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Abstract

We study the global spatial regularity of solutions of generalized elasto-plastic mod-

els with linear hardening on smooth domains. Under natural smoothness assumptions

on the data and the boundary we obtain u ∈ L∞((0, T ); H
3

2
−δ(Ω)) for the displace-

ments and z ∈ L∞((0, T ); H
1

2
−δ(Ω)) for the internal variables. The key step in the

proof is a reflection argument which gives the regularity result in directions normal to

the boundary on the basis of tangential regularity results.
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1 Introduction

This paper is devoted to the study of global spatial regularity properties of solutions to

elasto-plastic models in a geometrically linear framework. The model class under consid-

eration comprises rate independent elasto-plasticity with kinematic hardening combined

with a von Mises flow rule or a Tresca flow rule, as well as elasto-visco-plastic models

which include Cosserat effects.

Let Ω ⊂ R
d be a bounded domain which represents an elasto-(visco)-plastic body and

let S = (0, T ) be a time interval. The behavior of the body under the influence of external

loadings is characterized by the (generalized) displacements u : S×Ω → R
m and a vector of

internal variables z : S×Ω → R
n, which represent the plastic strains and further hardening

variables. The time evolution under the influence of external forces is determined through

the quasi-static balance of forces (1.1) and an evolution law for the internal variable (1.2).

The resulting model consists of a system of linear elliptic partial differential equations for

u which is coupled with an evolution inclusion for z:

div
(
C(x)∇u(t, x) + B(x)z(t, x)) + f(t, x) = 0 for (t, x) ∈ S × Ω, (1.1)

∂tz(t, x) ∈ g(−(B⊤(x)∇u(t, x) + L(x)z(t, x))) for (t, x) ∈ S × Ω, (1.2)

z(0, x) = z0(x) for x ∈ Ω (1.3)

together with boundary conditions for u. The underlying stored elastic energy is given by

E(u, z) = 1
2

∫

Ω
〈
(

C B
B⊤ L

)
(∇u

z ) , (∇u
z )〉dx

with a symmetric coefficient tensor A =
(

C B
B⊤ L

)
∈ L∞(Ω; Lin(Rm×d × R

n, Rm×d × R
n)).

Moreover, g : R
n → P(Rn) is a monotone multivalued constitutive function. If E is

positive semi-definite and if 0 ∈ g(0), then the system (1.1)–(1.3) belongs to the class of

models of monotone type introduced in [Alb98], which is a generalization of the class of

generalized standard materials. With the choice g = ∂χK , where ∂χK is the subdifferential

of the characteristic function χK related to the convex set K ⊂ R
n, equations (1.1)–(1.3)

describe classical rate-independent elasto-plasticity. In this case, the set K is the set of

admissible generalized stresses. We give examples for (1.1)–(1.3) in Section 2.2 and a more

precise definition of the model in Section 4.

If the elastic energy E is coercive, i.e. if

E(u, z) ≥ α
2

(
‖u‖2

H1(Ω) + ‖z‖2
L2(Ω)

)

for all u ∈ H1
0 (Ω) and z ∈ L2(Ω) and some constant α > 0, then classical results guarantee

the existence of a unique pair (u, z) ∈ W 1,1(S;H1(Ω))×W 1,1(S;L2(Ω)) which solves (1.1)–

(1.3), see e.g. [DL72, Joh78, Bré73, HHLN88, HR99, AC04] and the references therein.

The main result of our paper is Theorem 4.1, where we prove the following global spatial

regularity for (u, z) provided that ∂Ω is smooth, that E is coercive, that the type of the
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boundary conditions does not change and that the data and coefficients have some natural

smoothness properties: For all δ > 0 it holds

u ∈ L∞(S;H
3
2
−δ(Ω)), (1.4)

z ∈ L∞(S;H
1
2
−δ(Ω)), (1.5)

where Hs(Ω) stands for Sobolev-Slobodeckij spaces, see e.g. [Tri83]. This regularity result

to our knowledge is new and was announced in the paper [Kne08], where we studied a model

problem on a cube. Moreover, as an extension of a result by Alber and Nesenenko [AN08]

to our slightly more general system (1.1)–(1.3), we derive the following local and tangential

regularity properties, where ∂tang denotes derivatives tangential to the boundary:

u ∈ L∞(S;H2
loc(Ω)), ∂tangu ∈ L∞(S;H1(Ω)),

z ∈ L∞(S;H1
loc(Ω)), ∂tangz ∈ L∞(S;L2(Ω)).

(1.6)

The intrinsic difficulty of proving spatial regularity for time-dependent plasticity prob-

lems stems from the fact that the flow rule (1.2) is nonsmooth and has no regularizing terms.

Hence, spatial regularity has to be maintained during the evolution by careful estimates.

Let Q ⊂ H1(Ω) × L2(Ω) ∋ (u(t), z(t)) denote the state space. The main problem is that

the data to solution map is not Lipschitz as a mapping from W 1,1(S;Q∗) → W 1,1(S;Q),

but only as a mapping from W 1,1(S;Q∗) → L∞(S;Q), see Theorem 2.3. This stability

estimate is the basis for proving the local and tangential results in (1.6). Since a similar

Lipschitz estimate is not available for the rates, we cannot derive a spatial regularity result

of the type ∂tz ∈ L∞(S;H1
loc(Ω)). Indeed, the example in Section 5.3.5 shows that the

latter regularity in general is not valid in spite of smooth data. Since terms of the form

∂tangz ∈ L∞(S;L2(Ω)) enter as data when we prove the regularity in normal direction,

we cannot apply the aforementioned Lipschitz estimate any more since it would require

∂tangz ∈ W 1,1(S;L2(Ω)). In this situation we only have a weaker Hölder estimate with

exponent 1
2 for the solution to data map, see Theorem 2.3. This explains, why in the

normal direction we obtain a “half” spatial derivative, only.

The proof of (1.6) is carried out with a difference quotient technique using inner varia-

tions and the Lipschitz properties of the data to solution map. These estimates are given

in Section 2.1, while the local and tangential regularity results are proved in Section 3.

The essential new idea in this paper is to apply a reflection argument in order to obtain

higher differentiability properties for ∇u and z also for directions, which are perpendicular

to the boundary. After localizing system (1.1)–(1.3) to a half cube by the usual techniques,

we reflect the problem to the full cube using an even extension for the internal variable z

and an odd extension for the displacements modified by the value of u on the boundary.

We show that the newly defined functions satisfy a problem of the type (1.1)–(1.3) on the

full cube with coefficients depending smoothly on the space variable. The right hand side

of the extended problem contains tangential derivatives of ∇u and z. Using the tangential
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results (1.6) and the Hölder property of the data to solution map, we obtain the additional

“half” spatial derivative.

It is an unsolved problem, whether our final result (1.4)–(1.5) is optimal or whether one

should expect u ∈ L∞(S;H2(Ω)). This would coincide nicely with the local and tangential

properties in (1.6) and also with results for solutions of linear elliptic equations on smooth

domains. We show in Section 5.3.1 that the reflection argument applied to stationary

elliptic systems (without a coupling to the evolution law) gives a full additional derivative.

Thus, in the stationary case our reflection argument is equivalent to the arguments usually

applied for elliptic systems, see e.g. [Neč67], and does not intrinsically lead to suboptimal

differentiability properties.

Concerning the optimality of our result, we discuss in Section 5.3.4 the case where u

is scalar, i.e. m = 1. Under strong coupling assumptions between the coefficient matrices

C,B,L and the function g, we obtain indeed the full spatial regularity u ∈ L∞(S;H2(Ω)).

Here, we use a reflection argument, which takes into account the explicit structure of the

coefficient matrix A =
(

C B
B⊤ L

)
.

Let us give a short discussion of regularity results in the literature for systems of the type

(1.4)–(1.5). Recently, the question of global spatial regularity attracted much attention.

We mention here the contributions by Alber/Nesenenko [AN08] and by Frehse/Löbach

[FL08b]. In [AN08] the authors obtain for a model similar to (1.4)–(1.5) the global result

u ∈ L∞(S;H1+ 1
3
−δ(Ω)) and z ∈ L∞(S;H

1
3
−δ(Ω)) by first proving the local and tangen-

tial result (1.6). They show that this already implies that u ∈ L∞(S;H1+ 1
4
−δ(Ω)), and

similarly for z. By an iteration procedure they improve then the differentiability from 1
4

to 1
3 . In the paper [FL08b] the authors study regularity properties of rate independent

elasto-plastic models with a von Mises flow rule and linear kinematic or isotropic harden-

ing. They show Hölder regularity of the stresses up to the boundary, derive the spatial

regularity ∇σ ∈ L∞(S;L1+δ(Ω)) for the stress σ and prove several additional integrability

properties. The investigations take a stress based version of (1.4)–(1.5) as a starting point.

Local regularity properties for the model in (1.4)–(1.5) and variants of it, having e.g. only

a positive semi-definite elastic energy, were investigated by several authors [BF96, FL08a,

Shi99, Ser92, Dem09, Dem08, NC08]. Here, one typically finds that the stress σ = C∇u+

Bz belongs to L∞(S;H1
loc(Ω)). Similar results are valid for u and z provided that the

elastic energy E is coercive.

Further global results are available for time discretized versions of (1.4)–(1.5), see for

example [Rep96, KN08] and the references therein. Here one obtains σ(tk) ∈ H1(Ω)

globally for smooth domains and smooth data at every temporal discretization point tk.

However, up to now it is to our knowledge an open question whether a uniform estimate

of the form suptime step △t>0, k△t≤T ‖σ(k△t)‖H1(Ω) ≤ c is valid. This estimate would allow

to carry over the result from the discretized model to the continuous one. Finally, for the

stationary Hencky model of perfect plasticity we have the global result σ ∈ H
1
2
−δ(Ω), δ > 0,

for domains with Lipschitz boundary and with changing boundary conditions, [Kne06].
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2 Abstract existence results and stability estimates

In this section we recall abstract existence results and stability estimates for problems of

the type (1.1)–(1.3). The results are based on classical existence theorems by Brézis [Bré73]

for evolution equations with maximal monotone operators. We also refer to [AC04, HR99]

and the references therein for the discussion of particular elastic-plastic and visco-plastic

models.

2.1 Existence result and stability estimates

By Q = U ×Z we denote the state spaces which is composed of the real, separable Hilbert

spaces U and Z. We identify Z∗ with Z but distinguish between U and the dual space U∗.

For u ∈ U and z ∈ Z the stored energy is given by the following quadratic functional

E(u, z) = 1
2〈A(u, z), (u, z)〉,

where 〈·, ·〉 stands for the dual pairing in Q∗ ×Q. It is assumed that A ∈ Lin(Q,Q∗) is a

linear, bounded and self adjoint operator and that there exists a constant α > 0 such that

E(u, z) ≥ α
2 (‖u‖2

U + ‖z‖2
Z) (2.1)

for all (u, z) ∈ Q.

Let furthermore G : Z → P(Z) be a maximal monotone operator with 0 ∈ G(0). The

problem under consideration is:

Find u : S → U , z : S → Z such that for a.e. t ∈ S

DuE(u(t), z(t)) = ℓ1(t)

∂tz(t) ∈ G(−DzE(u(t), z(t)) + ℓ2(t))

z(0) = z0.

(2.2)

Here, z0 ∈ Z and ℓ = (ℓ1, ℓ2) : S → Q∗ are given data.

We call the data z0 and ℓ compatible if there exists u0 ∈ U with DuE(u0, z0) = ℓ1(0)

and with −DzE(u0, z0) + ℓ2(0) ∈ D(G), where D(G) denotes the domain of G.

