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Abstract

In this paper, we consider the characterization of strong stationary solutions to
equilibrium problems with equilibrium constraints (EPECs). Assuming that
the underlying generalized equation satisfies strong regularity in the sense of
Robinson, an explicit multiplier-based stationarity condition can be derived.
This is applied then to an equilibrium model arising from ISO-regulated elec-
tricity spot markets.

1 Introduction

This paper deals with the characterization of strong stationary solutions to so-called
equilibrium problems with equilibrium constraints. In its first part, a general result
on the characterization of strong stationary points to such problems is proved which
in the second part is applied to a concrete model of an electricity spot market.

In optimization problems with smooth objectives it is tempting to describe the
local behavior of the constraint set by the respective Frèchet (regular) normal cone
(cf. Definition in Section 2), because then the resulting optimality conditions will
be as sharp as possible. Unfortunately, in most cases this is not possible due to
the fact that in the needed calculus rules one has opposite inclusions (e.g., [15],
Th. 6.14). Nevertheless, under some additional conditions, the (wrong) inclusions
become equalities and then we arrive at workable sharp optimality conditions. Such
a situation has been encountered in the context of mathematical programs with
complementarity constraints (MPCCs), where under various additional conditions
the limiting normal cone (cf. Definition in Section 2 below) could be replaced by
the regular one ([5],[4]). In the first part of this paper (Section 3), we examine
another situation of this sort, related to a parameterized equilibrium, governed by a
variational inequality with a polyhedral constraint set. In this case under Robinson’s
strong regularity, the behavior of this equilibrium constraint can also be suitably
described by the respective regular normal cone, and we speak then in accordance
with [16] about strong stationary points. This result could then be applied to
characterize solutions to the following hierarchical model:

Consider a two-level game with n players on the upper level, called leaders. Each
of them aims to minimize his objective fi (i = 1, . . . , n) by using a strategy xi from
his set of admissible strategies ωi. The value of fi depends, however, not only on
the vector x = (x1, . . . , xn) of decisions of all leaders but also on the response z of
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players on a lower level called followers. We consider a setting where z is uniquely
determined by the generalized equation

0 ∈ F (x, z) + NΞ(z),

where F is a continuously differentiable operator and Ξ is a closed convex set.

Under an equilibrium problem with equilibrium constraints (EPEC) we understand
now the n-tuple of mutually coupled optimization problems

min
xi∈ωi,z∈Ξ

{fi (x−i, xi, z) |0 ∈ F (x−i, xi, z) + NΞ(z)} (i = 1, . . . , n), (1)

where
x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

represents the vector of decisions taken by the remaining leaders. In order to simplify
the notation, we adopt throughout the paper the convention x = (x−i, xi) for all
i = 1, . . . , n.

Clearly, each of the problems (1) is a standard mathematical problem with equilib-
rium constraints (MPEC) in the sense of [11] or [12] in variables (xi, z) and parame-
terized by x−i. As a (local) solution to (1) we declare any vector (x̄, z̄) such that for
all i = 1, . . . , n the pair (x̄i, z̄) belongs to the set of (local) solutions to the MPEC

min
xi∈ωi,z∈Ξ

{fi (x̄−i, xi, z) |0 ∈ F (x̄−i, xi, z) + NΞ(z)} .

It is well known that an EPEC may very well not possess any solution at all. Never-
theless, it provides a useful modeling framework for a number of problems associated
in particular with oligopolistic markets. Such a problem, concerning oligopolistic
competition in a regulated electricity spot market is thoroughly analyzed in the sec-
ond part of the paper. Section 4 presents the simplified model of an ISO-regulated
electricity spot market. In Section 5 its basic structural properties required for the
application of the abstract result are compiled. Section 6 then provides the explicit
translation of the abstract strong stationarity conditions to the concrete model.
Finally, the results are illustrated for a small two-settlements example 6.3.
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2 Concepts and tools from Variational Analysis

We start by defining the main objects necessary for our analysis. For a closed set
C ⊆ Rn and a point x̄ ∈ C, the Contingent or Bouligand cone to C at x̄ ∈ C is
defined

TC(x̄) := Lim sup
τ↘0

τ−1(C − x̄) = {v ∈ Rn |∃τk ↘ 0,∃vk → v : ∀k, x̄ + τkvk ∈ C }

Here, ‘Lim sup’ in the definition above is the upper limit of sets in the sense of
Kuratowski-Painlevé, cf. [15]. Accordingly, we define the Fréchet normal cone to C
at x̄ ∈ C by

N̂C(x̄) := [TC(x̄)]◦,

where ‘[ · ]◦’ denotes the negative dual operation. Then the limiting or Mordukhovich
normal cone to C at x̄ ∈ C is derived from the Fréchet normal cone in the following
manner:

NC(x̄) := Lim sup
x→x̄
x∈C

N̂C(x).

Throughout this text we work with generalized equations of the following form

0 ∈ F (x, z) + NC(z), (2)

where F : Rn×Rm → Rm is at least continuously differentiable and C is a nonempty
closed and convex subset of Rm. Correspondingly, we define the solution set mapping
S : Rn ⇒ Rm via (2):

S(x) := {z ∈ Rm |0 ∈ F (x, z) + NC(z)} (3)

For some reference point (x̄, z̄), where z̄ ∈ S(z̄), we define the multifunction Σ :
Rm ⇒ Rm via a local partial linearization of (2):

Σ(ξ) := {z ∈ Rm |ξ ∈ F (x̄, z̄) +∇zF (x̄, z̄)(z − z̄) + NC(z)}

Suppose now that there exist neighborhoods U of 0 ∈ Rm and V of z̄ such that
the map ξ 7→ Σ(ξ) ∩ V is single-valued and Lipschitz on U with modulus κ. Then
(2) is called strongly regular at (x̄, z̄), with Lipschitz modulus κ. In particular, we
know from Robinson ([13], Theorem 2.1), that if (2) is strongly regular at (x̄, z̄),
then for any ε > 0 there exist neighborhoods Uε of x̄ and Vε of z̄ such that the map
x 7→ σ(x) := S(x) ∩ Vε is single-valued and Lipschitz on Uε with Lipschitz modulus
(κ + ε)L, where L is the uniform Lipschitz modulus of F (·, z) on Uε for all z ∈ Vε.
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3 Strong Stationarity of EPECs

In this section, we commence by discussing the solution map S(x) associated with
the generalized equation

0 ∈ Θ(x, w) + NΓ(w), (4)

where x ∈ Rn, w ∈ Rm, Θ : Rn × Rm → Rm is continuously differentiable and
Γ ⊆ Rm is a polyhedron.

Proposition 3.1. Consider a reference point (x̄, w̄) ∈ gph S and assume that the
generalized equation (4) is strongly regular at (x̄, w̄). Then

N̂gph S(x̄, w̄) =

{[
−∇T

x Θ(x̄, w̄)v∗

u∗ −∇T
wΘ(x̄, w̄)v∗

]∣∣∣∣ u∗ ∈ K◦, v∗ ∈ K

}
.

Here, K = TΓ(w̄)∩{Θ(x̄, w̄)}⊥ is the critical cone to Γ corresponding to (w̄, Θ(x̄, w̄)).

