extensions.Among variational models of this type we mention variational inequalities, omplementar-ity problems, KKT (Karush-Kuhn-Tuker) onditions in parametri optimization, and othervariational and equilibrium systems arising in optimization theory and its numerous appli-ations; see, e.g., [4, 9, 10, 15, 16, 19, 20, 23, 24, 25℄ and the referenes therein. Partiularlyimportant lasses of sets used in desribing variational and equilibrium onditions an berepresented in the following onvex polyhedral form
Θ :=

{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0, i ∈ T := {1, . . . , m}

}
, (1.1)where x∗

i are given elements of the dual spae X∗. Note that the homogeneous/oni form ofpolyhedral systems in (1.1) does not restrit the generality, sine nonhomogeneous polyhedraan always be loally translated to (1.1).Known results on variational analysis involving the normal one mappings to onvex poly-hedra and its e�ient implementation for important lasses of optimization and equilibriumproblems onern the ase of �nite-dimensional spaes X = IRn. The reader an �nd moreinformation on these and related developments and appliations in [3, 4, 6, 7, 18, 19, 25, 27,1



28, 29℄ and the referenes therein. It omes naturally that loal variational analysis of thenormal one mapping
F(x) := N(x; Θ), x ∈ X, (1.2)assoiated with (1.1) and its appliations to, e.g., deriving optimality and stationarity on-ditions, sensitivity and stability issues, et. all for the usage and implementation of appro-priate onstrutions of generalized di�erentiation for set-valued mappings of type (1.2).Among other generalized di�erential onstrutions, oderivatives of set-valued mappings in-trodued in [12℄ have been well reognized as a powerful tool of variational analysis andits numerous appliations, partiularly to problems of optimization, equilibria, and ontrol;see, e.g., the books [2, 15, 16, 19, 25, 26℄ with their referenes and disussions. To proeede�iently with appliations of oderivatives, we need to ompute them onstrutively interms of the initial data of the problems in question. Various results in this diretion forthe normal one mapping generated by polyhedral sets in �nite-dimensional spaes an befound in [3, 6, 7, 27, 28℄. To the best of our knowledge, the onstrutive results obtainedin this paper are the �rst ones for polyhedral sets in in�nite dimensions providing also newdevelopments and appliations in �nite-dimensional settings.Observe that oderivatives of the normal one mapping (1.2) aumulate in fat some seond-order information on the original polyhedral set (1.1), whih is used in variational analysisof �rst-order optimality and/or equilibrium onditions (e.g., of the KKT type) exhibited bythe normal one mapping under onsideration.The underlying framework of this paper is the lass of re�exive Banah spaes X. Ourprimary goal is to preisely ompute the basi/limiting oderivative by Mordukhovih forthe normal one mapping (1.2), whih is atually the seond-order subdi�erential [13℄ of theindiator funtion assoiated with the polyhedral set (1.1); see Remark 4.8 in Setion 4 formore details. Then we apply the obtained oderivative formulas to derive e�ient onditionsfor robust Lipshitzian stability of solution maps to parameterized variational inequalitiesvia the oderivative haraterization of the major Lipshitz-like/Aubin property for generalset-valued mappings between Asplund (in partiular, re�exive) spaes, with omputing theexat bound of Lipshitzian moduli. As auxiliary results of their own independent interest, weevaluate the so-alled preoderivative (known also as the Fréhet oderivative) of the normalone mapping (1.2) generated by (1.1), whih is a ruial building blok for omputing thebasi/limiting oderivative of (1.2) in re�exive Banah spaes.Besides employing fundamental tools of variational analysis and generalized di�erentiationtaken mainly from [15℄, we use in this study an appropriate in�nite-dimensional version ofthe lassial Farkas lemma, in the form of Motzkin's theorem of the alternative (see, e.g.,[1℄), that largely exploits the polyhedral struture of (1.1) desribed by linear inequalities.The rest of the paper is organized as follows. Setion 2 ontains some basi de�nitionsand preliminary material from variational analysis, generalized di�erentiations, and linearinequalities widely used in formulations and proofs of the main results.Setion 3 deals with omputing the prenormal one (or the Fréhet normal one) to thegraph of (1.2) and the orresponding preoderivative of F in terms onstrutively generatedby the initial data of the given polyhedral set (1.1). The results obtained are the �rst ones inthis diretion for the ase of in�nite-dimensional spaes being mostly new and/or improvingknown results of this type in �nite dimensions [3, 27℄.2



Setion 4 is mainly devoted to preise omputing, exlusively via the initial data of (1.1), thebasi normal one to the graph of the normal one mapping (1.2) and the basi oderivativeof F by using, among other devies, the passage to the limit proedures from the orre-sponding results of Setion 3. Furthermore, we show that the basi normal and oderivativeonstrutions are invariant for the normal one mapping generated by the onvex polyhe-dron under onsideration while replaing the weak onvergene by the norm onvergene onthe the spae X and its topologial dual X∗. We ompare the results obtained here, whihare the �rst in in�nite dimensions, with alulating the basi oderivative of F for onvexpolyhedral sets given in [3, 7, 27℄ in the ase of �nite-dimensional spaes.The �nal Setion 5 onerns deriving veri�able onditions for robust Lipshitzian stabilityof solution maps to parameterized variational inequalities generated by the normal onemapping to the polyhedral set (1.1) in re�exive Banah spaes. Based on the oderivativeharaterizations of the Lipshitz-like property for general losed-graph mappings from [15℄,on some results of oderivative alulus, and largely on the preise omputation of the basioderivative for the normal one mapping (1.2) given in Setion 4, we establish onstrutiveriteria as well as easily veri�able su�ient onditions for robust Lipshitzian stability of thesolution maps in question expressed exlusively via the initial data of model (1.1) in both�nite-dimensional and re�exive Banah spaes. The results obtained, being the �rst ones inin�nite dimensions, are also new in �nite-dimensional settings providing haraterizationsof robust stability of parametri variational inequalities entirely via their initial data andessentially improving the orresponding results of [3, 28℄. Moreover, we derive onstrutiveestimates as well as preise equalities, new in both �nite and in�nite dimensions, for omput-ing the exat Lipshitzian bounds for solution maps to the polyhedral variational inequalitiesunder onsideration.Our notation and terminology are basially standard and onventional in the area of vari-ational analysis and generalized di�erentiation; see, e.g., [15, 25, 26℄. Although most ofthe de�nitions and some results hold in more general Banah spae settings, our standingassumption in this paper (unless otherwise stated) is that the Banah spae X in questionis re�exive, sine the re�exivity seems to be essential for the validity of the main results ob-tained below. As usual, ‖ · ‖ stands for the norm on X, 〈·, ·〉 stands for the anonial pairingbetween X and its topologially dual spae X∗, the symbol x∗
k

w
→ x∗ with k ∈ IN := {1, 2, . . .}indiates the weak onvergene of a sequene in X∗. We use the generi symbol ∗ to signifyduality/polarity relationships if no onfusion arises. In partiular,

K∗ :=
{
x∗ ∈ X∗

∣∣ 〈x∗, x〉 ≤ 0 for all x ∈ K
}is the polar one to a one K ⊂ X. By

ker{v∗
j

∣∣ j ∈ J
}

:= {x ∈ X
∣∣ 〈v∗

j , x〉 = 0 for all j ∈ J
}we denote the kerner/orthogonality subspae generated by the elements v∗

j ∈ X∗, j ∈ J . Inthe ase of just one generating element v∗ ∈ X∗, we also use the notation
{v∗}⊥ :=

{
x ∈ X

∣∣ 〈v∗, x〉 = 0
}
.The notation AX stands for the image/range subspae of the linear operator A : X → Y .Given further a nonempty set Ω ⊂ X, denote by spanΩ the smallest linear subspae on-taining Ω and by oneΩ the smallest onvex one ontaining this set; by onvention we let3



one ∅ := {0} and span ∅ := {0}. The Ω-restrited onvergene x
Ω
→ x̄ means that x → x̄with x ∈ Ω. Considering �nally a set-valued mapping F : X →→ X∗, de�ne its domain byDomF :=

{
x ∈ X

∣∣ F (x) 6= ∅
}and the (sequential) Painlevé-Kuratowski outer/upper limit of F as x → x̄ by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequenes xk → x̄, x∗
k

w
→ x∗ as k → ∞with x∗

k ∈ F (xk) for all k ∈ IN
}

.
(1.3)2 Basi De�nitions and PreliminariesIn our brief desriptions of basi tools and preliminary results of variational analysis andgeneralized di�erentiation presented in this setion we follow the book [15℄, where moredetails, proofs, and disussions an be found. We also refer the reader to [2, 16, 26, 25℄ forrelated and additional material.As mentioned in Setion 1, our underlying assumption is that all the spaes in question areBanah and re�exive, whih is the standing setting of this paper unless otherwise stated.Note that any re�exive Banah spae is Asplund, and thus the major results from [15℄established in Asplund spaes are applied in the setting of this paper. In [15℄ the reader an�nd appropriate ounterparts of the basi de�nitions and results presented in this setion inmore general settings of Asplund spaes and also of arbitrary Banah spaes.Given a nonempty set Ω ⊂ X, de�ne the prenormal one (known also as the Fréhet orregular normal one) to Ω at x̄ ∈ Ω by

N̂(x; Ω) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x
Ω
→x̄

〈x∗, x − x̄〉

‖x − x̄‖
≤ 0

}
. (2.1)For onveniene let N̂(x; Ω) = ∅ if x /∈ Ω. Note that the set N̂(x̄; Ω) is onvex and weaklylosed in X∗; furthermore, it redues to the normal one of onvex analysis if Ω is onvex.However, the prenormal one (2.1) may be trivial (= {0}) at boundary points of simplenononvex sets in IR2 (see examples in [15, 25℄), and it does not generally admit pointwisealulus (e.g., the ruial intersetion rule) required by many appliations. The situation isdramatially improved when we onsider the sequential regularization of (2.1) employing theouter limit (1.3) to N̂(·; Ω) by

N(x̄; Ω) := Lim sup
x→x̄

N̂(x; Ω) (2.2)known as the (basi, limiting, Mordukhovih) normal one to Ω at x̄ ∈ Ω. When X = IRn,onstrution (2.2) an be equivalently desribed in the form:
N(x̄; Ω) =

{
x∗ ∈ IRn

∣∣∣ there exist αk ≥ 0, xk → x̄, wk ∈ Ω for k ∈ IN suh that
‖wk − xk‖ = dist(xk; Ω) and αk(xk − wk) → x∗ as k → ∞

}

4



originally introdued in [11℄ via the Eulidean distane funtion dist(x; Ω) to Ω. Observethat the basi normal one (2.2) is often nononvex in the ase of nononvex sets Ω whileit and the orresponding subdi�erential/oderivative onstrutions enjoy full alulus andother important properties required by appliations. These developments are mainly basedon variational/extremal priniples of variational analysis, whih replae the lassial onvexseparation theorems in nononvex settings.Given next a set-valued mapping F : X →→ Y with the graphgphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
} (2.3)and following the pattern initiated in [12℄, we present two onstrutions of oderivative typevia the orresponding normals to the graphial set (2.3). The preoderivative (or Fréhetoderivative) of F at (x̄, ȳ) ∈ gphF is de�ned by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗, (2.4)while the basi/limiting oderivative of F at (x̄, ȳ) is

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗, (2.5)whih orresponds to the �normal� oderivative onstrution in [15℄. If the given map-ping F = f : X → Y is single-valued and stritly di�erentiable at x̄ with the derivative

∇f(x̄) : X → Y , in the sense that
lim

x,u→x̄

f(x) − f(u) − 〈∇f(x̄), x − u〉

‖x − u‖
= 0 (2.6)(this is automati when f is C1 around x̄), then

D̂∗f(x̄)(y∗) = D∗f(x̄)(y∗) =
{
∇f(x̄)∗y∗

} for all y∗ ∈ Y ∗, (2.7)where ȳ = f(x̄) is omitted in the oderivative notation for single-valued mappings. Theoderivative representations in (2.7) show that both onstrutions (2.4) and (2.5) redue tothe adjoint derivative operator in the lassial setting.It is easily implied by the de�nitions that the basi oderivative (2.5) admits the followinglimiting representation via the preoderivative (2.4) at points thereby:
D∗F (x̄, ȳ)(y∗) = Lim sup

