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Abstra
tThis paper 
on
erns se
ond-order analysis for a remarkable 
lass of variational sys-tems in �nite-dimensional and in�nite-dimensional spa
es, whi
h is parti
ularly im-portant for the study of optimization and equilibrium problems with equilibrium 
on-straints. Systems of this type are des
ribed via variational inequalities over polyhedral
onvex sets and allow us to provide a 
omprehensive lo
al analysis by using appropriategeneralized di�erentiation of the normal 
one mappings for su
h sets. In this paper wee�
iently 
ompute the required 
oderivatives of the normal 
one mappings ex
lusivelyvia the initial data of polyhedral sets in re�exive Bana
h spa
es. This provides the maintools of se
ond-order variational analysis allowing us, in parti
ular, to derive ne
essaryand su�
ient 
onditions for robust Lips
hitzian stability of solution maps to param-eterized variational inequalities with evaluating the exa
t bound of the 
orrespondingLips
hitzian moduli. The e�
ient 
oderivative 
al
ulations and 
hara
terizations ofrobust stability obtained in this paper are the �rst results in the literature for the prob-lems under 
onsideration in in�nite-dimensional spa
es. Most of them are also new in�nite dimensions.1 Introdu
tionIt has been well re
ognized in optimization and variational analysis, starting with the sem-inal work by Robinson [23℄, that a number of the most interesting variational systems andvariational 
onditions 
an be des
ribed via the normal 
one mapping N(x; Θ) to 
onvexsets Θ ⊂ X as well as their subdi�erential 
ounterparts and further non
onvex extensions.Among variational models of this type we mention variational inequalities, 
omplementar-ity problems, KKT (Karush-Kuhn-Tu
ker) 
onditions in parametri
 optimization, and othervariational and equilibrium systems arising in optimization theory and its numerous appli-
ations; see, e.g., [4, 9, 10, 15, 16, 19, 20, 23, 24, 25℄ and the referen
es therein. Parti
ularlyimportant 
lasses of sets used in des
ribing variational and equilibrium 
onditions 
an berepresented in the following 
onvex polyhedral form
Θ :=

{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0, i ∈ T := {1, . . . , m}

}
, (1.1)where x∗

i are given elements of the dual spa
e X∗. Note that the homogeneous/
oni
 form ofpolyhedral systems in (1.1) does not restri
t the generality, sin
e nonhomogeneous polyhedra
an always be lo
ally translated to (1.1).Known results on variational analysis involving the normal 
one mappings to 
onvex poly-hedra and its e�
ient implementation for important 
lasses of optimization and equilibriumproblems 
on
ern the 
ase of �nite-dimensional spa
es X = IRn. The reader 
an �nd moreinformation on these and related developments and appli
ations in [3, 4, 6, 7, 18, 19, 25, 27,1



28, 29℄ and the referen
es therein. It 
omes naturally that lo
al variational analysis of thenormal 
one mapping
F(x) := N(x; Θ), x ∈ X, (1.2)asso
iated with (1.1) and its appli
ations to, e.g., deriving optimality and stationarity 
on-ditions, sensitivity and stability issues, et
. 
all for the usage and implementation of appro-priate 
onstru
tions of generalized di�erentiation for set-valued mappings of type (1.2).Among other generalized di�erential 
onstru
tions, 
oderivatives of set-valued mappings in-trodu
ed in [12℄ have been well re
ognized as a powerful tool of variational analysis andits numerous appli
ations, parti
ularly to problems of optimization, equilibria, and 
ontrol;see, e.g., the books [2, 15, 16, 19, 25, 26℄ with their referen
es and dis
ussions. To pro
eede�
iently with appli
ations of 
oderivatives, we need to 
ompute them 
onstru
tively interms of the initial data of the problems in question. Various results in this dire
tion forthe normal 
one mapping generated by polyhedral sets in �nite-dimensional spa
es 
an befound in [3, 6, 7, 27, 28℄. To the best of our knowledge, the 
onstru
tive results obtainedin this paper are the �rst ones for polyhedral sets in in�nite dimensions providing also newdevelopments and appli
ations in �nite-dimensional settings.Observe that 
oderivatives of the normal 
one mapping (1.2) a

umulate in fa
t some se
ond-order information on the original polyhedral set (1.1), whi
h is used in variational analysisof �rst-order optimality and/or equilibrium 
onditions (e.g., of the KKT type) exhibited bythe normal 
one mapping under 
onsideration.The underlying framework of this paper is the 
lass of re�exive Bana
h spa
es X. Ourprimary goal is to pre
isely 
ompute the basi
/limiting 
oderivative by Mordukhovi
h forthe normal 
one mapping (1.2), whi
h is a
tually the se
ond-order subdi�erential [13℄ of theindi
ator fun
tion asso
iated with the polyhedral set (1.1); see Remark 4.8 in Se
tion 4 formore details. Then we apply the obtained 
oderivative formulas to derive e�
ient 
onditionsfor robust Lips
hitzian stability of solution maps to parameterized variational inequalitiesvia the 
oderivative 
hara
terization of the major Lips
hitz-like/Aubin property for generalset-valued mappings between Asplund (in parti
ular, re�exive) spa
es, with 
omputing theexa
t bound of Lips
hitzian moduli. As auxiliary results of their own independent interest, weevaluate the so-
alled pre
oderivative (known also as the Fré
het 
oderivative) of the normal
one mapping (1.2) generated by (1.1), whi
h is a 
ru
ial building blo
k for 
omputing thebasi
/limiting 
oderivative of (1.2) in re�exive Bana
h spa
es.Besides employing fundamental tools of variational analysis and generalized di�erentiationtaken mainly from [15℄, we use in this study an appropriate in�nite-dimensional version ofthe 
lassi
al Farkas lemma, in the form of Motzkin's theorem of the alternative (see, e.g.,[1℄), that largely exploits the polyhedral stru
ture of (1.1) des
ribed by linear inequalities.The rest of the paper is organized as follows. Se
tion 2 
ontains some basi
 de�nitionsand preliminary material from variational analysis, generalized di�erentiations, and linearinequalities widely used in formulations and proofs of the main results.Se
tion 3 deals with 
omputing the prenormal 
one (or the Fré
het normal 
one) to thegraph of (1.2) and the 
orresponding pre
oderivative of F in terms 
onstru
tively generatedby the initial data of the given polyhedral set (1.1). The results obtained are the �rst ones inthis dire
tion for the 
ase of in�nite-dimensional spa
es being mostly new and/or improvingknown results of this type in �nite dimensions [3, 27℄.2



Se
tion 4 is mainly devoted to pre
ise 
omputing, ex
lusively via the initial data of (1.1), thebasi
 normal 
one to the graph of the normal 
one mapping (1.2) and the basi
 
oderivativeof F by using, among other devi
es, the passage to the limit pro
edures from the 
orre-sponding results of Se
tion 3. Furthermore, we show that the basi
 normal and 
oderivative
onstru
tions are invariant for the normal 
one mapping generated by the 
onvex polyhe-dron under 
onsideration while repla
ing the weak 
onvergen
e by the norm 
onvergen
e onthe the spa
e X and its topologi
al dual X∗. We 
ompare the results obtained here, whi
hare the �rst in in�nite dimensions, with 
al
ulating the basi
 
oderivative of F for 
onvexpolyhedral sets given in [3, 7, 27℄ in the 
ase of �nite-dimensional spa
es.The �nal Se
tion 5 
on
erns deriving veri�able 
onditions for robust Lips
hitzian stabilityof solution maps to parameterized variational inequalities generated by the normal 
onemapping to the polyhedral set (1.1) in re�exive Bana
h spa
es. Based on the 
oderivative
hara
terizations of the Lips
hitz-like property for general 
losed-graph mappings from [15℄,on some results of 
oderivative 
al
ulus, and largely on the pre
ise 
omputation of the basi

oderivative for the normal 
one mapping (1.2) given in Se
tion 4, we establish 
onstru
tive
riteria as well as easily veri�able su�
ient 
onditions for robust Lips
hitzian stability of thesolution maps in question expressed ex
lusively via the initial data of model (1.1) in both�nite-dimensional and re�exive Bana
h spa
es. The results obtained, being the �rst ones inin�nite dimensions, are also new in �nite-dimensional settings providing 
hara
terizationsof robust stability of parametri
 variational inequalities entirely via their initial data andessentially improving the 
orresponding results of [3, 28℄. Moreover, we derive 
onstru
tiveestimates as well as pre
ise equalities, new in both �nite and in�nite dimensions, for 
omput-ing the exa
t Lips
hitzian bounds for solution maps to the polyhedral variational inequalitiesunder 
onsideration.Our notation and terminology are basi
ally standard and 
onventional in the area of vari-ational analysis and generalized di�erentiation; see, e.g., [15, 25, 26℄. Although most ofthe de�nitions and some results hold in more general Bana
h spa
e settings, our standingassumption in this paper (unless otherwise stated) is that the Bana
h spa
e X in questionis re�exive, sin
e the re�exivity seems to be essential for the validity of the main results ob-tained below. As usual, ‖ · ‖ stands for the norm on X, 〈·, ·〉 stands for the 
anoni
al pairingbetween X and its topologi
ally dual spa
e X∗, the symbol x∗
k

w
→ x∗ with k ∈ IN := {1, 2, . . .}indi
ates the weak 
onvergen
e of a sequen
e in X∗. We use the generi
 symbol ∗ to signifyduality/polarity relationships if no 
onfusion arises. In parti
ular,

K∗ :=
{
x∗ ∈ X∗

∣∣ 〈x∗, x〉 ≤ 0 for all x ∈ K
}is the polar 
one to a 
one K ⊂ X. By

ker{v∗
j

∣∣ j ∈ J
}

:= {x ∈ X
∣∣ 〈v∗

j , x〉 = 0 for all j ∈ J
}we denote the kerner/orthogonality subspa
e generated by the elements v∗

j ∈ X∗, j ∈ J . Inthe 
ase of just one generating element v∗ ∈ X∗, we also use the notation
{v∗}⊥ :=

{
x ∈ X

∣∣ 〈v∗, x〉 = 0
}
.The notation AX stands for the image/range subspa
e of the linear operator A : X → Y .Given further a nonempty set Ω ⊂ X, denote by spanΩ the smallest linear subspa
e 
on-taining Ω and by 
oneΩ the smallest 
onvex 
one 
ontaining this set; by 
onvention we let3




one ∅ := {0} and span ∅ := {0}. The Ω-restri
ted 
onvergen
e x
Ω
→ x̄ means that x → x̄with x ∈ Ω. Considering �nally a set-valued mapping F : X →→ X∗, de�ne its domain byDomF :=

{
x ∈ X

∣∣ F (x) 6= ∅
}and the (sequential) Painlevé-Kuratowski outer/upper limit of F as x → x̄ by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequen
es xk → x̄, x∗
k

w
→ x∗ as k → ∞with x∗

k ∈ F (xk) for all k ∈ IN
}

.
(1.3)2 Basi
 De�nitions and PreliminariesIn our brief des
riptions of basi
 tools and preliminary results of variational analysis andgeneralized di�erentiation presented in this se
tion we follow the book [15℄, where moredetails, proofs, and dis
ussions 
an be found. We also refer the reader to [2, 16, 26, 25℄ forrelated and additional material.As mentioned in Se
tion 1, our underlying assumption is that all the spa
es in question areBana
h and re�exive, whi
h is the standing setting of this paper unless otherwise stated.Note that any re�exive Bana
h spa
e is Asplund, and thus the major results from [15℄established in Asplund spa
es are applied in the setting of this paper. In [15℄ the reader 
an�nd appropriate 
ounterparts of the basi
 de�nitions and results presented in this se
tion inmore general settings of Asplund spa
es and also of arbitrary Bana
h spa
es.Given a nonempty set Ω ⊂ X, de�ne the prenormal 
one (known also as the Fré
het orregular normal 
one) to Ω at x̄ ∈ Ω by

N̂(x; Ω) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x
Ω
→x̄

〈x∗, x − x̄〉

‖x − x̄‖
≤ 0

}
. (2.1)For 
onvenien
e let N̂(x; Ω) = ∅ if x /∈ Ω. Note that the set N̂(x̄; Ω) is 
onvex and weakly
losed in X∗; furthermore, it redu
es to the normal 
one of 
onvex analysis if Ω is 
onvex.However, the prenormal 
one (2.1) may be trivial (= {0}) at boundary points of simplenon
onvex sets in IR2 (see examples in [15, 25℄), and it does not generally admit pointwise
al
ulus (e.g., the 
ru
ial interse
tion rule) required by many appli
ations. The situation isdramati
ally improved when we 
onsider the sequential regularization of (2.1) employing theouter limit (1.3) to N̂(·; Ω) by

N(x̄; Ω) := Lim sup
x→x̄

N̂(x; Ω) (2.2)known as the (basi
, limiting, Mordukhovi
h) normal 
one to Ω at x̄ ∈ Ω. When X = IRn,
onstru
tion (2.2) 
an be equivalently des
ribed in the form:
N(x̄; Ω) =

{
x∗ ∈ IRn

∣∣∣ there exist αk ≥ 0, xk → x̄, wk ∈ Ω for k ∈ IN su
h that
‖wk − xk‖ = dist(xk; Ω) and αk(xk − wk) → x∗ as k → ∞