Proof. Because Γ is a polyhedron, the strong regularity assumption implies that
the Lipschitz localization of S, denoted by σ(x), is directionally differentiable at x̄
for each h ∈ Rn and one has σ′(x̄; h) = v, where v is the unique solution of the
generalized equation

0 ∈ ∇xΘ(x̄, w̄)h +∇wΘ(x̄, w̄)v + NK(v)

(see e.g., Theorem 6.3 [12]). We define

Φ(h, v) :=

[
v

−∇xΘ(x̄, w̄)h−∇wΘ(x̄, w̄)v

]
; Ω := gph NK

and calculate first the contingent cone to gph S:

Tgph S(x̄, w̄) = {(h, v) ∈ Rn × Rm|
∃(hi, vi) → (h, v), τi ↘ 0 : w̄ + τivi = σ(x̄ + τihi)∀i}

= {(h, v) ∈ Rn × Rm |v = σ′(x̄; h)} ,

where the last equality follows from the Lipschitz continuity of σ. Hence,

Tgph S(x̄, w̄) = {(h, v) ∈ Rn × Rm |0 ∈ ∇xΘ(x̄, w̄)h +∇wΘ(x̄, w̄)v + NK(v)}

=

{
(h, v) ∈ Rn × Rm

∣∣∣∣[ v
−∇xΘ(x̄, w̄)h−∇yΘ(x̄, w̄)v

]
∈ gph NK

}
= Φ−1(Ω).

Then by definition, N̂gph S(x̄, w̄) = [Φ−1(Ω)]◦. Moreover, given that K is a convex
cone, it is easy to see

Ω = {(v, u) ∈ K ×K◦ |〈v, u〉 = 0} .
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Clearly, Φ−1(K ×K◦) ⊃ Φ−1(Ω). Consequently, by linearity of Φ,

[Φ−1(Ω)]◦ ⊃ [Φ−1(K ×K◦)]◦ = N̂Φ−1(K×K◦)(0, 0). (5)

We claim that
N̂Φ−1(K1×K2)(0, 0) = ∇T Φ(0, 0)(K◦

1 ×K◦
2) (6)

for arbitrary polyhedral cones K1, K2 ⊆ Rm. Indeed, Theorem 6.14 [15] implies

N̂Φ−1(K1×K2)(0, 0) ⊃ ∇T Φ(0, 0)N̂K1×K2(Φ(0, 0)) = ∇T Φ(0, 0)(K◦
1 ×K◦

2).

On the other hand, the multifunction

M(p) := {(a, b) |Φ (a, b) + p ∈ K1 ×K2}

is calm at (0, 0, 0) due to the polyhedrality of K1, K2 and linearity of Φ. It follows
that we can invoke [6] (Th. 4.1) which yields the inclusion

N̂Φ−1(K1×K2) = NΦ−1(K1×K2)(0, 0) ⊂ ∇T (0, 0)NK1×K2(Φ(0, 0)) = ∇T Φ(0, 0)(K◦
1×K◦

2),

whence (6). Next we prove the reverse inclusion to (5). We observe that both sets
K × {0} and {0} × K◦ are subsets of Ω. Further, taking into account (6) with
appropriate settings for K1, K2, one has

[Φ−1(Ω)]◦ ⊂ [Φ−1(K × {0})]◦ ∩ [Φ−1({0} ×K◦)]◦

= N̂Φ−1(K×{0})(0, 0) ∩ N̂Φ−1({0}×K◦)(0, 0)

= ∇T Φ(0, 0)(K◦ × Rm) ∩∇T Φ(0, 0)(Rm ×K)

= ∇T Φ(0, 0)(K◦ ×K) = N̂Φ−1(K×K◦)(0, 0),

and thus (5) becomes an equality. Because

∇T Φ(0, 0) =

[
0 −∇T

x Θ(x̄, w̄)
I −∇T

wΘ(x̄, w̄)

]
,

the asserted formula of our proposition holds.

Since in our later application we are going to deal with generalized equations defined
on possibly nonpolyhedral convex sets, we consider now the following extension of
(4):

0 ∈ F (x, z) + NΞ(z), (7)

where x ∈ Rn, z ∈ Rl and F : Rn × Rl → Rl is continuously differentiable and

Ξ :=
{
z ∈ Rl |A(z) ≤ 0

}
,

such that for i = 1, . . . , p, each function Ai : Rl → R is convex and twice continuously
differentiable. We are going to rewrite (7) in the form of the polyhedral case (4)
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in order to apply Proposition 3.1 to this more general setting: Consider a reference
pair (x̄, z̄) and assume that ∇A(z̄) is surjective. Then, there is a point z̃, such that
A(z̃) < 0, which enables us to rewrite (7) in the “enhanced” form:

0 ∈
[
L(x, z, λ)
−A(z)

]
+ NRl×Rp

+
(z, λ), (8)

where L(x, z, λ) is the Lagrangian

L(x, z, λ) = F (x, z) +∇T A(z)λ,

and λ is a vector of Lagrange multipliers associated with the constraint mapping A.
We introduce the enhanced solution set mapping as follows

Se(x) :=
{
(z, λ) ∈ Rl × Rp |(8) is fulfilled

}
. (9)

In this setting, we will work with the reference point (x̄, z̄, λ̄), where λ̄ ∈ Rp
+ is

uniquely defined by the equality L(x̄, z̄, λ̄) = 0 due to the surjectivity of ∇A(z̄). In
what follows, we will employ the following index sets and scalars:

I := {i ∈ {1, . . . , p} |Ai(z̄) = 0} L := {i ∈ {1, . . . , p} |Ai(z̄) < 0}
I+ :=

{
i ∈ I

∣∣λ̄i > 0
}

I0 :=
{
i ∈ I

∣∣λ̄i = 0
}

a+ := #I+ a0 := #I0.
(10)

Clearly, (8) is of the form (4), with

w := (z, λ) , Θ (x, w) :=

[
L(x, z, λ)
−A(z)

]
, Γ := Rl × Rp

+.

On the basis of Proposition 3.1 we arrive now at the following statement (using
lower index sets to denote corresponding subvectors):

Proposition 3.2. Consider a reference point (x̄, z̄, λ̄) ∈ gph Se and assume that (8)
is strongly regular at (x̄, z̄, λ̄). Then,

N̂gph Se(x̄, z̄, λ̄) =

{(a, b, c) ∈ Rn × Rl × Rp |
∃(v, u, u′) ∈ Rl × (Ra+ × Ra0

+ × {0})× ({0} × Ra0
− × Rp−a0−a+) :

a = −∇T
x F (x̄, z̄)v

b = −[∇T
z F (x̄, z̄) +

∑p
i=1 λ̄i∇2Ai(z̄)]v +∇T AI+(z̄)uI+ +∇T AI0(z̄)uI0

cI+ = −∇AI+(z̄)v
cI0 = u′I0 −∇AI0(z̄)v
cL = u′L −∇AL(z̄)v}
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Proof. It suffices to compute

K = TRl×Rp
+
(z̄, λ̄) ∩

[
L(x̄, z̄, λ̄)
−A(z̄)

]⊥
=

{
(v, u) ∈ Rl × Rp |uL∪I0 ≥ 0

}
∩

[
0

−A(z̄)

]⊥
=

{
(v, u) ∈ Rl × Rp

∣∣−A(z̄)T u = 0, uL∪I0 ≥ 0
}

=
{
(v, u) ∈ Rl × Rp |uL = 0, uI0 ≥ 0

}
and

K◦ =
{
(v′, u′) ∈ Rm × Rp

∣∣v′ = 0, u′I+ = 0, u′I0 ≤ 0
}

and apply Proposition 3.1 with

∇xΘ (x̄, w̄) =

[
∇xF (x̄, z̄)

0

]
∇wΘ (x̄, w̄) =

[
∇zF (x̄, z̄) +

∑p
i=1 λ̄i∇2Ai(z̄) ∇T A(z̄)

−∇A(z̄) 0

]
.