Theorem 2.1. Under the above assumptions there exists for every compatible data ℓ ∈
W 2,1(S;Q∗) and z0 ∈ Z a unique pair (u, z) ∈ W 1,∞(S;Q) which solves (2.2).

If G is the subdifferential of the indicator function χK of the convex set K ⊂ Z, weaker

assumptions on the smoothness of the data are sufficient to obtain existence of solutions.

Theorem 2.2. Let G = ∂χK, where K ⊂ Z is convex, closed and with 0 ∈ K. Then

for every compatible data ℓ ∈ W 1,1(S;Q∗) and z0 ∈ Z there exists a unique pair (u, z) ∈
W 1,1(S;Q) solving (2.2).

In order to fix the notation, we give here a short sketch of the proofs of Theorems 2.1

and 2.2.
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Proof of Theorems 2.1 and 2.2. The linear operator A is split as follows

A(u, z) =

(
A11 A12

A21 A22

)(
u

z

)

with bounded operators A11 ∈ Lin(U ,U∗), A12 ∈ Lin(Z,U∗), A21 = A∗
12 ∈ Lin(U ,Z) and

A22 ∈ Lin(Z,Z). Due to the assumptions on A, the operators A11 and A22 are self adjoint

and positive definite and hence invertible. By L : Z → Z we denote the Schur complement

operator associated with A, i.e. L = A22 − A21A−1
11 A12. The assumptions on A imply

that L is a linear, bounded, self adjoint operator with 〈Lz, z〉 ≥ α ‖z‖2
Z for all z ∈ Z. The

constant α is the same as in (2.1). Problem (2.2) is equivalent to the following reduced

version:

Find z : S → Z with

∂tz(t) ∈ G(−Lz(t) + F (t)), z(0) = z0

(2.3)

with F (t) = ℓ2(t) − A21A−1
11 ℓ1(t). From this, the function u can be calculated via u =

A−1
11 (ℓ1 −A12z).

In terms of the new variable y(t) = L 1
2 z(t)−L− 1

2 F (t), the mapping G̃ : Z → P(Z) with

G̃(ζ) = L 1
2G(L 1

2 ζ) and the data f(t) = −L− 1
2 ∂tF (t), problem (2.3) can equivalently be

written as:

Find y : S → Z with

∂ty(t) ∈ f(t) + G̃(−y(t)), y(0) = y0 = L 1
2 z0 − L− 1

2 F (0).
(2.4)

Note that the operator G̃ is maximal monotone with respect to the standard scalar product

in Z.

Theorem 3.4 and Proposition 3.3 in [Bré73] applied to (2.4) provide the existence result

in case of an arbitrary maximal monotone mapping G, while Proposition 3.4 from [Bré73]

gives the result for the case G = ∂χK.

In the next Theorem we recall stability estimates which are the basis for our regularity

results.

Theorem 2.3. Assume (2.1) and let G : Z → P(Z) be a monotone operator.

(a) There exists a constant κ1 > 0 such that for all ui ∈ L∞(S;U) and zi ∈ W 1,1(S;Z),

i ∈ {1, 2}, which are solutions to problem (2.2) with data zi
0 ∈ Z and ℓi = (ℓi

1, ℓ
i
2) ∈

L∞(S;Q∗), it holds

∥∥u1 − u2
∥∥2

L∞(S;U)
+
∥∥z1 − z2

∥∥2

L∞(S;Z)

≤ κ1

( ∥∥z1
0 − z2

0

∥∥2

Z
+
∥∥z1 − z2

∥∥
W 1,1(S;Z)

∥∥ℓ1 − ℓ2
∥∥

L∞(S;Q∗)
+
∥∥ℓ1

1 − ℓ2
1

∥∥2

L∞(S;U∗)

)

(2.5)
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(b) There exists a constant κ2 > 0 such that for all ui ∈ W 1,1(S;U) and zi ∈ W 1,1(S;Z),

which are solutions to problem (2.2) with respect to the data zi
0 ∈ Z and ℓi ∈

W 1,1(S;Q∗), it holds

∥∥u1 − u2
∥∥

L∞(S;U)
+
∥∥z1 − z2

∥∥
L∞(S;Z)

≤ κ2

( ∥∥z1
0 − z2

0

∥∥
Z

+
∥∥ℓ1 − ℓ2

∥∥
W 1,1(S;Q∗)

)
.

(2.6)

Proof. Assumption (2.1) implies that there exists κ > 0 such that

∥∥u1 − u2
∥∥

L∞(S;U)
≤ κ

( ∥∥z1 − z2
∥∥

L∞(S;Z)
+
∥∥ℓ1

1 − ℓ2
1

∥∥
L∞(S;U∗)

)
. (2.7)

Let L be the operator and F i, i ∈ {1, 2}, be the functions defined in the proof of Theorems

2.1 and 2.2. Since G is monotone and since L is self adjoint, the solutions zi of (2.3) satisfy

for almost every t ∈ S

1
2

d
dt〈z1(t) − z2(t),L(z1(t) − z2(t))〉 ≤ 〈∂t(z

1(t) − z2(t)), F 1(t) − F 2(t)〉. (2.8)

Integrating this estimate with respect to t and applying Hölder’s inequality leads to

∥∥z1 − z2
∥∥2

L∞(S;Z)
≤ c
( ∥∥z1

0 − z2
0

∥∥2
+
∥∥z1 − z2

∥∥
W 1,1(S;Z)

∥∥F 1 − F 2
∥∥

L∞(S;Z)

)
.

Combining the last estimate with (2.7) results in (2.5).

If ℓ ∈ W 1,1(S;Q∗), then integrating (2.8) with respect to t, partial integration and

Young’s inequality result in the estimate

∥∥z1(t) − z2(t)
∥∥2

Z
≤ c

(∥∥z1
0 − z2

0

∥∥2

Z
+

∫ t

0

∥∥z1(s) − z2(s)
∥∥2

Z
ds

+
∥∥F 1 − F 2

∥∥
W 1,1(S;Z)

( ∥∥F 1 − F 2
∥∥

W 1,1(S;Z)
+
∥∥z1 − z2

∥∥
L∞(S;Z)

))
. (2.9)

Applying the Gronwall inequality and Young’s inequality to the previous estimate leads in

combination with (2.7) to estimate (2.6).

2.2 Examples

Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary, m,n ∈ N. By End(Rs) we

denote the endomorphisms from R
s to R

s. Choose A ∈ L∞(Ω;End(Rm×R
m×d×R

n)) and

assume that A is symmetric, i.e. 〈A(x)
( u1

F1
z1

)
,
( u2

F2
z2

)
〉 = 〈A(x)

( u2
F2
z2

)
,
( u1

F1
z1

)
〉 for a.e. x ∈ Ω

and every ui ∈ R
m, Fi ∈ R

m×d, zi ∈ R
n and i ∈ {1, 2}. Here, 〈·, ·〉 stands for the scalar

product in R
m × R

m×d × R
n. For u ∈ H1(Ω, Rm) and z ∈ L2(Ω, Rn) we define

E(u, z) = 1
2

∫

Ω
〈A(x)

(
u(x)
∇u(x)
z(x)

)
,

(
u(x)
∇u(x)
z(x)

)
〉dx. (2.10)

We put Z = L2(Ω, Rn) and assume that there exists a closed subspace U ⊂ H1(Ω, Rm)

and a constant α > 0 such that for all u ∈ U and z ∈ Z it holds

E(u, z) ≥ α
2

(
‖u‖2

H1(Ω) + ‖z‖2
L2(Ω)

)
. (2.11)
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Estimate (2.11) typically follows from a Poincaré/Friedrichs inequality or Korn’s inequality

and we will give examples for the choice of A in Sections 2.2.1 and 2.2.2.

Furthermore, let g : R
n → P(Rn) be a maximal monotone mapping with 0 ∈ g(0). In

particular, the choice g = ∂χK is admissible, where K ⊂ R
n is closed, convex and with

0 ∈ K and where χK denotes the characteristic function associated with K. We define

G : Z → P(Z), G(z) = { η ∈ L2(Ω, Rn) ; η(x) ∈ g(z(x)) a.e. in Ω }, (2.12)

which is a maximal monotone mapping with respect to Z. In this setting, Theorems 2.1

and 2.2 provide the existence of a unique pair (u, z) ∈ W 1,1(S;U ×Z) satisfying (2.2) with

E from (2.10) and G from (2.12).

In the sequel we use the following notation: For matrices T, S ∈ R
m×d the inner product

is denoted by S : T = tr(T⊤S) with the corresponding norm |T | =
√

T : T . Moreover, I is

the identity matrix in R
d×d.

2.2.1 Elasto-(visco)-plasticity with linear hardening

For setting up an elasto-plastic model with linear hardening we choose m = d and define

U = {u ∈ H1(Ω, Rd) ; u
∣∣
ΓD

= 0 } to be the space of admissible displacements. Here,

ΓD ⊂ ∂Ω is a nonempty open set and denotes the Dirichlet boundary. Let furthermore

ε : R
d×d → R

d×d
sym be defined through ε(F ) = 1

2(F + F⊤) for F ∈ R
d×d and let C ∈

L∞(Ω,End(Rd×d
sym)). C corresponds to the elasticity tensor. It is assumed that C is self

adjoint and that there exists a constant α > 0 such that C(x)F : F ≥ α |F |2 for all

F ∈ R
d×d
sym and a.e. x ∈ Ω. Let moreover L ∈ L∞(Ω;End(Rn)) be self adjoint and uniformly

positive definite and choose B ∈ L∞(Ω,Lin(Rn, Rd×d
sym)). B maps the vector z of internal

variables onto the plastic strain. We define A ∈ L∞(Ω,End(Rd × R
d×d × R

n)) via the

relation

〈A(x)
( u1

F1
z1

)
,
( u2

F2
z2

)
〉 = 〈

(
ε∗C(x)ε −ε∗C(x)B(x)

−B∗(x)C(x)ε B∗(x)C(x)B(x) + L(x)

)(
F1

z1

)
,

(
F2

z2

)
〉 (2.13)

for all ui ∈ R
d, Fi ∈ R

d×d, zi ∈ R
n and almost every x ∈ Ω. Thus, for u ∈ H1(Ω, Rd) and

z ∈ L2(Ω, Rn) the stored energy reads

EH(u, z) =
1

2

∫

Ω
C(ε(∇u) − Bz) : (ε(∇u) − Bz) + (Lz) · z dx. (2.14)

Since C and L are assumed to be positive definite, it follows with Korn’s inequality that

estimate (2.11) is satisfied for all u ∈ U and z ∈ Z. Problem (2.2) formulated with EH from

(2.14) and G from (2.12) constitutes an elastic-(visco)-plastic model with linear hardening

and takes the form: Find (u, z) ∈ W 1,1(S;U) × W 1,1(S;Z) such that for a.e. t ∈ S and

every v ∈ U
∫

Ω
C(ε(∇u(t)) − Bz(t)) : ε(∇v) dx = 〈ℓ1(t), v〉(U∗ ,U),

∂tz(t) ∈ g
(
− (−B⊤C(ε(∇u(t)) − Bz(t)) + Lz(t)) + ℓ2(t)

)
.

(2.15)
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Theorems 2.1 and 2.2 provide the existence of solutions.

This setting comprises linear kinematic hardening while pure isotropic hardening is ex-

cluded in our analysis. In the pure isotropic case, the matrix L is positive semidefinite,

only. We refer to [HR99, Joh78] for an existence proof for the case with isotropic hard-

ening. Models of the type (2.15) with positive definite L are investigated in [AN08] with

respect to regularity questions.

2.2.2 Elasto-plasticity coupled with Cosserat micropolar effects

In [NC05] an elastic-plastic model was introduced which incorporates Cosserat micropo-

lar effects. This model is analyzed in [NC05, NC08] with respect to existence and local

regularity and in [KN08] with respect to global regularity of a time discretized version.