(x,y)→(x̄,ȳ)

z∗
w
→y∗

D̂∗F (x, y)(z∗), (2.8)where the outer limit (1.3) is taken with respet to the weak topology in both dual spaes
X∗ and Y ∗. We say that F is (strongly) oderivatively normal at (x̄, ȳ) if

D∗F (x̄, ȳ)(y∗) = Lim sup
(x,y)→(x̄,ȳ)
‖z∗−y∗‖→0

D̂∗F (x, y)(z∗), (2.9)whih means that the oderivative onstrution (2.5) does not hange if we replae the weakonvergene z∗
w
→ y∗ in (2.8) by the norm one z∗ → y∗ in (2.9), while the onvergene on

X∗ in (2.9) stays weak by (1.3). Note that the right-hand side limit in (2.9) orresponds to5



the �mixed� oderivative onstrution in [15℄. We refer the reader to Proposition 4.9 in [15℄that lists a number of e�ient onditions ensuring the oderivative normality of set-valuedand single-valued mappings. Standard lasses of mappings satisfying (2.9) inlude of oursethose with onvex graph (2.3) as well as stritly di�erentiable (2.6) at the point in question.Reall also a ertain �normal ompatness� property of set-valued mappings that is needed forharaterizing robust Lipshitzian stability in in�nite dimensions. A mapping F : X →→ Yis partially sequentially normally ompat (PSNC) at (x̄, ȳ) ∈ gphF if for any sequene
{(xk, yk, x

∗
k, y

∗
k)} ⊂ X × Y × X∗ × Y ∗ satisfying (x∗

k, y
∗
k) ∈ N̂((xk, yk); gphF ) for all k ∈ INwe have the impliation

[
(xk, yk) → (x̄, ȳ), x∗

k

w
→ 0, ‖y∗

k‖ → 0
]

=⇒ ‖x∗
k‖ → 0 as k → ∞. (2.10)The PSNC property obviously holds if the domain spae X is �nite-dimensional. In fat, itholds in muh more general settings of in�nite-dimensional spaes being stable with respetto various operations performed on set-valued and single-valued mappings; the latter alulusbased on the extremal/variational priniples an be found in [15℄. In partiular, F is PSNCat (x̄, ȳ) if it is Lipshitz-like around this point, i.e., there are neighborhoods U of x̄ and Vof ȳ suh that

F (x) ∩ V ⊂ F (u) + ℓ‖x − u‖IB whenever x, u ∈ U (2.11)with some onstant/modulus ℓ ≥ 0, where IB stands for the losed unit ball in the spaein question. The in�mum of all moduli {ℓ} in (2.11) is alled the exat Lipshitzian boundof F around (x̄, ȳ) and is denoted by lipF (x̄, ȳ). Note that property (2.11) seems to bethe most natural extension of the lassial (robust) loal Lipshitzian behavior to set-valuedmappings. It is also known as Aubin's �pseudo-Lipshitzian� property and redues to theHausdor� one around x̄ for V = Y in (2.11). It has been well reognized and employedin variational analysis that the robust Lipshitzian property (2.11) is equivalent to metriregularity and linear openness of the inverse mapping F−1; see, e.g., [8, 15, 25℄.The following oderivative haraterization of the Lipshitz-like property (2.11) as well as alower estimate and the preise formula for omputing the exat bound of Lipshitzian moduliin (2.11) are onsequenes of Theorem 4.10 from [15℄, where the reader an �nd more generalresults, disussions, and referenes.Theorem 2.1 (oderivative haraterization and exat bound formula for Lip-shitz-like mappings). Let F : X →→ Y be losed-graph around (x̄, ȳ) ∈ gphF andoderivatively normal at this point. Then F is Lipshitz-like around (x̄, ȳ) if and only if
D∗F (x̄, ȳ)(0) = {0} (2.12)and F is PSNC at (x̄, ȳ). Furthermore, we have the estimatelipF (x̄, ȳ) ≥ ‖D∗F (x̄, ȳ)‖ := sup

{
‖x∗‖

∣∣ x∗ ∈ D∗F (x̄, ȳ)(y∗), ‖y∗‖ ≤ 1
}
, (2.13)whih holds as equality if dimX < ∞.When both X and Y are �nite-dimensional, the results of Theorem 2.1 redue to thoseobtained in [14℄; see also [25, Theorem 9.40℄ and the referenes therein.Finally in this setion, we present an appropriate in�nite-dimensional version of generalizedFarkas lemma, in the form of Motzkin's theorem of the alternative, whih is taken from [1,Theorem 5℄ and is widely used in the paper. 6



Theorem 2.2 (of the alternative). Let W be a vetor spae of arbitrary dimension, andlet A : W → IRd and B : W → IRs be linear mappings. Then we have the alternative:either: ∃x ∈ W suh that Bx ≥ 0 and Ax > 0 omponentwise,or: ∃λ ∈ IRd, ∃µ ∈ IRs suh that λ ≥ 0, λ 6= 0, µ ≥ 0, and
d∑

i=1

λiAi +
s∑

j=1

µjBj = 0,where Ai and Bj refer to the omponents of A and B, respetively.3 Computing Preoderivatives of Normal Cone Mappingsto Convex PolyhedraGiven the index set T = {1, . . . , m} as m ≥ 1 and the generating linear funtionals x∗
i ∈ X∗,

i ∈ T , we rewrite the initial onvex polyhedron (1.1) as
Θ =

{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0 for all i ∈ T

} (3.1)and �x some point x̄ ∈ Θ. Consider the normal one of onvex analysis
N(x̄; Θ) :=

{
x∗ ∈ X

∣∣ 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Θ
} (3.2)to Θ at x̄ ∈ Θ and de�ne the olletion of ative onstraint indies

I(x̄) :=
{
i ∈ T

∣∣ 〈x∗
i , x̄〉 = 0

}
, (3.3)where the dependene on x̄ in notation (3.3) may be omitted if no onfusion arises.Our main goal in this setion is to provide an exat alulation of the prenormal one (2.1)to the (nononvex) graph of the normal one mapping F in (1.2) generated by (3.2) andhene the preoderivative (2.4) of the mapping F entirely in terms of the initial data of (3.1)inluding the ative onstraint indies (3.3) at the referene point x̄.To proeed, reall the standard onstrution of the tangent one

T (x̄; Θ) := N∗(x̄; Θ) =
{
v ∈ X

∣∣ 〈v, x∗〉 ≤ 0 for all x∗ ∈ N(x̄; Θ)
} (3.4)to the onvex set Θ at x̄ de�ned as the dual/polar one to the normal one (3.2) in the aseof re�exive spaes under onsideration.In our polyhedral ase (3.1) the normal and tangent ones to Θ admit the following expliitrepresentations (probably well known while we did no �nd the exat referenes) via thegenerating elements x∗

i in (3.1) and the ative indies I(x̄).Proposition 3.1 (expliit representations of the normal and tangent ones to on-vex polyhedra). Let Θ be given in (3.1), and let I(x̄) be de�ned in (3.3). Then we havethe representations
N(x̄; Θ) = cone

{
x∗

i

∣∣ i ∈ I(x̄)
}

=
{ ∑

i∈I(x̄)

λix
∗
i

∣∣∣ λi ≥ 0
}
, (3.5)

T (x̄; Θ) =
{
v ∈ X

∣∣ 〈x∗
i , v〉 ≤ 0 for all i ∈ I(x̄)

}
. (3.6)7



Proof. The �rst representation of the normal one in (3.5) an be easily derived fromTheorem 2.2 of the alternative. The seond one in (3.5) follows from the �rst equality intherein by the de�nition of the oni onvex hull in the ase of the �nite set {x∗
i | i ∈ I(x̄)}.The tangent one representation (3.6) is a diret onsequene of the �rst equality in (3.5)and de�nition (3.4) of the tangent one. △Now we onsider the set-valued normal one mapping F : X →→ X∗ de�ned in (1.2) by

F(x) = N(x; Θ) and establish an intermediate representation of the prenormal one (2.1)to the graph of F at (x̄, x̄∗) ∈ gphF with some x̄∗ ∈ N(x̄; Θ) via the tangent one (3.4)to the original polyhedral set (3.1) at the referene point x̄, whih essentially exploits there�exivity of the spae X.Proposition 3.2 (tangent representation of the prenormal one to the graph ofthe normal one mapping). Fix x̄∗ ∈ N(x̄; Θ) from the normal one (3.2) to the polyhedralset (3.1). Then we have the following representation of the prenormal one (2.1) to the graphof the normal one mapping (1.2):
N̂

(
(x̄, x̄∗); gphF)

=
(
T (x̄; Θ) ∩ {x̄∗}⊥

)∗
×

(
T (x̄; Θ) ∩ {x̄∗}⊥

)
. (3.7)Proof. Take x̄∗ ∈ N(x̄; Θ) and �x an arbitrary pair (x∗, u) ∈ N̂((x̄, x̄∗); gphF). It followsfrom de�nition (2.1) of the prenormal one to the graph of F that

lim sup
(x,u∗)

gphF
→ (x̄,x̄∗)

〈x∗, x − x̄〉 + 〈u, u∗ − x̄∗〉

‖x − x̄‖ + ‖u∗ − x̄∗‖
≤ 0. (3.8)Substituting x = x̄ and u∗ ∈ F(x̄) into (3.8) and using the fat that the set F(x̄) is a onvexone and then onstrution (3.4) of the tangent one to Θ at x̄, we dedue from (3.8) that

u ∈ N̂
(
x̄∗;F(x̄)

)
= N

(
x̄∗;F(x̄)

)
= F(x̄)∗ ∩ {x̄∗}⊥ = T (x̄; Θ) ∩ {x̄∗}⊥. (3.9)To verify the inlusion �⊂� in (3.7), it remains to hek that x∗ ∈ (T (x̄; Θ)∩ {x̄∗}⊥)∗, whihmeans the ful�llment of the relationship

〈x∗, v〉 ≤ 0 for any v ∈ T (x̄; Θ) ∩ {x̄∗}⊥. (3.10)To proeed, take any v ∈ T (x̄; Θ) ∩ {x̄∗}⊥ and onstrut the sequene xk := x̄ + k−1v as
k ∈ IN . Observe that for the generating elements x∗

i in (3.1) we have
〈x∗

i , xk〉 = 〈x∗
i , x̄〉 + k−1〈x∗

i , v〉 = k−1〈x∗
i , v〉 ≤ 0 whenever i ∈ I(x̄) and k ∈ IN,sine x∗

i ∈ N(x̄; Θ) for all i ∈ I(x̄) by (3.2) and (3.3). This implies that xk ∈ Θ for all k ∈ INsu�iently large, sine 〈x∗
i , x̄〉 < 0 as i ∈ T \ I(x̄). Furthermore, taking into aount that

x̄∗ ∈ N(x̄; Θ) and v ∈ {x̄∗}⊥, we get
〈x̄∗, x − xk〉 = 〈x̄∗, x − x̄〉 − k−1〈x̄∗, v〉 = 〈x̄∗, x − x̄〉 ≤ 0 for all x ∈ Θ,whih yields, by the onstrution of F in (1.2), that x̄∗ ∈ F(xk), i.e., (xk, x̄

∗) ∈ gphF when
k ∈ IN is su�iently large. It is obvious that (xk, x̄

∗) → (x̄, x̄∗) as k → ∞. Putting (xk, x̄
∗)8



for (x, u∗) in (3.8), we onlude by passing to the limit as k → ∞ that 〈x∗, v〉 ≤ 0 and thusarrive at (3.10). Unifying (3.9) and (3.10) allows us to justify the inlusion �⊂� in (3.7).To prove the opposite inlusion in (3.7), assume by ontradition that there is a pair (x∗, v) ∈
X∗ × X satisfying the relationships

x∗ ∈
(
T (x̄; Θ) ∩ {x̄∗}⊥

)∗
, v ∈ T (x̄; Θ) ∩ {x̄∗}⊥, (x∗, v) /∈ N̂

(
(x̄, x̄∗); gphF)