Remark 3.1. Due to the fact that both variables u′L and v are free, the component
cL in the statement of Proposition 3.2 becomes inconsequential.

Remark 3.2. To ensure the strong regularity in the statement of Proposition 3.2,
we usually require that ∇zL

(
x̄, z̄, λ̄

)
is positive definite on ker

(
∇AI+ (z̄)

)
, cf. [13]

, Theorem 4.1 or [12], Theorem 6.3.

Based on the structure provided by Proposition 3.2, we can next compute N̂gph S(x̄, z̄)
for the solution map associated now with the generalized equation (7)

Proposition 3.3.

N̂gph S(x̄, z̄) ={[
∇T

x F (x̄, z̄)v∗1[
∇T

z F (x̄, z̄) +
∑p

i=1 λi∇2Ai(z̄)
]
v∗1 +∇T AI+(z̄)v∗2 +∇T AI0(z̄)v∗3

]
∣∣∣∣ v∗ ∈ M × Ra+ × Ra0

+

}
,

where

v∗ = (v∗1, v
∗
2, v

∗
3) ∈ Rl × Ra+ × Ra0

+

M =
{
r ∈ Rl |∇Ai(z̄)r = 0 (i ∈ I+), ∇Ai(z̄)r ≥ 0 (i ∈ I0)

}
.
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Proof. Let λ̄ be the unique multiplier vector associated with the pair (x̄, z̄). We
claim that

N̂gph S(x̄, z̄) =
{

(a, b) ∈ Rn × Rl
∣∣∣(a, b, 0) ∈ N̂gph Se(x̄, z̄, λ̄)

}
.

Indeed, by [15], Theorem 6.11 one has (a, b) ∈ N̂gph S(x̄, z̄) if and only if there is a
smooth function h that achieves its local maximum relative to gph S at (x̄, z̄) and

∇h(x̄, z̄) = (a, b). Then clearly (x̄, z̄, λ̄) is a local maximum of the function h̃ on
gph Se, where

h̃(x, z, λ) = h(x, z) for all λ.

Consequently, (a, b, 0) ∈ N̂gph Se(x̄, z̄, λ̄). The reverse inclusion follows directly from
the definition of the Fréchet normal cone. Now, the asserted formula follows imme-
diately from Proposition 3.2.

Proposition 3.3 enables us to provide conditions each solution of the EPEC (1)
without constraints ωi on the leaders strategies has necessarily to satisfy. Points
which are feasible w.r.t. to these conditions shall be called strongly stationary.

Theorem 3.1. Let (x̄, z̄) be a solution to the EPEC (1) without constraints ωi on
the leaders strategies. Suppose that Ξ =

{
z ∈ Rl |A(z) ≤ 0

}
, where A : Rl → Rp is

componentwise convex and twice continuously differentiable. Moreover, assume the
following:

1. ∇A(z̄) is surjective

2. (8) is strongly regular at (x̄, z̄, λ̄), where λ̄ is the unique solution of
∇T A(z̄)λ̄ = −F (x̄, z̄).

Then for all i = 1, . . . , n, there exist vi = (vi
1, v

i
2, v

i
3) ∈ M i × Ra+ × Ra0

+ such that:

0 = ∇xi
fi(x̄, z̄) +∇T

xi
F (x̄, z̄)vi

1 (11)

0 = ∇zfi(x̄, z̄) +

[
∇T

z F (x̄, z̄) +

p∑
k=1

λ̄k∇2Ak(z̄)

]
vi

1 +

∇T AI+(z̄)vi
2 +∇T AI0(z̄)vi

3 (12)

where M i := {ri ∈ Rm |∇Ak(z̄)ri = 0 (k ∈ I+), ∇Ak(z̄)ri ≥ 0 (k ∈ I0 )}.

Proof. Clearly, (x̄i, z̄) is a locally optimal solution to the MPEC:

min {fi(x̄−i, xi, z) |(x̄−i, xi, z) ∈ gph S } .

Denote S(x̄−i, xi) by Sx̄i
(xi). By Theorem 6.12 [15] we have

0 ∈ ∇xi,zfi(x̄−i, x̄i, z̄) + N̂gph Sx̄i
(x̄i, z̄).
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By assumption, (8) is strongly regular at (x̄, z̄, λ̄), which certainly implies the strong
regularity of the more restricted generalized equation (with fixed x̄−i)

0 ∈
[
L(x̄−i, xi, z, λ)

−A(z)

]
+ NRl×Rp

+
(z, λ)

at (x̄i, z̄, λ̄) for all i = 1, . . . , n. Hence, by substituting the solution set mapping
Se(x̄−i, xi) into the formula of Proposition 3.2 and applying Proposition 3.3 to

N̂gph Sx̄i
(x̄, z̄), we obtain (11) and (12).

Remark 3.3. It is certainly possible for either index set I+ or I0 to be empty. In
either case, we do not set the cardinaltities of these sets, a+ and a0 respectively, to
zero, which would result in either vi

2 or vi
3 being the zero vector. Instead, this admit-

tedly light abuse of notation should be understood to mean that either the component
vector vi

2 or vi
3 does not exist. Doing so allows us to conveniently state Theorem 3.1

without having to rewrite (11) and (12) for these two extreme cases.

4 A Model of Oligopolistic Competition in Elec-

tricity Spot Markets

In the following we consider a simplified model for competition in electricity spot
markets inspired by work in [3], [9] and [10] and one that has recently been investi-
gated in [8]. We assume that the network of interest is represented by a connected
oriented graph with m edges (transmission lines) and N > 1 nodes. Throughout
this paper, B ∈ RN×m is used to represent the incidence matrix of the electricity
network, with components denoted bij, where

bij =


1 if edge j enters node i
−1 if edge j leaves node i
0 otherwise

Moreover, we assume that at each node, electricity is both in demand and generated
and that generator i exists only at node i, i = 1, . . . , N . As noted in [3], it is
reasonable to use a quadratic term to represent the amount of electricity lost due
to transmission. We define such a term via the mapping L : Rm → RN , where

L(y) =
(

1
2

∑m
j=1 |bij|ρjy

2
j

)
i=1,...,N

(13)

Here, ρj ≥ 0 is the loss coefficient of line j, for all j = 1, . . . ,m. Let i, k ∈ {1, . . . , N},
i 6= k be two nodes connected by edge j ∈ {1, . . . ,m}. If ρj = 0, then we interpret
this to mean that generators i and k are reasonably geographically close and thus
the loss of electricity due to transmission is considered negligible. As will be seen
later, setting all ρj = 0 is also useful for obtaining valuable qualitative information
about certain solutions.
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Given these considerations, we model the satisfaction of demand as such:

q + By ≥ d + L(y) (14)

Here, the parameter d ∈ RN represents the vector of demands at each node, q ∈ RN

is the vector of electricity generated at each respective node, and y ∈ Rm denotes
the oriented flow vector of electricity along the edges of the graph.