Let Ω ⊂ R
d, d = 3, be bounded with Lipschitz boundary. In this model, not only the

displacements u but also linearized micro-rotations Q are taken into account. These micro-

rotations are represented with skew-symmetric tensors which are identified with vectors

in R
d(d−1)

2 . Consequently we choose m = d + d(d − 1)/2. The generalized displacements

are now given by the pair (u,Q) ∈ R
d × R

d×d
skew

∼= R
m. The internal variable z is identi-

fied with the plastic strain tensor z = εp ∈ R
d×d
sym, dev

∼= R
n with a suitable n ∈ N. The

set R
d×d
sym, dev consists of the symmetric matrices with zero trace. The coefficient function

A ∈ L∞(Ω,End(Rm × R
m×d × R

n)) is defined through the relation

〈A(x)

(
(u1,Q1)

(F u
1 ,F Q

1 )
εp,1

)
,

(
(u2,Q2)

(F u
2 ,F Q

2 )
εp,2

)
〉

= 2µ
(
ε(F u

1 ) − εp,1

)
:
(
ε(F u

2 ) − εp,2

)
+ 2µc

(
skew (F u

1 − Q1)
)

:
(
skew (F u

2 − Q2)
)

+ λ(tr F u
1 )(tr F u

2 ) + 2γ(FQ
1 : FQ

2 ) (2.16)

for every ui ∈ R
d, Qi ∈ R

d×d
skew, F u

i ∈ R
d×d, FQ

i ∈ R
d×d(d−1)/2 and zi = εp,i ∈ R

d×d
sym, dev. The

operator ε is the same as in the previous section. Here, λ, µ > 0 are the Lamé constants,

µc > 0 is the Cosserat couple modulus and γ > 0 depends on the Lamé constants and an

internal length parameter. For u ∈ H1(Ω, Rd), Q ∈ H1(Ω, Rd×d
skew) and εp ∈ L2(Ω, Rd×d

sym,dev)

the stored energy reads

EC((u,Q), εp) =

∫

Ω
µ |ε(∇u) − εp|2 + µc |skew (∇u − Q)|2 +

λ

2
|tr∇u|2 + γ |∇Q|2 dx.

(2.17)

Let U = H1
0 (Ω, Rd)×H1

0 (Ω, Rd×d
skew) and Z = L2(Ω, Rd×d

sym, dev). On the basis of the div/curl

inequality, see e.g. [GR86], and the Poincaré inequality it follows for C1-smooth domains

that there exists a constant α > 0 such that for all (u,Q) ∈ U and εp ∈ Z we have

EC((u,Q), εp) ≥
α

2

(
‖u‖2

H1(Ω) + ‖Q‖2
H1(Ω) + ‖εp‖2

L2(Ω)

)
(2.18)

and therefore EC satisfies the assumption (2.11). We refer to [NC05] for a proof of inequality

(2.18). Problem (2.2) formulated with EC from (2.17) and with a maximal monotone
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operator G defined as in (2.12) describes elasto-plastic material behavior which is coupled

with Cosserat micropolar effects. Note that DuE(u, z) in (2.2) has to be interpreted as

D(u,Q)EC(u,Q, εp). The existence of solutions was first investigated in [NC05] and is also

a consequence of Theorems 2.1 and 2.2.

3 Regularity for model problems on a cube

3.1 Local regularity

The starting point of our global regularity analysis is to study the local regularity properties

on cubes of solutions of systems, which consist of the principal part of the systems described

in Section 2.2. These properties are derived with a difference quotient technique which is

based on inner variations. The results in part (b) of the regularity Theorem 3.1 here

below are a straightforward extension of the results from [AN08] for energies of the form

described in (2.14) to our more general setting. In part (a) of Theorem 3.1 we discuss the

local regularity properties for data which have less temporal regularity.

For r > 0 let Cr = (−r, r)d be a cube with side length 2r. Let m,n ∈ N. We choose

U = H1
0 (Cr, R

m) and Z = L2(Cr, R
n). The coefficient function A shall satisfy

A1 A ∈ C0,1(Cr,End(Rm×d × R
n)) is symmetric and there exists a constant α > 0 such

that for all u ∈ U and z ∈ Z we have E(u, z) ≥ α
2

(
‖u‖2

H1(Cr) + ‖z‖2
L2(Cr)

)
.

Here, E(u, z) =
∫
Cr
〈A(x) ( ∇u

z ) , (∇u
z )〉dx. It is assumed that the term ℓ1 in (2.2) can be

written as

〈ℓ1(t), v〉(U∗ ,U) =

∫

Cr

f(t) · v + H(t) : ∇v dx, (3.1)

with suitable f ∈ L∞(S;L2(Cr)) and H ∈ L∞(S;L2(Cr)). We study the spatial regularity

of functions u ∈ L∞(S;U) and z ∈ W 1,1(S;Z) which satisfy for a.e. t ∈ S and every v ∈ U
the relations

∫

Cr

〈A
(

∇u(t)
z(t)

)
,
(
∇v
0

)
〉dx =

∫

Cr

f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G(−DzE(u(t), z(t)) + ℓ2(t))

z(0) = z0.

(3.2)

In terms of the projection operators Pm×d : R
m×d × R

n → R
m×d, (F, z) 7→ F and Pn :

R
m×d × R

n → R
n, (F, z) 7→ z, problem (3.2) can equivalently be written as

∫

Cr

Pm×d[A
(

∇u(t)
z(t)

)
] : ∇v dx =

∫

Cr

f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G(−Pn[A
(

∇u(t)
z(t)

)
] + ℓ2(t)).

(3.3)
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In the sequel we use the following spaces defined for domains Ω2 ⊂ Ω1 and i ∈ {1, . . . , d}:

Fi(Ω1,Ω2) = { v ∈ L2(Ω1) ; ∂xi(v
∣∣
Ω2

) ∈ L2(Ω2) } (3.4)

with ‖v‖Fi(Ω1,Ω2)
= ‖v‖L2(Ω1) + ‖∂xiv‖L2(Ω2). Moreover, finite differences are denoted by

△heu(x) := u(x + he) − u(x)

for h ∈ R and e ∈ R
d\{0}. By {e1, . . . , ed} we denote the standard basis in R

d. The spatial

regularity of solutions is discussed under different assumptions on the temporal smoothness

of the data. In particular, the cases A2 and A3 here below are considered:

A2 There exists ρ ∈ (0, r) and i ∈ {1, . . . , d} such that z0 ∈ Fi(Cr, Cρ), f ∈ L∞(S;L2(Cr)),

H ∈ L∞(S;Fi(Cr, Cρ)) and ℓ2 ∈ L∞(S;Fi(Cr, Cρ)).

A3 There exists ρ ∈ (0, r) and i ∈ {1, . . . , d} such that z0 ∈ Fi(Cr, Cρ), f ∈ W 1,1(S;L2(Cr)),

H ∈ W 1,1(S;Fi(Cr, Cρ)) and ℓ2 ∈ W 1,1(S;Fi(Cr, Cρ)).

Theorem 3.1 (Local regularity on cubes). Let condition A1 be satisfied.

(a) Let the pair (u, z) ∈ L∞(S;U) × W 1,1(S;Z) solve (3.2) with data according to as-

sumption A2. Then there exists h0 > 0 such that

sup
0<h<h0

h− 1
2 ‖△hei

∇u‖L∞(S;L2(Cρ/2)) < ∞,

sup
0<h<h0

h− 1
2 ‖△hei

z‖L∞(S;L2(Cρ/2)) < ∞.

(b) Let the pair (u, z) ∈ W 1,1(S;U × Z) satisfy (3.2) with data according to A3. Then

∇u ∈ L∞(S;Fi(Cr, C ρ
2
)), z ∈ L∞(S;Fi(Cr, Cρ

2
)).

If the assumptions of part (b) of Theorem 3.1 are valid for all i ∈ {1, . . . , d}, then

u
∣∣
Cρ/2

∈ L∞(S;H2(Cρ/2)), z
∣∣
Cρ/2

∈ L∞(S;H1(Cρ/2)).

If the assumptions of part (a) are satisfied for every i ∈ {1, . . . , d}, then it follows that

essupt∈S ‖u(t)‖
B

3
2
2,∞(Cρ/2)

< ∞, essupt∈S ‖z(t)‖
B

1
2
2,∞(Cρ/2)

< ∞. (3.5)

The spaces Bs
p,q(Ω) are Besov spaces and we refer to [Tri83] for a precise definition. We

recall that v ∈ Bs
2,∞(Ω) for s ∈ (0, 1) if and only if v ∈ L2(Ω) and

sup
1≤i≤d, eΩ⋐Ω, 0<h<h0

h−s ‖△hei
v‖L2(eΩ) < ∞,

where {e1, . . . , ed} is an arbitrary basis in R
d. Moreover, for every δ > 0 and s > 0 with

s /∈ N the embeddings Hs(Ω) ⊂ Bs
2,∞(Ω) ⊂ Hs−δ(Ω) are continuous. Due to Lemma 3.2

here below we obtain therefore from (3.5) that

u
∣∣
Cρ/2

∈ L∞(S;H
3
2
−δ(Cρ/2)), z

∣∣
Cρ/2

∈ L∞(S;H
1
2
−δ(Cρ/2))

for every δ > 0.
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Lemma 3.2. Let Ω ⊂ R
d be a domain and assume that v : S → L2(Ω) is measurable and

that there exists s > 0 such that v(t) ∈ Hs(Ω) for every t ∈ S. Then v : S → Hs(Ω) is

measurable.

Proof. Since the space Hs(Ω) is separable, measurability is equivalent to weak measur-

ability. Let η ∈ (Hs(Ω))′ be arbitrary. Since L2(Ω) is dense in (Hs(Ω))′, there exists a

sequence (ηn)n ⊂ L2(Ω) with ηn → η in (Hs(Ω))′. Obviously, for every t ∈ S we have∫
Ω ηnv(t) dx = 〈ηn, v(t)〉Hs(Ω) → 〈η, v(t)〉Hs(Ω). Due to the measurability of v : S → L2(Ω),

the real valued functions t 7→
∫
Ω ηnv(t) dx are measurable as well, and hence also the

limit function t 7→ 〈η, v(t)〉Hs(Ω) is measurable. This proves the weak measurability of

v : S → Hs(Ω).

Proof of Theorem 3.1. Let ρ ∈ (0, r) be given according to the assumptions in Theorem

3.1 and choose ϕ ∈ C∞
0 (Cr) with ϕ(x) = 1 on Cρ/2 and suppϕ ⊂ Cρ. For h ∈ R

d we

introduce the following family of inner variations τh : Cr → R
d, x → τh(x) = x + ϕ(x)h.

Let h0 = min{dist(suppϕ, ∂Cr), ‖ϕ‖W 1,∞(Cr))
−1}. For every h ∈ R

d with |h| < h0, the

mapping τh is a diffeomorphism from Cr onto itself with τh(x) = x for every x ∈ ∂Cr, see

e.g. [GH96]. Obviously,

∇τh(x) =
(
I + h ⊗∇ϕ(x)

)
, det(∇τh(x)) = 1 + h · ∇ϕ(x). (3.6)

Let the pair (u, z) ∈ L∞(S;U)×W 1,1(S;Z) be a solution of problem (3.2) and ei the vector

introduced in assumptions A2 and A3. For h ∈ Rei with |h| < h0 we define the shifted

functions uh(t, x) := u(t, τh(x)) and zh(t, x) := z(t, τh(x)). Clearly, the shifted functions

have the same temporal and spatial regularity as u and z since the shift τh induces linear

isomorphisms on U and Z, respectively.