. (3.11)The last one in (3.11) ensures, by the strutures of the mapping F and the prenormal one(2.1) to its graph, the existene of a number γ > 0 and a sequene (xk, v
∗
k) → (x̄, x̄∗) as

k → ∞ suh that xk ∈ Θ, v∗
k ∈ N(xk; Θ), and
〈x∗, xk − x̄〉 + 〈v, v∗

k − x̄∗〉

‖xk − x̄‖ + ‖v∗
k − x̄∗‖

> γ (3.12)for all k ∈ IN su�iently large. Considering by (3.3) the olletion of ative onstraintindies I(xk) at xk, we an assume by passing to a subsequene if neessary that there is aonstant index set Ĩ suh that I(xk) = Ĩ for all k ∈ IN . It easily follows that Ĩ ⊂ I(x̄), sine
xk → x̄ as k → ∞. Taking this into aount and employing the normal one representation(3.5) from Proposition 3.1, we get

v∗
k =

∑

i∈I(x̄)

λikx
∗
i with λik ≥ 0 for all i ∈ I(x̄) and k ∈ IN.The latter implies, by v ∈ T (x̄; Θ) ∩ {x̄∗}⊥ due to the seond inlusion in (3.11) and by

x∗
i ∈ N(x̄; Θ) for all i ∈ I(x̄), that

〈v, v∗
k − x̄∗〉 = 〈v, v∗

k〉 =
∑

i∈I(x̄)

λik〈v, x∗
i 〉 ≤ 0, k ∈ IN, (3.13)whih ensures, in partiular, that xk 6= x̄ for all k ∈ IN due to (3.12). By the re�exivity of

X and the weak sequential ompatness of the unit ball in X we onlude with no loss ofgenerality that there is z ∈ X with ‖z‖ ≤ 1 suh that
xk − x̄

‖xk − x̄‖
w
−→ z as k → ∞.Sine xk ∈ Θ, it follows from (3.2) that

〈
xk − x̄

‖xk − x̄‖
, z∗

〉
≤ 0 for all z∗ ∈ N(x̄; Θ), k ∈ IN,whih implies by passing to the limit as k → ∞ that 〈z, z∗〉 ≤ 0 for all z∗ ∈ N(x̄; Θ) andhene z ∈ T (x̄; Θ) by (3.4). Thus 〈z, x̄∗〉 ≤ 0, sine x̄∗ ∈ N(x̄; Θ). Moreover, it follows from

v∗
k ∈ N(xk; Θ) and the normal one de�nition that

〈
v∗

k,
x̄ − xk

‖x̄ − xk‖

〉
≤ 0 for all k ∈ IN.Passing to the limit in the latter inequality and taking into aount that v∗

k → x̄∗ stronglyin X∗ as k → ∞, we arrive at 〈x̄∗,−z〉 ≤ 0 and onlude therefore that 〈x̄∗, z〉 = 0,9



sine the opposite inequality was proved above. This gives z ∈ {x̄∗}⊥, and hene we get
z ∈ T (x̄; Θ) ∩ {x̄∗}⊥. Furthermore, it follows from (3.12) and (3.13) that

γ <
〈x∗, xk − x̄〉 + 〈v, v∗

k − x̄∗〉

‖xk − x̄‖ + ‖v∗
k − x̄∗‖

≤ max

{
0,

〈
x∗,

xk − x̄

‖xk − x̄‖

〉}
+ max

{
0,

〈
v,

v∗
k − x̄∗

‖v∗
k − x̄∗‖

〉}

≤ max

{
0,

〈
x∗,

xk − x̄

‖xk − x̄‖

〉} for all k ∈ IN.Letting k → ∞ at the latter expression and remembering that x∗ ∈ (T (x̄; Θ) ∩ {x̄∗}⊥)∗ bythe �rst assumption in (3.11) and that z ∈ T (x̄; Θ) ∩ {x̄∗}⊥ as proved above, we arrive at
γ ≤ max

{
0, 〈x∗, z〉

}
= 0,whih ontradits the fat that γ > 0 in (3.12). This justi�es the inlusion �⊃� in (3.7) andthus ompletes the proof of the proposition. △The result of Proposition 3.2 gives a preise representation of the prenormal one (2.1) tothe graph gphF of the normal one mapping (1.2) under onsideration, while not expliitlyvia the original polyhedral set Θ in (3.1) but involving the tangent one (3.4) to Θ. Our nextgoal in this setion is to establish an expliit representation of this prenormal one entirelyin terms of the initial data of the onvex polyhedron (3.1). To proeed, we introdue thefollowing two sets in spaes X∗ and X, respetively, whih are onstruted via the generatingelements x∗

i in (3.1) and subsets of the index set T in (3.1). Given arbitrary olletions ofindies P ⊂ Q ⊂ T , de�ne the sets
AQ,P := one{x∗

i

∣∣ i ∈ Q \ P
}

+ span{x∗
i

∣∣ i ∈ P
}
, (3.14)

BQ,P :=
{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ P, 〈x∗

i , x〉 ≤ 0 for all i ∈ Q \ P
}
. (3.15)There is a simple duality/polarity relationship between the above sets used in the proofs ofthe main result of this setion and those in Setion 4.Lemma 3.3 (polarity relationship). Let the sets AQ,P and BQ,P be de�ned in (3.14) and(3.15), respetively, via the initial data of the onvex polyhedron (3.1). Then we have

B∗
Q,P = AQ,P for any P ⊂ Q ⊂ T. (3.16)Proof. The inlusion B∗

Q,P ⊃ AQ,P follows diretly from de�nitions (3.14) and (3.15). Tojustify the opposite inlusion �⊂� in (3.16), pik an arbitrary element x∗ ∈ B∗
Q,P . Then wehave 〈x∗, x〉 ≤ 0 for all x ∈ BQ,P , whih means that there is no x ∈ X suh that

〈x∗, x〉 > 0, 〈x∗
i , x〉 ≤ 0, 〈−x∗

i , x〉 ≤ 0 for all i ∈ Pand 〈x∗
i , x〉 ≤ 0 for all i ∈ Q \ P.Applying now Theorem 2.2 of the alternative, we �nd numbers λ > 0, µi ≥ 0 and νi ≥ 0 as

i ∈ P , and ηi ≥ 0 as j ∈ Q \ P satisfying the equality
λx∗ =

∑

i∈Q\P

ηix
∗
i +

∑

i∈P

µix
∗
i −

∑

i∈P

νix
∗
i .10



The latter immediately implies the relationships
x∗ =

∑

i∈Q\P

λ−1ηix
∗
i +

∑

i∈P

λ−1(µi − νi)x
∗
i

∈ one{x∗
i

∣∣ i ∈ Q \ P
}

+ span{x∗
i

∣∣ i ∈ P} = AQ,P ,whih justify the inlusion �⊂� in (3.16) and omplete the proof of the lemma. △Now we are ready to establish a onstrutive representation of the prenormal one (2.1) tothe graph of the normal one mapping (1.2) entirely in terms of the original polyhedral set(3.1). Namely, given any point (x̄, x̄∗) ∈ gphF , we represent N̂((x̄, x̄∗); gphF) via the sets
AQ,P and BQ,P from (3.14) and (3.15), respetively, where the index sets Q and P are fullydetermined by the pair (x̄, x̄∗). More spei�ally, by Q we take the ative onstraint indies
I(x̄) from (3.3), while the index set of �positive multipliers� P is de�ned as follows: represent
x̄∗ ∈ N(x̄; Θ) by (3.5) of Lemma 3.1 as

x̄∗ =
∑

i∈I(x̄)

λix
∗
i with λi ≥ 0 for all i ∈ I(x̄) (3.17)and take P = J(x̄, x̄∗) ⊂ I(x̄), where the latter index set of positive multipliers is given by

J(x̄, x̄∗) :=
{
i ∈ I(x̄)

∣∣ λi > 0
}
. (3.18)Note that the multipliers λi in representation (3.17) may not uniquely de�ned unless theative generating elements {x∗

i | i ∈ I(x̄)} of (3.1) are linearly independent. Thus the indexset of positive multipliers (3.18) is not neessarily unique. It is easy to observe neverthelessthat all the subsequent onstrutions and results involving J(x̄, x̄∗) are invariant with respetto any hoie of the multipliers λi and the index set J(x̄, x̄∗) as above.Theorem 3.4 (omputing the prenormal one to the graph of the normal onemapping). Let x̄∗ ∈ N(x̄; Θ) for the polyhedral set Θ in (3.1), let the index sets I = I(x̄)and J = J(x̄, x̄∗) be de�ned by (3.3) and by (3.17) and (3.18), respetively, and let theorresponding sets AI,J and BI,J be given in (3.14) and (3.15). Then the prenormal one(2.1) to the graph of the normal one mapping F(x) = N(x; Θ) at (x̄, x̄∗) is omputed by
N̂

(
(x̄, x̄∗); gphF)

= AI,J × BI,J . (3.19)Proof. To verify (3.19), it remains to show, by Proposition 3.2 and Lemma 3.3, that
T (x̄; Θ) ∩ {x̄∗}⊥ = BI,J . (3.20)The inlusion �⊃� in (3.20) easily follows from the de�nition of BI,J in (3.15), the tangentone representation (3.4) in Proposition 3.1, and the representation of

x̄∗ =
∑

i∈J

λix
∗
i with λi > 0 for all i ∈ J = J(x̄, x̄∗), (3.21)whih is an immediate onsequene of (3.17) and (3.18).11



To verify the opposite inlusion �⊂� in (3.20), �x any v ∈ T (x̄; Θ)∩{x̄∗}⊥ and get 〈x∗
i , v〉 ≤ 0for all i ∈ I = I(x̄) by the tangent one representation (3.6) from Proposition 3.1. Further-more, by representation (3.21) of x̄∗ we have

〈x̄∗, v〉 =
∑

i∈J

λi〈x
∗
i , v〉 = 0,whih yields 〈x∗

i , v〉 = 0 for all i ∈ J by the de�nition of J = J(x̄, x̄∗) in (3.18). This justi�esthe inlusion �⊂� in (3.20) and ompletes the proof of the lemma. △As a diret onsequene of Theorem 3.4, we arrive at preise and onstrutive omputingthe preoderivative (2.4) of the normal one mapping F(x) = N(x; Θ).Corollary 3.5 (omputing the preoderivative of the normal one mapping). Inthe notation of Theorem 3.4 we have
D̂∗F(x̄, x̄∗)(u) =





cone
{
x∗

i

∣∣ i ∈ I \ J
}

+ span
{
x∗

i

∣∣ i ∈ J
}if 〈x∗

i , u〉 = 0 for i ∈ J and 〈x∗
i , u〉 ≥ 0 for i ∈ I \ J ;

∅ for all other u ∈ X.
(3.22)Proof. Follows diretly from de�nition (2.4) of the preoderivative and the result of Theo-rem 3.4 for omputing the prenormal one to the graph of F . △4 Computing Coderivatives of Normal Cone Mappingsto Convex PolyhedraThe main goal of this setion is to e�iently ompute the (basi, limiting) oderivative(2.5) of the normal one mapping F from(1.2) generated by the polyhedral set (3.1). Weprovide suh alulations in the general polyhedral setting under onsideration, without anyquali�ation onditions, and also derive more onvenient formulas in the ase when thegenerating elements x∗

i in (3.1) are linearly independent along the ative onstraints.Let us start with deriving a representation of our basi/limiting normal one (2.2) to thegraph of F via olletions of ative indies at the referene point and establishing a ertainstability property of this set in the sense de�ned in [5℄, whih is equivalently simpli�ed herein the framework of re�exive spaes.Following [5℄, we say that a set Ω ⊂ X is dually norm-stable at x̄ ∈ Ω if the basi normalone (2.2) admits the representation
N(x̄; Ω) =