}

4



originally introdu
ed in [11℄ via the Eu
lidean distan
e fun
tion dist(x; Ω) to Ω. Observethat the basi
 normal 
one (2.2) is often non
onvex in the 
ase of non
onvex sets Ω whileit and the 
orresponding subdi�erential/
oderivative 
onstru
tions enjoy full 
al
ulus andother important properties required by appli
ations. These developments are mainly basedon variational/extremal prin
iples of variational analysis, whi
h repla
e the 
lassi
al 
onvexseparation theorems in non
onvex settings.Given next a set-valued mapping F : X →→ Y with the graphgphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
} (2.3)and following the pattern initiated in [12℄, we present two 
onstru
tions of 
oderivative typevia the 
orresponding normals to the graphi
al set (2.3). The pre
oderivative (or Fré
het
oderivative) of F at (x̄, ȳ) ∈ gphF is de�ned by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗, (2.4)while the basi
/limiting 
oderivative of F at (x̄, ȳ) is

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gphF

)}
, y∗ ∈ Y ∗, (2.5)whi
h 
orresponds to the �normal� 
oderivative 
onstru
tion in [15℄. If the given map-ping F = f : X → Y is single-valued and stri
tly di�erentiable at x̄ with the derivative

∇f(x̄) : X → Y , in the sense that
lim

x,u→x̄

f(x) − f(u) − 〈∇f(x̄), x − u〉

‖x − u‖
= 0 (2.6)(this is automati
 when f is C1 around x̄), then

D̂∗f(x̄)(y∗) = D∗f(x̄)(y∗) =
{
∇f(x̄)∗y∗

} for all y∗ ∈ Y ∗, (2.7)where ȳ = f(x̄) is omitted in the 
oderivative notation for single-valued mappings. The
oderivative representations in (2.7) show that both 
onstru
tions (2.4) and (2.5) redu
e tothe adjoint derivative operator in the 
lassi
al setting.It is easily implied by the de�nitions that the basi
 
oderivative (2.5) admits the followinglimiting representation via the pre
oderivative (2.4) at points thereby:
D∗F (x̄, ȳ)(y∗) = Lim sup

(x,y)→(x̄,ȳ)

z∗
w
→y∗

D̂∗F (x, y)(z∗), (2.8)where the outer limit (1.3) is taken with respe
t to the weak topology in both dual spa
es
X∗ and Y ∗. We say that F is (strongly) 
oderivatively normal at (x̄, ȳ) if

D∗F (x̄, ȳ)(y∗) = Lim sup
(x,y)→(x̄,ȳ)
‖z∗−y∗‖→0

D̂∗F (x, y)(z∗), (2.9)whi
h means that the 
oderivative 
onstru
tion (2.5) does not 
hange if we repla
e the weak
onvergen
e z∗
w
→ y∗ in (2.8) by the norm one z∗ → y∗ in (2.9), while the 
onvergen
e on

X∗ in (2.9) stays weak by (1.3). Note that the right-hand side limit in (2.9) 
orresponds to5



the �mixed� 
oderivative 
onstru
tion in [15℄. We refer the reader to Proposition 4.9 in [15℄that lists a number of e�
ient 
onditions ensuring the 
oderivative normality of set-valuedand single-valued mappings. Standard 
lasses of mappings satisfying (2.9) in
lude of 
oursethose with 
onvex graph (2.3) as well as stri
tly di�erentiable (2.6) at the point in question.Re
all also a 
ertain �normal 
ompa
tness� property of set-valued mappings that is needed for
hara
terizing robust Lips
hitzian stability in in�nite dimensions. A mapping F : X →→ Yis partially sequentially normally 
ompa
t (PSNC) at (x̄, ȳ) ∈ gphF if for any sequen
e
{(xk, yk, x

∗
k, y

∗
k)} ⊂ X × Y × X∗ × Y ∗ satisfying (x∗

k, y
∗
k) ∈ N̂((xk, yk); gphF ) for all k ∈ INwe have the impli
ation

[
(xk, yk) → (x̄, ȳ), x∗

k

w
→ 0, ‖y∗

k‖ → 0
]

=⇒ ‖x∗
k‖ → 0 as k → ∞. (2.10)The PSNC property obviously holds if the domain spa
e X is �nite-dimensional. In fa
t, itholds in mu
h more general settings of in�nite-dimensional spa
es being stable with respe
tto various operations performed on set-valued and single-valued mappings; the latter 
al
ulusbased on the extremal/variational prin
iples 
an be found in [15℄. In parti
ular, F is PSNCat (x̄, ȳ) if it is Lips
hitz-like around this point, i.e., there are neighborhoods U of x̄ and Vof ȳ su
h that

F (x) ∩ V ⊂ F (u) + ℓ‖x − u‖IB whenever x, u ∈ U (2.11)with some 
onstant/modulus ℓ ≥ 0, where IB stands for the 
losed unit ball in the spa
ein question. The in�mum of all moduli {ℓ} in (2.11) is 
alled the exa
t Lips
hitzian boundof F around (x̄, ȳ) and is denoted by lipF (x̄, ȳ). Note that property (2.11) seems to bethe most natural extension of the 
lassi
al (robust) lo
al Lips
hitzian behavior to set-valuedmappings. It is also known as Aubin's �pseudo-Lips
hitzian� property and redu
es to theHausdor� one around x̄ for V = Y in (2.11). It has been well re
ognized and employedin variational analysis that the robust Lips
hitzian property (2.11) is equivalent to metri
regularity and linear openness of the inverse mapping F−1; see, e.g., [8, 15, 25℄.The following 
oderivative 
hara
terization of the Lips
hitz-like property (2.11) as well as alower estimate and the pre
ise formula for 
omputing the exa
t bound of Lips
hitzian moduliin (2.11) are 
onsequen
es of Theorem 4.10 from [15℄, where the reader 
an �nd more generalresults, dis
ussions, and referen
es.Theorem 2.1 (
oderivative 
hara
terization and exa
t bound formula for Lip-s
hitz-like mappings). Let F : X →→ Y be 
losed-graph around (x̄, ȳ) ∈ gphF and
oderivatively normal at this point. Then F is Lips
hitz-like around (x̄, ȳ) if and only if
D∗F (x̄, ȳ)(0) = {0} (2.12)and F is PSNC at (x̄, ȳ). Furthermore, we have the estimatelipF (x̄, ȳ) ≥ ‖D∗F (x̄, ȳ)‖ := sup

{
‖x∗‖

∣∣ x∗ ∈ D∗F (x̄, ȳ)(y∗), ‖y∗‖ ≤ 1
}
, (2.13)whi
h holds as equality if dimX < ∞.When both X and Y are �nite-dimensional, the results of Theorem 2.1 redu
e to thoseobtained in [14℄; see also [25, Theorem 9.40℄ and the referen
es therein.Finally in this se
tion, we present an appropriate in�nite-dimensional version of generalizedFarkas lemma, in the form of Motzkin's theorem of the alternative, whi
h is taken from [1,Theorem 5℄ and is widely used in the paper. 6



Theorem 2.2 (of the alternative). Let W be a ve
tor spa
e of arbitrary dimension, andlet A : W → IRd and B : W → IRs be linear mappings. Then we have the alternative:either: ∃x ∈ W su
h that Bx ≥ 0 and Ax > 0 
omponentwise,or: ∃λ ∈ IRd, ∃µ ∈ IRs su
h that λ ≥ 0, λ 6= 0, µ ≥ 0, and
d∑

i=1

λiAi +
s∑

j=1

µjBj = 0,where Ai and Bj refer to the 
omponents of A and B, respe
tively.3 Computing Pre
oderivatives of Normal Cone Mappingsto Convex PolyhedraGiven the index set T = {1, . . . , m} as m ≥ 1 and the generating linear fun
tionals x∗
i ∈ X∗,

i ∈ T , we rewrite the initial 
onvex polyhedron (1.1) as
Θ =

{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0 for all i ∈ T

} (3.1)and �x some point x̄ ∈ Θ. Consider the normal 
one of 
onvex analysis
N(x̄; Θ) :=

{
x∗ ∈ X

∣∣ 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Θ
} (3.2)to Θ at x̄ ∈ Θ and de�ne the 
olle
tion of a
tive 
onstraint indi
es

I(x̄) :=
{
i ∈ T

∣∣ 〈x∗
i , x̄〉 = 0

}
, (3.3)where the dependen
e on x̄ in notation (3.3) may be omitted if no 
onfusion arises.Our main goal in this se
tion is to provide an exa
t 
al
ulation of the prenormal 
one (2.1)to the (non
onvex) graph of the normal 
one mapping F in (1.2) generated by (3.2) andhen
e the pre
oderivative (2.4) of the mapping F entirely in terms of the initial data of (3.1)in
luding the a
tive 
onstraint indi
es (3.3) at the referen
e point x̄.To pro
eed, re
all the standard 
onstru
tion of the tangent 
one

T (x̄; Θ) := N∗(x̄; Θ) =
{
v ∈ X

∣∣ 〈v, x∗〉 ≤ 0 for all x∗ ∈ N(x̄; Θ)
} (3.4)to the 
onvex set Θ at x̄ de�ned as the dual/polar 
one to the normal one (3.2) in the 
aseof re�exive spa
es under 
onsideration.In our polyhedral 
ase (3.1) the normal and tangent 
ones to Θ admit the following expli
itrepresentations (probably well known while we did no �nd the exa
t referen
es) via thegenerating elements x∗

i in (3.1) and the a
tive indi
es I(x̄).Proposition 3.1 (expli
it representations of the normal and tangent 
ones to 
on-vex polyhedra). Let Θ be given in (3.1), and let I(x̄) be de�ned in (3.3). Then we havethe representations
N(x̄; Θ) = cone

{
x∗

i

∣∣ i ∈ I(x̄)
}

=
{ ∑

i∈I(x̄)

λix
∗
i

∣∣∣ λi ≥ 0
}
, (3.5)

T (x̄; Θ) =
{
v ∈ X

∣∣ 〈x∗
i , v〉 ≤ 0 for all i ∈ I(x̄)

}
. (3.6)7



Proof. The �rst representation of the normal 
one in (3.5) 
an be easily derived fromTheorem 2.2 of the alternative. The se
ond one in (3.5) follows from the �rst equality intherein by the de�nition of the 
oni
 
onvex hull in the 
ase of the �nite set {x∗
i | i ∈ I(x̄)}.The tangent 
one representation (3.6) is a dire
t 
onsequen
e of the �rst equality in (3.5)and de�nition (3.4) of the tangent 
one. △Now we 
onsider the set-valued normal 
one mapping F : X →→ X∗ de�ned in (1.2) by

F(x) = N(x; Θ) and establish an intermediate representation of the prenormal 
one (2.1)to the graph of F at (x̄, x̄∗) ∈ gphF with some x̄∗ ∈ N(x̄; Θ) via the tangent 
one (3.4)to the original polyhedral set (3.1) at the referen
e point x̄, whi
h essentially exploits there�exivity of the spa
e X.Proposition 3.2 (tangent representation of the prenormal 
one to the graph ofthe normal 
one mapping). Fix x̄∗ ∈ N(x̄; Θ) from the normal 
one (3.2) to the polyhedralset (3.1). Then we have the following representation of the prenormal 
one (2.1) to the graphof the normal 
one mapping (1.2):
N̂

(
(x̄, x̄∗); gphF)

=
(
T (x̄; Θ) ∩ {x̄∗}⊥

)∗
×

(
T (x̄; Θ) ∩ {x̄∗}⊥

)
. (3.7)Proof. Take x̄∗ ∈ N(x̄; Θ) and �x an arbitrary pair (x∗, u) ∈ N̂((x̄, x̄∗); gphF). It followsfrom de�nition (2.1) of the prenormal 
one to the graph of F that

lim sup
(x,u∗)

gphF
→ (x̄,x̄∗)

〈x∗, x − x̄〉 + 〈u, u∗ − x̄∗〉

‖x − x̄‖ + ‖u∗ − x̄∗‖
≤ 0. (3.8)Substituting x = x̄ and u∗ ∈ F(x̄) into (3.8) and using the fa
t that the set F(x̄) is a 
onvex
one and then 
onstru
tion (3.4) of the tangent 
one to Θ at x̄, we dedu
e from (3.8) that

u ∈ N̂
(
x̄∗;F(x̄)

)
= N

(
x̄∗;F(x̄)

)
= F(x̄)∗ ∩ {x̄∗}⊥ = T (x̄; Θ) ∩ {x̄∗}⊥. (3.9)To verify the in
lusion �⊂� in (3.7), it remains to 
he
k that x∗ ∈ (T (x̄; Θ)∩ {x̄∗}⊥)∗, whi
hmeans the ful�llment of the relationship