Straightforward calculations, which are based on a change of coordinates with τh, imply

that for almost every t and every v ∈ U the shifted functions uh and zh satisfy

∫

Cr

〈A
(

∇uh(t)
zh(t)

)
,
(
∇v
0

)
〉dx

=

∫

Cr

det∇τhfh(t) · v dx +

∫

Cr

(det∇τh)
(
Hh(t)(∇τh)−⊤

)
: ∇v dx

+

∫

Cr

〈F h
1 (t),∇v〉dx

=: 〈ℓh
1(t), v〉(U∗ ,U).

(3.7)

Here, fh = f ◦ τh, Hh = H ◦ τh, Ah = A ◦ τh and

∫

Cr

〈F h
1 (t),∇v〉dx =

∫

Cr

〈A
(

∇uh(t)
zh(t)

)
− det∇τhAh

(
∇uh(t)(∇τh)−1

zh(t)

)
,
(
∇v
0

)
〉dx

−
∫

Cr

det∇τh〈Ah

(
∇uh(t)(∇τh)−1

zh(t)

)
,
(

∇v(∇τ−1
h −I)

0

)
〉dx.
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Moreover, the following evolution law is satisfied by uh and zh

∂tzh(t) ∈ g(−DzE(uh(t), zh(t)) + F h
2 (t) + ℓ2,h(t)), zh(0) = z0◦τh. (3.8)

Here, ℓ2,h = ℓ2◦τh and

F h
2 (t) = −Pn

(
(Ah − A)

(
∇uh(t)
zh(t)

)
+ Ah

(
∇uh(t)(∇τ−1

h −I)
0

))
,

where Pn is the already introduced projection onto the R
n component.

From the Lipschitz continuity of the coefficient matrix A and the properties of τh, where

we use in particular the relations in (3.6), we deduce the estimate

∥∥F h
1

∥∥
L∞(S;L2(Cr))

+
∥∥F h

2

∥∥
L∞(S;L2(Cr))

≤ c |h|
(
‖u‖L∞(S;U) + ‖z‖L∞(S;Z)

)
, (3.9)

and if (u, z) ∈ W 1,1(S;U ×Z), then

∥∥F h
1

∥∥
W 1,1(S;L2(Cr))

+
∥∥F h

2

∥∥
W 1,1(S;L2(Cr))

≤ c |h|
(
‖u‖W 1,1(S;U) + ‖z‖W 1,1(S;Z)

)
. (3.10)

In both inequalities, the constant c depends on ‖ϕ‖W 1,∞(Cr) and ‖A‖W 1,∞(Cr) but is in-

dependent of h. By estimates (3.9) and (3.10) we have ℓh
1 ∈ L∞(S;U∗) in the situation

described in part (a) of Theorem 3.1 and ℓh
1 ∈ W 1,1(S;U∗) if the assumptions of part (b)

are valid.

Let first the assumptions of part (a) be satisfied. From the stability estimate (2.5) applied

to (3.7) and (3.8) we deduce that there exists a constant c > 0 which is independent of h

such that

‖u − uh‖2
L∞(S;U) + ‖z − zh‖2

L∞(S;Z) ≤ c
(
‖z0 − z0,h‖2

L2(Cr) +
∥∥ℓ1 − ℓh

1

∥∥2

L∞(S;U∗)

+2c(ϕ) ‖z‖W 1,1(S;Z)

(∥∥ℓ1 − ℓh
1

∥∥
L∞(S;U∗)

+
∥∥ℓ2 − ℓ2,h − F h

2

∥∥
L∞(S;Z)

))
. (3.11)

In view of A2 it follows (see e.g. Lemma 4.1 in [KM08]) that

‖z0 − z0,h‖L∞(S;Z) ≤ c |h| ‖z0‖Fi(Cr ,Cρ) .

The last term in (3.11) can be estimated in the same way. For estimating the terms with

ℓ1 observe that

‖f(t) − det∇τhfh(t)‖U∗ = sup
v∈U , ‖v‖

U
=1

∫

Cr

(f(t) − det∇τhfh(t)) · v dx

= sup
v∈U , ‖v‖

U
=1

∫

Cr

f(t) · (v − v◦τ−1
h ) dx ≤ c(ϕ) |h| ‖f(t)‖L2(Cρ) .

Thus, altogether it follows that there exists a constant κ > 0 such that for all h ∈ Rei\{0}
with |h| < h0 we have

|h|− 1
2
(
‖△hu‖L∞(S;H1(Cρ/2)) + ‖△hz‖L∞(S;L2(Cρ/2))

)

≤ κ
(
‖z0‖Fi(Cr ,Cρ) + ‖f‖L∞(S;L2(Cρ)) + ‖H‖L∞(S;Fi(Cr ,Cρ)) + ‖ℓ2‖L∞(S;Fi(Cr ,Cρ))

+ ‖u‖L∞(S;U) + ‖z‖W 1,1(S;Z)

)
.
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This proves the assertions of Theorem 3.1, part (a).

The results in part (b) follow in the same way by applying stability estimate (2.6) to

(3.7) and (3.8).

3.2 Tangential regularity on a half cube

For r > 0 let Kr = (−r, r)d−1 × (0, r) be a half cube with bottom Γ0 = (−r, r)d−1 × {0}
and let m,n ∈ N. We choose Z = L2(Kr, R

n) and consider closed subspaces U(Kr) ⊂
H1(Kr, R

m) allowing for different types of boundary conditions for different components

of u ∈ U(Kr). In particular, let D ⊂ {1, . . . ,m}, D might also be the empty set. Then

U(Kr) := {u ∈ H1(Kr, R
m) ; u

∣∣
∂Kr\Γ0

= 0, ui

∣∣
Γ0

= 0 for i ∈ D }.

Theorem 3.3. Assume that the coefficient function A satisfies A1 from Section 3.1 with

respect to Kr and U(Kr) × Z. Let the pair (u, z) ∈ W 1,1(S;U(Kr) × Z) satisfy (3.2) on

Kr and assume that the data has the following regularity for some ρ ∈ (0, r):

z0 ∈ H1(Kr), f ∈ W 1,1(S;L2(Kr)), H ∈ W 1,1(S;L2(Kr) ∩ H1(Kρ)), (3.12)

ℓ2 ∈ W 1,1(S;L2(Kr) ∩ H1(Kρ)). (3.13)

Then for 1 ≤ i ≤ d − 1 we have the tangential regularity

∂xi∇u ∈ L∞(S;L2(K ρ
2
)), ∂xiz ∈ L∞(S;L2(K ρ

2
)). (3.14)

This theorem is a straightforward generalization of a recent result by Alber/Nesenenko

[AN08], where the case m = d and pure Dirichlet conditions on Γ0 are considered. The

theorem can be derived in the same way as the results in part (b) of Theorem 3.1 and

we omit the proof. We just remark that the space U is invariant with respect to inner

variations τh which are tangential to Γ0.

3.3 Global regularity on a half cube

Before we formulate the key result of this paper, Theorem 3.4, we need some further

notation. Let again Kr = (−r, r)d−1×(0, r) be the half cube with bottom Γ0 = (−r, r)d−1×
{0} and let m,n ∈ N. By R = I−2ed⊗ed we denote the reflection at the boundary Γ0. The

extended coefficient function Ae is defined via Ae(x) = A(x) for x ∈ Kr and Ae(x) = A(Rx)

for x ∈ Cr\Kr.

Theorem 3.4 (Global regularity on a half cube). Assume that the extended coefficient

function Ae satisfies condition A1 from Section 3.1 with respect to the full cube Cr and

H1
0 (Cr) × L2(Cr). Let the pair (u, z) ∈ L∞(S;H1(Kr)) × W 1,1(S;Z) satisfy (3.2) on Kr

for all v ∈ H1
0 (Kr). Assume furthermore that for all t it holds suppu(t) ⊂ K 3r

4
and that

for 1 ≤ i ≤ d − 1 the functions u and z have the tangential regularity

∂i∇u ∈ L∞(S;L2(Kr)), ∂iz ∈ L∞(S;L2(Kr)).
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For the data we assume that

z0 ∈ H1(Kr), f ∈ L∞(S;L2(Kr)),

ℓ2, H ∈ L∞(S;∩d−1
i=1Fi(Kr,Kr)) ∩ L∞(S;H1(K r

2
)).

Then essupt∈S ‖u(t)‖
B

3/2
2,∞(Kr/4)

< ∞, essupt∈S ‖z(t)‖
B

1/2
2,∞(Kr/4)

< ∞, and for every δ > 0

we have

u ∈ L∞(S;H
3
2
−δ(K r

4
)), z ∈ L∞(S;H

1
2
−δ(K r

4
)).

The proof of this theorem relies on a reflection argument which was developed in [Kne08]

for periodic problems with constant coefficients and is carried out in the Lemmata 3.5–3.6

here below.

Let (u, z) ∈ L∞(S;H1(Kr)) × W 1,1(S;×Z) be a solution to problem (3.2) on Kr as

described in Theorem 3.4. Choose a function ϕ ∈ C∞([0, r]) with ϕ(s) = 1 in a neighbor-

hood of s = 0, ϕ(s) = 0 for s ≥ r
2 and 0 ≤ ϕ ≤ 1. By γ0 we denote the trace operator

from H1(Kr) to H
1
2 (Γ0) and define for x = (x′, xd) ∈ Kr

û(t, x) := ϕ(xd)(γ0u(t))(x′). (3.15)

The tangential regularity of u entails the following regularity for û:

Lemma 3.5. Under the assumptions of Theorem 3.4 it holds û, ∂dû ∈ L∞(S;H1(Kr))

with supp û(t) ⊂ K 3r
4
.

Proof. The proof is similar to the proof of Lemma 4.2 from [Kne08] with obvious modifi-

cations.

The following extensions to Cr will be used:

ue(t, x) :=





u(t, x) − û(t, x) x ∈ Kr

−u(t, Rx) + û(t, Rx) x ∈ Cr\Kr

. (3.16)

For the inner variable we use an even extension:

ze(t, x) :=





z(t, x) x ∈ Kr

z(t, Rx) x ∈ Cr\Kr

(3.17)

and similar for z0, where the extension is denoted by z0,e. The extended functions have

the smoothness

ue ∈ L∞(S;H1
0 (Cr)), ze ∈ W 1,1(S;L2(Cr)), z0,e ∈ H1(Cr).

Finally let Ee(v, η) =
∫
Cr

1
2〈Ae

(
∇v
η

)
,
(
∇v
η

)
〉dx.

15



Lemma 3.6. Let the assumptions of Theorem 3.4 be satisfied. There exist functions fe ∈
L∞(S;L2(Cr)), He ∈ L∞(S;Fd(Cr, C r

2
)) and ℓ2,e ∈ L∞(S;Fd(Cr, C r

2
)) such that for all

v ∈ H1
0 (Cr) we have

∫

Cr

〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

Cr

fe(t) · v dx +

∫

Cr

He(t) : ∇v dx,

∂tze(t) ∈ G(−DzEe(ue(t), ze(t)) + ℓ2,e(t))

ze(0) = z0,e.

(3.18)

Proof. Observe first that for all v ∈ H1
0 (Cr) it holds with ṽ(x) = v(Rx)

∫

Cr

〈Ae

(
∇ue
ze

)
,
(
∇v
0

)
〉dx =

∫

Kr

〈A (∇u
z ) ,

(
∇(v−ev)

0

)
〉dx −

∫

Kr

〈A
(
∇û
0

)
,
(
∇v
0

)
〉dx

+

∫

Cr\Kr

〈Ae (∇u
z )
∣∣
Rx

,
(

∇v(R+I)
0

)
〉dx

+

∫

Cr\Kr

〈Ae

(
∇ûR−∇u(R+I)

0

) ∣∣
Rx

,
(
∇v
0

)
〉dx.