Of course, production has to be nonnegative, i.e., q ≥ 0 and typically there is also
some upper for q, which we will disregard in this paper as only the notational, but
not the mathematical, complexity would increase. Moreover, transmission lines have
bounded capacities.

In our model, each of the competing generators bids a quadratic cost function to an
independent system operator (ISO):

ci(αi, βi, qi) = αiqi + βiq
2
i (i = 1, . . . , N)

However, the bidded cost coefficients αi and βi may in actuality differ from the true
cost coefficients, as seen in the “truecost function:

Ci(qi) = γiqi + δiq
2
i (i = 1, . . . , N)

Given all bid functions ci(αi, βi, qi), the ISO determines generation and flow such
that the demand is met in each node of the network and that the overall costs
(according to bidding) are minimized:

min
q,y

{
N∑

i=1

ci(αi, βi, qi) | (q, y) ∈ G

}
, (15)

where

G :=
{
(q, y) ∈ RN+m | q + By ≥ d + L(y), q ≥ 0, −ŷ ≤ y ≤ ŷ

}
.

Note that the vector (α, β) appears as a perturbation parameter in the ISO problem
and is therefore not considered a decision variable on this level. We will refer to
(15) as either the ISO problem or the dispatch problem throughout the text. Given
the inherent convexity of (15), for any feasible (ᾱ, β̄), we know that the correspond-
ing optimal solution (q̄, ȳ) to (15) is characterized as a solution of the following
generalized equation, which arises from the KKT conditions of (15):

0 ∈
(

α + 2[diag β]q
0

)
+ NG(q, y). (16)

We use [diag β] to denote the diagonal matrix with entries βi along the diagonal.
Moreover, given an optimal generation vector q, we may determine generator i’s
profit function by first calculating the clearing price π(qi)i = αi + 2βiqi, i.e. the
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derivative of its bidding cost function at q̄i and therefore the lowest marginal price at
which transactions may occur in the market, and then subtracting the corresponding
true cost coefficients:

fi(αi, βi, q, y) := (αi − γi)qi + (2βi − δi)q
2
i

Therefore, by fixing the decisions of all other competitors, generator i solves the
following mathematical program with equilibrium constraints (MPEC):

max
(αi,βi)∈R2

(q,y)∈G

{
(αi − γi)qi + (2βi − δi)q

2
i

∣∣∣∣0 ∈ (
θ(αi, βi, q)

0

)
+ NG(q, y)

}
(17)

where
θ(αi, βi, q) := (ᾱ−i, αi) + 2[diag (β̄−i, βi)]q

Due to the fact that each competitor i solves the MPEC (17) , the coupled system

min
(αi,βi)∈R2

(q,y)∈G

{
(γi − αi)qi + (δi − 2βi)q

2
i

∣∣∣∣0 ∈ (
α + 2[diag β]q

0

)
+ NG(q, y)

}
(18)

for i = 1, . . . , N (upon passing from maximization to minimization) represents an
equilibrium problem with equilibrium constraints (EPEC). Note, that the expres-
sion NG(q, y) implicitly entails the feasibility condition (q, y) ∈ G. Introducing the
notation

F (α, β, q, y) : =

(
α + 2[diag β]q

0

)
,

fi(α, β, q, y) : = (γi − αi)qi + (δi − 2βi)q
2
i (i = 1, . . . , N),

we may rewrite (18) in the compact form

min
(αi,βi)∈R2

(q,y)∈G

{fi(α, β, q, y) |0 ∈ F (α, β, q, y) + NG(q, y)} (i = 1, . . . , N). (19)

fitting to the general class of EPECs defined by (1). As noted earlier, we are pri-
marily concerned with non-cooperative solutions (ᾱ, β̄, q̄, ȳ) to (19), the definition of
which was provided in the introduction for a general class of EPECs.

Using the terminology from [2], this formulation is known as being multioptimistic.
As one may suspect, certain problems could arise in terms of the well-posedness
of such models. However, as will be seen momentarily, near solutions of particular
interest the solution map S(α, β) is always a single-valued and locally Lipschitz
function, thus possible well-posedness issues are circumvented.
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5 Structural Properties

In this section we compile some structural properties of the spot market model
which are required in order to apply the results from Section 3. Before doing so,
we introduce a restricted class of solutions to (18) we are interested in, as those
additionally satisfying the relations

ᾱi, β̄i > 0 i = 1, . . . , N
−ŷj < yj < ŷj j = 1, . . . ,m

q̄i > 0 i = 1, . . . , l
q̄i = 0 i = l + 1, . . . , N

(20)

where 1 ≤ l ≤ N . First, considering strictly positive bidding coefficients only,
prevents us from the analysis of certain pathologies associated with zero coefficients
(of course, negative bidding coefficients do not make sense at all economically).

Second, we exclude solutions at which the electricity flow y reaches its upper bound,
a phenomonon referred to as congestion. Congestion at a solution would have im-
portant consequences for the structural properties of our model. In particular, given
cycles are present in the network and assuming transmission losses to be zero, the
strong regularity assumption needed in the application of Theorem 3.1 would be
lost. Therefore, we assume in this paper that no congestion occurs at a solution and
leave the analysis of this more complicated case to an upcoming paper [7].

Finally, splitting the vector of generated electricity into strictly positive and zero
components allows us to generalize the results found in [8] by including the possibility
that some generators may overbid and thus suffer the consequences of not producing
any electricity. Figure 1 illustrates the regions of activity in the space of bidding
coefficients (projected onto the linear ones for graphical reasons) for an example
of three competitors In particular, we are interested in circumstances under which
an EPEC solution with a reduced set of competitors exists. It is such cases that
introduce the nonsmooth character to the EPEC. Without loss of generality, we
assume that the first l generators are active (clearly, the case l = 0 is of no economic
interest).

Now, recall the feasible set G defined for the ISO-Problem (15). Evidently, close to
a solution satisfying (20), G can be described as

G =
{
(q, y) ∈ RN+m |H(q, y) ≤ 0

}
,

where H : RN+m → R2N−l is a twice continuously differentiable mapping defined by

H(q, y) :=

(
d + L(y)− q −By

−q(2)

)
. (21)

Here, we use the partition q = (q(1), q(2)) ∈ Rl × Rn−l.

Next, we will need the following auxiliary statements:

12



Figure 1: Phase diagram of active producers in the space of bidding coefficients

Lemma 5.1. Let B be any (N, m)-incidence matrix of some oriented connected
graph. Then the following properties hold

1. ker BT = R(1, . . . , 1)T

2. For any integer k such that 1 ≤ k ≤ N , each (N − k,m)-submatrix of B has
rank N − k.

3. ∀ε > 0 ∃∆ > 0 ∀ρj ∈ [0, ∆) ∀y ∈ [−ŷ, ŷ] : ‖∇L(y)‖ < ε.

4. ∃∆ > 0 ∀ρj ∈ [0, ∆) ∀y ∈ [−ŷ, ŷ]:

∇LT (y)z = BT z and ∃i : zi = 0 =⇒ z = 0.