〈x∗, v〉 ≤ 0 for any v ∈ T (x̄; Θ) ∩ {x̄∗}⊥. (3.10)To pro
eed, take any v ∈ T (x̄; Θ) ∩ {x̄∗}⊥ and 
onstru
t the sequen
e xk := x̄ + k−1v as
k ∈ IN . Observe that for the generating elements x∗

i in (3.1) we have
〈x∗

i , xk〉 = 〈x∗
i , x̄〉 + k−1〈x∗

i , v〉 = k−1〈x∗
i , v〉 ≤ 0 whenever i ∈ I(x̄) and k ∈ IN,sin
e x∗

i ∈ N(x̄; Θ) for all i ∈ I(x̄) by (3.2) and (3.3). This implies that xk ∈ Θ for all k ∈ INsu�
iently large, sin
e 〈x∗
i , x̄〉 < 0 as i ∈ T \ I(x̄). Furthermore, taking into a

ount that

x̄∗ ∈ N(x̄; Θ) and v ∈ {x̄∗}⊥, we get
〈x̄∗, x − xk〉 = 〈x̄∗, x − x̄〉 − k−1〈x̄∗, v〉 = 〈x̄∗, x − x̄〉 ≤ 0 for all x ∈ Θ,whi
h yields, by the 
onstru
tion of F in (1.2), that x̄∗ ∈ F(xk), i.e., (xk, x̄

∗) ∈ gphF when
k ∈ IN is su�
iently large. It is obvious that (xk, x̄

∗) → (x̄, x̄∗) as k → ∞. Putting (xk, x̄
∗)8



for (x, u∗) in (3.8), we 
on
lude by passing to the limit as k → ∞ that 〈x∗, v〉 ≤ 0 and thusarrive at (3.10). Unifying (3.9) and (3.10) allows us to justify the in
lusion �⊂� in (3.7).To prove the opposite in
lusion in (3.7), assume by 
ontradi
tion that there is a pair (x∗, v) ∈
X∗ × X satisfying the relationships

x∗ ∈
(
T (x̄; Θ) ∩ {x̄∗}⊥

)∗
, v ∈ T (x̄; Θ) ∩ {x̄∗}⊥, (x∗, v) /∈ N̂

(
(x̄, x̄∗); gphF)

. (3.11)The last one in (3.11) ensures, by the stru
tures of the mapping F and the prenormal 
one(2.1) to its graph, the existen
e of a number γ > 0 and a sequen
e (xk, v
∗
k) → (x̄, x̄∗) as

k → ∞ su
h that xk ∈ Θ, v∗
k ∈ N(xk; Θ), and
〈x∗, xk − x̄〉 + 〈v, v∗

k − x̄∗〉

‖xk − x̄‖ + ‖v∗
k − x̄∗‖

> γ (3.12)for all k ∈ IN su�
iently large. Considering by (3.3) the 
olle
tion of a
tive 
onstraintindi
es I(xk) at xk, we 
an assume by passing to a subsequen
e if ne
essary that there is a
onstant index set Ĩ su
h that I(xk) = Ĩ for all k ∈ IN . It easily follows that Ĩ ⊂ I(x̄), sin
e
xk → x̄ as k → ∞. Taking this into a

ount and employing the normal 
one representation(3.5) from Proposition 3.1, we get

v∗
k =

∑

i∈I(x̄)

λikx
∗
i with λik ≥ 0 for all i ∈ I(x̄) and k ∈ IN.The latter implies, by v ∈ T (x̄; Θ) ∩ {x̄∗}⊥ due to the se
ond in
lusion in (3.11) and by

x∗
i ∈ N(x̄; Θ) for all i ∈ I(x̄), that

〈v, v∗
k − x̄∗〉 = 〈v, v∗

k〉 =
∑

i∈I(x̄)

λik〈v, x∗
i 〉 ≤ 0, k ∈ IN, (3.13)whi
h ensures, in parti
ular, that xk 6= x̄ for all k ∈ IN due to (3.12). By the re�exivity of

X and the weak sequential 
ompa
tness of the unit ball in X we 
on
lude with no loss ofgenerality that there is z ∈ X with ‖z‖ ≤ 1 su
h that
xk − x̄

‖xk − x̄‖
w
−→ z as k → ∞.Sin
e xk ∈ Θ, it follows from (3.2) that

〈
xk − x̄

‖xk − x̄‖
, z∗

〉
≤ 0 for all z∗ ∈ N(x̄; Θ), k ∈ IN,whi
h implies by passing to the limit as k → ∞ that 〈z, z∗〉 ≤ 0 for all z∗ ∈ N(x̄; Θ) andhen
e z ∈ T (x̄; Θ) by (3.4). Thus 〈z, x̄∗〉 ≤ 0, sin
e x̄∗ ∈ N(x̄; Θ). Moreover, it follows from

v∗
k ∈ N(xk; Θ) and the normal 
one de�nition that

〈
v∗

k,
x̄ − xk

‖x̄ − xk‖

〉
≤ 0 for all k ∈ IN.Passing to the limit in the latter inequality and taking into a

ount that v∗

k → x̄∗ stronglyin X∗ as k → ∞, we arrive at 〈x̄∗,−z〉 ≤ 0 and 
on
lude therefore that 〈x̄∗, z〉 = 0,9



sin
e the opposite inequality was proved above. This gives z ∈ {x̄∗}⊥, and hen
e we get
z ∈ T (x̄; Θ) ∩ {x̄∗}⊥. Furthermore, it follows from (3.12) and (3.13) that

γ <
〈x∗, xk − x̄〉 + 〈v, v∗

k − x̄∗〉

‖xk − x̄‖ + ‖v∗
k − x̄∗‖

≤ max

{
0,

〈
x∗,

xk − x̄

‖xk − x̄‖

〉}
+ max

{
0,

〈
v,

v∗
k − x̄∗

‖v∗
k − x̄∗‖

〉}

≤ max

{
0,

〈
x∗,

xk − x̄

‖xk − x̄‖

〉} for all k ∈ IN.Letting k → ∞ at the latter expression and remembering that x∗ ∈ (T (x̄; Θ) ∩ {x̄∗}⊥)∗ bythe �rst assumption in (3.11) and that z ∈ T (x̄; Θ) ∩ {x̄∗}⊥ as proved above, we arrive at
γ ≤ max

{
0, 〈x∗, z〉

}
= 0,whi
h 
ontradi
ts the fa
t that γ > 0 in (3.12). This justi�es the in
lusion �⊃� in (3.7) andthus 
ompletes the proof of the proposition. △The result of Proposition 3.2 gives a pre
ise representation of the prenormal 
one (2.1) tothe graph gphF of the normal 
one mapping (1.2) under 
onsideration, while not expli
itlyvia the original polyhedral set Θ in (3.1) but involving the tangent 
one (3.4) to Θ. Our nextgoal in this se
tion is to establish an expli
it representation of this prenormal 
one entirelyin terms of the initial data of the 
onvex polyhedron (3.1). To pro
eed, we introdu
e thefollowing two sets in spa
es X∗ and X, respe
tively, whi
h are 
onstru
ted via the generatingelements x∗

i in (3.1) and subsets of the index set T in (3.1). Given arbitrary 
olle
tions ofindi
es P ⊂ Q ⊂ T , de�ne the sets
AQ,P := 
one{x∗

i

∣∣ i ∈ Q \ P
}

+ span{x∗
i

∣∣ i ∈ P
}
, (3.14)

BQ,P :=
{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ P, 〈x∗

i , x〉 ≤ 0 for all i ∈ Q \ P
}
. (3.15)There is a simple duality/polarity relationship between the above sets used in the proofs ofthe main result of this se
tion and those in Se
tion 4.Lemma 3.3 (polarity relationship). Let the sets AQ,P and BQ,P be de�ned in (3.14) and(3.15), respe
tively, via the initial data of the 
onvex polyhedron (3.1). Then we have

B∗
Q,P = AQ,P for any P ⊂ Q ⊂ T. (3.16)Proof. The in
lusion B∗

Q,P ⊃ AQ,P follows dire
tly from de�nitions (3.14) and (3.15). Tojustify the opposite in
lusion �⊂� in (3.16), pi
k an arbitrary element x∗ ∈ B∗
Q,P . Then wehave 〈x∗, x〉 ≤ 0 for all x ∈ BQ,P , whi
h means that there is no x ∈ X su
h that

〈x∗, x〉 > 0, 〈x∗
i , x〉 ≤ 0, 〈−x∗

i , x〉 ≤ 0 for all i ∈ Pand 〈x∗
i , x〉 ≤ 0 for all i ∈ Q \ P.Applying now Theorem 2.2 of the alternative, we �nd numbers λ > 0, µi ≥ 0 and νi ≥ 0 as

i ∈ P , and ηi ≥ 0 as j ∈ Q \ P satisfying the equality
λx∗ =

∑

i∈Q\P

ηix
∗
i +

∑

i∈P

µix
∗
i −

∑

i∈P

νix
∗
i .10



The latter immediately implies the relationships
x∗ =

∑

i∈Q\P

λ−1ηix
∗
i +

∑

i∈P

λ−1(µi − νi)x
∗
i

∈ 
one{x∗
i

∣∣ i ∈ Q \ P
}

+ span{x∗
i

∣∣ i ∈ P} = AQ,P ,whi
h justify the in
lusion �⊂� in (3.16) and 
omplete the proof of the lemma. △Now we are ready to establish a 
onstru
tive representation of the prenormal 
one (2.1) tothe graph of the normal 
one mapping (1.2) entirely in terms of the original polyhedral set(3.1). Namely, given any point (x̄, x̄∗) ∈ gphF , we represent N̂((x̄, x̄∗); gphF) via the sets
AQ,P and BQ,P from (3.14) and (3.15), respe
tively, where the index sets Q and P are fullydetermined by the pair (x̄, x̄∗). More spe
i�
ally, by Q we take the a
tive 
onstraint indi
es
I(x̄) from (3.3), while the index set of �positive multipliers� P is de�ned as follows: represent
x̄∗ ∈ N(x̄; Θ) by (3.5) of Lemma 3.1 as

x̄∗ =
∑

i∈I(x̄)

λix
∗
i with λi ≥ 0 for all i ∈ I(x̄) (3.17)and take P = J(x̄, x̄∗) ⊂ I(x̄), where the latter index set of positive multipliers is given by

J(x̄, x̄∗) :=
{
i ∈ I(x̄)

∣∣ λi > 0
}
. (3.18)Note that the multipliers λi in representation (3.17) may not uniquely de�ned unless thea
tive generating elements {x∗

i | i ∈ I(x̄)} of (3.1) are linearly independent. Thus the indexset of positive multipliers (3.18) is not ne
essarily unique. It is easy to observe neverthelessthat all the subsequent 
onstru
tions and results involving J(x̄, x̄∗) are invariant with respe
tto any 
hoi
e of the multipliers λi and the index set J(x̄, x̄∗) as above.Theorem 3.4 (
omputing the prenormal 
one to the graph of the normal 
onemapping). Let x̄∗ ∈ N(x̄; Θ) for the polyhedral set Θ in (3.1), let the index sets I = I(x̄)and J = J(x̄, x̄∗) be de�ned by (3.3) and by (3.17) and (3.18), respe
tively, and let the
orresponding sets AI,J and BI,J be given in (3.14) and (3.15). Then the prenormal 
one(2.1) to the graph of the normal 
one mapping F(x) = N(x; Θ) at (x̄, x̄∗) is 
omputed by
N̂

(
(x̄, x̄∗); gphF)

= AI,J × BI,J . (3.19)Proof. To verify (3.19), it remains to show, by Proposition 3.2 and Lemma 3.3, that
T (x̄; Θ) ∩ {x̄∗}⊥ = BI,J . (3.20)The in
lusion �⊃� in (3.20) easily follows from the de�nition of BI,J in (3.15), the tangent
one representation (3.4) in Proposition 3.1, and the representation of

x̄∗ =
∑

i∈J

λix
∗
i with λi > 0 for all i ∈ J = J(x̄, x̄∗), (3.21)whi
h is an immediate 
onsequen
e of (3.17) and (3.18).11



To verify the opposite in
lusion �⊂� in (3.20), �x any v ∈ T (x̄; Θ)∩{x̄∗}⊥ and get 〈x∗
i , v〉 ≤ 0for all i ∈ I = I(x̄) by the tangent 
one representation (3.6) from Proposition 3.1. Further-more, by representation (3.21) of x̄∗ we have

〈x̄∗, v〉 =
∑

i∈J

λi〈x
∗
i , v〉 = 0,whi
h yields 〈x∗

i , v〉 = 0 for all i ∈ J by the de�nition of J = J(x̄, x̄∗) in (3.18). This justi�esthe in
lusion �⊂� in (3.20) and 
ompletes the proof of the lemma. △As a dire
t 
onsequen
e of Theorem 3.4, we arrive at pre
ise and 
onstru
tive 
omputingthe pre
oderivative (2.4) of the normal 
one mapping F(x) = N(x; Θ).Corollary 3.5 (
omputing the pre
oderivative of the normal 
one mapping). Inthe notation of Theorem 3.4 we have
D̂∗F(x̄, x̄∗)(u) =





cone
{
x∗

i

∣∣ i ∈ I \ J
}

+ span
{
x∗

i

∣∣ i ∈ J
}if 〈x∗

i , u〉 = 0 for i ∈ J and 〈x∗
i , u〉 ≥ 0 for i ∈ I \ J ;