Since the pair (u, z) solves (3.3) and since v − ṽ ∈ H1
0 (Kr), we may replace the first term

on the right hand side with f and H and obtain after rearranging the terms the following

relation:
∫

Cr

〈Ae

(
∇ue
ze

)
,
(
∇v
0

)
〉dx =

∫

Kr

fv dx +

∫

CR\Kr

(−f◦R)v dx

−
∫

Cr\Kr

H◦R(R + I) : ∇v dx

+

∫

Cr\Kr

(
Pm×d

[
A (∇u

z )
]
◦R
)
(R + I) : ∇v dx

+

∫

Kr

H : ∇v dx +

∫

Cr\Kr

H◦R : ∇v dx

−
∫

Kr

Pm×d

[
A
(
∇û
0

) ]
: ∇v dx

+

∫

Cr\Kr

Pm×d

[
A
(

∇ûR−∇u(R+I)
0

) ]
◦R : ∇v dx.

(3.19)

Observe that the regularity assumption on u and z imply that

div
((

H◦R − Pm×d

[
A (∇u

z )
]
◦R
)
(R + I)

)
∈ L∞(S;L2(Cr\Kr))

since due to the factor R+ I the derivative with respect to xd does not appear. Thus, after

applying the Gauss Theorem, the first four integrals on the right hand side in (3.19) can

be replaced with the term
∫
Cr

fe(t, x) · v(x) dx, where

fe(t, x) =





f(t, x) x ∈ Kr,

−f(t, Rx) + 2divx′

(
H(t, Rx) − Pm×d

[
A
(

∇u(t)
z(t)

) ]
◦R
)

x ∈ Cr\Kr.
(3.20)
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Here, we use that divx′ σ = ∂x1σ1 + . . . + ∂xd−1
σd−1 = 1

2 div(σ(R + I)) for σ : Cr → R
m×d,

and σi is the i-th column of σ. Note that fe ∈ L∞(S;L2(Cr)).

Let

θe(t, x) =




∇û(t, x) x ∈ Kr,

−∇(û(t, Rx)) +
(
∇(u(t, Rx))

)
(R + I) x ∈ Cr\Kr.

From the assumptions on u and from Lemma 3.5 we conclude that ∂d(θe

∣∣
Kr

) ∈ L∞(S;L2(Kr))

and ∂dθe

∣∣
Cr\Kr

∈ L∞(S;L2(Cr\Kr)). Since the traces on Γ0 of θe

∣∣
Kr

and of θe

∣∣
Cr\Kr

co-

incide, it follows that θe ∈ L∞(S;Fd(Cr, Cr)). Moreover, we define

He(t, x) = −Pm×d

[
Ae(x)

(
θe(t,x)

0

) ]
+





H(t, x) x ∈ Kr,

H(t, Rx) x ∈ Cr\Kr.
(3.21)

The assumptions on H and the properties of θe imply that He ∈ L∞(S;Fd(Cr, C r
2
)). With

these definitions, the right hand side in (3.19) is equal to
∫
Cr

fe(t) ·v dx+
∫
Cr

He(t) : ∇v dx,

which leads to the first equation in (3.18).

Finally we define

ℓ2,e(t, x) = −Pn

[
Ae(x)

(
θe(t,x)

0

) ]
+





ℓ2(t, x) x ∈ Kr,

ℓ2(t, Rx) x ∈ Cr\Kr.

As before we have ℓ2,e ∈ L∞(S;Fd(Cr, C r
2
)). Moreover, straightforward calculations show

that the extended functions satisfy the second relation in (3.18). This finishes the proof of

Lemma 3.6.

Proof of Theorem 3.4. Theorem 3.4 is an immediate consequence of part (a) of Theo-

rem 3.1 and of Lemma 3.6.

Observe that even with stronger assumptions on the temporal regularity of the data we

cannot extend in the proof of Theorems 3.1 and 3.3 the regularity of u from L∞(S;H2
loc(Kr)∩

H2
tang(Kr)) to W 1,1(S;H2

loc(Kr)∩H2
tang(Kr)). In fact, the example in Section 5.3.5 shows

that in spite of arbitrary smooth data, u does not belong to W 1,1(S;H2(Ω)) in general.

Thus we cannot expect that the extended data in the proof of Theorem 3.4 (see Lemma

3.6), which contain tangential derivatives of u and z, have the temporal regularity formu-

lated in assumption A3. Hence, in order to obtain the global regularity, we can only apply

the weak result formulated in part (a) of Theorem 3.1, and not the stronger result stated

in part (b) of Theorem 3.1. This explains the loss of a “half” derivative in the normal

direction. However, as we point out in Section 5.3.1, for time independent problems our

reflection argument gives a full additional spatial derivative.
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4 Main regularity theorem

4.1 Basic assumptions and main result

We are now ready to formulate and prove the main regularity theorem for generalized

elasto-(visco)-plastic models on smooth domains. In particular we assume the following:

R1 Ω ⊂ R
d is a bounded domain with C1,1-smooth boundary, see e.g. [Gri85].

For A ∈ L∞(Ω,End(Rm × R
m×d × R

n)), u ∈ H1(Ω, Rm) and z ∈ L2(Ω, Rn) the energy E
and the corresponding “principal part” Epp are defined via

E(u, z) = 1
2

∫

Ω
〈A
(

u
∇u
z

)
,
(

u
∇u
z

)
〉dx,

Epp(u, z) = 1
2

∫

Ω
〈A
(

0
∇u
z

)
,
(

0
∇u
z

)
〉dx.

R2 The coefficient function A belongs to C0,1(Ω,End(Rm × R
m×d × R

n)), is self adjoint

and the principle part satisfies Epp(v, z) ≥ α
2

(
‖v‖2

H1(Ω) +‖z‖2
L2(Ω)

)
for all v ∈ H1

0 (Ω)

and z ∈ L2(Ω).

Note that R2 shall be satisfied for v ∈ H1
0 (Ω), only, independently of the type of boundary

conditions which finally are imposed on the generalized displacements.

R3 g : R
n → P(Rn) is maximal monotone with 0 ∈ g(0). Moreover, G : L2(Ω, Rn) →

P(L2(Ω, Rn)) is defined as in (2.12).

We make the following assumptions on the data:

R4 z0 ∈ H1(Ω, Rn), f ∈ W 1,1(S;L2(Ω, Rm)), H ∈ W 1,1(S;H1(Ω, Rm×d)),

ℓ2 ∈ W 1,1(S;H1(Ω, Rn)) and u0 ∈ W 1,1(S;H
3
2 (∂Ω, Rm)).

For D ⊂ {1, . . . ,m}, where D=∅ is not excluded, the set of admissible generalized dis-

placements is given by

U = { v ∈ H1(Ω, Rm) ; vi

∣∣
∂Ω

= 0 for i ∈ D }. (4.1)

With this choice it is possible to define different types of boundary conditions for the

different components of u.

We consider functions (u, z) ∈ W 1,1(S;H1(Ω, Rm)) × W 1,1(S;L2(Ω, Rn)) which for all

v ∈ U and a.e. t ∈ S satisfy the following relations

DuE(u(t), z(t))[v] =

∫

Ω
〈A
(

u(t)
∇u(t)
z(t)

)
,
(

v
∇v
0

)
〉dx =

∫

Ω
f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G
(
− DzE(t, u(t), z(t)) + ℓ2(t)

)
,

z(0) = z0,

ui(t)
∣∣
∂Ω

= u0,i(t) for i ∈ D.

(4.2)
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Theorem 4.1 (Main Regularity Theorem). Let R1–R4 be satisfied and assume that the

pair (u, z) ∈ W 1,1(S;H1(Ω)) × W 1,1(S;L2(Ω)) satisfies (4.2) for all v ∈ U and almost

every t ∈ S. Then

essupt∈S ‖u(t)‖
B

3
2
2,∞(Ω)

< ∞, essupt∈S ‖z(t)‖
B

1
2
2,∞(Ω)

< ∞,

and for every δ > 0 we have

u ∈ L∞(S;H
3
2
−δ(Ω)), z ∈ L∞(S;H

1
2
−δ(Ω)). (4.3)

In addition, step 2 of the proof of Theorem 4.1 shows that the following local result

is valid if R1–R4 hold: ∇u ∈ L∞(S;H1
loc(Ω)), ∇z ∈ L∞(S;L2

loc(Ω)). This regularity is

also valid for tangential derivatives at the boundary of Ω. Similar local and tangential

results were recently derived by Alber/Nesenenko [AN08] for problems with pure Dirichlet

boundary conditions. The optimality of Theorem 4.3 and further examples are discussed

in Section 5.

The proof of Theorem 4.1 is carried out in Sections 4.2–4.4. By the usual arguments we

may assume for the Dirichlet datum that u0 ≡ 0 and thus u ∈ W 1,1(S;U).

4.2 Step 1: Elimination of the lower order terms

Let the assumptions of Theorem 4.1 be satisfied and let (u, z) ∈ W 1,1(S;U)×W 1,1(S;L2(Ω))

be a solution to (4.2). Then there exist functions f̃ ∈ W 1,1(S;L2(Ω)), H̃ ∈ W 1,1(S;H1(Ω))

and ℓ̃2 ∈ W 1,1(S;H1(Ω)) such that for every v ∈ U and a.e. t ∈ S we have

DuEpp(u(t), z(t)) ≡
∫

Ω
〈A
(

0
∇u(t)
z(t)

)
,
(

0
∇v
0

)
〉dx =

∫

Ω
f̃(t) · v + H̃(t) : ∇v dx,

∂tz(t) ∈ G
(
−Pn

[
A

(
0

∇u(t)
z(t)

)]
+ ℓ̃2(t)

)
.

Here, Pn is the projection operator introduced in Section 3.1. The assertion follows

immediately by rearranging the terms in (4.2). Thus, from now on we assume that

E(u, z) = Epp(u, z) and A ∈ C0,1(Ω,End(Rm×d × R
n)).

4.3 Step 2: Localization of the model and tangential regularity

Assumption R1 implies that for every y0 ∈ ∂Ω there exists a neighborhood Vy0 of y0 and a

C1,1-diffeomorphism Φy0 : Vy0 → C1 having the properties Φy0(y0) = 0, Φy0(∂Ω∩Vy0) = Γ0,

Φy0(Ω ∩ Vy0) = K1 and Φy0(Vy0\Ω) = C1\K1. The diffeomorphism Φy0 is chosen in such

a way that det∇Φy0 is constant. This choice is always possible for C1,1-smooth domains,

see for example [Gri85]. The inverse of Φy0 is denoted by Ψy0 : C1 → Vy0 .

Let A ∈ C0,1(Ω;End(Rm×d × R
n)) be the coefficient function in (4.2). For x ∈ K1,

Fi ∈ R
m×d, zi ∈ R

n we define AΦy0
∈ C0,1(K1; End(Rm×d × R

n)) via

〈AΦy0
(x)
(

F1
z1

)
,
(

F2
z2

)
〉 = 〈A(Ψy0(x))

(
F1(∇Ψy0 (x))−1

z1

)
,
(

F2(∇Ψy0(x))−1

z2

)
〉.

19



Moreover,

EΦy0
(v, ζ) :=

1

2

∫

K1

〈AΦy0

(
∇v
ζ

)
,
(
∇v
ζ

)
〉dx.

Finally we define W(Kr) = { v ∈ H1(Kr) ; v
∣∣
∂Kr\Γ0

= 0 } for r > 0.