Proof. For 1., see Biggs ([1], Prop 4.3 ). For 2., assume that the rank of some
(N − k, m)-submatrix of B is smaller than N − k. Then, succesively joining the k
left out rows to this submatrix - and thus reconstructing B - can increase the rank
at most by k − 1, because the last row is already a linear combination of all the
remaining N−1 rows (see 1.). Whence a contradiction with rank B = N−1 (see 1.).
3. is an immediate consequence of (13). Concerning 4., it follows from 3. that for
small enough transmission losses ∇L(y) can be considered arbitrarily small for all y
in the indicated compact range. As a consequence of 1., one has rank (∇L(y)−B) ≥
N − 1 for small losses. If this rank strictly increases, then the dimension of the
corresponding kernel strictly decreases, hence ker(∇T L(y)−BT ) = {0}. Otherwise,
this rank remains N − 1, hence the corresponding kernel keeps having dimension
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one. Now, by 1. and a continuity argument there exists some v 6= 0, which can be
chosen arbitrarliy close to (1, . . . , 1)T such that ker(∇T L(y)− BT ) = Rv. In either
case, the asserted implication in 4. follows.

The following lemma provides first important properties for the constraint mapping
H defined in (21).

Lemma 5.2. Let (ᾱ, β̄, q̄, ȳ) be a solution to (19) satisfying (20), 1 ≤ l ≤ N , and
ρj ≥ 0 sufficiently small for j = 1, . . . ,m, then the following properties hold:

1. ∇H(q̄, ȳ) is surjective

2. H(q̄, ȳ) = 0

3. Strict complementarity holds for the demand-satisfaction constraints (14).

Moreover, if l = N , then 1., 2., and 3. hold without any requirements on the
transmission losses ρj.

Proof. We begin with the case l = N , as the corresponding arguments used to prove
1., 2., and 3. for l < N mirror those used for this simpler case. Given

∇H(q̄, ȳ) =
(
−I | ∇L(ȳ)−B

)
,

1. clearly holds without any requirements on the loss coefficients ρj. This allows us
to write the first order optimality conditions to (15) at point (ᾱ, β̄, q̄, ȳ):

∃λ ∈ RN
+ :

0 =

(
ᾱ + 2[diag β̄]q̄

0

)
+ ∇T H(q̄, ȳ)λ (22)

H(q̄, ȳ) • λ = 0 (23)

where ‘•’ to denotes the Hadamard (component-wise) product. Then, referring to
(20), we discern the following relation from (22):

0 < ᾱi + 2β̄iq̄i = λi, i = 1, . . . , N (24)

Now, (24) implies 3. and - along with (23) - also 2.

We now proceed under the assumption that 1 ≤ l < N . Let I and I ′ denote the
identity matrices on Rl×l and RN−l×N−l respectively and reconsider ∇H(q̄, ȳ):

∇H(q̄, ȳ) =

 −I 0 ∇L1(ȳ)−B1

0 −I ′ ∇L2(ȳ)−B2

0 −I ′ 0

 ,
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where upper indices represent submatrices made up of the first l and last N− l rows
respectively. After elementary row-reductions, the Jacobian transforms into: −I 0 ∇L1(ȳ)−B1

0 −I ′ ∇L2(ȳ)−B2

0 0 −(∇L2(ȳ)−B2)


Clearly the surjectivity of ∇H(q̄, ȳ) hinges on the linear independence of the rows
from −(∇L2(ȳ)−B2). As per Lemma 5.1 (statement 2.), B2 has rank N − l. Then,
for small transmission losses, −(∇L2(ȳ)−B2) has rank N−l too by virtue of Lemma
5.1 (statement 3.). This proves 1.

As a consequence, we may write the first order optimality conditions to (15) at point
(ᾱ, β̄, q̄, ȳ):

∃(λ, µ) ∈ RN
+ × RN−l

+ :

0 =

(
ᾱ + 2[diag β̄]q̄

0

)
+ ∇T H(q̄, ȳ)

(
λ
µ

)
(25)

H(q̄, ȳ) • (λ, µ) = 0 (26)

We obtain the following set of relations from (25) taking into account (20):

0 < ᾱi + 2β̄iq̄i = λi, i = 1, . . . , l (27)

0 < ᾱi = λi + µi−l, i = l + 1, . . . , N (28)

0 =
(
∇T L(ȳ)−BT

)
λ (29)

Assume that λi = 0 for some i ∈ {1, . . . , N}. Then, (29) combined with Lemma 5.1
(statement 4.) yields the contradiction λ = 0 to (27), because l ≥ 1. Hence, λi > 0
for all i ∈ {1, . . . , N}. This proves 3. and, along with (26), also 2. follows (recall
that q̄i = 0 for i = l + 1, . . . , N).

We next turn to strong regularity and refer back to Section 2 for the definition of
this concept. As was discussed earlier, we need this property in order to derive
explicit strong stationarity conditions for EPECs via Theorem 3.1. Moreover, the
single-valuedness of the solution set mapping S(α, β) of the generalized equation
(16) - which comes as a consequence of strong regularity - is integral in the argu-
ment justifying the well-posedness of the spot market EPEC. Begin by defining the
enhanced generalized equation arising from the already established KKT conditions
of (15):

0 ∈
[
L(α, β, q, y, λ, µ)

−H(q, y)

]
+ NRN+m×R2N−l

+
(q, y, λ, µ) (30)

Here,

L(α, β, q, y, λ, µ) =

(
α + 2[diag β]q

0

)
+∇T H(q, y)

(
λ
µ

)
.
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Note that, by virtue of statement 1. in Lemma 5.2, the multipliers (λ, µ) in (30) are
uniquely defined for any (α, β, q, y) fixed in a neighbourhood of a solution to (19)
satisfying (20).

Proposition 5.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (19) such that (20) holds and
assume for all j = 1, . . . ,m that ρj > 0 sufficiently small such that in view of
Lemma 5.2 ∇H(q̄, ȳ) is surjective. Then (30) is strongly regular at (ᾱ, β̄, q̄, ȳ, λ̄, µ̄),
where (λ̄, µ̄) is the uniquely defined Lagrange multiplier.

Proof. Begin by noting that

L(α, β, q, y, λ, µ) =

(
α + 2[diag β]q

0

)
+

 −λ(1)

−λ(2) − µ
(∇L(y)−B)T λ

 ,

where the Lagrange multipliers λ and µ are defined as in Lemma 5.2 with

λ(1) = (λ1, . . . , λl), λ(2) = (λl+1, . . . , λN).

Because ∇H(q̄, ȳ) is surjective and H(q̄, ȳ) = 0 according to Lemma 5.2, we know
via Theorem 4.1 in [13] that (30) is strongly regular, if the partial Jacobian ∇q,yL
is positive definite on ker(∇H(q̄, ȳ)). Calculating ∇q,yL(ᾱ, β̄, q̄, ȳ, λ̄, µ̄) we see:

∇q,yL(ᾱ, β̄, q̄, ȳ, λ̄, µ̄) =

(
2[diag β̄] 0

0 A

)
with

A =

 ρ1

∑N
i=1 λ̄i|bi1| 0

. . .

0 ρm

∑N
i=1 λ̄i|bim|


Note that for all j = 1, . . . ,m, there must exist k ∈ {1, . . . , N} such that bkj 6= 0,
otherwise edge j would not join any nodes of the graph. Moreover, λ̄i > 0 for all
i ∈ {1, . . . , N} via Lemma 5.2 (statement 3.). Since finally ρj > 0 for all j by
assumption and β̄i > 0 for all i due to (20), we see that the partial Jacobian is in
fact positive definite regardless of the structure of ker(∇H(q̄, ȳ)).

Corollary 5.1. Given the assumptions of Proposition 5.1, the solution mapping
S(α, β) to the generalized equation (16) is locally single-valued and Lipschitzian
around (ᾱ, β̄, q̄, ȳ).