{
x∗ ∈ X∗

∣∣ ∃xk
Ω
→ x̄, x∗

k ∈ N̂(xk; Ω) with ‖x∗
k − x∗‖ → 0 as k → ∞

}
. (4.1)Comparing this property with de�nition (2.2) of the basi normal one via the outer limit(1.3), we observe that (4.1) reads that the weak onvergene on X∗ in (2.2) an be equivalentlyreplaed by the norm onvergene on X∗. Observing that property (4.1) obviously holds in�nite dimensions, we refer the reader to [5℄ for veri�able onditions ensuring the dual norm-stability in in�nite-dimensional spaes. Being applied to graphial sets, the dual norm-stability surely yields the oderivative normality (2.9) of set-valued mappings.To formulate and prove the aforementioned result on omputing the limiting normal one tothe graph of F , we need the following additional onstrutions desribed entirely in terms12



of the initial data of (3.1). Fix an index olletion Q ⊂ T , form the one
CQ :=

{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ Q, 〈x∗

i , x〉 < 0 for all i ∈ T \ Q
}
, (4.2)and, given (x̄, x̄∗) ∈ gphF , onsider the family of indies

I(x̄, x̄∗) :=
{
P ⊂ I(x̄)

∣∣ x̄∗ ∈ one{x∗
i | i ∈ P}

}
. (4.3)Theorem 4.1 (representation of basi normals to the graph and stability propertyfor the normal one mapping). Let (x̄, x̄∗) ∈ gphF for the normal one mapping (1.2)generated by the onvex polyhedron (3.1), let I = I(x̄) be given in (3.3), CQ be given in(4.2), and I = I(x̄, x̄∗) be given in (4.3). Then the graphial set gphF ⊂ X × X∗ is duallynorm-stable at (x̄, x̄∗) and the basi normal one to this set is represented by

N
(
(x̄, x̄∗); gphF)

=
⋃

P⊂Q⊂I, P∈I,CQ 6=∅

AQ,P × BQ,P , (4.4)where AQ,P and BQ,P are de�ned in (3.14) and (3.15), respetively.Proof. In what follows we verify representation (4.4) of the basi normal one to the graphof F and justify simultaneously the dual norm-stability property of the graph in question.Let us start with proving the inlusion �⊂� in (4.4). Pik an arbitrary limiting normal
(v∗, u) ∈ N((x̄, x̄∗); gphF) and �nd by de�nition (2.2) sequenes (xk, z

∗
k)

gphF
−−−→ (x̄, x̄∗) and

(v∗
k, uk)

w×w
−−−→ (v∗, u) as k → ∞ satisfying

(v∗
k, uk) ∈ N̂

(
(xk, z

∗
k); gphF) for all k ∈ IN. (4.5)It follows from (4.5) due to (1.2) that xk ∈ Θ and z∗k ∈ N(xk; Θ) as k ∈ IN . Furthermore,taking into aount that there are �nitely many generating elements x∗

i of the onvex poly-hedron (3.1) and onsidering a subsequene of k ∈ IN if neessary, assume with no loss ofgenerality that there is a onstant index subset Q ⊂ I(x̄) suh that
Q :=

{
i ∈ T

∣∣ 〈x∗
i , xk〉 = 0

} for all k ∈ IN. (4.6)It is easy to observe that the set CQ from (4.2) is nonempty for the index olletion Q de�nedin (4.6). Applying representation (3.5) from Proposition 3.1 to eah normal z∗k ∈ N(xk; Θ)from (4.5), we get the equality
z∗k =

∑

i∈Q

λikx
∗
i with some λik ≥ 0, k ∈ IN, (4.7)and, extrating another subsequene by the above arguments, selet without loss of generalitya onstant index subset P ⊂ Q ⊂ I(x̄) suh that

P :=
{
i ∈ Q

∣∣ λik > 0
} for all k ∈ IN. (4.8)Combining (4.7) and (4.8) allows us to verify that

z∗k =
∑

i∈P

λikx
∗
i ∈ cone

{
x∗

i

∣∣ i ∈ P
}
,13



whih implies in turn that x̄∗ ∈ cone{x∗
i | i ∈ P} by the losedness of �nitely generated ones.This justi�es that P ∈ I for P and I de�ned in (4.8) and (4.3), respetively.Now apply the prenormal one representation (3.19) from Theorem 3.4 to (v∗

k, uk) in (4.5).By the strutures of the index sets in (3.19), (4.6), and (4.8) we arrive at
v∗

k ∈ AQ,P and uk ∈ BQ,P for all k ∈ IN, (4.9)where Q and P are given in (4.6) and (4.8), respetively. Observe that the set BQ,P isobviously weakly losed in X by onstrution (3.15) and that the set AQ,P is weakly losedin X∗ due to the polarity relationship (3.16) from Lemma 3.3 and the re�exivity of X.Passing �nally to the limit in (4.9) as k → ∞, we onlude that (v∗, u) ∈ AQ,P × BQ,P andthus justify the inlusion �⊂� in (4.4).To prove the opposite inlusion �⊃� in (4.4), �x an arbitrary element
(v∗, u) ∈

⋃

P⊂Q⊂I, P∈I,CQ 6=∅

AQ,P × BQ,Pand �nd therefore some index subsets P ⊂ Q ⊂ I(x̄) suh that P ∈ I and
v∗ ∈ AQ,P and u ∈ BQ,P with CQ 6= ∅, (4.10)where the sets CQ and I = I(x̄, x̄∗) are de�ned in (4.2) and (4.3), respetively. Take a point

x̃ ∈ CQ and onstrut a sequene {xk} ⊂ X by
xk := k−1x̃ + (1 − k−1)x̄ → x̄ as k → ∞. (4.11)Sine 〈x∗

i , x̃〉 = 0 for all i ∈ Q and 〈x∗
i , x̃〉 < 0 for all i ∈ T \Q by (4.2), we have xk ∈ CQ as

k ∈ IN . This implies that xk ∈ Θ and that the set of ative onstraint indies I(xk) at xkredues to Q for eah k ∈ IN . Then representation (3.5) from Proposition 3.1 gives
N(xk; Θ) = cone

{
x∗

i

∣∣ i ∈ Q
}
, k ∈ IN. (4.12)Observe that the inlusion P ∈ I = I(x̄, x̄∗) implies by (4.3) that

x̄∗ =
∑

i∈P

λix
∗
i with some λi ≥ 0. (4.13)De�ne further a sequene {z∗k} ⊂ X∗ by

z∗k :=
∑

i∈P

(
λi + k−1)x∗

i with ‖z∗k − x̄∗‖ → 0 as k → ∞ (4.14)and note that z∗k ∈ N(xk; Θ) for all k ∈ IN due to (4.12) and P ⊂ Q. Furthermore, allthe oe�ients from the representation of z∗k in (4.14) are positive. Taking this into aountand applying Theorem 3.4 to eah (xk, z
∗
k) with the index sets Q and P from (4.10), we get

N̂((xk, z
∗
k); gphF) = AQ,P × BQ,P and hene

(v∗, u) ∈ N̂
(
(xk, z

∗
k); gphF) for all k ∈ IN. (4.15)14



The latter implies, by letting k → ∞ and using de�nition (2.2) of the basi normal one,that (v∗, u) ∈ N((x̄, x̄∗); gphF), whih ompletes the proof of representation (4.4).To �nish the proof of the theorem, it remains to show that the graphial set gphF isdually norm-stable at (x̄, x̄∗). By de�nition of this property we need to hek that any basinormal pair (v∗, u) ∈ N((x̄, x̄∗); gphF) an be strongly (in the norm topology of X∗ × X)approximated by prenormal elements to the graph of F at points lose to (x̄, x̄∗). It isatually shown in the proof of the inlusion �⊃� in (4.4) that eah suh pair (v∗, u) satis�esinlusion (4.15), where xk → x̄ by (4.11) and z∗k → x̄∗ by (4.14) as k → ∞ strongly X and
X∗, respetively. This surely justi�es the dual norm-stability of the graph of the normalone mapping F and ends the the proof of the theorem. △The next result establishes a simpli�ed representation of the basi normal one to the graphof F provided that the generating elements x∗

i orresponding to the ative onstraint indiesin the onvex polyhedron (3.1) are linearly independent.Theorem 4.2 (basi normals to the graph of the normal one mapping underlinear independene of ative onstraints). Let (x̄, x̄∗) ∈ gphF in the framework ofTheorem 4.1, and let J = J(x̄, x̄∗) be the index set of positive multipliers de�ned in (3.18).Assume that the generating elements {x∗
i | i ∈ I(x̄)} of (3.1) are linearly independent. Thenthe basi normal one (2.2) to the graph of F admits the representation

N
(
(x̄, x̄∗); gphF)

=
⋃

J⊂P⊂Q⊂I

AQ,P × BQ,P . (4.16)Proof. We intend to show that the general representation (4.4) of the basi normal oneredues to the simpli�ed and more onvenient form (4.16) under the imposed linear inde-pendene ondition. Let us prove �rst that the latter assumption implies that
CQ 6= ∅ whenever Q ⊂ I(x̄) (4.17)for the set CQ de�ned in (4.2). Sine x̄ ∈ CI , we obviously have (4.17) for Q = I(x̄).Otherwise, represent the set CQ as

CQ =
{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0, 〈−x∗

i , x〉 ≤ 0 for i ∈ I and 〈x∗
i , x〉 < 0 for i ∈ T \ Q}and assume, arguing by ontradition, that CQ = ∅. Then Theorem 2.2 of the alternativeensures the existene of nonnegative numbers αi, α̃i, βj for i ∈ Q and j ∈ T \Q suh that atleast one of βj is not zero and

∑

i∈Q

αix
∗
i −

∑

i∈Q

α̃ix
∗
i +

∑

j∈T\Q

βjx
∗
j = 0. (4.18)By the inlusion Q ⊂ I and de�nition (3.3) of I = I(x̄) we get from the latter identity that

∑

j∈T\I

βj〈x
∗
j , x̄〉 = 0,whih implies in turn the relationships

〈x∗
j , x̄〉 < 0 and hene βj = 0 for all j ∈ T \ I(x̄).15



This allows us to dedue from (4.18) that
∑

i∈Q

(αi − α̃i)x
∗
i +

∑

j∈I\Q

βjx
∗
i = 0,where at least one of the multipliers βj is not zero. The latter ontradits the linear inde-pendene assumption made and thus justi�es (4.17).To derive next the normal one representation (4.16) from that of (4.4) in Theorem 4.1, itis su�ient to prove the equivalene

P ∈ I ⇐⇒ J ⊂ P, (4.19)where I = I(x̄, x̄∗) is de�ned in (4.3). Observe right away that the impliation �⇐=� in(4.19) follows immediately from representation (3.21) and the de�nition of I. To justify theopposite impliation �=⇒� in (4.19), take any P ⊂ J and �nd γi ≥ 0 as i ∈ P with
x̄∗ =

∑

i∈P

γix
∗
i . (4.20)Realling that P ⊂ I by de�nition (4.3) and taking λi from representation (4.13) , we let

µi :=

{
λi, i ∈ J,
0, i ∈ I \ J,

νi :=

{
γi, i ∈ P,
0, i ∈ I \ Pand onlude by (3.21) and (4.20) that

x̄∗ =
∑

i∈I

µix
∗
i =

∑

i∈I

νix
∗
i , (4.21)whih implies by the linear independene assumption that µi = νi for all i ∈ I.Assume now that J 6⊂ P , i.e., there is an index i ∈ I suh that i ∈ J \ P . It gives by (3.21)and (4.21) that

0 < λi = µi = νi = 0for this index, whih is an obvious ontradition. Thus J ⊂ P , and the onlusion of thetheorem follows �nally from (4.17) and (4.19). △As onsequenes of Theorems 4.1 and 4.2, we obtain the following representations of thebasi oderivative (2.5) involving olletions of ative index subsets in the general ase (3.1)of onvex polyhedra as well as under the linear independene ondition.Corollary 4.3 (oderivative normality and oderivative representations via ol-letions of ative index subsets). Let (x̄, x̄∗) ∈ gphF in the general framework ofTheorem 4.1. Then the normal one mapping F is oderivatively normal at (x̄, x̄∗) and thebasi oderivative (2.5) of F at (x̄, x̄∗) admits the representation:
D∗F(x̄, x̄∗)(u) =

{
v∗ ∈ X∗

∣∣∣ (v∗,−u) ∈ AQ,P × BQ,P for some P ⊂ Q ⊂ Iwith P ∈ I(x̄, x̄∗) and CQ 6= ∅
}
.