In the next Lemma, we extend the coercivity assumption on A from H1
0 (Ω) × L2(Ω) to

functions v ∈ H1(Ω), which vanish only on some parts of the boundary.

Lemma 4.2. Let conditions R1 and R2 be satisfied. For every y0 ∈ ∂Ω there exists

r ∈ (0, 1) such that for all v ∈ W(Kr) and ζ ∈ L2(Kr) it holds

EΦy0
(v, ζ) ≥ α

4

(
‖∇v‖2

L2(Kr) + ‖ζ‖2
L2(Kr)

)
(4.4)

with α from R2.

Proof. Assume that conditions R1 and R2 are satisfied. By a localization argument

similar to the one described in [GH96, Chap. 4.1.3, Legendre-Hadamard condition] and a

scaling argument it follows that for all x0 ∈ Ω, r > 0, v ∈ H1
0 (Cr) and ζ ∈ L2(Cr) it holds

∫

Cr

〈A(x0)
(
∇v
ζ

)
,
(
∇v
ζ

)
〉dx ≥ α(‖∇v‖2

L2(Cr) + ‖ζ‖2
L2(Cr)). (4.5)

Here, α is the same constant as in condition R2 and does not depend on r. Moreover, by

using even extensions for v ∈ W(Kr) and odd extensions for ζ ∈ L2(Kr) from Kr to Cr,

it follows that estimate (4.5) is valid also on W(Kr) × L2(Kr) with the same constant α

as in (4.5).

Let now y0 ∈ ∂Ω be arbitrary. For all r ∈ (0, 1], v ∈ W(Kr) and ζ ∈ L2(Kr) we have

2EΦy0
(v, ζ) =

∫

Kr

〈A(y0)
(
∇v
ζ

)
,
(
∇v
ζ

)
〉dx +

∫

Kr

〈(AΦy0
(x) − A(y0))

(
∇v
ζ

)
,
(
∇v
ζ

)
〉dx

≥ (α − cA,Φy0
diam(Kr))(‖∇v‖2

L2(Cr) + ‖ζ‖2
L2(Cr)).

The constant cA,Φy0
depends on Φy0 and on the Lipschitz properties of A, but is indepen-

dent of r. For small enough r we therefore arrive at (4.4).

In the sequel we omit the index y0.

Let (u, z) ∈ W 1,1(S;U) × W 1,1(S;L2(Ω)) be given as in Theorem 4.1, choose y0 ∈ ∂Ω

and let r ∈ (0, 1) be given according to Lemma 4.2. Let furthermore ϕ ∈ C∞
0 (C 3r

4
) with

0 ≤ ϕ ≤ 1 and with ϕ ≡ 1 on C r
2
. For (t, x) ∈ S × Kr we define

uΦ(t, x) = ϕ(x)u(t,Ψ(x)), zΦ(t, x) = z(t,Ψ(x)).

Furthermore, the space

U(Kr) = {w ∈ H1(Kr) ; v
∣∣
∂Kr\Γ0

= 0, vi

∣∣
Γ0

= 0 for i ∈ D }
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is defined in the same way as in Section 3.2. Obviously, U(Kr) ⊂ W(Kr) and

(uΦ, zΦ) ∈ W 1,1(S;U(Kr)) × W 1,1(S;L2(Kr)).

Testing (4.2) with v◦Φ, where v ∈ U(Kr), changing the coordinates using Φ and moving

the lower order terms to the right hand side, we arrive at the following relations taking

into account that |det∇Φ| is constant:

For all v ∈ U(Kr) and almost every t ∈ S it holds
∫

Kr

〈AΦ(x)
(

∇uΦ(t)
zΦ(t)

)
,
(
∇v
0

)
〉dx =

∫

Kr

fΦ(t) · v dx + HΦ(t) : ∇v dx,

∂tzΦ(t) ∈ G
(
− Pn

[
AΦ

(
∇uΦ(t)
zΦ(t)

) ]
+ ℓ2,Φ(t)

)
,

zΦ(0) = z0,Φ.

(4.6)

Here, z0,Φ = z0 ◦ Ψ. Moreover, with ũ(t, x) = u(t,Ψ(x)) we have

fΦ(t) = f(t)◦Ψ,

HΦ(t) = H(t)◦Ψ∇Ψ−⊤ − Pm×d

[
AΦ

(
∇((1−ϕ)eu)

0

) ]
,

ℓ2,Φ(t) = ℓ2(t)◦Ψ − Pn

[
AΦ

(
∇((1−ϕ)eu)

0

) ]
.

(4.7)

From assumption R4 and using that (1 − ϕ)ũ = 0 on Kr/2, we obtain

fΦ ∈ W 1,1(S;L2(Kr)), HΦ ∈ W 1,1(S;L2(Kr)) ∩ W 1,1(S;H1(K r
2
)),

ℓ2,Φ ∈W 1,1(S;L2(Kr)) ∩ W 1,1(S;H1(K r
2
)).

(4.8)

In view of Lemma 4.2 we are now exactly in the situation described in Section 3.2 on

tangential regularity. Theorem 3.3 therefore implies that for 1 ≤ i ≤ d − 1 we have

∂xi∇uΦ ∈ L∞(S;L2(K r
4
)), ∂xizΦ ∈ L∞(S;L2(K r

4
)).

Since y0 ∈ ∂Ω was arbitrary and since ∂Ω can be covered with a finite number of the

domains Ψy0(K r
4
), the tangential regularity result is also valid for u and z on the whole

domain Ω.

4.4 Step 3: Global regularity

We consider again the localized problem (4.6). Thanks to the second step we have the

additional regularity ∂i∇uΦ ∈ L∞(S;L2(Kr)) and ∂izΦ ∈ L∞(S;L2(Kr)) for 1 ≤ i ≤ d−1.

Thus, in addition to (4.8) the data in (4.7) satisfy

HΦ, ℓ2,Φ ∈ L∞(S;∩d−1
i=1Fi(Kr,Kr)).

By a reflection argument it follows from Lemma 4.2 that the extended coefficient function

AΦ,e, which is defined by AΦ,e(x) = AΦ(x) for x ∈ Kr and AΦ,e(x) = AΦ(Rx) for x ∈
Cr\Kr, satisfies

∫

Cr

〈AΦ,e

(
∇v
ζ

)
,
(
∇v
ζ

)
〉dx ≥ κ

(
‖v‖2

H1(Cr) + ‖ζ‖2
L2(Cr)

)
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for all v ∈ H1
0 (Cr), ζ ∈ L2(Cr) and some constant κ > 0. Theorem 3.4 now guarantees

that essupt∈S ‖uΦ(t)‖
B

3/2
2,∞(Kr/4)

< ∞, essupt∈S ‖zΦ(t)‖
B

1/2
2,∞(Kr/4)

< ∞, and that for every

δ > 0 we have uΦ ∈ L∞(S;H
3
2
−δ(K r

4
)) and zΦ ∈ L∞(S;H

1
2
−δ(K r

4
)). Since y0 ∈ ∂Ω is

arbitrary and since ∂Ω can be covered with a finite number of domains Ψy0(K r
4
), we arrive

finally at (4.3) and the proof of Theorem 4.1 is finished.

5 Examples and Discussion

5.1 Elastic-plastic models with linear hardening

Regularity Theorem 4.1 is in particular applicable to classical elastic–plastic models with

linear hardening having positive definite hardening coefficients.

Let m = d and let EH be the stored energy introduced in Section 2.2.1. If the elasticity

tensor C ∈ C0,1(Ω;End(Rd×d
sym)) and the hardening coefficients L ∈ C0,1(Ω;End(Rn)) are

symmetric and uniformly positive definite on Ω, then condition R2 is satisfied. This is

an immediate consequence of the Korn inequality. Assume furthermore that the mapping

g : R
n → P(Rn) and the data are chosen according to R3 and R4, respectively.

If the pair (u, z) ∈ W 1,1(S;H1(Ω)) × W 1,1(S;L2(Ω)) is a solution to (4.2) with pure

Dirichlet or pure Neumann boundary conditions for u, i.e. U = H1
0 (Ω) or U = H1(Ω), then

the regularity results stated in Theorem 4.1 are valid for u and z.

In particular the results hold for elastic–plastic models with linear kinematic hardening

and with von Mises or Tresca flow rule.

5.2 Elastic-plastic models with Cosserat effects

In the case of the elastic-plastic model with Cosserat effects described in Section 2.2.2, the

generalized displacements consist of the true displacements u : Ω → R
d and the micro-

rotation tensor Q : Ω → R
d×d
skew. Moreover, the inner variable is identified with the plastic

strains, i.e. z = εp : Ω → R
d×d
sym, dev. The corresponding stored energy EC((u,Q), z) is

defined in (2.17). If the coefficients µ, µc, λ, γ ∈ C0,1(Ω; R) are uniformly positive, then the

principal part of EC, which is given by

EC,pp((u,Q), εp) =

∫

Ω
µ |ε(∇u) − εp|2 + µc |skew∇u|2 +

λ

2
|tr∇u|2 + γ |∇Q|2 dx,

satisfies condition R2. This follows in the same way as the inequality (2.18), see e.g. [NC05].

Thus, if in addition R1, R3 and R4 are valid, then by Theorem 4.1 for every δ > 0 we have

u ∈ L∞(S;H
3
2
−δ(Ω)) and εp ∈ L∞(S;H

1
2
−δ(Ω)), while the existence proof already provides

Q ∈ W 1,1(S;H2(Ω)), see [NC05]. Note that it is possible to choose U = H1
0 (Ω, Rd) ×

H1(Ω; Rd×d
skew), which means that Dirichlet conditions are prescribed for the displacements

and Neumann conditions for the micro-rotation tensor Q.

22



5.3 Discussion of the optimality of Theorem 4.1

It is not clear whether the result presented in Theorem 4.1 is optimal or whether one

should expect that u ∈ L∞(S;H2(Ω)) and z ∈ L∞(S;H1(Ω)) in the general frame-

work of Theorem 4.1. The latter regularity would fit well to the local result provided

in Theorem 3.1 and to regularity results for elliptic equations. In this section we discuss

several aspects and special cases in view of the question of optimality. For simplicity,

we omit the lower order terms, so that A ∈ C0,1(Ω;End(Rm×d × R
n)). Moreover, we

use the notation A =
(

A11 A12
A21 A22

)
with coefficient matrices A11 ∈ C0,1(Ω;End(Rm×d)),

A12 = A∗
21 ∈ C0,1(Ω; Lin(Rm×d, Rn)) and A22 ∈ C0,1(Ω;End(Rn)).

5.3.1 Reflection technique and regularity for elliptic systems

Assume first that the maximal monotone operator G in (4.2) is identically 0 and that f,H

are constant in time. Then z and consequently u are constant in time as well and u in fact

is the solution of the following linear elliptic system of PDEs of second order
∫

Ω
A11∇u : ∇v dx =

∫

Ω
f · v + (H − A12z0) : ∇v dx

for all v ∈ U with U like in (4.1).

It is well known that solutions of such systems belong to H2(Ω) provided that R1 is

satisfied and that f ∈ L2(Ω) and z0,H ∈ H1(Ω), see e.g. [Neč67]. This result follows

from tangential regularity results by solving the elliptic equation for the missing second

derivative in normal direction.