Proof. From the strong regularity of (30) proved in Proposition 5.1 it follows that
the solution set mapping Se to (30) is locally single-valued and Lipschitzian around
the point (ᾱ, β̄, q̄, ȳ, λ̄, µ̄). Now, the assertion follows upon observing that

S(α, β) = {(q, y) |∃(λ, µ) : (q, y, λ, µ) ∈ Se(α, β)} .
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Therefore, as mentioned at the end of Section 4, we can use Corollary 5.1 to argue
that the EPEC (19) is well-posed near the solutions we are considering.

An essential assumption in the strong regularity result of Proposition 5.1 was the
presence of strictly positive losses. While this is certainly the case in reality, it also
makes sense to consider a simplified lossless model facilitating an explicit use of
stationarity conditions in order to derive qualitative information about the underly-
ing EPEC. Evidently, strong regularity for the lossless case cannot be obtained via
Proposition 5.1. Fortunately, there is a simple remedy by appropriately reducing
the model in a way as to satisfy strong regularity. More precisely, observe that in
the lossless case the demand satisfaction relation (14) reduces to

q + By ≥ d. (31)

Since by (20) we disregard solutions at which congestion might occur, the demand
satisfaction relation my be further reduced to its summarized version 1T q ≥ 1T d,
where 1T = (1, . . . , 1). In other words it suffices to require that the total generation
of energy meets the total demand. Indeed, the reduced version follows from (31)
upon left multiplication with 1T and using statement 1. of Lemma 5.1. Conversely,
given the relation 1T q ≥ 1T d, there always exists some appropriate flow vector,
such that (31) holds true. This is a consequence of the well-known Gale-Hoffman
inequalities (see, e.g., [14]) for the special case of no constraints on y (which is the
case here due to the absence of congestion around solutions investigated). Note, that
an analogous statement would be false in the presence of losses. On the other hand,
the objective in the ISO problem (15) does not depend on the flow y. Therefore, the
flow becomes meaningless in the lossless ISO problem and so for the whole EPEC.
Once some q̄ is fixed, one may recover a feasible flow ȳ afterwards. Summarizing, in
the lossless case we are allowed to remove the y-variables from the EPEC (18) upon
replacing the feasible set G in the ISO problem by a reduced one:

min

{
N∑

i=1

αiqi + βiq
2
i

∣∣∣q ∈ G̃

}
, G̃ := {q ∈ Rn

∣∣q ≥ 0, 1T q ≥ 1T d}. (32)

Then, the lossless EPEC becomes

min
(αi,βi)∈R2

q∈G̃

{
f̃i(α, β, q)

∣∣∣0 ∈ F̃ (α, β, q) + NG̃(q)
}

(i = 1, . . . , N). (33)

Here f̃i(α, β, q) := fi(α, β, q, y) and F̃ (α, β, q) := α + 2[diag β]q are the same func-
tions as in the original EPEC (19) but without the formal dependence on y of the
latter.

The following proposition states strong regularity of the generalized equation in-
duced from the KKT conditions of (32). This is in the same spirit as in Proposition
5.1 with respect to the KKT conditions of (15). Again we use a local description

17



of G̃. This allows to reduce the non-negativity constraints to those components of
q belonging to non-active generators. The demand satisfaction inequality has to be
included too in this local description because at a solution it is always satisfied as
an equality (as a consequence of statement 2. in Lemma 5.2). Therefore, around
some q̄ as in (20), G̃ may be locally described by

h(q) ≤ 0, h(q) :=
(
1T d− 1T q,−q(2)

)T
(34)

and q(2) := (ql+1, . . . , qN).

Proposition 5.2. Assume ρj = 0 for j = 1, . . . ,m and let (ᾱ, β̄, q̄) be a solution to
(33) satisfying (20). Then, the generalized equation

0 ∈

 L(α, β, q, η, ξ)
1T q − 1T d

q(2)

 + NRN×R+×RN−l
+

(q, η, ξ), (35)

is strongly regular at (ᾱ, β̄, q̄, η̄, ξ̄). Here,

L(α, β, q, η, ξ) := α + 2[diag β]q +∇T h(q̄)(η, ξ)

and (η̄, ξ̄) is the uniquely defined Lagrange multiplier associated with (ᾱ, β̄, q̄) in
(32).

Proof. Following the same argument as in the proof of Proposition 5.1, we end up
with

∇qL(ᾱ, β̄, q̄) = 2[diag β̄],

which is always positive definite, regardless of ker(∇h(q̄)). Furthermore, the Jaco-
bian of the feasible set mapping to (32), ∇h(q̄), has the structure:(

−1 . . . −1
0 | −IN−l

)
This matrix is always surjective which by the way justifies the uniqueness of the
multiplier stated in the assertion of this proposition. Therefore, strong regularity
follows as in Proposition 5.1.

Propositions 5.1 and 5.2 tell us among other that the lower-level solutions can indeed
by determined as (locally Lipschitzian) functions of the bidding coefficients. The
lossless model has the big advantage of even providing an explicit formula for this
function. We present it here for the special case of l = N (all generators active).

Proposition 5.3. In the setting of Proposition 5.2, if l = N , then

q̄i =
1T d + 1

2

∑N
k=1

ᾱk

β̄k∑N
k=1

β̄i

β̄k

− ᾱi

2β̄i

(i = 1, . . . , N)
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Proof. Writing the KKT conditions to (32) at q̄ for the special case l = N we see
that there exists some η ≥ 0 such that

0 = ᾱ + 2[diag β̄]q̄ +∇T h(q̄)η (36)

0 = η · h(q̄) = η · (1T d− 1T q) (37)

Therefore ∇h(q̄) = (−1, . . . ,−1) along with (36) implies

ᾱi + 2β̄iq̄i = η i = 1, . . . , N.

Thus η > 0 due to (20) and 1T q = 1T d via (37). Then, q̄i = (η − ᾱi)/ 2β̄i for all i
and

N∑
k=1

(
η − ᾱk

2β̄k

)
= 1T d.

Now, resolving for η and substituting in the formula obtained for the q̄i yields the
asserted formula.

6 Characterizations of Solutions to the Spot Mar-

ket EPEC using Strong Stationarity Conditions

6.1 Stationarity Conditions in general form

Given the previous sections’ results we are now able to provide explicit characteri-
zations of solutions to the spot market EPEC (18) via the S-Stationarity conditions
guaranteed by Theorem 3.1. For the mapping A figuring in Theorem 3.1 we put
A := H with H as in (21) for the general EPEC (18) and A := h with h as in (34)
in the lossless case. Specializing the index sets from (10) to the data from (18), we
get

I = {1, . . . , 2N − l}
I+ = {1, . . . , N} ∪ {k ∈ {N + 1, . . . , 2N − l} |µ̄k−N > 0}
I0 = {k ∈ {N + 1, . . . , 2N − l} |µ̄k−N = 0}

for the general EPEC and

I = {1, . . . , N − l + 1}
I+ = {1} ∪

{
k ∈ {2, . . . , N − l + 1}

∣∣ξ̄k−1 > 0
}

I0 =
{
k ∈ {2, . . . , N − l + 1}

∣∣ξ̄k−1 = 0
}

for the lossless EPEC. Here, the multipliers λ̄, µ̄, η̄, ξ̄ refer to those figuring in Propo-
sitions 5.1 and 5.2, respectively. We note that in both cases the set I of active indices
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is complete as a consequence of Lemma 5.2 (statement 2.). Similarly, the form of
I+ and I0 already exploits the strict complementarity shown in 5.2 (statement 3.).
As in (10) we put a+ := #I+ and a0 := #I0. The association of the index sets with
the respective case should be evident from the context in the following.