(4.22)If in addition the generating elements {x∗
i | i ∈ I(x̄)} are linearly independent, then

D∗F(x̄, x̄∗)(u) =
{
v∗ ∈ X∗

∣∣ (v∗,−u) ∈ AQ,P × BQ,P for some J ⊂ P ⊂ Q ⊂ I
} (4.23)with the index subset of positive multipliers J = J(x̄, x̄∗) de�ned in (3.18).16



Proof. Representations (4.22) and (4.23) follows from the oderivative de�nition (2.5) andthe normal one representation (4.4) and (4.16), respetively. The oderivative normality(2.9) of F at (x̄, x̄∗) is an immediate onsequene of the dual norm-stability of the graph of
F at this point proved in Theorem 4.1. △Our next result, important for establishing the main theorems in this setion, e�ientlyharaterizes the oderivative domain DomD∗F(x̄, x̄∗) in the general polyhedral ase (3.1),i.e., desribes the subset of the oderivative argument on whih the oderivative is nonempty.Given an ative index olletion S ⊂ I(x̄), we onsider the losed one

CS :=
{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ S, 〈x∗

i , x〉 ≤ 0 for all i ∈ T \ S
}
, (4.24)whih is the losure of the one in (4.2), and de�ne the feature index subset for S by

Υ(S) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , x〉 = 0 for all x ∈ CS

}
. (4.25)Proposition 4.4 (haraterization of the oderivative domain). Let (x̄, x̄∗) ∈ gphFin the framework of Theorem 4.1. Then u ∈ DomD∗F(x̄, x̄∗) if and only if

〈x∗
i , u〉 = 0 for all i ∈ J and 〈x∗

i , u〉 ≥ 0 for all i ∈ Υ(J) \ J, (4.26)where J = J(x̄, x̄∗) and Υ(J) are de�ned in (3.18) and (4.25), respetively.Proof. Let u ∈ DomD∗F(x̄, x̄∗), i.e., D∗F(x̄, x̄∗)(u) 6= ∅. Applying the oderivative de�ni-tion and representation (4.4) of Theorem 4.1, �nd v∗ ∈ X∗ and indies P ⊂ Q ⊂ I(x̄) with
CQ 6= ∅ and P ∈ I(x̄, x̄∗) suh that

(v∗,−u) ∈ AQ,P × BQ,P . (4.27)First we show that J ⊂ Q. Indeed, �x an element x ∈ CQ and get by de�nition (4.2) that
〈x∗

i , x〉 = 0 for all i ∈ Q and 〈x∗
i , x〉 < 0 for all i ∈ T \ Q. (4.28)Sine P ∈ I(x̄, x̄∗), we �nd by (4.3) numbers µi ≥ 0 suh that

x̄∗ =
∑

i∈P

µix
∗
i ,whih implies by (4.28) that 〈x̄∗, x〉 = 0 due to P ⊂ Q. On the other hand, we have fromthe expression of x̄∗ in (3.21) that

0 = 〈x̄∗, x〉 =
∑

i∈J

λi〈x
∗
i , x〉 with λi > 0 for all i ∈ J.This gives that 〈x∗

i , x〉 = 0 whenever i ∈ J , i.e., J ⊂ Q.To ontinue proving the �only if� impliation in the proposition, we get from (4.27) andonstrution (3.15) of the set BQ,P that
〈x∗

i , u〉 = 0 for all i ∈ P and 〈x∗
i , u〉 ≥ 0 for all i ∈ Q \ P. (4.29)17



It follows from the inlusion J ⊂ Q that 〈x∗
i , u〉 ≥ 0 for all i ∈ J . This allows us to apply to

u the same arguments as for x above and onlude that 〈x∗
i , u〉 = 0 whenever i ∈ J .Observe further that for any x satisfying (4.28) we have x ∈ CJ by (4.24) due to theinlusion J ⊂ Q. Let us now show that Υ(J) ⊂ Q. Indeed, otherwise we hoose some index

i ∈ Υ(J) \Q and by de�nition (4.25) get 〈x∗
i , x〉 = 0, whih learly ontradits the inlusion

i /∈ Q. It follows then from (4.29) that 〈x∗
i , u〉 ≥ 0 for all i ∈ Υ(J) \ J . Thus we arrive at(4.26) and justify the �only if� part of the proposition.Let us prove the �if� part of the proposition assuming that the relationships in (4.26) aresatis�ed for the given point u ∈ X. Put P := J ∈ I and Q := Υ(J) and observe that

−u ∈ BQ,P for the seleted pair (Q, P ). Sine by de�nition (3.14) we have 0 ∈ AQ,P , evenfor P = ∅ and/or Q = ∅ by the onvention made, it follows that (0,−u) ∈ AQ,P ×BQ,P . ByTheorem 4.1 we are done while showing that CQ 6= ∅; indeed, in this ase 0 ∈ D∗F(x̄, x̄∗)(u).To onstrut x ∈ CQ, observe from de�nition (4.25) of the feature index subset thatfor every i ∈ I \ Q = I \ Υ(J) there is xi ∈ CJ with 〈x∗
i , xi〉 < 0.For indies i ∈ T \ I we put xi := x̄ ∈ CJ and thus extend the latter relationship to:for every i ∈ T \ Q there is xi ∈ CJ with 〈x∗

i , xi〉 < 0. (4.30)Letting �nally x :=
∑

i∈T\Q xi ∈ CJ and using (4.30) as well as de�nition (4.25), we get
〈x∗

i , x〉 = 0 for all i ∈ Q = Υ(J) and
〈x∗

i , x〉 = 〈x∗
i , xi〉 +

∑

j∈T\Q, i6=j

〈x∗
i , xj〉 < 0 for all i ∈ T \ Q,whih gives x ∈ CQ and thus ompletes the proof of the proposition. △Now we are ready to establish the main results of this setion providing e�ient evaluationsof the basi oderivative D∗F(x̄, x̄∗)(u) of the normal one mapping (1.2) entirely in termsof the initial data of the onvex polyhedron (3.1), the referene point (x̄, x̄∗) ∈ gphF , andthe oderivative argument u ∈ DomD∗F(x̄, x̄∗) from its domain. Given u ∈ X, de�ne theharateristi ative index subsets

I0(u) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , u〉 = 0

} and I>(u) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , u〉 > 0

}
. (4.31)The next theorem provides a onstrutive upper estimate of the oderivative on its domainin the general polyhedral ase (3.1) under onsideration.Theorem 4.5 (onstrutive upper estimate of the oderivative for the normalone mapping with no onstraint quali�ations). Let (x̄, x̄∗) ∈ gphF in the frameworkof Proposition 4.4, and let I0(u) and I>(u) be the harateristi ative index subsets de�nedin (4.31). Then we have the oderivative upper estimate for u ∈ DomD∗F(x̄, x̄∗):

D∗F(x̄, x̄∗)(u) ⊂ cone
{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}
, (4.32)where the oderivative domain is omputed byDomD∗F(x̄, x̄∗) =

{
u ∈ X

∣∣ 〈x∗
i , u〉 = 0, i ∈ J, and 〈x∗

i , u〉 ≥ 0, i ∈ Υ(J) \ J
}
. (4.33)18



Proof. The preise domain formula (4.33) is justi�ed in Proposition 4.4. Pik now arbi-trary elements u ∈ DomD∗F(x̄, x̄∗) and v∗ ∈ D∗F(x̄, x̄∗)(u) and �nd, by the oderivativede�nition (2.5) and desription (4.4) of the basi normal one in Theorem 4.1, suh indexsubsets P ⊂ Q ⊂ I(x̄) that P ∈ I(x̄, x̄∗), CQ 6= ∅,
v∗ ∈ AQ,P , and − u ∈ BQ,P . (4.34)It follows from de�nition (3.15) of the set BQ,P that the last inlusion is equivalent to

〈x∗
i , u〉 = 0 for all i ∈ P and 〈x∗

i , u〉 ≥ 0 for all i ∈ Q \ P.Thus we have the following relationships involving the above vetor u ∈ DomD∗F(x̄, x̄∗) aswell as the index sets P and Q:
P ⊂ S :=

{
i ∈ Q

∣∣ 〈x∗
i , u〉 = 0

} and 〈x∗
i , u〉 > 0 for all i ∈ Q \ S. (4.35)Taking into aount the relationships in (4.35) and de�nition (3.14) of the set AQ,P , wederive from the �rst inlusion in (4.34) that

v∗ ∈ span{
x∗

i

∣∣ i ∈ P
}

+ one{x∗
i

∣∣ i ∈ Q \ P
}

⊂ span{x∗
i

∣∣ i ∈ S} + one{x∗
i

∣∣ i ∈ Q \ S
}
.

(4.36)Observe further from the onstrutions of S in (4.35) and of the harateristi ative indexsubsets in (4.31) that S ⊂ I0(u) and Q \ S ⊂ I>(u). Thus we get (4.32) from (4.36) andomplete the proof of the theorem. △The �nal result of this setion establishes a preise formula for omputing the oderivativeof the normal one mapping F at (x̄, x̄∗) provided that the generating elements x∗
i of theonvex polyhedron (3.1) are linearly independent along the ative onstraints at x̄.Theorem 4.6 (omputing the oderivative of the normal one mapping underlinear independene of ative onstraints). Assume in the framework of Theorem 4.5that the generating element {x∗

i | i ∈ I(x̄)} of (3.1) are linearly independent. Then we have
D∗F(x̄, x̄∗)(u) = cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
} (4.37)for all u ∈ DomD∗F(x̄, x̄∗), where the oderivative domain is omputed in (4.33).Proof. By Theorem 4.5 it remains to justify the opposite inlusion �⊃� to (4.32) under theimposed linear independene ondition. It easily follows from the de�nitions that Υ(J) =

J for the feature index subset (4.25) of J = J(x̄, x̄∗) in (3.18) under the assumed linearindependene of the generating elements {x∗
i | i ∈ I(x̄)}. Take (v∗, u) satisfying

v∗ ∈ cone
{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}and observe by (3.14) and (3.15) that the latter inlusion yields