Alternatively, this result can also be obtained by applying the reflection technique in-

troduced in Section 3.3. This can be seen as follows: Assume that Ω is a half cube and

that we are in the situation described in Theorem 3.4 with time independent data and

with G ≡ 0. Let ue and Ae be the extended functions defined Section 3.3. By adapting

the proof of Lemma 3.6 to this particular situation, it follows that the extended function

ue satisfies
∫

C1

〈Ae

(
∇ue
z0,e

)
,
(
∇v
0

)
〉dx =

∫

Ω
fe · v + He : ∇v dx

for all v ∈ H1
0 (C1), where fe and He are defined as in (3.20) and (3.21). From the tangential

regularity of u we deduce that fe ∈ L2(C1) and He ∈ Fd(C1, C 1
2
). Thus the local results for

linear elliptic equations guarantee that ue ∈ H2(C 1
2
) and finally u ∈ H2(K 1

2
). This shows

that in the stationary case the reflection argument is equivalent to the usual argument for

proving global regularity for solutions of linear elliptic systems.

5.3.2 The decoupled case

We consider now the case where A12 = 0 but with arbitrary G satisfying R3. In this case,

the elliptic equation and the evolution equation in (4.2) are completely decoupled. The
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extended function ℓ2,e occurring in the proof of Lemma 3.6 is now given by

ℓ2,e(t, x) =





ℓ2(t) x ∈ Kr

ℓ2(t, Rx) x ∈ Cr\Kr

and belongs to W 1,1(S;H1(Cr)) instead of L∞(S;Fd(Cr, Cρ)). Thus part (b) of Theorem

3.1 is applicable and yields z ∈ L∞(S;H1(Kr)). Under the assumptions of Theorem 4.1 it

therefore holds in the decoupled case that u ∈ W 1,1(S;H2(Ω)) and z ∈ L∞(S;H1(Ω)).

5.3.3 The one dimensional case

Let d = 1 and K1 = (0, 1). Furthermore, let the pair (u, z) ∈ W 1,1(S;H1(K1) × L2(K1))

be a solution of (4.2). Applying the reflection procedure from Section 3.3 leads to extended

functions having the regularity (ue, ze) ∈ W 1,1(S;H1(C1)×L2(C1)), fe ∈ W 1,1(S;L2(C1)),

θe,He, ℓ2,e ∈ W 1,1(S;H1(C1)). Thus part (b) of Theorem 3.1 gives

Theorem 5.1. Let d = 1 and assume that R1–R4 are satisfied. Then the solutions u and

z have the regularity u ∈ L∞(S;H2(Ω)), z ∈ L∞(S;H1(Ω)).

5.3.4 The case where u is scalar

If the function u is scalar, i.e. m = 1, improved regularity results can be obtained provided

that certain coupling conditions between the coefficient matrix A and the function g are

satisfied. For the proof of the result we apply again a reflection argument. In contrast to the

approach presented in Section 3 the model is not reflected perpendicular to the boundary

but in a direction which is locally given by A11(x)ν(x) for x ∈ ∂Ω. Here, ν : ∂Ω → R
d

denotes the interior unit normal vector. In particular we assume

R1’ Ω ⊂ R
d is a bounded domain with C2,1-smooth boundary and ∂Ω = ΓD.

R2’ The coefficient matrix A belongs to C1,1(Ω;End(Rd×R
n)), is self adjoint and satisfies

E(v, z) ≥ α
2 (‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)) for every v ∈ H1

0 (Ω) and z ∈ L2(Ω).

R3’ g : R
n → P(Rn) satisfies R3.

R4’ z0 ∈ H1(Ω, Rn), f ∈ W 1,1(S;L2(Ω)) and u0 ∈ W 1,1(S;H2(Ω)).

In order to formulate the compatibility conditions, we define for x ∈ ∂Ω and A11(x) ∈ R
d×d

Rν(x) = I − 2

〈A11(x)ν(x), ν(x)〉A11(x)ν(x) ⊗ ν(x) (5.1)

with the interior normal vector ν : ∂Ω → R
d. The matrix Rν locally determines the

reflection at ∂Ω. Observe that for all x ∈ ∂Ω we have

(Rν(x))2 = I and Rν(x)A11(x)Rν(x)⊤ = A11(x). (5.2)
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R5’ For every x0 ∈ ∂Ω there exists a neighborhood W ⊂ R
d and a mapping P ∈ C0,1(∂Ω∩

W ; End(Rn)) such that the inverse matrix (P (x))−1 exists for every x ∈ ∂Ω∩W and

such that the following conditions hold for every x ∈ ∂Ω ∩ W :

(a) Rν(x)A12(x)P (x) = A12(x),

(b) P (x)⊤A22(x)P (x) = A22(x),

(c) −P (x)−1g(−P (x)−⊤η) = g(η) for all η ∈ R
n,

(d) Compatibility for the initial datum: (I + P−1)z0 = 0 on ∂Ω.

We consider the problem to find (u, z) ∈ W 1,1(S;H1(Ω)) × W 1,1(S;L2(Ω)) which satisfy

for a.e. t ∈ S and every v ∈ H1
0 (Ω) the relations

∫

Ω
〈A
(

∇u(t)
z(t)

)
,
(
∇v
0

)
〉dx =

∫

V
f(t)v dx,

∂tz(t) ∈ g(−Pn[A
(

∇u(t)
z(t)

)
])

z(0) = z0, u(t)
∣∣
∂Ω

= u0(t)
∣∣
∂Ω

.

(5.3)

Theorem 5.2. Let R1’–R5’ be satisfied and assume that (u, z) ∈ W 1,1(S;H1(Ω)×L2(Ω))

solves (5.3). Then u ∈ L∞(S;H2(Ω)), z ∈ L∞(S;H1(Ω)) and (I + P−1)z = 0 on ∂Ω.

The proof is carried out in the next two lemmata, where we first construct a local

diffeomorphism from Ω ∩ W to W\Ω. This diffeomorphism is closely related with Rν . In

the second step we localize and extend problem (5.3) from Ω∩W to W and show that the

new problem satisfies the smoothness assumptions of part (b) of Theorem 3.1.

Lemma 5.3. For every x0 ∈ ∂Ω exists a neighborhood V with V+ = Ω∩V and V− = V \Ω
and a C1,1-diffeomorphism T : V → V with the properties T (x) = x for all x ∈ ∂Ω ∩ V ,

T (V±) = V∓ and ∇T (x) = Rν(x) for all x ∈ ∂Ω ∩ V .

Proof. We define the following mapping

T̃ : ∂Ω × R → R
d; (ỹ, yd) 7→ ỹ + ydA11(ỹ)ν(ỹ).

Since ∂Ω is assumed to be C2,1-smooth, the mapping T̃ belongs to C1,1(∂Ω × R
d). For

yd = 0 we have

∇T̃ (ỹ, 0) = ITey∂Ω + A11(ỹ)ν(ỹ) ⊗ ν(ỹ) = IRd + (A11(ỹ) − IRd)ν(ỹ) ⊗ ν(ỹ), (5.4)

where ITey∂Ω is the restriction of the identity to the tangent space of ∂Ω in ỹ. Moreover,

det∇T̃ (ỹ, 0) = 〈A11(ỹ)ν(ỹ)), ν(ỹ)〉 > 0 since A11 is uniformly positive definite. Thus the

inverse of ∇T̃ (ỹ, 0) exists in all points (ỹ, 0) ∈ ∂Ω × R and is given by

(∇T̃ (ỹ, 0))−1 = I
Rd − 1

〈A11ν, ν〉(A11 − I
Rd)ν ⊗ ν.
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Let now x0 ∈ ∂Ω be arbitrary. By the Implicit Function Theorem there exists a neighbor-

hood V ⊂ R
d of x0 and a neighborhood Ṽ ⊂ ∂Ω × R of (x0, 0) such that T̃ : Ṽ → V is a

C1,1-diffeomorphism with T̃ (Ṽ±) = V±. Here, Ṽ± = { (ỹ, yd) ∈ Ṽ ; yd
>
< 0 }, V+ = Ω ∩ V ,

V− = V \Ω. Let the reflection at ∂Ω be given by R : ∂Ω×R → ∂Ω×R, R(ỹ, yd) = (ỹ,−yd)

with ∇R(ỹ, 0) = I
Rd − 2ν × ν. The mapping T we are looking for is defined through

T : V → V, T (x) = T̃ (R(T̃−1(x))).

By construction, T is a C1,1-diffeomorphism with T (V±) = V∓. Moreover, straightforward

calculations show that for every x ∈ ∂Ω we have

∇T (x) = ∇T̃ (x, 0)∇R(x, 0)(∇T̃ (x, 0))−1 = Rν(x).

This finishes the proof of Lemma 5.3.

From now on we assume that u0 = 0 and u(t) ∈ H1
0 (Ω). Otherwise, the volume term f

should be replaced with f̃ = f + div A11u0 ∈ W 1,1(S;L2(Ω)). Moreover we assume that

the set V from Lemma 5.3 is contained in the set W from R5’.

The following extended functions will be considered in the sequel: Choose x0 ∈ ∂Ω and

let T : V → V be the corresponding diffeomorphism from Lemma 5.3. Choose ϕ ∈ C∞
0 (V )

with ϕ
∣∣
Bδ(x0)

= 1 for some δ > 0. The matrix valued function P introduced in condition

R5’ is extended to V in the following way: Let T̃ be the diffeomorphism defined in the

proof of Lemma 5.3. For x ∈ V we have T̃−1(x) = (ỹ, yd) ∈ ∂Ω×R. By T̃−1
∂Ω we denote the

projection onto the point ỹ, i.e. T̃−1
∂Ω (x) = ỹ ∈ ∂Ω. The extension of P is now defined as

Pe(x) = P (T̃−1
∂Ω (x)), x ∈ V.

By construction, Pe ∈ C0,1(V ,End(Rn)). Observe that the inverse matrix (Pe(x))−1 exists

for every x ∈ V and that (Pe(·))−1 belongs to C0,1(V ,End(Rn)). We define

ue(t, x) =





(ϕu)(t, x) (t, x) ∈ S × V+

−(ϕu)(t, T−1(x)) (t, x) ∈ S × V−

,

ze(t, x) =





z(t, x) (t, x) ∈ S × V+

−(P−1
e z)(t, T−1(x)) (t, x) ∈ S × V−

.

Obviously, (ue, ze) ∈ W 1,1(S;H1
0 (V ) × L2(V )). The coefficient function A is extended as

follows

A11,e =





A11 on V+

(∇TA11∇T⊤)◦T−1 on V−

, A22,e =





A22 on V+

(P⊤
e A22Pe)◦T−1 on V−

,

A12,e =





A12 on V+

(∇TA12Pe)◦T−1 on V−

, A21,e = A⊤
12,e .
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Due to the compatibility condition R5’, the coefficient matrix Ae =
(

A11,e A12,e

A21,e A22,e

)
belongs

to C0,1(V ,End(Rd × R
n)). Moreover, the data is extended as follows

fe =





f on V+(
−f + |det∇T |−1 (A11∇u + A12z) · ∇ |det∇T |

)
◦T−1 on V−

,

He =





A11∇((ϕ − 1)u) on V+

−
(
∇TA11∇((ϕ − 1)u)

)
◦T−1 on V−

,

ℓ2,e =





A21∇((ϕ − 1)u) on V+

−(P⊤
e A21∇((ϕ − 1)u))◦T−1 on V−

,

z0,e =





z0 on V+

−(P−1
e z0)◦T−1 on V−

.

Thanks to R5’, the extended functions have the regularity fe ∈ W 1,1(S;L2(V )), He, ℓ2,e ∈
W 1,1(S;L2(V )) ∩ W 1,1(S;H1(Bδ(x0))) and z0,e ∈ H1(V ). Finally, for η ∈ R

n we define

ge(x, η) =





g(η) on V+

−P−1
e ◦T−1 g(−P−⊤

e ◦T−1 η) on V−

.

Due to condition R5’, we have in fact the identity ge(x, η) = g(η) for all x ∈ V and η ∈ R
n.

