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Control Problems with State Constraints for the 
Penrose-Fife Phase-field Model 

Werner Horn*, Jan SokolowskiI Jurgen Sprekels+ 

Abstract 
This article gives an optimality system for a control problem with state con-

straints for a Penrose-Fife model for phase transitions. 

1 Introduction 
In this article, we consider optimal control problems governed by the following system 
of quasi-linear parabolic equations, 

q,, - K1A</J - s~(</J) - >..~) , 

T, - -Mill. G) ->..(<P)<Pt + v, 

(1) 

(2) 

in Q = n x (0, t*), where n c R 3 is a bounded domain with a sufficiently smooth 
boundary an. So denotes a double well potential. We let 8Q = an x (0, t*), and we 
impose the boundary conditions 

aT an =-a(T-w), on aQ 

a<P = 0 an ' on aQ, 

as well as the initial conditions 

<fa ( x, 0) = </Jo ( x), T ( x, 0) = To ( x) , 'V x E n . 

(3) 

(4) 

(5) 

These equations arise in a model for phase transitions introduced by Penrose and Fife 
[10]. In this setting, T denotes the absolute temperature, and <fa is a non-conserved 
order-parameter. 
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Several papers have appeared in connection with the existence and uniqueness of so-
lutions to this system, as well as other analytical aspects of this system and related 
systems. We refer the reader to [7, 13, 4, 6, 8, 9] for some specific treatments. A. more 
general discussion of systems of this type can be found in [2] .. 
We will make similar assumptions in this article as in [7, 13], namely, for the potential 
s0 we will assume that either 

• {A) s0 E C3(R) and there exists a constant C > 0 such that s~( <P) > -C for all 
</>ER. 

or 

• (B) s0 = <P log <P + (1 - </>) log(l - </>). 

Furthermore, we will make the following simplifying assumptions: 

• A( <P) = a</> + b, for a positive constant a. To simplify notations, we will, without 
loss of generality, use a = 1 and b = 0, i.e. we use A( <P) = </>. 

• In the boundary conditions, we let a = 1. 

To state an existence result, we have to make some regularity assumptions and compat-
ibility conditions. In particular, we assume that 

(Hl) </>o E H 4 (n); ~(x) = 0, Vx E an; ~i (-s~(</>o) + ~ + D..</>o) (x) = 0, Vx E an. 

(H2) T0 E H 3 (n);T(x) = ~(x) +T0(x) > O,Vx ean;T0 (x) > O,Vx En. 

Finally, we introduce some Banach spaces which will be widely used throughout this 
article. 

X1 - C([O, t*]; H 4 (n)) n C1([0, t*]; H 2(n)) n C2 ([0, t*]; L2(n)), 
X2 - C([O, t*]; H 3 (n)) n C1([0, t*]; H 1(n)) n H 4

'
2(Q), 

V - H 2(0, t*; L2(n)) n H 1(0, t*; H 2(n)), 
W - H 2(0, t*; H~ (an)). 

Using these conditions, one can prove the following existence result ( cf. [7, 13]). 

Proposition 1 Suppose that {Hl) and (H2) are satisfied. Then there exists a 
unique global smooth solution ( </>, T) E X 1 x X 2 to the initial-boundary value prob-
lem (1)-({)). Furthermore, there exists a constant Ct* > 0 such that T(x, t) 2:: Ct* 
for all (x, t) E Q, and in the case (B) there exist constants 0 < ~* < bt* < 1, such 
that at* ~ <P(x, t) ~ bt* for all (x, t) E Q. 

In Section 2 of this article, we will state the optimal control problem with state con-
strains and discuss it. In Section 3, we will investigate the related observation operator 
and prove its differentiability in the setting of Section 2. Finally, we will derive the 
necessary conditions for optimality in Section 4 of this paper. 
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2 The Optimal Control Problem 
The state equations (1)-(2) give rise to several interesting optimal control problems. In 
this article, we want to control the state ( r/J, T) by using the source term v in (2) and 
the boundary term win (4) as controls. However, we want to put local constraints on 
the state, as well. 
In order to formulate this problem in a precise manner, we need to introduce some 
additional notation. We start by defining the cost functional 

for given target functions ~ E X 1 and T E X 2 • Next, let 

w = {w E w: w(x,O) = T(x), \Ix E an; 
· w(x, t) ?_ /3, lwt(x, t)I < k, V(x, t) E 8Q}, 

where T is the function introduced in (H2) and f3 and k are suitably chosen positive 
constants. We use this set to introduce 

K=VxW. 