(v∗,−u) ∈ AQ,P × BQ,P with Q := I0(u) ∪ I>(u) and P := I0(u) (4.38)19



via the harateristi ative index subsets (4.31). Sine
J ⊂ I0(u) ⊂ I0(u) ∪ I>(u) ⊂ I,we derive the inlusion �⊃� in (4.37) from the relationships in (4.38) and the oderivativerepresentation (4.22) of Corollary 4.3 and thus omplete the proof of the theorem. △Let us onlude this setion with three extended remarks, whih ompare the results obtainedwith known in the literature, relate the main theorems to the seond-order subdi�erentialsmentioned in Introdution, and disuss some appliations.Remark 4.7 (omparison with known results). As mentioned in Setion 1, all theresults obtained in both Setion 3 and Setion 4 are new in in�nite dimensions. In thispaper the results of Setion 3, whih are of their own interest, play an auxiliary role as aneessary preliminary step for omputing, aording to the de�nitions, the basi normal oneand oderivative in in�nite dimensions. In �nite-dimensional spaes there are analogs andversions of some results obtained above disussed in what follows.Proposition 3.2 is impliitly given in [3℄ in �nite dimensions and then expliitly proved bya di�erent way in [27℄ in the same setting. Our proof in re�exive spaes mainly follows theapproah of [27℄. The other results of Setion 3 seem to be new even in �nite dimensions.The �rst representation of the normal one (2.2) to the graph of F = N(x; Θ) is givenin [3, proof of Theorem 2℄ via some losed fae desription of onvex polyhedra, whih isgenerally di�ult to hek. However, it is shown in [7, Proposition 3.2℄ that the losed faerepresentation of [3℄ is equivalent to an expliit one, whih is of the same type but somewhatdi�erent from the �nite-dimensional analog of our Theorem 4.4. Another proof of a similarwhile not fully expliit normal one representation in IRn is independently derived in [27,Theorem 3.3℄. Note that the proof in [27℄ as well as our proof in in�nite dimensions do notuse the rather involved Redution Lemma and other devies from [3℄.The oderivative representation of Theorem 4.6 under the linear independene ondition is anin�nite-dimensional extension of that in [7, Corollary 3.5℄. The other results of Setion 4 seemto be new in �nite dimensions while Theorem 3.5 is an improved version of [7, Corollary 3.4℄.Note also that the reent paper [6℄ establishes e�ient oderivative desriptions of the normalone mapping for nonpolyhedral inequality systems desribed by smooth nonlinear funtionsin �nite dimensions under ertain quali�ation onditions. These new developments arelargely based on the methods and results from [7, 17, 18℄.Remark 4.8 (seond-order subdi�erentials). Given an extended-real-valued funtion

ϕ : X → IR := (−∞,∞] �nite at x̄ ∈ IR, we reall the notions if the (�rst-order) subdi�er-ential [11℄ and the seond-order subdi�erential [13℄ of ϕ generated by the basi normal one(2.2); the reader an �nd equivalent representations, more details and disussions, variousalulus rules, and numerous appliations in [15, 16℄ in the referenes therein. The basisubdi�erential of ϕ at x̄ is de�ned by
∂ϕ(x̄) :=

{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N
(
(x̄, ϕ(x̄)); epiϕ)} (4.39)via the normal one to the epigraphial set epiϕ := {(x, µ) ∈ X × IR| µ ≥ ϕ(x)}. It is easyto see the subdi�erential representation of the normal one

N(x̄; Ω) = ∂δ(x̄; Ω), x̄ ∈ Ω, (4.40)20



where δ(·; Ω) is the indiator funtion of the set Ω equal 0 for x ∈ Ω and ∞ otherwise.Given further (x̄, x̄∗) ∈ gph ∂ϕ, de�ne the seond-order subdi�erential of ϕ at this point asthe oderivative (2.5) of the �rst-order subdi�erential mapping ∂ϕ : X →→ X∗ at (x̄, x̄∗) by
∂2ϕ(x̄, x̄∗)(u) :=

(
D∗∂ϕ

)
(x̄, x̄∗)(u), u ∈ X (= X∗∗). (4.41)Constrution (4.41) aumulating seond-order information on the funtion in question isa natural development of the lassial �derivative-of-derivative� approah to (generalized)seond-order di�erentiation; see [13, 15, 18, 21, 25℄ for more disussions and implementa-tions. It follows from (4.40) and (4.41) that the oderivative of the normal one mapping

N(x; Ω) to a set Ω an be interpreted as the the seond-order subdi�erential of the indi-ator funtion of Ω at the orresponding point. Note that suh seond-order onstrutionsnaturally appear in optimization and sensitivity analysis of parametri variational inequali-ties and related problems known as mathematial and equilibrium programs with equilibriumonstraints (MPECs and EPECs); see, e.g., [4, 15, 16, 19, 29℄ and the referenes therein.From this viewpoint, the results obtained in Setion 4 as well as their �nite-dimensionalpredeessors from [3, 6, 7, 27, 28℄ an be treated as onstrutive tools for e�ient omputingthe seond-order subdi�erentials of the indiator funtions for onvex polyhedra. We thusmake the �rst attempt for suh a onstrutive seond-order analysis in in�nite dimensions.Remark 4.9 (some appliations). The primary motivation for this paper is developingappliations to robust stability of parametri variational inequalities, whih are presented inthe next setion. At the same time the onstrutive oderivative alulations of Setion 4an be readily applied to other important issues of variational analysis and optimization. Inpartiular, based on these alulations and the general approahes and results developed in[16, Chapter 5℄, we an derive onstrutive neessary optimality onditions for MPECs andEPECs with equilibrium onstraints governed by parametri generalized equations
0 ∈ f(x, p) + N(x; Θ), (4.42)where Θ is the onvex polyhedral (3.1) in a re�exive Banah spae. Reall that Robin-son's generalized equation model (4.42) enompasses variational inequalities over polyhedralonvex sets and has been well reognized as a onvenient framework for the study of bothqualitative and numerial aspets of variational analysis, optimization, and equilibria; see,e.g., [4, 16, 19, 23℄ and the referenes therein.Furthermore, following the sheme developed in [7℄ for �nite-dimensional models, the re-sults obtained above have the potential for appliations to deriving onstrutive optimalityand stationarity onditions as well as their pratial implementations in in�nite-dimensionalMPECs and EPECs arising in eletriity spot marketmodeling with time-dependent/dynamidata suh as demands on the network nodes, eletriity generation and distribution alongthe ars, et. This will be onsidered in detail in our future researh.5 Robust Stability of Parametri Variational InequalitiesThe onluding setion of the paper is devoted to appliations of the oderivative alula-tions in Setion 4 to onstrutive haraterizing robust stability�via the general riteria of21



Theorem 2.1�of parametri variational inequalities given in the generalized equation form:
0 ∈ f(p, x) + N(x; Θ) for x ∈ Θ and p ∈ Z, (5.1)where Θ ⊂ X is the onvex polyhedron (3.1), and where f : Z × X → X∗ is a ontinuous(with respet to the norm topologies) mapping depending on the deision variable x and theparameter variable p taking values in the orresponding re�exive Banah spaes. Note that,by onstrution (3.2) of the normal one of onvex analysis, the generalized equation form(5.1) is equivalent to the standard form of variational inequalities over onvex sets:

〈
f(p, x), x − u

〉
≤ 0 for all u ∈ Θ (5.2)with x ∈ Θ and p ∈ Z. De�ne further the parametri solution map S : Z →→ X to (5.1) by

S(p) :=
{
x ∈ X

∣∣ 0 ∈ f(p, x) + N(x; Θ)
}
, (5.3)where we have in fat x ∈ Θ, sine N(x; Θ) = ∅ for x /∈ Θ.Our primary goal in what follows is to derive onstrutive haraterizations of the Lipshitz-like property of the solution map (5.3) with evaluating the exat Lipshitzian bound in (2.11)entirely in terms of the initial data of (5.1) in both �nite and in�nite dimensions. This willbe done by ombining the riteria of Theorem 2.1, some alulus results from [15℄, and theoderivative alulations of Setion 4.Let us �rst hek that the general assumptions of Theorem 2.1 are satis�ed for the solutionmap S : Z →→ X from (5.3).Lemma 5.1 (losed graph and oderivative normality properties of solution maps).The graph gphS ⊂ Z×X of the solution map (5.3) is always losed in Z×X. Furthermore,the mapping S : Z →→ X is oderivatively normal at every point (p̄, x̄) ∈ gphS where f isstritly di�erentiable and its partial derivative ∇pf(p̄, x̄) : Z → X∗ is surjetive.Proof. To prove the losedness of the graph of S, we get by (5.2) thatgphS =

{
(p, x) ∈ Z × Θ

∣∣ 〈
f(p, x), x − u

〉
≤ 0 for all u ∈ Θ

}
.This readily implies that gphS is losed due to the ontinuity of the base mapping f .Let us next justify the oderivative normality property of S under the additional assumptionson f imposed at the given point (p̄, x̄) ∈ gphS. To proeed, onsider a mapping g : Z×X →

X × X∗ de�ned by
g(p, x) :=

(
x,−f(p, x)

) for p ∈ Z and x ∈ X (5.4)and observe that the graph of S admits the representationgphS =
{
(p, x) ∈ Z × Θ

∣∣ g(p, x) ∈ gphF}
= g−1

(gphF) (5.5)via the inverse image/preimage of the graph of the normal one mapping F(x) = N(x; Θ)under the mapping g from (5.4). It is easy to see that g is stritly di�erentiable at (p̄, x̄)due to the this property of f and that the (full) derivative ∇g(p̄, x̄) : Z × X → X × X∗ of22



g at (p̄, x̄) is surjetive by the surjetivity assumption imposed on the partial derivative of
∇pf(p̄, x̄). Employing the inverse image rule for basi normals from [15, Theorem 1.17℄ tothe inverse image representation in (5.5), we get the equality

N
(
(p̄, x̄); gphS

)
= ∇g(p̄, x̄)∗N

(
(x̄,−f(p̄, x̄)); gphF)

. (5.6)Based on representation (5.6) and the surjetivity of ∇g(p̄, x̄), let us now prove that thegraph of the solution map S enjoys the dual norm-stability property (4.1) at (p̄, x̄), whihobviously implies the oderivative normality of S at the referene point. Take (p∗, x∗) ∈
N((p̄, x̄); gphS). By (5.6) there is a pair (u∗, v∗) ∈ N((x̄,−f(p̄, x̄)); gphF) suh that
(p∗, x∗) = ∇g(p̄, x̄)∗(u∗, v∗). Sine ∇g(p̄, x̄) is surjetive, the pair (u∗, v∗) is determineduniquely; see [15, Lemma 1.18℄. As proved in Theorem 4.1, the set gphF is dually norm-stable at (x̄,−f(p̄, x̄)). Thus there are sequenes (uk, vk) → (x̄,−f(p̄, x̄)) with (uk, vk) ∈gphF and {(u∗

k, v
∗
k)} ⊂ X∗ × X suh that

(u∗
k, v

∗
k) ∈ N̂

(
(uk, vk); gphF) and ‖(u∗

k, v
∗
k) − (u∗, v∗)‖ → 0 as k → ∞. (5.7)De�ne further (p∗k, x

∗
k) := ∇g(p̄, x̄)∗(u∗

k, v
∗
k) for all k ∈ IN and observe by (5.7) that

(p∗k, x
∗
k) ∈ ∇g(p̄, x̄)∗N̂

(
(uk, vk); gphF) and ‖(p∗k, x

∗
k) − (p∗, x∗)‖ → 0 as k → ∞. (5.8)It follows from (5.8) by [15, Lemma 1.16℄ that there are (ũk, ṽk) → (x̄,−f(p̄, x̄)) with

(ũk, ṽk) ∈ gphF and
(p̃∗k, x̃

∗
k) ∈ N̂

(
(p̃k, ṽk); gphS

) suh that ‖(p̃∗k, x̃
∗
k) − (p∗, x∗)‖ → 0 as k → ∞.This justi�es the dual norm-stability property of the graph of the solution map S at (p̄, x̄)and thus ompletes the proof of the lemma. △Our next results presented in the following proposition provide onstrutive representationsof the basi oderivative (2.5) of the solution map (5.3) via the initial data of the variationalinequality (5.1) under onsideration. Based on the oderivative representations for the nor-mal one mapping F(x) = N(x; Θ) from Setion 4, we onsider the two ases: the generalpolyhedra (3.1) without any quali�ation onditions and the ase of linearly independentgenerating elements x∗

i orresponding to ative onstraints. In the �rst ase we involve ol-letions of ative index subsets, while the seond one allows us to derive a preise oderivativerepresentation using only harateristi ative index subsets de�ned in (4.31). The resultsobtained, being of their own interest, are motivated here by appliations to robust stabilityto variational inequalities via the riteria of Theorem 2.1.Proposition 5.2 (omputing the oderivative of solution maps to variational in-equalities). Let (p̄, x̄) ∈ gphS for the solution map (5.3), where f is stritly di�erentiableat (p̄, x̄) with the surjetive partial derivative ∇pf(p̄, x̄). Let x̄∗ := −f(p̄, x̄) in the notationof Corollary 4.3. Then the following assertions hold:(i) The oderivative D∗S(p̄, x̄) : X∗ →→ Z∗ is omputed by
D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ X, P ⊂ Q ⊂ I with P ∈ I, CQ 6= ∅s.t. (
− x∗ −∇xf(p̄, x̄)∗u,−u