∅ for all other u ∈ X.
(3.22)Proof. Follows dire
tly from de�nition (2.4) of the pre
oderivative and the result of Theo-rem 3.4 for 
omputing the prenormal 
one to the graph of F . △4 Computing Coderivatives of Normal Cone Mappingsto Convex PolyhedraThe main goal of this se
tion is to e�
iently 
ompute the (basi
, limiting) 
oderivative(2.5) of the normal 
one mapping F from(1.2) generated by the polyhedral set (3.1). Weprovide su
h 
al
ulations in the general polyhedral setting under 
onsideration, without anyquali�
ation 
onditions, and also derive more 
onvenient formulas in the 
ase when thegenerating elements x∗

i in (3.1) are linearly independent along the a
tive 
onstraints.Let us start with deriving a representation of our basi
/limiting normal 
one (2.2) to thegraph of F via 
olle
tions of a
tive indi
es at the referen
e point and establishing a 
ertainstability property of this set in the sense de�ned in [5℄, whi
h is equivalently simpli�ed herein the framework of re�exive spa
es.Following [5℄, we say that a set Ω ⊂ X is dually norm-stable at x̄ ∈ Ω if the basi
 normal
one (2.2) admits the representation
N(x̄; Ω) =

{
x∗ ∈ X∗

∣∣ ∃xk
Ω
→ x̄, x∗

k ∈ N̂(xk; Ω) with ‖x∗
k − x∗‖ → 0 as k → ∞

}
. (4.1)Comparing this property with de�nition (2.2) of the basi
 normal 
one via the outer limit(1.3), we observe that (4.1) reads that the weak 
onvergen
e on X∗ in (2.2) 
an be equivalentlyrepla
ed by the norm 
onvergen
e on X∗. Observing that property (4.1) obviously holds in�nite dimensions, we refer the reader to [5℄ for veri�able 
onditions ensuring the dual norm-stability in in�nite-dimensional spa
es. Being applied to graphi
al sets, the dual norm-stability surely yields the 
oderivative normality (2.9) of set-valued mappings.To formulate and prove the aforementioned result on 
omputing the limiting normal 
one tothe graph of F , we need the following additional 
onstru
tions des
ribed entirely in terms12



of the initial data of (3.1). Fix an index 
olle
tion Q ⊂ T , form the 
one
CQ :=

{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ Q, 〈x∗

i , x〉 < 0 for all i ∈ T \ Q
}
, (4.2)and, given (x̄, x̄∗) ∈ gphF , 
onsider the family of indi
es

I(x̄, x̄∗) :=
{
P ⊂ I(x̄)

∣∣ x̄∗ ∈ 
one{x∗
i | i ∈ P}

}
. (4.3)Theorem 4.1 (representation of basi
 normals to the graph and stability propertyfor the normal 
one mapping). Let (x̄, x̄∗) ∈ gphF for the normal 
one mapping (1.2)generated by the 
onvex polyhedron (3.1), let I = I(x̄) be given in (3.3), CQ be given in(4.2), and I = I(x̄, x̄∗) be given in (4.3). Then the graphi
al set gphF ⊂ X × X∗ is duallynorm-stable at (x̄, x̄∗) and the basi
 normal 
one to this set is represented by

N
(
(x̄, x̄∗); gphF)

=
⋃

P⊂Q⊂I, P∈I,CQ 6=∅

AQ,P × BQ,P , (4.4)where AQ,P and BQ,P are de�ned in (3.14) and (3.15), respe
tively.Proof. In what follows we verify representation (4.4) of the basi
 normal 
one to the graphof F and justify simultaneously the dual norm-stability property of the graph in question.Let us start with proving the in
lusion �⊂� in (4.4). Pi
k an arbitrary limiting normal
(v∗, u) ∈ N((x̄, x̄∗); gphF) and �nd by de�nition (2.2) sequen
es (xk, z

∗
k)

gphF
−−−→ (x̄, x̄∗) and

(v∗
k, uk)

w×w
−−−→ (v∗, u) as k → ∞ satisfying

(v∗
k, uk) ∈ N̂

(
(xk, z

∗
k); gphF) for all k ∈ IN. (4.5)It follows from (4.5) due to (1.2) that xk ∈ Θ and z∗k ∈ N(xk; Θ) as k ∈ IN . Furthermore,taking into a

ount that there are �nitely many generating elements x∗

i of the 
onvex poly-hedron (3.1) and 
onsidering a subsequen
e of k ∈ IN if ne
essary, assume with no loss ofgenerality that there is a 
onstant index subset Q ⊂ I(x̄) su
h that
Q :=

{
i ∈ T

∣∣ 〈x∗
i , xk〉 = 0

} for all k ∈ IN. (4.6)It is easy to observe that the set CQ from (4.2) is nonempty for the index 
olle
tion Q de�nedin (4.6). Applying representation (3.5) from Proposition 3.1 to ea
h normal z∗k ∈ N(xk; Θ)from (4.5), we get the equality
z∗k =

∑

i∈Q

λikx
∗
i with some λik ≥ 0, k ∈ IN, (4.7)and, extra
ting another subsequen
e by the above arguments, sele
t without loss of generalitya 
onstant index subset P ⊂ Q ⊂ I(x̄) su
h that

P :=
{
i ∈ Q

∣∣ λik > 0
} for all k ∈ IN. (4.8)Combining (4.7) and (4.8) allows us to verify that

z∗k =
∑

i∈P

λikx
∗
i ∈ cone

{
x∗

i

∣∣ i ∈ P
}
,13



whi
h implies in turn that x̄∗ ∈ cone{x∗
i | i ∈ P} by the 
losedness of �nitely generated 
ones.This justi�es that P ∈ I for P and I de�ned in (4.8) and (4.3), respe
tively.Now apply the prenormal 
one representation (3.19) from Theorem 3.4 to (v∗

k, uk) in (4.5).By the stru
tures of the index sets in (3.19), (4.6), and (4.8) we arrive at
v∗

k ∈ AQ,P and uk ∈ BQ,P for all k ∈ IN, (4.9)where Q and P are given in (4.6) and (4.8), respe
tively. Observe that the set BQ,P isobviously weakly 
losed in X by 
onstru
tion (3.15) and that the set AQ,P is weakly 
losedin X∗ due to the polarity relationship (3.16) from Lemma 3.3 and the re�exivity of X.Passing �nally to the limit in (4.9) as k → ∞, we 
on
lude that (v∗, u) ∈ AQ,P × BQ,P andthus justify the in
lusion �⊂� in (4.4).To prove the opposite in
lusion �⊃� in (4.4), �x an arbitrary element
(v∗, u) ∈

⋃

P⊂Q⊂I, P∈I,CQ 6=∅

AQ,P × BQ,Pand �nd therefore some index subsets P ⊂ Q ⊂ I(x̄) su
h that P ∈ I and
v∗ ∈ AQ,P and u ∈ BQ,P with CQ 6= ∅, (4.10)where the sets CQ and I = I(x̄, x̄∗) are de�ned in (4.2) and (4.3), respe
tively. Take a point

x̃ ∈ CQ and 
onstru
t a sequen
e {xk} ⊂ X by
xk := k−1x̃ + (1 − k−1)x̄ → x̄ as k → ∞. (4.11)Sin
e 〈x∗

i , x̃〉 = 0 for all i ∈ Q and 〈x∗
i , x̃〉 < 0 for all i ∈ T \Q by (4.2), we have xk ∈ CQ as

k ∈ IN . This implies that xk ∈ Θ and that the set of a
tive 
onstraint indi
es I(xk) at xkredu
es to Q for ea
h k ∈ IN . Then representation (3.5) from Proposition 3.1 gives
N(xk; Θ) = cone

{
x∗

i

∣∣ i ∈ Q
}
, k ∈ IN. (4.12)Observe that the in
lusion P ∈ I = I(x̄, x̄∗) implies by (4.3) that

x̄∗ =
∑

i∈P

λix
∗
i with some λi ≥ 0. (4.13)De�ne further a sequen
e {z∗k} ⊂ X∗ by

z∗k :=
∑

i∈P

(
λi + k−1)x∗

i with ‖z∗k − x̄∗‖ → 0 as k → ∞ (4.14)and note that z∗k ∈ N(xk; Θ) for all k ∈ IN due to (4.12) and P ⊂ Q. Furthermore, allthe 
oe�
ients from the representation of z∗k in (4.14) are positive. Taking this into a

ountand applying Theorem 3.4 to ea
h (xk, z
∗
k) with the index sets Q and P from (4.10), we get

N̂((xk, z
∗
k); gphF) = AQ,P × BQ,P and hen
e

(v∗, u) ∈ N̂
(
(xk, z

∗
k); gphF) for all k ∈ IN. (4.15)14



The latter implies, by letting k → ∞ and using de�nition (2.2) of the basi
 normal 
one,that (v∗, u) ∈ N((x̄, x̄∗); gphF), whi
h 
ompletes the proof of representation (4.4).To �nish the proof of the theorem, it remains to show that the graphi
al set gphF isdually norm-stable at (x̄, x̄∗). By de�nition of this property we need to 
he
k that any basi
normal pair (v∗, u) ∈ N((x̄, x̄∗); gphF) 
an be strongly (in the norm topology of X∗ × X)approximated by prenormal elements to the graph of F at points 
lose to (x̄, x̄∗). It isa
tually shown in the proof of the in
lusion �⊃� in (4.4) that ea
h su
h pair (v∗, u) satis�esin
lusion (4.15), where xk → x̄ by (4.11) and z∗k → x̄∗ by (4.14) as k → ∞ strongly X and
X∗, respe
tively. This surely justi�es the dual norm-stability of the graph of the normal
one mapping F and ends the the proof of the theorem. △The next result establishes a simpli�ed representation of the basi
 normal 
one to the graphof F provided that the generating elements x∗

i 
orresponding to the a
tive 
onstraint indi
esin the 
onvex polyhedron (3.1) are linearly independent.Theorem 4.2 (basi
 normals to the graph of the normal 
one mapping underlinear independen
e of a
tive 
onstraints). Let (x̄, x̄∗) ∈ gphF in the framework ofTheorem 4.1, and let J = J(x̄, x̄∗) be the index set of positive multipliers de�ned in (3.18).Assume that the generating elements {x∗
i | i ∈ I(x̄)} of (3.1) are linearly independent. Thenthe basi
 normal 
one (2.2) to the graph of F admits the representation

N
(
(x̄, x̄∗); gphF)

=
⋃

J⊂P⊂Q⊂I

AQ,P × BQ,P . (4.16)Proof. We intend to show that the general representation (4.4) of the basi
 normal 
oneredu
es to the simpli�ed and more 
onvenient form (4.16) under the imposed linear inde-penden
e 
ondition. Let us prove �rst that the latter assumption implies that
CQ 6= ∅ whenever Q ⊂ I(x̄) (4.17)for the set CQ de�ned in (4.2). Sin
e x̄ ∈ CI , we obviously have (4.17) for Q = I(x̄).Otherwise, represent the set CQ as

CQ =
{
x ∈ X

∣∣ 〈x∗
i , x〉 ≤ 0, 〈−x∗

i , x〉 ≤ 0 for i ∈ I and 〈x∗
i , x〉 < 0 for i ∈ T \ Q}and assume, arguing by 
ontradi
tion, that CQ = ∅. Then Theorem 2.2 of the alternativeensures the existen
e of nonnegative numbers αi, α̃i, βj for i ∈ Q and j ∈ T \Q su
h that atleast one of βj is not zero and

∑

i∈Q

αix
∗
i −

∑

i∈Q

α̃ix
∗
i +

∑

j∈T\Q

βjx
∗
j = 0. (4.18)By the in
lusion Q ⊂ I and de�nition (3.3) of I = I(x̄) we get from the latter identity that

∑

j∈T\I

βj〈x
∗
j , x̄〉 = 0,whi
h implies in turn the relationships

〈x∗
j , x̄〉 < 0 and hen
e βj = 0 for all j ∈ T \ I(x̄).15



This allows us to dedu
e from (4.18) that
∑

i∈Q

(αi − α̃i)x
∗
i +

∑

j∈I\Q

βjx
∗
i = 0,where at least one of the multipliers βj is not zero. The latter 
ontradi
ts the linear inde-penden
e assumption made and thus justi�es (4.17).To derive next the normal 
one representation (4.16) from that of (4.4) in Theorem 4.1, itis su�
ient to prove the equivalen
e

P ∈ I ⇐⇒ J ⊂ P, (4.19)where I = I(x̄, x̄∗) is de�ned in (4.3). Observe right away that the impli
ation �⇐=� in(4.19) follows immediately from representation (3.21) and the de�nition of I. To justify theopposite impli
ation �=⇒� in (4.19), take any P ⊂ J and �nd γi ≥ 0 as i ∈ P with
x̄∗ =

∑

i∈P

γix
∗
i . (4.20)Re
alling that P ⊂ I by de�nition (4.3) and taking λi from representation (4.13) , we let

µi :=

{
λi, i ∈ J,
0, i ∈ I \ J,

νi :=

{
γi, i ∈ P,
0, i ∈ I \ Pand 
on
lude by (3.21) and (4.20) that

x̄∗ =
∑

i∈I

µix
∗
i =

∑

i∈I

νix
∗
i , (4.21)whi
h implies by the linear independen
e assumption that µi = νi for all i ∈ I.Assume now that J 6⊂ P , i.e., there is an index i ∈ I su
h that i ∈ J \ P . It gives by (3.21)and (4.21) that

0 < λi = µi = νi = 0for this index, whi
h is an obvious 
ontradi
tion. Thus J ⊂ P , and the 
on
lusion of thetheorem follows �nally from (4.17) and (4.19). △As 
onsequen
es of Theorems 4.1 and 4.2, we obtain the following representations of thebasi
 
oderivative (2.5) involving 
olle
tions of a
tive index subsets in the general 
ase (3.1)of 
onvex polyhedra as well as under the linear independen
e 
ondition.Corollary 4.3 (
oderivative normality and 
oderivative representations via 
ol-le
tions of a
tive index subsets). Let (x̄, x̄∗) ∈ gphF in the general framework ofTheorem 4.1. Then the normal 
one mapping F is 
oderivatively normal at (x̄, x̄∗) and thebasi
 
oderivative (2.5) of F at (x̄, x̄∗) admits the representation:
D∗F(x̄, x̄∗)(u) =

{
v∗ ∈ X∗

∣∣∣ (v∗,−u) ∈ AQ,P × BQ,P for some P ⊂ Q ⊂ Iwith P ∈ I(x̄, x̄∗) and CQ 6= ∅
}
.