Lemma 5.4. Assume that R1’-R5’ are satisfied. For a.e. t ∈ S and every v ∈ H1
0 (V ) the

above defined extended functions (ue, ze) ∈ W 1,1(S;H1
0 (V )) × W 1,1(S;L2(V )) satisfy

∫

V
〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

V
fe(t)v + He(t) · ∇v dx,

∂tze(t) ∈ ge(−Pn[Ae

(
∇ue(t)
ze(t)

)
] + ℓ2,e(t))

ze(0) = z0,e.

(5.5)

Moreover, the coefficients and the data z0,e, fe, He and ℓ2,e have the smoothness described

in conditions A1 and A3 of Section 3.1. Thus, u ∈ L∞(S;H2(Bδ(x0) ∩ Ω)) and z ∈
L∞(S;H1(Bδ(x0) ∩ Ω)).

Proof. The last assertion of Lemma 5.4 is an immediate consequence of Theorem 3.1

applied to ue and ze and (5.5). We recall that ge(x, η) = g(η) for all x ∈ V and η ∈ R
n.

Since ze ∈ L∞(S;H1(Bδ(x0)), the traces of ze from V+ and from V− on ∂Ω coincide, which

entails (I + P−1)z = 0 on ∂Ω.

Relation (5.5) can be derived as follows: straightforward calculations show that for

v ∈ H1
0 (V ) it holds
∫

V
〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

V+

(A11∇ue + A12z) · ∇(v − |det∇T | v◦T ) dy

+

∫

V+

(
(A11∇ue + A12z) · ∇ |det∇T |

)
v◦T dy.
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Since |det∇T (y)| = |detRν(y)| = 1 for y ∈ ∂Ω, it follows that v−|det∇T | v◦T ∈ H1
0 (V+).

Thus, on the basis of (5.3), we arrive at the following relation

∫

V
〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

V+

f
(
v − |det∇T | v◦T ) + He · ∇(v − |det∇T | v◦T ) dy

+

∫

V−

(
|det∇T |−1 (A11∇ue + A12z) · ∇ |det∇T |

)
◦T−1v dx

with He from above. After a transformation of coordinates we obtain the first relation

in Lemma 5.4. The second relation is an immediate consequence of the definitions of the

extended functions in combination with relation (5.3).

A concrete example, where condition R5’ is satisfied, is the following: We choose n = d and

coefficients A =
(

A11 −A11
−A11 A11+A22

)
with symmetric, positive definite and constant matrices

A11, A22 ∈ R
d×d. The corresponding stored energy reads

E(u, z) = 1
2

∫

Ω
A11(∇u − z) · (∇u − z) + A22z · z dx.

Moreover, g = ∂χK for some convex and closed set K ⊂ R
d. Let Ω ⊂ R

d satisfy R1’

and let Rν := I − 2
〈A11ν,ν〉A11ν ⊗ ν for ν ∈ R

d\{0}. Observe that R−1
ν = Rν . With

Pν = A−1
11 R−1

ν A11 = R⊤
ν , condition R5’ reads as follows

(a) RνA22R
⊤
ν = A22 for all ν ∈ R

d\{0},

(b) −R⊤
ν g(−Rνη) = g(η) for all η ∈ R

d and ν ∈ R
d\{0}.

Proposition 5.5. The compatibility condition R5’ is satisfied if and only if K = −RνK
for every ν ∈ R

d\{0} and if there exists α > 0 such that A22 = αA11.

If K = { η ∈ R
d ; 〈Bη, η〉 ≤ 1 } for some symmetric and positive definite B ∈ R

d×d,

then the condition on K is satisfied if and only if there exists a constant β > 0 such that

B = βA−1
11 .

Proof. The Proposition follows from Lemma A.1 and Lemma A.2 in the appendix.

This scalar example shows that if the anisotropy of “Hooke’s law” given by A11 is strongly

correlated with the anisotropy in the hardening coefficients A22 and the convex set K,

then the displacements u(t) have full H2 regularity up to the boundary of Ω. The crucial

point in the scalar case is the existence of the local diffeomorphism T from Ω to some

larger domain having the property (5.2) for Rν = ∇T . It is not clear, whether a similar

construction is possible for true elasto-plasticity, where m = d, or for the general vectorial

case with m > 1.

An other open question is, whether or not in the case of non matching anisotropies there

exist examples with u(t) /∈ H2(Ω) in spite of smooth data. This will be the subject of

further studies.
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5.3.5 Example: ∂tz /∈ L∞(S;H1(Ω))

In this section we give an example which shows that in spite of smooth data the rate ∂tz

does not belong to L∞(S;H1(Ω)). This example is inspired by Seregin’s paper [Ser99].

Let 0 < R1 < R2. We set Ω = BR2(0)\BR1(0) and choose the following energy for

u, z : Ω → R:

E(u, z) = 1
2

∫

Ω

∣∣∇u − x
|x|z
∣∣2 + z2 dx.

Moreover, g(η) := ∂χ[−1,1](η) for η ∈ R. We assume that u(t)
∣∣
∂BR1

= 0, u(t)
∣∣
∂BR2

= t,

z0 = 0 and that the remaining data (f , H, ℓ2) vanish. It is easily checked that the

assumptions of Theorem 5.2 are satisfied and hence the problem has a unique solution with

the regularity ∇u, z ∈ W 1,1(S;L2(Ω))∩L∞(S;H1(Ω)). Due to the rotational symmetry of

the problem the solution does not depend on the angle and can explicitely be calculated.

Introducing polar-coordinates, the solution u, z : S × (R1, R2) → R has to satisfy

∂2
r u + r−1∂ru − ∂rz − r−1z = 0 in S × (R1, R2),

∂tz ∈ ∂χ[−1,1](∂ru − 2z) in S × (R1, R2),

z(0, ·) = 0, u(t, R1) = 0, u(t, R2) = t.

For t ≤ t1 := R1 ln(R2/R1) it follows that u(t, r) = t ln(r/R1)
ln(R2/R1) , z(t, r) = 0. In this regime,

no plastic strains are present. For t > t1 the plastic variable z starts to grow and there

exists r∗(t) such that z(t, r) > 0 for r < r∗ and z(r, t) = 0 for r > r∗, i.e. r∗(t) separates

the plastic region from the elastic region. The dependence of r∗ of t is given implicitly

through the relation

t(r∗) = R1 − r∗ + r∗ ln
R2r∗
R2

1

.

Simple calculations show that t(r∗) is strictly increasing, and hence r∗(t) ≥ R1 is strictly

growing, as well. Moreover, for t ≥ t1 we have

u(t, r) =





b(t) − r + 2r∗(t) ln r if r ≤ r∗(t)

c(t) + r∗(t) ln r else
, z(t, r) =




−1 + r∗(t)r

−1 if r ≤ r∗(t),

0 else
,

with functions b(t) = R1 − 2r∗(t) ln R1 and c(t) = t− r∗(t) ln R2. Since r′∗(t) > 0 for t ≥ t1

it follows that ∂tz(t, ·) /∈ H1(R1, R2) for t > t1.

A Proof of Proposition 5.5

Lemma A.1. Let A,B ∈ Lin(Rd, Rd) be symmetric with detA 6= 0 and assume that for

all ν ∈ R
d\{0} we have RνBR⊤

ν = B with Rν = I− 2
〈Aν,ν〉Aν ⊗ ν. Then there exists α ∈ R

such that B = αA.
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Proof. Let {e1, . . . , ed} be an orthonormal system of eigenvectors of A, i.e. Aei = λiei

for some λi ∈ R\{0} and 〈ei, ej〉 = δij . Then the set { ei ⊗ ej ; i, j ∈ {1, . . . , d} } is a

basis of Lin(Rd, Rd) which is orthonormal with respect to the inner product defined by

S : T = tr(T⊤S). This means that (ei ⊗ ej) : (ek ⊗ el) = δikδjl and A : (ei ⊗ ej) = λiδij .

Thus the identity RνBR⊤
ν = B is valid for all ν ∈ R

d\{0} if and only if

(RνBR⊤
ν ) : (ei ⊗ ej) = B : (ei ⊗ ej) (A.1)

for all ν ∈ R
d\{0} and all i, j ∈ {1, . . . , d}. Observe that (A.1) is equivalent to

2λiλj〈ν, ei〉〈ν, ej〉〈Bν, ν〉 = 〈Aν, ν〉
(
λj〈ν, ej〉〈ν,Bei〉 + λi〈ν, ei〉〈ν,Bej〉

)
(A.2)

for all ν ∈ R
d\{0} and all i, j ∈ {1, . . . , d}. With ν = ei 6= ej we obtain from (A.2) the

condition 0 = λ2
i 〈ei, Bej〉. Since λi 6= 0, it follows that

B : (ei ⊗ ej) = B : (ej ⊗ ei) = 〈ei, Bej〉 = 0 = A : (ei ⊗ ej) (A.3)

for all i 6= j. Assume again that i 6= j. With the choice ν = aiei + ajej , where a2
i + a2

j = 1

and aiaj 6= 0, it follows from (A.2) in combination with (A.3) that

a2
i

(
〈Bei, ei〉 − λicij

)
+ a2

j

(
〈Bej , ej〉 − λjcij

)
= 0

for all these ai and aj . Here, cij = (2λiλj)
−1
(
λj〈Bei, ei〉 + λi〈Bej , ej〉

)
. This implies that

〈Bei, ei〉 − λicij = 0 for all i 6= j from which we deduce (with j = 1) that

〈Bei, ei〉 =
〈Be1, e1〉

λ1
〈Aei, ei〉

for all i ∈ {1, . . . , d}. Together with (A.3) it follows that B = 〈Be1,e1〉
λ1

A.

Lemma A.2. Let A,B ∈ Lin(Rd, Rd) be symmetric with det A > 0 and detB > 0.

Assume that for all ν ∈ R
d\{0} we have −RνK = K, where K = { η ∈ R

d ; 〈Bη, η〉 ≤ 1 }
and Rν = I − 2

〈Aν,ν〉Aν ⊗ ν. Then there exists β > 0 such that B = βA−1.

Proof. Short calculations show that

R⊤
ν BRν = B + 2

〈Aν,ν〉2

(
− 〈Aν, ν〉(BAν ⊗ ν + ν ⊗ BAν) + 2〈BAν,Aν〉ν ⊗ ν

)

=: B + 2
〈Aν,ν〉2 Tν .

The assumption −RνK = K implies that for all ν ∈ R
d\{0} and all η ∈ R

d we have

〈Bη, η〉 ≤ 1 ⇔ 〈Bη, η〉 + 2
〈Aν,ν〉2

〈Tνη, η〉 ≤ 1.

Thus, 〈Tνη, η〉 = 0 for all η ∈ R
d. Note that

〈Tνη, η〉 = 2〈ν, η〉
(
〈BAν,Aν〉〈η, ν〉 − 〈Aν, ν〉〈BAν, η〉

)
.
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Let {e1, . . . , ed} be an orthonormal basis of eigenvectors of A with eigenvalues λi > 0. Let

furthermore ν = ei + αej and η = ei for i 6= j and α ∈ R. From 〈Tνη, η〉 = 0 it follows

that for all α ∈ R we have

0 = αλiλj〈Bei, ej〉 + α2λj

(
λj〈Bej , ej〉 − λi〈Bei, Bei〉

)
− α3λ2

j〈Bej , ei〉.

This implies that 〈Bei, ej〉 = 0 for i 6= j and λj〈Bej , ej〉 = λi〈Bei, Bei〉 for all i, j, from

which we conclude that 〈Bej , ej〉 = λ1〈Be1, e1〉λ−1
j = λ1〈Be1, e1〉〈A−1ej , ej〉. In the same

way as in the proof of the previous Lemma, it follows finally that B = λ1〈Be1, e1〉A−1.
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