)
∈ AQ,P × BQ,P , p∗ = ∇pf(p̄, x̄)∗u.23



(ii) Assume in addition that the generating element {x∗
i | i ∈ I(x̄)} of the onvex polyhedron(3.1) are linearly independent. Then the oderivative D∗S(p̄, x̄) is omputed by

D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ DomD∗F(x̄, x̄∗) with p∗ = ∇pf(p̄, x̄)∗u and
−x∗ −∇xf(p̄, x̄)∗u ∈ cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span x∗
i

∣∣ i ∈ I>(u)
}
,where the harateristi ative index subsets I0(u) and I>(u) are de�ned in (4.31) while theoderivative domain DomD∗F(x̄, x̄∗) is omputed in (4.33).Proof. It follows from [15, Theorem 4.44℄ that, under the strit di�erentiability and surje-tivity assumptions made in this proposition, we have the oderivative representation of thesolution map S to the variational inequality/generalized equation (5.1):

D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ X with p∗ = ∇pf(p̄, x̄)∗u,

−x∗ −∇xf(p̄, x̄)∗u ∈ D∗F(x̄, x̄∗)(u).
(5.9)Then we arrive at both oderivative formulas in (i) and (ii) of the proposition by substitutinginto (5.9) the representations of D∗F(x̄, x̄∗) from (4.22) of Corollary 4.3 and from (4.37) ofTheorem 4.6, respetively. This ompletes the proof of the proposition. △Now we are ready to establish veri�able haraterizations for robust Lipshitzian stability ofsolution maps to the variational inequalities (5.1) over polyhedral onvex sets with evaluatingthe exat Lipshitzian bound. Let us �rst onsider the ase when the deision spae X is�nite-dimensional while the parameter spae Z may be arbitrary Banah and re�exive. Weinlude two statements into the next theorem: one for the general polyhedral set (3.1) with noquali�ation onditions and the other under the linear independene of generating elementsof the onvex polyhedron (3.1).Theorem 5.3 (onstrutive haraterizations of robust stability of polyhedralvariational inequalities with �nite-dimensional deision spaes). Take the refer-ene point (p̄, x̄) ∈ gphS in the framework and notation of Proposition 5.2 and assume thatthe deision spae X is �nite-dimensional. Then the following assertions hold:(i) The solution map (5.3) is Lipshitz-like around (p̄, x̄) if and only if

[
−∇xf(p̄, x̄)∗u ∈ AQ,P , −u ∈ BQ,P

]
=⇒ u = 0 (5.10)for all P ⊂ Q ⊂ I(x̄) with P ∈ I(x̄, x̄∗) and CQ 6= ∅. Furthermore, we have the lowerestimate of the exat Lipshitzian bound for S at (p̄, x̄):lipS(p̄, x̄) ≥ max

{∥∥∇pf(p̄, x̄)∗u
∥∥

∣∣∣ u ∈ −BQ,P , x∗ ∈ −∇xf(p̄, x̄)∗u − AQ,P ,∥∥∇xf(p̄, x̄)∗u + x∗
∥∥ ≤ 1, P ⊂ Q ⊂ I(x̄)with P ∈ I(x̄, x̄∗) and CQ 6= ∅

}
,

(5.11)whih holds as equality if the parameter spae Z is �nite-dimensional.(ii) Assume in addition that the generating elements {x∗
i | i ∈ I(x̄)} of (3.1) are linearlyindependent. Then S is Lipshitz-like around (p̄, x̄) if and only if

[
−∇xf(p̄, x̄)∗u ∈ cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}]

=⇒ u = 0 (5.12)24



provided that u ∈ DomF(x̄, x̄∗), where the harateristi index subsets I0(u) and I>(u) arede�ned in (4.31) while the oderivative domain DomD∗F(x̄, x̄∗) is omputed in (4.33). Infat, impliation (5.12) with u ∈ DomD∗F(x̄, x̄∗) is equivalent to
[
−∇xf(p̄, x̄)∗u ∈ AI,I , −u ∈ BJ,J

]
=⇒ u = 0 (5.13)with I = I(x̄) and J = J(x̄, x̄∗) as well as to the ondition

ker
{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
} ⋂[

∇xf(p̄, x̄)∗
]−1

(
span

{
x∗

i

∣∣ i ∈ I(x̄)
})

= {0} (5.14)involving the inverse operator to ∇xf(p̄, x̄)∗. Furthermore, we have the lower estimatelipS(p̄, x̄) ≥ max
{ ∥∥∇pf(p̄, x̄)∗u

∥∥
∣∣∣ u ∈ DomD∗F(x̄, x̄∗,

∥∥∇xf(p̄, x̄)∗u + x∗
∥∥ ≤ 1,

−x∗ −∇xf(p̄, x̄)∗u ∈ cone
{
x∗

i

∣∣i ∈ I0(u)
}

+ span
{
x∗

i

∣∣i ∈ I>(u)
}}(5.15)for the exat Lipshitzian bound of S at (p̄, x̄), whih holds as equality when the parameterspae Z is �nite-dimensional.Proof. Observe �rst that the general assumptions of Theorem 2.1 are satis�ed by Lemma 5.1.Note also that the PSNC property of S is automati when the deision/range spae X is�nite-dimensional and that the ondition ∇pf(p̄, x̄)∗u = 0 is equivalent to u = 0 due tothe surjetivity of ∇pf(p̄, x̄). Thus the neessary and su�ient onditions (5.10) and (5.12)for the Lipshitz-like property of S in (i) and (ii), respetively, follow diretly from theoderivative riterion (2.12) of Theorem 2.1 and the oderivative formulas for S derived inProposition 5.2 as x∗ = 0. Further, it follows from the proof of Theorem 4.6 and the obviousset monotoniity relationships

AL,M ⊂ AL′,M ′ and BL,M ⊃ BL′,M ′ whenever L ⊂ L′, M ⊂ M ′ (5.16)for the onstrutions in (3.14) and (3.15) that the robust stability riterion (5.12) an beequivalently written in the form of (5.13). The equivalene between onditions (5.13) and(5.14) diretly follows from de�nitions (3.14) and (3.15). Using �nally the oderivative for-mulas from Proposition 5.2, we ompute the oderivative norm by the maximum expressionsin (5.11) and (5.15) under the assumptions imposed. Note that the maximum is realized inthese formulas for the oderivative norm (2.13) due to [15, Theorem 4.56℄ and the graph-losedness of the normal one mapping F in the norm×weak topology on X ×X∗, whih isproved by the stability arguments in Theorem 4.1. Thus the exat bound estimates (5.11),(5.15) and the equalities therein follow from the orresponding assertions of Theorem 2.1.This ompletes the proof of this theorem. △Let us present a simple onsequene of Theorem 5.3 ensuring the Lipshitz-like property ofthe parametri solution map (5.3) when all the generating elements of the onvex polyhe-dron (3.1) are ative and linearly independent and when the so-alled strit omplementarityondition I(x̄) = J(x̄, x̄∗) is satis�ed.Corollary 5.4 (robust stability under strit omplementarity). Assume in the frame-work of Theorem 5.3(ii) that X = IRn and I(x̄) = J(x̄, x̄∗) = {1, . . . , n}, where x̄∗ =
−f(p̄, x̄). Then the solution map S to (5.1) is Lipshitz-like around (p̄, x̄).25



Proof. It immediately follows from (4.33) that DomD∗F(x̄, x̄∗) = {0} in this ase, i.e., thestability riterion (5.12) of Theorem 5.3(ii) is satis�ed automatially. △Remark 5.5 (spei�ations and implementations of the onstrutive harateri-zations of robust stability). Based on the onstrutive haraterizations of robust sta-bility obtained in both assertions of Theorem 5.3 in the ase of �nite-dimensional deisionspaes, we an derive their various spei�ations and simpli�ations in partiular settings;Corollary 5.4 provides just a simple example of this. Observe that riterion (5.14) in Theo-rem 5.3(ii) an be equivalently rewritten as
[
A∗u − C∗

2v = 0, C1u = 0
]

=⇒ u = 0, (5.17)where A := ∇xf(p̄, x̄) and where the matries C1 and C2 are omposed from the row vetorsof the generating vetor x∗
i for i ∈ J(x̄, x̄∗) and i ∈ I(x̄), respetively. Assuming in additionto the linear independene of {x∗

i | i ∈ I(x̄)} the strit omplementarity ondition J(x̄, x̄∗) =
I(x̄), we have C1 = C2 := C and get (5.17) from the positive de�niteness of A on the kernelsubspae ker{x∗

i | i ∈ I(x̄)}. The latter readily redues to the lassial seond-order su�ientondition for loal optimality in nonlinear programs written in the variational equality form(5.1) with f being the gradient of an objetive funtion; see [24℄. By some more elaborationwe an show that ondition (5.17) is atually equivalent in the latter setting to the so-alledstrong seond-order su�ient ondition for loal optimality in C2 nonlinear programs; f.[3, 9, 24℄ with the referenes therein and also further disussions in Remark 5.10 below.Next we desribe general settings in whih the onditions of Theorem 5.3(ii) provide hara-terizations of robust stability for solution maps (5.3) to the polyhedral variational inequalities(5.1) in the ase of in�nite-dimensional deision spaes. They rely on a ertain well-posednessof (5.1) onerning behavior of the partial derivative ∇xf(p̄, x̄) of the base mapping f onthe kernel spae formed by generating elements x∗
i of the onvex polyhedron (3.1) alongthe index subset (3.18) of positive multipliers at the referene point. This well-posedness isautomati in �nite dimensions while holding under easily veri�able onditions in the ase ofin�nite-dimensional deision spaes.De�nition 5.6 (kernel well-posedness of polyhedral variational inequalities). Wesay that the parametri variational inequality (5.1) over the onvex polyhedron (3.1) exhibitsthe kernel well-posedness at the point (p̄, x̄) ∈ gphS of di�erentiability of the basemapping f with respet to the deision variable if

[∥∥∇xf(p̄, x̄)∗xk

∥∥ → 0, xk
w
→ 0, xk ∈ ker

{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
}]

=⇒ ‖xk‖ → 0 (5.18)as k → ∞, where J = J(x̄, x̄∗) is de�ned in (3.18) with x̄∗ = −f(p̄, x̄).Observe that the introdued well-posedness property of (5.1) does not atually depend onthe parameter spae Z. Let us now present some veri�able onditions ensuring the kernelwell-posedness of the polyhedral variational inequalities under onsideration.Given a linear bounded operator A : X → X∗ on a Banah spae X and a losed subspae
L ⊂ X, we say that A is oerive on the subspae L if there is a onstant µ > 0 suh that

µ‖x‖2 ≤ 〈Ax, x〉 for all x ∈ L. (5.19)26



This redues to the onventional oerivity of A : X → X∗ when L = X. We use bothversions in what follows; see Theorem 5.8 and Corollary 5.9.Proposition 5.7 (su�ient onditions for kernel well-posedness). Eah of the fol-lowing onditions ensures the kernel well-posedness of the polyhedral variational inequality(5.1) at (p̄, x̄) ∈ gphS:(a) The deision spae X is �nite-dimensional.(b) The adjoint operator ∇xf(p̄, x̄)∗ : X → X∗ is injetive on the kernel subspae
L := ker

{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
}
⊂ Xof the Banah spae X, i.e., we have

[
∇xf(p̄, x̄)∗(x1 − x2) = 0

]
=⇒

[
x1 = x2

] for any x1, x2 ∈ L,and furthermore the image subspae ∇xf(p̄, x̄)∗L is losed in X∗; both these properties areautomati with L replaed by X when the partial derivative operator ∇xf(p̄, x̄) is surjetive.() The operator ∇xf(p̄, x̄) : X → X∗ is oerive on the Banah spae X.Proof. Case (a) is obvious. To justify ase (b), it is su�ient to show that
[∥∥∇xf(p̄, x̄)∗xk