(4.22)If in addition the generating elements {x∗
i | i ∈ I(x̄)} are linearly independent, then

D∗F(x̄, x̄∗)(u) =
{
v∗ ∈ X∗

∣∣ (v∗,−u) ∈ AQ,P × BQ,P for some J ⊂ P ⊂ Q ⊂ I
} (4.23)with the index subset of positive multipliers J = J(x̄, x̄∗) de�ned in (3.18).16



Proof. Representations (4.22) and (4.23) follows from the 
oderivative de�nition (2.5) andthe normal 
one representation (4.4) and (4.16), respe
tively. The 
oderivative normality(2.9) of F at (x̄, x̄∗) is an immediate 
onsequen
e of the dual norm-stability of the graph of
F at this point proved in Theorem 4.1. △Our next result, important for establishing the main theorems in this se
tion, e�
iently
hara
terizes the 
oderivative domain DomD∗F(x̄, x̄∗) in the general polyhedral 
ase (3.1),i.e., des
ribes the subset of the 
oderivative argument on whi
h the 
oderivative is nonempty.Given an a
tive index 
olle
tion S ⊂ I(x̄), we 
onsider the 
losed 
one

CS :=
{
x ∈ X

∣∣ 〈x∗
i , x〉 = 0 for all i ∈ S, 〈x∗

i , x〉 ≤ 0 for all i ∈ T \ S
}
, (4.24)whi
h is the 
losure of the one in (4.2), and de�ne the feature index subset for S by

Υ(S) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , x〉 = 0 for all x ∈ CS

}
. (4.25)Proposition 4.4 (
hara
terization of the 
oderivative domain). Let (x̄, x̄∗) ∈ gphFin the framework of Theorem 4.1. Then u ∈ DomD∗F(x̄, x̄∗) if and only if

〈x∗
i , u〉 = 0 for all i ∈ J and 〈x∗

i , u〉 ≥ 0 for all i ∈ Υ(J) \ J, (4.26)where J = J(x̄, x̄∗) and Υ(J) are de�ned in (3.18) and (4.25), respe
tively.Proof. Let u ∈ DomD∗F(x̄, x̄∗), i.e., D∗F(x̄, x̄∗)(u) 6= ∅. Applying the 
oderivative de�ni-tion and representation (4.4) of Theorem 4.1, �nd v∗ ∈ X∗ and indi
es P ⊂ Q ⊂ I(x̄) with
CQ 6= ∅ and P ∈ I(x̄, x̄∗) su
h that

(v∗,−u) ∈ AQ,P × BQ,P . (4.27)First we show that J ⊂ Q. Indeed, �x an element x ∈ CQ and get by de�nition (4.2) that
〈x∗

i , x〉 = 0 for all i ∈ Q and 〈x∗
i , x〉 < 0 for all i ∈ T \ Q. (4.28)Sin
e P ∈ I(x̄, x̄∗), we �nd by (4.3) numbers µi ≥ 0 su
h that

x̄∗ =
∑

i∈P

µix
∗
i ,whi
h implies by (4.28) that 〈x̄∗, x〉 = 0 due to P ⊂ Q. On the other hand, we have fromthe expression of x̄∗ in (3.21) that

0 = 〈x̄∗, x〉 =
∑

i∈J

λi〈x
∗
i , x〉 with λi > 0 for all i ∈ J.This gives that 〈x∗

i , x〉 = 0 whenever i ∈ J , i.e., J ⊂ Q.To 
ontinue proving the �only if� impli
ation in the proposition, we get from (4.27) and
onstru
tion (3.15) of the set BQ,P that
〈x∗

i , u〉 = 0 for all i ∈ P and 〈x∗
i , u〉 ≥ 0 for all i ∈ Q \ P. (4.29)17



It follows from the in
lusion J ⊂ Q that 〈x∗
i , u〉 ≥ 0 for all i ∈ J . This allows us to apply to

u the same arguments as for x above and 
on
lude that 〈x∗
i , u〉 = 0 whenever i ∈ J .Observe further that for any x satisfying (4.28) we have x ∈ CJ by (4.24) due to thein
lusion J ⊂ Q. Let us now show that Υ(J) ⊂ Q. Indeed, otherwise we 
hoose some index

i ∈ Υ(J) \Q and by de�nition (4.25) get 〈x∗
i , x〉 = 0, whi
h 
learly 
ontradi
ts the in
lusion

i /∈ Q. It follows then from (4.29) that 〈x∗
i , u〉 ≥ 0 for all i ∈ Υ(J) \ J . Thus we arrive at(4.26) and justify the �only if� part of the proposition.Let us prove the �if� part of the proposition assuming that the relationships in (4.26) aresatis�ed for the given point u ∈ X. Put P := J ∈ I and Q := Υ(J) and observe that

−u ∈ BQ,P for the sele
ted pair (Q, P ). Sin
e by de�nition (3.14) we have 0 ∈ AQ,P , evenfor P = ∅ and/or Q = ∅ by the 
onvention made, it follows that (0,−u) ∈ AQ,P ×BQ,P . ByTheorem 4.1 we are done while showing that CQ 6= ∅; indeed, in this 
ase 0 ∈ D∗F(x̄, x̄∗)(u).To 
onstru
t x ∈ CQ, observe from de�nition (4.25) of the feature index subset thatfor every i ∈ I \ Q = I \ Υ(J) there is xi ∈ CJ with 〈x∗
i , xi〉 < 0.For indi
es i ∈ T \ I we put xi := x̄ ∈ CJ and thus extend the latter relationship to:for every i ∈ T \ Q there is xi ∈ CJ with 〈x∗

i , xi〉 < 0. (4.30)Letting �nally x :=
∑

i∈T\Q xi ∈ CJ and using (4.30) as well as de�nition (4.25), we get
〈x∗

i , x〉 = 0 for all i ∈ Q = Υ(J) and
〈x∗

i , x〉 = 〈x∗
i , xi〉 +

∑

j∈T\Q, i6=j

〈x∗
i , xj〉 < 0 for all i ∈ T \ Q,whi
h gives x ∈ CQ and thus 
ompletes the proof of the proposition. △Now we are ready to establish the main results of this se
tion providing e�
ient evaluationsof the basi
 
oderivative D∗F(x̄, x̄∗)(u) of the normal 
one mapping (1.2) entirely in termsof the initial data of the 
onvex polyhedron (3.1), the referen
e point (x̄, x̄∗) ∈ gphF , andthe 
oderivative argument u ∈ DomD∗F(x̄, x̄∗) from its domain. Given u ∈ X, de�ne the
hara
teristi
 a
tive index subsets

I0(u) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , u〉 = 0

} and I>(u) :=
{
i ∈ I(x̄)

∣∣ 〈x∗
i , u〉 > 0

}
. (4.31)The next theorem provides a 
onstru
tive upper estimate of the 
oderivative on its domainin the general polyhedral 
ase (3.1) under 
onsideration.Theorem 4.5 (
onstru
tive upper estimate of the 
oderivative for the normal
one mapping with no 
onstraint quali�
ations). Let (x̄, x̄∗) ∈ gphF in the frameworkof Proposition 4.4, and let I0(u) and I>(u) be the 
hara
teristi
 a
tive index subsets de�nedin (4.31). Then we have the 
oderivative upper estimate for u ∈ DomD∗F(x̄, x̄∗):

D∗F(x̄, x̄∗)(u) ⊂ cone
{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}
, (4.32)where the 
oderivative domain is 
omputed byDomD∗F(x̄, x̄∗) =

{
u ∈ X

∣∣ 〈x∗
i , u〉 = 0, i ∈ J, and 〈x∗

i , u〉 ≥ 0, i ∈ Υ(J) \ J
}
. (4.33)18



Proof. The pre
ise domain formula (4.33) is justi�ed in Proposition 4.4. Pi
k now arbi-trary elements u ∈ DomD∗F(x̄, x̄∗) and v∗ ∈ D∗F(x̄, x̄∗)(u) and �nd, by the 
oderivativede�nition (2.5) and des
ription (4.4) of the basi
 normal 
one in Theorem 4.1, su
h indexsubsets P ⊂ Q ⊂ I(x̄) that P ∈ I(x̄, x̄∗), CQ 6= ∅,
v∗ ∈ AQ,P , and − u ∈ BQ,P . (4.34)It follows from de�nition (3.15) of the set BQ,P that the last in
lusion is equivalent to

〈x∗
i , u〉 = 0 for all i ∈ P and 〈x∗

i , u〉 ≥ 0 for all i ∈ Q \ P.Thus we have the following relationships involving the above ve
tor u ∈ DomD∗F(x̄, x̄∗) aswell as the index sets P and Q:
P ⊂ S :=

{
i ∈ Q

∣∣ 〈x∗
i , u〉 = 0

} and 〈x∗
i , u〉 > 0 for all i ∈ Q \ S. (4.35)Taking into a

ount the relationships in (4.35) and de�nition (3.14) of the set AQ,P , wederive from the �rst in
lusion in (4.34) that

v∗ ∈ span{
x∗

i

∣∣ i ∈ P
}

+ 
one{x∗
i

∣∣ i ∈ Q \ P
}

⊂ span{x∗
i

∣∣ i ∈ S} + 
one{x∗
i

∣∣ i ∈ Q \ S
}
.

(4.36)Observe further from the 
onstru
tions of S in (4.35) and of the 
hara
teristi
 a
tive indexsubsets in (4.31) that S ⊂ I0(u) and Q \ S ⊂ I>(u). Thus we get (4.32) from (4.36) and
omplete the proof of the theorem. △The �nal result of this se
tion establishes a pre
ise formula for 
omputing the 
oderivativeof the normal 
one mapping F at (x̄, x̄∗) provided that the generating elements x∗
i of the
onvex polyhedron (3.1) are linearly independent along the a
tive 
onstraints at x̄.Theorem 4.6 (
omputing the 
oderivative of the normal 
one mapping underlinear independen
e of a
tive 
onstraints). Assume in the framework of Theorem 4.5that the generating element {x∗

i | i ∈ I(x̄)} of (3.1) are linearly independent. Then we have
D∗F(x̄, x̄∗)(u) = cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
} (4.37)for all u ∈ DomD∗F(x̄, x̄∗), where the 
oderivative domain is 
omputed in (4.33).Proof. By Theorem 4.5 it remains to justify the opposite in
lusion �⊃� to (4.32) under theimposed linear independen
e 
ondition. It easily follows from the de�nitions that Υ(J) =

J for the feature index subset (4.25) of J = J(x̄, x̄∗) in (3.18) under the assumed linearindependen
e of the generating elements {x∗
i | i ∈ I(x̄)}. Take (v∗, u) satisfying

v∗ ∈ cone
{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}and observe by (3.14) and (3.15) that the latter in
lusion yields