Now, we are in a position to apply Theorem 3.1 to the two versions of EPEC (18):

Corollary 6.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (19) satisfying (20) and assume that
for j = 1, . . . ,m, ρj > 0 sufficiently small such that ∇H(q̄, ȳ) is surjective. Then
for i = 1, . . . , N , there exist multipliers vi = (vi

1, v
i
2, v

i
3) ∈ M i × Ra+ × Ra0

+ , with

M i :=
{
z ∈ RN+m |∇Hk(q̄, ȳ)z = 0, k ∈ I+, ∇Hk(q̄, ȳ)z ≥ 0, k ∈ I0

}
such that

0 = ∇αi,βi
fi(ᾱ, β̄, q̄, ȳ) +∇T

αi,βi
F (ᾱ, β̄, q̄, ȳ)vi

1 (38)

0 = ∇q,yfi(ᾱ, β̄, q̄, ȳ) +∇T
q,yF (ᾱ, β̄, q̄, ȳ)vi

1 +
N∑

k=1

λ̄k∇2Hk(q̄, ȳ)vi
1 +

+∇T HI+(q̄, ȳ)vi
2 +∇T HI0(q̄, ȳ)vi

3 (39)

Here, as before, λ̄ refers to (a part of) the uniquely defined Lagrange multiplier in
the ISO problem (15).

Similarly, let (ᾱ, β̄, q̄) be a solution to the lossless EPEC (33) satisfying (20). Then,

there exist multipliers wi = (wi
1, w

i
2, w

i
3) ∈ M̃ i × Ra+ × Ra0

+ for i = 1, . . . , N with

M̃ i :=
{
z̃ ∈ RN |∇hk(q̄)z̃ = 0, k ∈ I+, ∇hk(q̄)z̃ ≥ 0, k ∈ I0

}
such that

0 = ∇αi,βi
f̃i(ᾱ, β̄, q̄) +∇T

αi,βi
F̃ (ᾱ, β̄, q̄)wi

1 (40)

0 = ∇qf̃i(ᾱ, β̄, q̄) +∇T
q F̃ (ᾱ, β̄, q̄)wi

1 +∇T hI+(q̄)wi
2 +∇T hI0(q̄)w

i
3. (41)

Proof. Due to Proposition 5.1 and Proposition 5.2, (30) and (35) are strongly reg-
ular at (ᾱ, β̄, q̄, ȳ, λ̄, µ̄) and (ᾱ, β̄, q̄, η̄, ξ̄) respectively. Then given the surjectivity
of ∇H(q̄, ȳ) (see Lemma 5.2) and ∇h(q̄) (see Proof of Prop. (5.2)), Theorem 3.1
implies that the stationarity conditions (11) and (12) hold for the first case, yielding
(38) and (39), and the second case as well, yielding (40) and (41). Here, it has to
be noted that the summation in (39) can be restricted from N + m to N because
∇2Hk(q̄, ȳ) = 0 for k = N + 1, . . . , N + m. Therefore, only the first part of the
multiplier (λ̄, µ̄) from the ISO problem occurs in (39).
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6.2 Stationarity Conditions in a special case

In this section we provide explicit formulae for the stationarity conditions derived
in Corollary 6.1. In order not to reduce the complexity, we restrict the analysis
to a particular case, namely I+ = {1, . . . , N} and I0 = {N + 1, . . . , 2N − l} for
the general EPEC (19). The meaning of this choice of index sets is the following:
putting all multipliers related with non-active generators equal to zero, implies that
a corresponding EPEC solution is at the ’phase-boundary’ between the region where
all N generators are active and the region where just the first l generators are active
and the remaining N − l generators become inactive. In Figure 1, this correpsonds
to the boundary between the empty space and one of the shaded areas (depending
on whether l = 1 or l = 2).

Let (ᾱ, β̄, q̄, ȳ) be a solution to (19) satisfying (20) and assume that for j = 1, . . . ,m,
ρj > 0 sufficiently small such that ∇H(q̄, ȳ) is surjective. Furthermore, assume that
I+ = {1, . . . , N} and I0 = {N +1, . . . , 2N− l}. Then by Corollary 6.1, we know that
for i = 1, . . . , N , there exist multipliers vi = (vi

1, v
i
2, v

i
3) ∈ M i ×Ra+ ×Ra0

+ , with M i

as defined in Corollary (6.1), such that (38) and (39) hold. Fix some i ∈ {1, . . . , N},
then we may rewrite (38) as follows:

(0, 0) = (−q̄i,−2q̄2
i ) + (vi

1,i, 2q̄iv
i
1,i).

Given q̄i > 0 for i ∈ {1, . . . , l} and q̄i = 0 for i ∈ {l + 1, . . . , N}, we obtain the
relations

vi
1i = q̄i (i ∈ {1, . . . , l}), vi

1i = 0 (i ∈ {l + 1, . . . , N}) (42)

Next, denoting by ei the ith standard unit vector in RN+m, we observe that

∇q,yfi(ᾱ, β̄, q̄, ȳ) = (γi − ᾱi + 2(δi − 2β̄i)q̄i)ei

∇T
q,yF (ᾱ, β̄, q̄, ȳ) =

(
2[diag β̄] 0

0 0

)
and, with I1 and I2 being the identity matrices in Rl×l and R(N−l)×(N−l), respectively,

∇T HI+(q̄, ȳ) =

 −I1 0
0 −I2

(∇L(ȳ)−B)T

 , ∇T HI0(q̄, ȳ) =

 0
−I2

0


∇2Hk(q̄, ȳ) =

(
0 0
0 ∇2Lk(ȳ)

)
if k ∈ {1, . . . , N}.

Using these data we read now all components j = 1, . . . , N + m of the equation
system (39) for all generators i = 1, . . . , N . To do so, it is necessary to make case
distinction according to the partition of components. For components j = 1, . . . , N
we get:

j ∈ {1, . . . , l} \ {i} =⇒ 2β̄jv
i
1,j = vi

2,j

j ∈ {l + 1, . . . , N} \ {i} =⇒ 2β̄jv
i
1,j = vi

2,j + vi
3,j−l

j ∈ {1, . . . , l}, j = i =⇒ γi − ᾱi + 2(δi − β̄i)q̄i = vi
2,i

j ∈ {l + 1, . . . , N}, j = i =⇒ γi − ᾱi = vi
2,i + vi

3,i−l

(43)
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Here, we already exploited (42) and the fact that q̄i = 0 for i ∈ {l + 1, . . . , N}. For
components j = N + 1, . . . , N + m we may write the whole block of equations as

N∑
k=1

λ̄k∇2Lk(ȳ)vi
1,[3] + (∇L(ȳ)−B)T vi

2 = 0, (44)

where we make use of the partition vi
1 = (vi

1,[1], v
i
1,[2], v

i
1,[3]) ∈ Rl ×RN−l ×Rm. With

this same notation, and exploiting the formulae for∇HI+ and∇HI0 presented above,
we may summarize the relation vi

1 ∈ M i (see statement of Corollary 6.1) as

vi
1,[1] = (∇L1(ȳ)−B1)v

i
1,[3], vi

1,[2] = (∇L2(ȳ)−B2)v
i
1,[3], vi

1,[2] ≤ 0. (45)

Finally, we recall that vi
3 ≥ 0 (see statement of Corollary 6.1). Therefore, this

inequality along with (42), (43), (44) and (45) yields a complete set of relations for
the strong stationarity conditions of the EPEC (18).