∥∥ → 0, xk ∈ L
]

=⇒ ‖xk‖ → 0 as k → ∞ (5.20)under the injetivity and losedness assumptions made in (b). Denote Λ := ∇xf(p̄, x̄)∗ andprove that there is κ > 0 suh that
‖Λx‖ ≥ κ‖x‖ for all x ∈ L, (5.21)whih surely yields (5.20). To proeed, denote Y := ΛL ⊂ X∗ and onsider the operator

A : L → Y . Our assumptions ensure that the set Y is losed and the operator A : L → Yis invertible. By the lassial open mapping theorem we onlude that the inverse operator
A−1 : Y → L is ontinuous. Thus there is a onstant ν > 0 suh that ‖A−1y‖ ≤ ν‖y‖ forall y ∈ Y . This implies (5.21). If ∇xf(p̄, x̄) is surjetive, we have (5.21) and (5.20) with Lreplaed by X from [15, Lemma 1.18℄.Finally, the kernel well-posedness in ase () follows diretly from the Banah spae version[22℄ of the lassial Lax-Milgram theorem ensuring that oerivity implies surjetivity. Thisompletes the proof of the proposition. △Now we are ready to establish onstrutive haraterizations of robust stability for (5.1) inthe general ase of re�exive deision spaes.Theorem 5.8 (onstrutive onditions for robust stability of well-posed polyhe-dral variational inequalities with in�nite-dimensional deision spaes). Let X be are�exive Banah spae in the framework of Theorem 5.3(ii). Assume in addition that the ker-nel well-posedness of (5.1) from De�nition 5.6 is satis�ed at (p̄, x̄). Then all the onlusionsof Theorem 5.3(ii) hold in the in�nite-dimensional setting under onsideration.27



Proof. Let us show that the solution map (5.3) is PSNC at the referene point (p̄, x̄)under the assumptions made. This is the only property needed to be heked to justify theonlusions of this theorem due to the results of Theorem 2.1 and the proof of Theorem 5.3(ii).To verify the PSNC property of S at (p̄, x̄) aording to its de�nition in (2.10), take sequenes
(pk, xk) → (p̄, x̄) as k → ∞ with (pk, xk) ∈ gphS for all k ∈ IN and

(p∗k, x
∗
k) ∈ N̂

(
(pk, xk); gphS

) with p∗k
w
−→ 0 and ‖x∗

k‖ → 0 as k → ∞. (5.22)Reall that the graph of S has the inverse image representation (5.5), where the mapping
g : Z ×X →→ X ×X∗ de�ned in (5.4) has the surjetive derivative at (p̄, x̄). Similarly to theproof of Lemma 5.1 by using [15, Lemma 1.16℄, we �nd sequenes (uk, vk) → (x̄,−f(p̄, x̄))with (uk, vk) ∈ gphF for all k ∈ IN and





(p̃∗k, x̃
∗
k) ∈ ∇g(p̄, x̄)∗N̂

(
(uk, vk); gphF) with

‖p̃∗k − p∗k‖ → 0 and ‖x̃∗
k − x∗

k‖ → 0 as k → ∞.

(5.23)It is easy to see from (5.22), (5.23), and the struture of g in (5.4) that there are prenormals
(u∗

k, v
∗
k) ∈ N̂((uk, vk); gphF) for all k ∈ IN (5.24)satisfying the following relationships with (p̃∗k, x̃

∗
k) in (5.23):

p̃∗k = −∇pf(p̄, x̄)∗v∗
k and x̃∗

k = u∗
k −∇xf(p̄, x̄)∗v∗

k. (5.25)Proeed now as in the proof of Theorem 4.1 for the prenormals (5.24) under onsiderationand de�ne the ative indies subsets P ⊂ Q ⊂ I(x̄) as in (4.6) and (4.8), respetively, where
λik ≥ 0 are determined from the representation

u∗
k =

∑

i∈Q

λikx
∗
i (5.26)via the generating elements {x∗

i | i ∈ Q} of the onvex polyhedron (3.1). Then, as in theproof of Theorem 4.1, we get from (5.24) and (5.25) the inlusions
x̃∗

k + ∇xf(p̄, x̄)∗v∗
k ∈ AQ,P and v∗

k ∈ BQ,P , k ∈ IN. (5.27)It is easy to onlude by the standard ontradition arguments based on the linear indepen-dene assumption on the ative generating elements {x∗
i | i ∈ I(x̄)} that the sequenes {λik}are bounded for all ∈ Q. Thus we get without loss of generality that λik → λi ≥ 0 as k → ∞whenever i ∈ Q. It follows from the onvergene p̃∗k

w
→ 0 due to (5.22) and (5.23) and thesurjetivity of ∇pf(p̄, x̄) that v∗

k

w
→ 0 as k → ∞ by the �rst equality in (5.25). Observefurther that u∗

k

w
→ 0 as k → ∞ by the seond equality in (5.25). Now passing to the limit in(5.26) as k → ∞, we arrive at ∑

i∈Q λix
∗
i = 0, whih implies that λi = 0 for all i ∈ Q by thelinear independene of {x∗

i | i ∈ Q}. This gives
∥∥x̃∗

k + ∇xf(p̄, x̄)∗v∗
k

∥∥ → 0 and hene ∥∥∇xf(p̄, x̄)∗v∗
k

∥∥ → 0 as k → ∞. (5.28)Further, it follows from the onstrution of BQ,P in (3.15) and the set monotoniity propertyin (5.16) that the seond inlusion in (5.27) an be replaed by
v∗

k ∈ BJ,J = ker
{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)}, k ∈ IN, (5.29)28



where the equality in (5.29) is a diret onsequene of the de�nitions. We an also easilyobserve that property (5.29) together with (5.28) and the kernel well-posedness of (5.1) at
(p̄, x̄) yield that ‖v∗

k‖ → 0 and hene ‖p̃∗k‖ → 0 as k → ∞ by (5.25). Taking now (5.23) intoaount, onlude that the relationships in (5.22) imply that ‖p∗k‖ → 0 as k → ∞, whihjusti�es the PSNC property of S at (p̄, x̄) and ompletes the proof of the theorem. △Finally, we present expliitly veri�able onditions, whih simultaneously ensure the ful�llmentof the oderivative riterion (5.13) in Theorem 5.3(ii) and the kernel well-posedness propertyof (5.1) from De�nition 5.6 and thus e�iently desribe important lasses of variationalinequalities that exhibit robust stability in �nite and in�nite dimensions.Corollary 5.9 (robust stability under oerivity). Let (p̄, x̄) ∈ gphS for the solutionmap (5.3) to (5.1) with the re�exive spaes X and Z and with the linearly independentgenerating elements {x∗
i | i ∈ I(x̄)}. Assume that f in (5.1) is stritly di�erentiable at (p̄, x̄),that I(x̄) = J(x̄, x̄∗) with x̄∗ = −f(p̄, x̄), and that the operator ∇pf(p̄, x̄) is surjetive. Inaddition we impose the onditions:(a) the kernel well-posedness of (5.1) holds at (p̄, x̄),(b) the operator ∇xf(p̄, x̄) is oerive on the kernel subspae ker {x∗

i | i ∈ I(x̄)},whih both are satis�ed when ∇xf(p̄, x̄) is oerive on X. Then the solution map S isLipshitz-like around (p̄, x̄).Proof. We show �rst that the imposed oerivity of∇xf(p̄, x̄) on the kernel subspae impliesthe oderivative riterion (5.13). Observe that
ker

{
x∗

i

∣∣ i ∈ I(x̄)
}

= BJ,J = BI,I (5.30)under the assumptions made and that the oderivative riterion (5.13) reads:
[
−∇xf(p̄, x̄)∗u ∈ AI,I , −u ∈ BI,I

]
=⇒ u = 0. (5.31)It easily follows from the de�nitions of AI,I in (3.14) and the representation of BI,I in (5.30)that riterion (5.31) amounts to verify that

[
∇xf(p̄, x̄)∗u ∈ span

{
x∗

i

∣∣ i ∈ I(x̄)
} and u ∈ ker

{
x∗

i

∣∣ i ∈ I(x̄)
}]

=⇒ u = 0. (5.32)Employing now the kernel oerivity (b) of the operator A = ∇xf(p̄, x̄) as in (5.19) with
L := ker{x∗

i | i ∈ I(x̄)} and using the above representations of AI,I and BI,I as well as there�exivity of X, we �nd a onstant µ > 0 suh that
µ‖u‖2 ≤

〈
∇xf(p̄, x̄)u, u

〉
=

〈
∇xf(p̄, x̄)∗u, u

〉
= 0for any u satisfying the inlusions in (5.32). The latter yields u = 0 justifying impliation(5.32). Thus the Lipshitz-like property of the solution map (5.3) follows, under the assump-tions made in the orollary, from Theorem 5.8. To omplete the proof, it remains to observethat the oerivity of ∇xf(p̄, x̄) on the whole spae X obviously implies (b) and ensuresondition (a) of the orollary due to Proposition 5.7(). △Our onluding remarks ompare the stability results obtained in this setion with thoseknown in the literature. We also disuss some further extensions.29



Remark 5.10 (omparison with known results on robust stability). The results onrobust stability of polyhedral variational inequalities most lose to our study are obtained in[3, 28℄ in the ase of �nite-dimensional spaes of deision and parameter variables, with noevaluation of the exat Lipshitzian bound. Appliations to robust stability in both papers[3, 28℄ are based on the oderivative haraterization of the Lipshitz-like/Aubin propertyfrom Theorem 2.1 and oderivative alulations disussed above in Remark 4.7. In fat,paper [3℄ addresses the ase of so-alled anonial perturbations in polyhedral variationalinequalities, whih are linear with respet to the major parameter variable. The ritialfae haraterization of robust stability established therein involves losed faes of somepolyhedral ritial one built upon the tangent one to the onvex polyhedron Θ. Thisharaterization annot be easily heked in general settings. It is worth emphasizing thatresults of [3℄ establishes the equivalene of the Lipshitz-like/Aubin property of solution mapsto anonially perturbed variational inequality over onvex polyhedra in �nite dimensionsto their strong regularity in Robinson's sense [24℄, whih postulates loally single-valuedLipshitzian behavior.Certain simpli�ations of the latter haraterization is obtained in [28℄ on the base of theoderivative alulations from [27℄. However, the robust stability onditions obtained in [28℄also involve losed faes of some polyhedral one assoiated with the tangent one to theinitial onvex polyhedron Θ.Observe that our stability results are fully expliit and are expressed exlusively in termsof the initial data of the onvex polyhedron Θ and the base mapping f of the variationalinequality (5.1) in both �nite-dimensional and in�nite-dimensional spaes. Sine, in the�nite-dimensional setting of [3℄, the Lipshitz-like property of solution maps is equivalent toRobinson's strong regularity, our expliit onditions provide also riteria for strong regularityof polyhedral variational inequalities in �nite dimensions. It is a hallenging open questionwhether this holds in in�nite-dimensional spaes.Remark 5.11 (further extensions). Combining oderivative alulations of Setion 4with oderivative formulas (mainly upper estimates) and PSNC onditions established in [15,Setion 4.4℄ for solution maps to parametri generalized equations, we an obtain su�ientonditions for robust stability onstrutively expressed via the initial data of polyhedralvariational inequalities (5.1) in both �nite and in�nite dimensions in a number of settingswhen the base mappings f in (5.1) are nonsmooth or have nonsurjetive derivatives.Note �nally that, employing the tehniques developed in this paper together with those from[6℄ based on the transformation formula derived in [18℄, we an extend the robust stabilityresults obtained here to variational inequalities over nonpolyhedral sets desribed by �nitelymany nonlinear inequality onstraints. These and related topis will be onsidered in detailin our subsequent researh.
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