(v∗,−u) ∈ AQ,P × BQ,P with Q := I0(u) ∪ I>(u) and P := I0(u) (4.38)19



via the 
hara
teristi
 a
tive index subsets (4.31). Sin
e
J ⊂ I0(u) ⊂ I0(u) ∪ I>(u) ⊂ I,we derive the in
lusion �⊃� in (4.37) from the relationships in (4.38) and the 
oderivativerepresentation (4.22) of Corollary 4.3 and thus 
omplete the proof of the theorem. △Let us 
on
lude this se
tion with three extended remarks, whi
h 
ompare the results obtainedwith known in the literature, relate the main theorems to the se
ond-order subdi�erentialsmentioned in Introdu
tion, and dis
uss some appli
ations.Remark 4.7 (
omparison with known results). As mentioned in Se
tion 1, all theresults obtained in both Se
tion 3 and Se
tion 4 are new in in�nite dimensions. In thispaper the results of Se
tion 3, whi
h are of their own interest, play an auxiliary role as ane
essary preliminary step for 
omputing, a

ording to the de�nitions, the basi
 normal 
oneand 
oderivative in in�nite dimensions. In �nite-dimensional spa
es there are analogs andversions of some results obtained above dis
ussed in what follows.Proposition 3.2 is impli
itly given in [3℄ in �nite dimensions and then expli
itly proved bya di�erent way in [27℄ in the same setting. Our proof in re�exive spa
es mainly follows theapproa
h of [27℄. The other results of Se
tion 3 seem to be new even in �nite dimensions.The �rst representation of the normal 
one (2.2) to the graph of F = N(x; Θ) is givenin [3, proof of Theorem 2℄ via some 
losed fa
e des
ription of 
onvex polyhedra, whi
h isgenerally di�
ult to 
he
k. However, it is shown in [7, Proposition 3.2℄ that the 
losed fa
erepresentation of [3℄ is equivalent to an expli
it one, whi
h is of the same type but somewhatdi�erent from the �nite-dimensional analog of our Theorem 4.4. Another proof of a similarwhile not fully expli
it normal 
one representation in IRn is independently derived in [27,Theorem 3.3℄. Note that the proof in [27℄ as well as our proof in in�nite dimensions do notuse the rather involved Redu
tion Lemma and other devi
es from [3℄.The 
oderivative representation of Theorem 4.6 under the linear independen
e 
ondition is anin�nite-dimensional extension of that in [7, Corollary 3.5℄. The other results of Se
tion 4 seemto be new in �nite dimensions while Theorem 3.5 is an improved version of [7, Corollary 3.4℄.Note also that the re
ent paper [6℄ establishes e�
ient 
oderivative des
riptions of the normal
one mapping for nonpolyhedral inequality systems des
ribed by smooth nonlinear fun
tionsin �nite dimensions under 
ertain quali�
ation 
onditions. These new developments arelargely based on the methods and results from [7, 17, 18℄.Remark 4.8 (se
ond-order subdi�erentials). Given an extended-real-valued fun
tion

ϕ : X → IR := (−∞,∞] �nite at x̄ ∈ IR, we re
all the notions if the (�rst-order) subdi�er-ential [11℄ and the se
ond-order subdi�erential [13℄ of ϕ generated by the basi
 normal 
one(2.2); the reader 
an �nd equivalent representations, more details and dis
ussions, various
al
ulus rules, and numerous appli
ations in [15, 16℄ in the referen
es therein. The basi
subdi�erential of ϕ at x̄ is de�ned by
∂ϕ(x̄) :=

{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N
(
(x̄, ϕ(x̄)); epiϕ)} (4.39)via the normal 
one to the epigraphi
al set epiϕ := {(x, µ) ∈ X × IR| µ ≥ ϕ(x)}. It is easyto see the subdi�erential representation of the normal 
one

N(x̄; Ω) = ∂δ(x̄; Ω), x̄ ∈ Ω, (4.40)20



where δ(·; Ω) is the indi
ator fun
tion of the set Ω equal 0 for x ∈ Ω and ∞ otherwise.Given further (x̄, x̄∗) ∈ gph ∂ϕ, de�ne the se
ond-order subdi�erential of ϕ at this point asthe 
oderivative (2.5) of the �rst-order subdi�erential mapping ∂ϕ : X →→ X∗ at (x̄, x̄∗) by
∂2ϕ(x̄, x̄∗)(u) :=

(
D∗∂ϕ

)
(x̄, x̄∗)(u), u ∈ X (= X∗∗). (4.41)Constru
tion (4.41) a

umulating se
ond-order information on the fun
tion in question isa natural development of the 
lassi
al �derivative-of-derivative� approa
h to (generalized)se
ond-order di�erentiation; see [13, 15, 18, 21, 25℄ for more dis
ussions and implementa-tions. It follows from (4.40) and (4.41) that the 
oderivative of the normal 
one mapping

N(x; Ω) to a set Ω 
an be interpreted as the the se
ond-order subdi�erential of the indi-
ator fun
tion of Ω at the 
orresponding point. Note that su
h se
ond-order 
onstru
tionsnaturally appear in optimization and sensitivity analysis of parametri
 variational inequali-ties and related problems known as mathemati
al and equilibrium programs with equilibrium
onstraints (MPECs and EPECs); see, e.g., [4, 15, 16, 19, 29℄ and the referen
es therein.From this viewpoint, the results obtained in Se
tion 4 as well as their �nite-dimensionalprede
essors from [3, 6, 7, 27, 28℄ 
an be treated as 
onstru
tive tools for e�
ient 
omputingthe se
ond-order subdi�erentials of the indi
ator fun
tions for 
onvex polyhedra. We thusmake the �rst attempt for su
h a 
onstru
tive se
ond-order analysis in in�nite dimensions.Remark 4.9 (some appli
ations). The primary motivation for this paper is developingappli
ations to robust stability of parametri
 variational inequalities, whi
h are presented inthe next se
tion. At the same time the 
onstru
tive 
oderivative 
al
ulations of Se
tion 4
an be readily applied to other important issues of variational analysis and optimization. Inparti
ular, based on these 
al
ulations and the general approa
hes and results developed in[16, Chapter 5℄, we 
an derive 
onstru
tive ne
essary optimality 
onditions for MPECs andEPECs with equilibrium 
onstraints governed by parametri
 generalized equations
0 ∈ f(x, p) + N(x; Θ), (4.42)where Θ is the 
onvex polyhedral (3.1) in a re�exive Bana
h spa
e. Re
all that Robin-son's generalized equation model (4.42) en
ompasses variational inequalities over polyhedral
onvex sets and has been well re
ognized as a 
onvenient framework for the study of bothqualitative and numeri
al aspe
ts of variational analysis, optimization, and equilibria; see,e.g., [4, 16, 19, 23℄ and the referen
es therein.Furthermore, following the s
heme developed in [7℄ for �nite-dimensional models, the re-sults obtained above have the potential for appli
ations to deriving 
onstru
tive optimalityand stationarity 
onditions as well as their pra
ti
al implementations in in�nite-dimensionalMPECs and EPECs arising in ele
tri
ity spot marketmodeling with time-dependent/dynami
data su
h as demands on the network nodes, ele
tri
ity generation and distribution alongthe ar
s, et
. This will be 
onsidered in detail in our future resear
h.5 Robust Stability of Parametri
 Variational InequalitiesThe 
on
luding se
tion of the paper is devoted to appli
ations of the 
oderivative 
al
ula-tions in Se
tion 4 to 
onstru
tive 
hara
terizing robust stability�via the general 
riteria of21



Theorem 2.1�of parametri
 variational inequalities given in the generalized equation form:
0 ∈ f(p, x) + N(x; Θ) for x ∈ Θ and p ∈ Z, (5.1)where Θ ⊂ X is the 
onvex polyhedron (3.1), and where f : Z × X → X∗ is a 
ontinuous(with respe
t to the norm topologies) mapping depending on the de
ision variable x and theparameter variable p taking values in the 
orresponding re�exive Bana
h spa
es. Note that,by 
onstru
tion (3.2) of the normal 
one of 
onvex analysis, the generalized equation form(5.1) is equivalent to the standard form of variational inequalities over 
onvex sets:

〈
f(p, x), x − u

〉
≤ 0 for all u ∈ Θ (5.2)with x ∈ Θ and p ∈ Z. De�ne further the parametri
 solution map S : Z →→ X to (5.1) by

S(p) :=
{
x ∈ X

∣∣ 0 ∈ f(p, x) + N(x; Θ)
}
, (5.3)where we have in fa
t x ∈ Θ, sin
e N(x; Θ) = ∅ for x /∈ Θ.Our primary goal in what follows is to derive 
onstru
tive 
hara
terizations of the Lips
hitz-like property of the solution map (5.3) with evaluating the exa
t Lips
hitzian bound in (2.11)entirely in terms of the initial data of (5.1) in both �nite and in�nite dimensions. This willbe done by 
ombining the 
riteria of Theorem 2.1, some 
al
ulus results from [15℄, and the
oderivative 
al
ulations of Se
tion 4.Let us �rst 
he
k that the general assumptions of Theorem 2.1 are satis�ed for the solutionmap S : Z →→ X from (5.3).Lemma 5.1 (
losed graph and 
oderivative normality properties of solution maps).The graph gphS ⊂ Z×X of the solution map (5.3) is always 
losed in Z×X. Furthermore,the mapping S : Z →→ X is 
oderivatively normal at every point (p̄, x̄) ∈ gphS where f isstri
tly di�erentiable and its partial derivative ∇pf(p̄, x̄) : Z → X∗ is surje
tive.Proof. To prove the 
losedness of the graph of S, we get by (5.2) thatgphS =

{
(p, x) ∈ Z × Θ

∣∣ 〈
f(p, x), x − u

〉
≤ 0 for all u ∈ Θ

}
.This readily implies that gphS is 
losed due to the 
ontinuity of the base mapping f .Let us next justify the 
oderivative normality property of S under the additional assumptionson f imposed at the given point (p̄, x̄) ∈ gphS. To pro
eed, 
onsider a mapping g : Z×X →

X × X∗ de�ned by
g(p, x) :=

(
x,−f(p, x)

) for p ∈ Z and x ∈ X (5.4)and observe that the graph of S admits the representationgphS =
{
(p, x) ∈ Z × Θ

∣∣ g(p, x) ∈ gphF}
= g−1

(gphF) (5.5)via the inverse image/preimage of the graph of the normal 
one mapping F(x) = N(x; Θ)under the mapping g from (5.4). It is easy to see that g is stri
tly di�erentiable at (p̄, x̄)due to the this property of f and that the (full) derivative ∇g(p̄, x̄) : Z × X → X × X∗ of22



g at (p̄, x̄) is surje
tive by the surje
tivity assumption imposed on the partial derivative of
∇pf(p̄, x̄). Employing the inverse image rule for basi
 normals from [15, Theorem 1.17℄ tothe inverse image representation in (5.5), we get the equality

N
(
(p̄, x̄); gphS

)
= ∇g(p̄, x̄)∗N

(
(x̄,−f(p̄, x̄)); gphF)

. (5.6)Based on representation (5.6) and the surje
tivity of ∇g(p̄, x̄), let us now prove that thegraph of the solution map S enjoys the dual norm-stability property (4.1) at (p̄, x̄), whi
hobviously implies the 
oderivative normality of S at the referen
e point. Take (p∗, x∗) ∈
N((p̄, x̄); gphS). By (5.6) there is a pair (u∗, v∗) ∈ N((x̄,−f(p̄, x̄)); gphF) su
h that
(p∗, x∗) = ∇g(p̄, x̄)∗(u∗, v∗). Sin
e ∇g(p̄, x̄) is surje
tive, the pair (u∗, v∗) is determineduniquely; see [15, Lemma 1.18℄. As proved in Theorem 4.1, the set gphF is dually norm-stable at (x̄,−f(p̄, x̄)). Thus there are sequen
es (uk, vk) → (x̄,−f(p̄, x̄)) with (uk, vk) ∈gphF and {(u∗

k, v
∗
k)} ⊂ X∗ × X su
h that

(u∗
k, v

∗
k) ∈ N̂

(
(uk, vk); gphF) and ‖(u∗

k, v
∗
k) − (u∗, v∗)‖ → 0 as k → ∞. (5.7)De�ne further (p∗k, x

∗
k) := ∇g(p̄, x̄)∗(u∗

k, v
∗
k) for all k ∈ IN and observe by (5.7) that

(p∗k, x
∗
k) ∈ ∇g(p̄, x̄)∗N̂

(
(uk, vk); gphF) and ‖(p∗k, x

∗
k) − (p∗, x∗)‖ → 0 as k → ∞. (5.8)It follows from (5.8) by [15, Lemma 1.16℄ that there are (ũk, ṽk) → (x̄,−f(p̄, x̄)) with

(ũk, ṽk) ∈ gphF and
(p̃∗k, x̃

∗
k) ∈ N̂

(
(p̃k, ṽk); gphS

) su
h that ‖(p̃∗k, x̃
∗
k) − (p∗, x∗)‖ → 0 as k → ∞.This justi�es the dual norm-stability property of the graph of the solution map S at (p̄, x̄)and thus 
ompletes the proof of the lemma. △Our next results presented in the following proposition provide 
onstru
tive representationsof the basi
 
oderivative (2.5) of the solution map (5.3) via the initial data of the variationalinequality (5.1) under 
onsideration. Based on the 
oderivative representations for the nor-mal 
one mapping F(x) = N(x; Θ) from Se
tion 4, we 
onsider the two 
ases: the generalpolyhedra (3.1) without any quali�
ation 
onditions and the 
ase of linearly independentgenerating elements x∗

i 
orresponding to a
tive 
onstraints. In the �rst 
ase we involve 
ol-le
tions of a
tive index subsets, while the se
ond one allows us to derive a pre
ise 
oderivativerepresentation using only 
hara
teristi
 a
tive index subsets de�ned in (4.31). The resultsobtained, being of their own interest, are motivated here by appli
ations to robust stabilityto variational inequalities via the 
riteria of Theorem 2.1.Proposition 5.2 (
omputing the 
oderivative of solution maps to variational in-equalities). Let (p̄, x̄) ∈ gphS for the solution map (5.3), where f is stri
tly di�erentiableat (p̄, x̄) with the surje
tive partial derivative ∇pf(p̄, x̄). Let x̄∗ := −f(p̄, x̄) in the notationof Corollary 4.3. Then the following assertions hold:(i) The 
oderivative D∗S(p̄, x̄) : X∗ →→ Z∗ is 
omputed by
D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ X, P ⊂ Q ⊂ I with P ∈ I, CQ 6= ∅s.t. (
− x∗ −∇xf(p̄, x̄)∗u,−u