We now address the lossless case in the setting I+ := {1} and I0 := {2, . . . , N−l+1}
which has the same interpretation as given in the beginning of this section for the
general EPEC. The same (but now slightly simplified) analysis as above now leads
to the following set of relations for the multipliers wi

j in Corollary 6.1:

wi
1,i = q̄i (i ∈ {1, . . . , l}), wi

1,i = 0 (i ∈ {l + 1, . . . , N}) (46)

j ∈ {1, . . . , l} \ {i} =⇒ 2β̄jw
i
1,j = wi

2

j ∈ {l + 1, . . . , N} \ {i} =⇒ 2β̄jw
i
1,j = wi

2 + wi
3,j−l

j ∈ {1, . . . , l}, j = i =⇒ γi − ᾱi + 2(δi − β̄i)q̄i = wi
2

j ∈ {l + 1, . . . , N}, j = i =⇒ γi − ᾱi = wi
2 + wi

3,i−l

(47)

∑N
j=1 wi

1,j = 0, wi
1,j ≤ 0 (j = l + 1, . . . , N), wi

3 ≥ 0. (48)

6.3 Illustration via a Small Example

In order to illustrate how the explicit stationary conditions can be resolved in the
lossless EPEC, we consider a toy example of N = 2 generators linked together by
one (m = 1) transmission line. We want to identify situations in which - at an
EPEC solution - just the first generator is active whereas the second one becomes
inactive (l = 1). More precisely, we are interested in an EPEC solution located on
the boundary between both generators being active and the second one becoming
inactive. This corresponds to the setting I+ := {1} and I0 := {2} (see discussion
in previous section). Now, (46), (47) and (48) allow us to extract the following
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relations:

w1
1,1 = q̄1

w2
1,2 = 0

γ1 − ᾱ1 + 2(δ1 − β̄1)q̄1 = w1
2

2β̄2w
1
1,2 = w1

2 + w1
3

2β̄1w
2
1,1 = w2

2

γ2 − ᾱ2 = w2
2 + w2

3

w1
1,1 + w1

1,2 = 0

w2
1,1 + w2

1,2 = 0

w1
1,2, w

2
1,2 ≤ 0

w1
3, w

2
3 ≥ 0

We recall that at a solution of the lossless EPEC, the total generation equals the total
demand (strict complementarity of demand satisfaction): 1T q̄ = 1T d. In our special
setting with the second generator being inactive, this amounts to q̄1 = d1 + d2 =: d̄.
Using this information, the previous relations reduce to

γ1 − ᾱ1 + 2(δ1 − β̄1)d̄ = w1
2

−2β̄2d̄ = w1
2 + w1

3

γ2 − ᾱ2 = w2
3

w1
3, w

2
3 ≥ 0.

Equating the expressions for w1
2, we end up at the following two inequalities that

the generators bidding coefficients have to satisfy at an EPEC solution with respect
to the true cost coefficients:

γ1 − ᾱ1 + 2(δ1 − β̄1 + β̄2)d̄ ≤ 0

ᾱ2 ≤ γ2

So, in particular, at such EPEC solution the generator is forced to become inactive
while bidding a linear coefficient not larger than the true one.

At this point one should not forget that the lower level ISO problem provides addi-
tional information. Indeed, the KKT conditions for (33) yield

ᾱ1 + 2β̄1q̄1 = η, ᾱ2 + 2β̄2q̄2 = η + ξ.

Recalling that ξ = 0 (due to I0 = {2}), q̄1 = d̄ and q̄2 = 0, we may summarize the
necessary conditions for EPEC solutions in our special case as:

γ1 − ᾱ1 + 2(δ1 − β̄1 + β̄2)d̄ ≤ 0
ᾱ2 ≤ γ2

ᾱ1 − ᾱ2 + 2β̄1d̄ = 0.
(49)
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Obviously, these relations do not uniquely identify the set of stationary solutions (the
presence of a continuum of solutions to such EPECs has already been observed in
[10]). Nevertheless they provide a useful test set in order to find potential candiates
for EPEC solutions or to rule out numerical solutions which are not true EPEC
solutions. To provide a numerical example, assume a total demand of d̄=1 and cost
coefficients

γ1 = 1, δ1 = 0.25, γ2 = 2, δ2 = 1.

Then, the constellation

α1 = 1, β1 = 0.5, α2 = 2, β2 = 0.25

of bidding coefficients evidently satisfies the stationarity conditions (49). Though,
these stationarity conditions are much sharper than many others derived for MPECs
or EPECs, it is not sure whether or not a true EPEC solution has been identified.
In this simple example, however, graphical verification is possible. Indeed the plot

Out[16]=

Figure 2: Plot of profit functions for a solution of the two generators EPEC

of the profit functions for the two generators, given the stationary solution of the
respective other generator, reveals that the own stationary solution is indeed a global
maximum in boeth cases. Hence, this a global EPEC solution.

Finally, we conclude this paper with a small sensitivity result for this type of EPEC
solution based on the true cost coefficients.

Proposition 6.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to the lossless EPEC as defined above,
i.e., l = 1, ρ = 0. Then

γ2 ≥ γ1 + 2δ1d̄

Proof. Notice that (49) can be re-written as the inequality system:
−1 −2d̄ 0 2d̄
0 0 1 0
1 2d̄ −1 0
−1 −2d̄ 1 0


︸ ︷︷ ︸

A


ᾱ1

β̄1

ᾱ2

β̄2

 ≤


−(γ1 + 2δ1d̄)

γ2

0
0


︸ ︷︷ ︸

b
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Since (ᾱ, β̄, q̄, ȳ) is a strongly stationary solution, (49) must hold. Furthermore,
since ᾱi, β̄i > 0, for all i = 1, 2; the Farkas Lemma indicates that the following must
also hold:

∀u ∈ R4
+ : AT u ≥ 0, bT u ≥ 0

From u ∈ R4
+ and AT u ≥ 0 we obtain

−u1 + u3 − u4 ≥ 0
−2d̄u1 + 2d̄u3 − 2d̄u4 ≥ 0

u2 − u3 + u4 ≥ 0
2d̄u1 ≥ 0

⇒ u2 ≥ u3 − u4 ≥ u1 ≥ 0

In particular, bT u ≥ 0 for all u ∈ R4 such that u2 ≥ u1 ≥ 0. Because b3 = b4 = 0,
this implies

(b1, b2) ∈
{
(w1, w2) ∈ R2 |w2 ≥ −w1, w2 ≥ 0

}
Then the statement of the proposition follows by substitution (note that the second
relation w2 ≥ 0 does not provide any new information).

Proposition 6.1 indicates that if the market mechanism is set up using an ISO, then
electricity producers whose operating costs are lower than their competitors, could
bid in such a way so as to force them out of the market. While this might be
an expected phenomenon in the qualitative sense, the proposition yields an exact
quantitative relationship between the cost coefficients of competitors leading to a
monopolistic situation.
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