)
∈ AQ,P × BQ,P , p∗ = ∇pf(p̄, x̄)∗u.23



(ii) Assume in addition that the generating element {x∗
i | i ∈ I(x̄)} of the 
onvex polyhedron(3.1) are linearly independent. Then the 
oderivative D∗S(p̄, x̄) is 
omputed by

D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ DomD∗F(x̄, x̄∗) with p∗ = ∇pf(p̄, x̄)∗u and
−x∗ −∇xf(p̄, x̄)∗u ∈ cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span x∗
i

∣∣ i ∈ I>(u)
}
,where the 
hara
teristi
 a
tive index subsets I0(u) and I>(u) are de�ned in (4.31) while the
oderivative domain DomD∗F(x̄, x̄∗) is 
omputed in (4.33).Proof. It follows from [15, Theorem 4.44℄ that, under the stri
t di�erentiability and surje
-tivity assumptions made in this proposition, we have the 
oderivative representation of thesolution map S to the variational inequality/generalized equation (5.1):

D∗S(p̄, x̄)(x∗) =

{
p∗ ∈ Z∗

∣∣∣ ∃u ∈ X with p∗ = ∇pf(p̄, x̄)∗u,

−x∗ −∇xf(p̄, x̄)∗u ∈ D∗F(x̄, x̄∗)(u).
(5.9)Then we arrive at both 
oderivative formulas in (i) and (ii) of the proposition by substitutinginto (5.9) the representations of D∗F(x̄, x̄∗) from (4.22) of Corollary 4.3 and from (4.37) ofTheorem 4.6, respe
tively. This 
ompletes the proof of the proposition. △Now we are ready to establish veri�able 
hara
terizations for robust Lips
hitzian stability ofsolution maps to the variational inequalities (5.1) over polyhedral 
onvex sets with evaluatingthe exa
t Lips
hitzian bound. Let us �rst 
onsider the 
ase when the de
ision spa
e X is�nite-dimensional while the parameter spa
e Z may be arbitrary Bana
h and re�exive. Wein
lude two statements into the next theorem: one for the general polyhedral set (3.1) with noquali�
ation 
onditions and the other under the linear independen
e of generating elementsof the 
onvex polyhedron (3.1).Theorem 5.3 (
onstru
tive 
hara
terizations of robust stability of polyhedralvariational inequalities with �nite-dimensional de
ision spa
es). Take the refer-en
e point (p̄, x̄) ∈ gphS in the framework and notation of Proposition 5.2 and assume thatthe de
ision spa
e X is �nite-dimensional. Then the following assertions hold:(i) The solution map (5.3) is Lips
hitz-like around (p̄, x̄) if and only if

[
−∇xf(p̄, x̄)∗u ∈ AQ,P , −u ∈ BQ,P

]
=⇒ u = 0 (5.10)for all P ⊂ Q ⊂ I(x̄) with P ∈ I(x̄, x̄∗) and CQ 6= ∅. Furthermore, we have the lowerestimate of the exa
t Lips
hitzian bound for S at (p̄, x̄):lipS(p̄, x̄) ≥ max

{∥∥∇pf(p̄, x̄)∗u
∥∥

∣∣∣ u ∈ −BQ,P , x∗ ∈ −∇xf(p̄, x̄)∗u − AQ,P ,∥∥∇xf(p̄, x̄)∗u + x∗
∥∥ ≤ 1, P ⊂ Q ⊂ I(x̄)with P ∈ I(x̄, x̄∗) and CQ 6= ∅

}
,

(5.11)whi
h holds as equality if the parameter spa
e Z is �nite-dimensional.(ii) Assume in addition that the generating elements {x∗
i | i ∈ I(x̄)} of (3.1) are linearlyindependent. Then S is Lips
hitz-like around (p̄, x̄) if and only if

[
−∇xf(p̄, x̄)∗u ∈ cone

{
x∗

i

∣∣ i ∈ I0(u)
}

+ span
{
x∗

i

∣∣ i ∈ I>(u)
}]

=⇒ u = 0 (5.12)24



provided that u ∈ DomF(x̄, x̄∗), where the 
hara
teristi
 index subsets I0(u) and I>(u) arede�ned in (4.31) while the 
oderivative domain DomD∗F(x̄, x̄∗) is 
omputed in (4.33). Infa
t, impli
ation (5.12) with u ∈ DomD∗F(x̄, x̄∗) is equivalent to
[
−∇xf(p̄, x̄)∗u ∈ AI,I , −u ∈ BJ,J

]
=⇒ u = 0 (5.13)with I = I(x̄) and J = J(x̄, x̄∗) as well as to the 
ondition

ker
{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
} ⋂[

∇xf(p̄, x̄)∗
]−1

(
span

{
x∗

i

∣∣ i ∈ I(x̄)
})

= {0} (5.14)involving the inverse operator to ∇xf(p̄, x̄)∗. Furthermore, we have the lower estimatelipS(p̄, x̄) ≥ max
{ ∥∥∇pf(p̄, x̄)∗u

∥∥
∣∣∣ u ∈ DomD∗F(x̄, x̄∗,

∥∥∇xf(p̄, x̄)∗u + x∗
∥∥ ≤ 1,

−x∗ −∇xf(p̄, x̄)∗u ∈ cone
{
x∗

i

∣∣i ∈ I0(u)
}

+ span
{
x∗

i

∣∣i ∈ I>(u)
}}(5.15)for the exa
t Lips
hitzian bound of S at (p̄, x̄), whi
h holds as equality when the parameterspa
e Z is �nite-dimensional.Proof. Observe �rst that the general assumptions of Theorem 2.1 are satis�ed by Lemma 5.1.Note also that the PSNC property of S is automati
 when the de
ision/range spa
e X is�nite-dimensional and that the 
ondition ∇pf(p̄, x̄)∗u = 0 is equivalent to u = 0 due tothe surje
tivity of ∇pf(p̄, x̄). Thus the ne
essary and su�
ient 
onditions (5.10) and (5.12)for the Lips
hitz-like property of S in (i) and (ii), respe
tively, follow dire
tly from the
oderivative 
riterion (2.12) of Theorem 2.1 and the 
oderivative formulas for S derived inProposition 5.2 as x∗ = 0. Further, it follows from the proof of Theorem 4.6 and the obviousset monotoni
ity relationships

AL,M ⊂ AL′,M ′ and BL,M ⊃ BL′,M ′ whenever L ⊂ L′, M ⊂ M ′ (5.16)for the 
onstru
tions in (3.14) and (3.15) that the robust stability 
riterion (5.12) 
an beequivalently written in the form of (5.13). The equivalen
e between 
onditions (5.13) and(5.14) dire
tly follows from de�nitions (3.14) and (3.15). Using �nally the 
oderivative for-mulas from Proposition 5.2, we 
ompute the 
oderivative norm by the maximum expressionsin (5.11) and (5.15) under the assumptions imposed. Note that the maximum is realized inthese formulas for the 
oderivative norm (2.13) due to [15, Theorem 4.56℄ and the graph-
losedness of the normal 
one mapping F in the norm×weak topology on X ×X∗, whi
h isproved by the stability arguments in Theorem 4.1. Thus the exa
t bound estimates (5.11),(5.15) and the equalities therein follow from the 
orresponding assertions of Theorem 2.1.This 
ompletes the proof of this theorem. △Let us present a simple 
onsequen
e of Theorem 5.3 ensuring the Lips
hitz-like property ofthe parametri
 solution map (5.3) when all the generating elements of the 
onvex polyhe-dron (3.1) are a
tive and linearly independent and when the so-
alled stri
t 
omplementarity
ondition I(x̄) = J(x̄, x̄∗) is satis�ed.Corollary 5.4 (robust stability under stri
t 
omplementarity). Assume in the frame-work of Theorem 5.3(ii) that X = IRn and I(x̄) = J(x̄, x̄∗) = {1, . . . , n}, where x̄∗ =
−f(p̄, x̄). Then the solution map S to (5.1) is Lips
hitz-like around (p̄, x̄).25



Proof. It immediately follows from (4.33) that DomD∗F(x̄, x̄∗) = {0} in this 
ase, i.e., thestability 
riterion (5.12) of Theorem 5.3(ii) is satis�ed automati
ally. △Remark 5.5 (spe
i�
ations and implementations of the 
onstru
tive 
hara
teri-zations of robust stability). Based on the 
onstru
tive 
hara
terizations of robust sta-bility obtained in both assertions of Theorem 5.3 in the 
ase of �nite-dimensional de
isionspa
es, we 
an derive their various spe
i�
ations and simpli�
ations in parti
ular settings;Corollary 5.4 provides just a simple example of this. Observe that 
riterion (5.14) in Theo-rem 5.3(ii) 
an be equivalently rewritten as
[
A∗u − C∗

2v = 0, C1u = 0
]

=⇒ u = 0, (5.17)where A := ∇xf(p̄, x̄) and where the matri
es C1 and C2 are 
omposed from the row ve
torsof the generating ve
tor x∗
i for i ∈ J(x̄, x̄∗) and i ∈ I(x̄), respe
tively. Assuming in additionto the linear independen
e of {x∗

i | i ∈ I(x̄)} the stri
t 
omplementarity 
ondition J(x̄, x̄∗) =
I(x̄), we have C1 = C2 := C and get (5.17) from the positive de�niteness of A on the kernelsubspa
e ker{x∗

i | i ∈ I(x̄)}. The latter readily redu
es to the 
lassi
al se
ond-order su�
ient
ondition for lo
al optimality in nonlinear programs written in the variational equality form(5.1) with f being the gradient of an obje
tive fun
tion; see [24℄. By some more elaborationwe 
an show that 
ondition (5.17) is a
tually equivalent in the latter setting to the so-
alledstrong se
ond-order su�
ient 
ondition for lo
al optimality in C2 nonlinear programs; 
f.[3, 9, 24℄ with the referen
es therein and also further dis
ussions in Remark 5.10 below.Next we des
ribe general settings in whi
h the 
onditions of Theorem 5.3(ii) provide 
hara
-terizations of robust stability for solution maps (5.3) to the polyhedral variational inequalities(5.1) in the 
ase of in�nite-dimensional de
ision spa
es. They rely on a 
ertain well-posednessof (5.1) 
on
erning behavior of the partial derivative ∇xf(p̄, x̄) of the base mapping f onthe kernel spa
e formed by generating elements x∗
i of the 
onvex polyhedron (3.1) alongthe index subset (3.18) of positive multipliers at the referen
e point. This well-posedness isautomati
 in �nite dimensions while holding under easily veri�able 
onditions in the 
ase ofin�nite-dimensional de
ision spa
es.De�nition 5.6 (kernel well-posedness of polyhedral variational inequalities). Wesay that the parametri
 variational inequality (5.1) over the 
onvex polyhedron (3.1) exhibitsthe kernel well-posedness at the point (p̄, x̄) ∈ gphS of di�erentiability of the basemapping f with respe
t to the de
ision variable if

[∥∥∇xf(p̄, x̄)∗xk

∥∥ → 0, xk
w
→ 0, xk ∈ ker

{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
}]

=⇒ ‖xk‖ → 0 (5.18)as k → ∞, where J = J(x̄, x̄∗) is de�ned in (3.18) with x̄∗ = −f(p̄, x̄).Observe that the introdu
ed well-posedness property of (5.1) does not a
tually depend onthe parameter spa
e Z. Let us now present some veri�able 
onditions ensuring the kernelwell-posedness of the polyhedral variational inequalities under 
onsideration.Given a linear bounded operator A : X → X∗ on a Bana
h spa
e X and a 
losed subspa
e
L ⊂ X, we say that A is 
oer
ive on the subspa
e L if there is a 
onstant µ > 0 su
h that

µ‖x‖2 ≤ 〈Ax, x〉 for all x ∈ L. (5.19)26



This redu
es to the 
onventional 
oer
ivity of A : X → X∗ when L = X. We use bothversions in what follows; see Theorem 5.8 and Corollary 5.9.Proposition 5.7 (su�
ient 
onditions for kernel well-posedness). Ea
h of the fol-lowing 
onditions ensures the kernel well-posedness of the polyhedral variational inequality(5.1) at (p̄, x̄) ∈ gphS:(a) The de
ision spa
e X is �nite-dimensional.(b) The adjoint operator ∇xf(p̄, x̄)∗ : X → X∗ is inje
tive on the kernel subspa
e
L := ker

{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)
}
⊂ Xof the Bana
h spa
e X, i.e., we have

[
∇xf(p̄, x̄)∗(x1 − x2) = 0

]
=⇒

[
x1 = x2

] for any x1, x2 ∈ L,and furthermore the image subspa
e ∇xf(p̄, x̄)∗L is 
losed in X∗; both these properties areautomati
 with L repla
ed by X when the partial derivative operator ∇xf(p̄, x̄) is surje
tive.(
) The operator ∇xf(p̄, x̄) : X → X∗ is 
oer
ive on the Bana
h spa
e X.Proof. Case (a) is obvious. To justify 
ase (b), it is su�
ient to show that
[∥∥∇xf(p̄, x̄)∗xk

∥∥ → 0, xk ∈ L
]

=⇒ ‖xk‖ → 0 as k → ∞ (5.20)under the inje
tivity and 
losedness assumptions made in (b). Denote Λ := ∇xf(p̄, x̄)∗ andprove that there is κ > 0 su
h that
‖Λx‖ ≥ κ‖x‖ for all x ∈ L, (5.21)whi
h surely yields (5.20). To pro
eed, denote Y := ΛL ⊂ X∗ and 
onsider the operator

A : L → Y . Our assumptions ensure that the set Y is 
losed and the operator A : L → Yis invertible. By the 
lassi
al open mapping theorem we 
on
lude that the inverse operator
A−1 : Y → L is 
ontinuous. Thus there is a 
onstant ν > 0 su
h that ‖A−1y‖ ≤ ν‖y‖ forall y ∈ Y . This implies (5.21). If ∇xf(p̄, x̄) is surje
tive, we have (5.21) and (5.20) with Lrepla
ed by X from [15, Lemma 1.18℄.Finally, the kernel well-posedness in 
ase (
) follows dire
tly from the Bana
h spa
e version[22℄ of the 
lassi
al Lax-Milgram theorem ensuring that 
oer
ivity implies surje
tivity. This
ompletes the proof of the proposition. △Now we are ready to establish 
onstru
tive 
hara
terizations of robust stability for (5.1) inthe general 
ase of re�exive de
ision spa
es.Theorem 5.8 (
onstru
tive 
onditions for robust stability of well-posed polyhe-dral variational inequalities with in�nite-dimensional de
ision spa
es). Let X be are�exive Bana
h spa
e in the framework of Theorem 5.3(ii). Assume in addition that the ker-nel well-posedness of (5.1) from De�nition 5.6 is satis�ed at (p̄, x̄). Then all the 
on
lusionsof Theorem 5.3(ii) hold in the in�nite-dimensional setting under 
onsideration.27



Proof. Let us show that the solution map (5.3) is PSNC at the referen
e point (p̄, x̄)under the assumptions made. This is the only property needed to be 
he
ked to justify the
on
lusions of this theorem due to the results of Theorem 2.1 and the proof of Theorem 5.3(ii).To verify the PSNC property of S at (p̄, x̄) a

ording to its de�nition in (2.10), take sequen
es
(pk, xk) → (p̄, x̄) as k → ∞ with (pk, xk) ∈ gphS for all k ∈ IN and

(p∗k, x
∗
k) ∈ N̂

(
(pk, xk); gphS

) with p∗k
w
−→ 0 and ‖x∗

k‖ → 0 as k → ∞. (5.22)Re
all that the graph of S has the inverse image representation (5.5), where the mapping
g : Z ×X →→ X ×X∗ de�ned in (5.4) has the surje
tive derivative at (p̄, x̄). Similarly to theproof of Lemma 5.1 by using [15, Lemma 1.16℄, we �nd sequen
es (uk, vk) → (x̄,−f(p̄, x̄))with (uk, vk) ∈ gphF for all k ∈ IN and





(p̃∗k, x̃
∗
k) ∈ ∇g(p̄, x̄)∗N̂

(
(uk, vk); gphF) with

‖p̃∗k − p∗k‖ → 0 and ‖x̃∗
k − x∗

k‖ → 0 as k → ∞.

(5.23)It is easy to see from (5.22), (5.23), and the stru
ture of g in (5.4) that there are prenormals
(u∗

k, v
∗
k) ∈ N̂((uk, vk); gphF) for all k ∈ IN (5.24)satisfying the following relationships with (p̃∗k, x̃

∗
k) in (5.23):

p̃∗k = −∇pf(p̄, x̄)∗v∗
k and x̃∗

k = u∗
k −∇xf(p̄, x̄)∗v∗

k. (5.25)Pro
eed now as in the proof of Theorem 4.1 for the prenormals (5.24) under 
onsiderationand de�ne the a
tive indi
es subsets P ⊂ Q ⊂ I(x̄) as in (4.6) and (4.8), respe
tively, where
λik ≥ 0 are determined from the representation

u∗
k =

∑

i∈Q

λikx
∗
i (5.26)via the generating elements {x∗

i | i ∈ Q} of the 
onvex polyhedron (3.1). Then, as in theproof of Theorem 4.1, we get from (5.24) and (5.25) the in
lusions
x̃∗

k + ∇xf(p̄, x̄)∗v∗
k ∈ AQ,P and v∗

k ∈ BQ,P , k ∈ IN. (5.27)It is easy to 
on
lude by the standard 
ontradi
tion arguments based on the linear indepen-den
e assumption on the a
tive generating elements {x∗
i | i ∈ I(x̄)} that the sequen
es {λik}are bounded for all ∈ Q. Thus we get without loss of generality that λik → λi ≥ 0 as k → ∞whenever i ∈ Q. It follows from the 
onvergen
e p̃∗k

w
→ 0 due to (5.22) and (5.23) and thesurje
tivity of ∇pf(p̄, x̄) that v∗

k

w
→ 0 as k → ∞ by the �rst equality in (5.25). Observefurther that u∗

k

w
→ 0 as k → ∞ by the se
ond equality in (5.25). Now passing to the limit in(5.26) as k → ∞, we arrive at ∑

i∈Q λix
∗
i = 0, whi
h implies that λi = 0 for all i ∈ Q by thelinear independen
e of {x∗

i | i ∈ Q}. This gives
∥∥x̃∗

k + ∇xf(p̄, x̄)∗v∗
k

∥∥ → 0 and hen
e ∥∥∇xf(p̄, x̄)∗v∗
k

∥∥ → 0 as k → ∞. (5.28)Further, it follows from the 
onstru
tion of BQ,P in (3.15) and the set monotoni
ity propertyin (5.16) that the se
ond in
lusion in (5.27) 
an be repla
ed by
v∗

k ∈ BJ,J = ker
{
x∗

i

∣∣ i ∈ J(x̄, x̄∗)}, k ∈ IN, (5.29)28



where the equality in (5.29) is a dire
t 
onsequen
e of the de�nitions. We 
an also easilyobserve that property (5.29) together with (5.28) and the kernel well-posedness of (5.1) at
(p̄, x̄) yield that ‖v∗

k‖ → 0 and hen
e ‖p̃∗k‖ → 0 as k → ∞ by (5.25). Taking now (5.23) intoa

ount, 
on
lude that the relationships in (5.22) imply that ‖p∗k‖ → 0 as k → ∞, whi
hjusti�es the PSNC property of S at (p̄, x̄) and 
ompletes the proof of the theorem. △Finally, we present expli
itly veri�able 
onditions, whi
h simultaneously ensure the ful�llmentof the 
oderivative 
riterion (5.13) in Theorem 5.3(ii) and the kernel well-posedness propertyof (5.1) from De�nition 5.6 and thus e�
iently des
ribe important 
lasses of variationalinequalities that exhibit robust stability in �nite and in�nite dimensions.Corollary 5.9 (robust stability under 
oer
ivity). Let (p̄, x̄) ∈ gphS for the solutionmap (5.3) to (5.1) with the re�exive spa
es X and Z and with the linearly independentgenerating elements {x∗
i | i ∈ I(x̄)}. Assume that f in (5.1) is stri
tly di�erentiable at (p̄, x̄),that I(x̄) = J(x̄, x̄∗) with x̄∗ = −f(p̄, x̄), and that the operator ∇pf(p̄, x̄) is surje
tive. Inaddition we impose the 
onditions:(a) the kernel well-posedness of (5.1) holds at (p̄, x̄),(b) the operator ∇xf(p̄, x̄) is 
oer
ive on the kernel subspa
e ker {x∗

i | i ∈ I(x̄)},whi
h both are satis�ed when ∇xf(p̄, x̄) is 
oer
ive on X. Then the solution map S isLips
hitz-like around (p̄, x̄).Proof. We show �rst that the imposed 
oer
ivity of∇xf(p̄, x̄) on the kernel subspa
e impliesthe 
oderivative 
riterion (5.13). Observe that
ker

{
x∗

i

∣∣ i ∈ I(x̄)
}

= BJ,J = BI,I (5.30)under the assumptions made and that the 
oderivative 
riterion (5.13) reads:
[
−∇xf(p̄, x̄)∗u ∈ AI,I , −u ∈ BI,I

]
=⇒ u = 0. (5.31)It easily follows from the de�nitions of AI,I in (3.14) and the representation of BI,I in (5.30)that 
riterion (5.31) amounts to verify that

[
∇xf(p̄, x̄)∗u ∈ span

{
x∗

i

∣∣ i ∈ I(x̄)
} and u ∈ ker

{
x∗

i

∣∣ i ∈ I(x̄)
}]

=⇒ u = 0. (5.32)Employing now the kernel 
oer
ivity (b) of the operator A = ∇xf(p̄, x̄) as in (5.19) with
L := ker{x∗

i | i ∈ I(x̄)} and using the above representations of AI,I and BI,I as well as there�exivity of X, we �nd a 
onstant µ > 0 su
h that
µ‖u‖2 ≤

〈
∇xf(p̄, x̄)u, u

〉
=

〈
∇xf(p̄, x̄)∗u, u

〉
= 0for any u satisfying the in
lusions in (5.32). The latter yields u = 0 justifying impli
ation(5.32). Thus the Lips
hitz-like property of the solution map (5.3) follows, under the assump-tions made in the 
orollary, from Theorem 5.8. To 
omplete the proof, it remains to observethat the 
oer
ivity of ∇xf(p̄, x̄) on the whole spa
e X obviously implies (b) and ensures
ondition (a) of the 
orollary due to Proposition 5.7(
). △Our 
on
luding remarks 
ompare the stability results obtained in this se
tion with thoseknown in the literature. We also dis
uss some further extensions.29



Remark 5.10 (
omparison with known results on robust stability). The results onrobust stability of polyhedral variational inequalities most 
lose to our study are obtained in[3, 28℄ in the 
ase of �nite-dimensional spa
es of de
ision and parameter variables, with noevaluation of the exa
t Lips
hitzian bound. Appli
ations to robust stability in both papers[3, 28℄ are based on the 
oderivative 
hara
terization of the Lips
hitz-like/Aubin propertyfrom Theorem 2.1 and 
oderivative 
al
ulations dis
ussed above in Remark 4.7. In fa
t,paper [3℄ addresses the 
ase of so-
alled 
anoni
al perturbations in polyhedral variationalinequalities, whi
h are linear with respe
t to the major parameter variable. The 
riti
alfa
e 
hara
terization of robust stability established therein involves 
losed fa
es of somepolyhedral 
riti
al 
one built upon the tangent 
one to the 
onvex polyhedron Θ. This
hara
terization 
annot be easily 
he
ked in general settings. It is worth emphasizing thatresults of [3℄ establishes the equivalen
e of the Lips
hitz-like/Aubin property of solution mapsto 
anoni
ally perturbed variational inequality over 
onvex polyhedra in �nite dimensionsto their strong regularity in Robinson's sense [24℄, whi
h postulates lo
ally single-valuedLips
hitzian behavior.Certain simpli�
ations of the latter 
hara
terization is obtained in [28℄ on the base of the
oderivative 
al
ulations from [27℄. However, the robust stability 
onditions obtained in [28℄also involve 
losed fa
es of some polyhedral 
one asso
iated with the tangent 
one to theinitial 
onvex polyhedron Θ.Observe that our stability results are fully expli
it and are expressed ex
lusively in termsof the initial data of the 
onvex polyhedron Θ and the base mapping f of the variationalinequality (5.1) in both �nite-dimensional and in�nite-dimensional spa
es. Sin
e, in the�nite-dimensional setting of [3℄, the Lips
hitz-like property of solution maps is equivalent toRobinson's strong regularity, our expli
it 
onditions provide also 
riteria for strong regularityof polyhedral variational inequalities in �nite dimensions. It is a 
hallenging open questionwhether this holds in in�nite-dimensional spa
es.Remark 5.11 (further extensions). Combining 
oderivative 
al
ulations of Se
tion 4with 
oderivative formulas (mainly upper estimates) and PSNC 
onditions established in [15,Se
tion 4.4℄ for solution maps to parametri
 generalized equations, we 
an obtain su�
ient
onditions for robust stability 
onstru
tively expressed via the initial data of polyhedralvariational inequalities (5.1) in both �nite and in�nite dimensions in a number of settingswhen the base mappings f in (5.1) are nonsmooth or have nonsurje
tive derivatives.Note �nally that, employing the te
hniques developed in this paper together with those from[6℄ based on the transformation formula derived in [18℄, we 
an extend the robust stabilityresults obtained here to variational inequalities over nonpolyhedral sets des
ribed by �nitelymany nonlinear inequality 
onstraints. These and related topi
s will be 
onsidered in detailin our subsequent resear
h.
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