The set Uad of admissible controls is a closed, convex and bounded subset of K ~ 
To state the local state constraints, we use constants 0 < K 1 < K 2 and K 3 < K 4 to 
define 

Yaci = {(r/J, T) E X1 x X2: Ki ~ T(x, t) ~ K2 /\ K3 ~ rjJ(x, t) ~ K4, V(x, t) E Q}, (7) 

the set of admissible states. Note that this set has a nonempty interior. 
We can now state the optimal control problem under consideration. 

Optimal Control Problem (CP) 
Minimize J(rjJ, T; v, w) under the following conditions: 

1. ( rjJ, T) satisfies the state equations (1)-(2) and the initial and 
boundary conditions (3)-(5). 

2. ( v, w) E Uaa. 

3. ( rjJ, T) E Yaci· 
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Remarks: 

• Clearly the initial values (<Po, T0 ) must also satisfy the constraints K 1 :::; T( x) :::; K 2 
and K3:::; </io(x) :::; K4 for all x En. 

• The authors of [14] considered a similar but weaker control problem. In particular, 
they did not impose local constraints on the state. Moreover, their treatment 
focused on the function s~ ( <P) = <P - <P3• However, this latter restriction can easily 
be removed, and their arguments extend to the cases (A) and (B) investigated 
here (see [5], for a sketch of this argument). We can therefore use the results of 
[14] whenever they are applicable. 

• Note that state constraints have not been considered in [14], so that a larger space 
of observations with a coarser topology could be used. 

In the study of the control problem ( CP) it is useful to introduce the observation 
operator S. To this end, we define the space of observations B by 

Next, define 

B· . (C([OJ*];H2(D))) x (C([O,t*];H2(D))). 

s 
s 

K-+B 
( v, w) .--+ ( </J, T), 

(8) 

(9) 
(10) 

that is, S assigns to every pair (v,w) EK the pair (<P,T) which solves (1)-(5) for the 
given v and w. Since X 1 x X 2 CB, and by virtue of Proposition 1, this operator Sis 
well defined. Using this operator, one sees that the cost functional I(<P, T; v, w) depends 
only on the controls v and w, i.e. we can rewrite it as 

J( v, w) = I( </i, T; v, w) l(ef>,T)=S(v,w). 

In the following section, we will study the properties of thi~ operator S. In Section 4 
these properties will be used to derive the necessary conditions of optimality. 

3 Differentiability of the Observation Operator 
We now turn our attention to the observation operator S defined in (9)-(10). This 
operator is well-defined, and - also due to Proposition 1 - there exist positive constants 
a and I satisfying 

ll<Pllx1 + llTllx2 < a, 
T(x,t) ~ 1 > 0, 

'v'( v, w) E Ua0., 
'v'(x, t) E Q. 

(11) 
(12) 

Moreover, if so ( <P) is of the form given in case B, there exist constants 0 < Ort* < bt* < 1 
such that 

fLt* :::; <fa( x, t) :::; bt*, 'v'( x, t) E Q. (13) 
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In order to prove differentiability of the observation operator S, one first has to improve 
the stability result of [14]. To this end, we let (c/>i,Ti) = S(vi,wi), i = 1,2, and 
(Vi, wi) E Uad. We define -;jJ = cfa1 - cfa2, T = T1 - T2, v = v1 - v2, and w = w1 - w2. With 
these notations, we have the following result. 

Proposition 2 There exists a constant C > 0 such that 

~~ (ll"ef;,(t)ll:. + 11~(t)11:, + llTll~ + llT,(t)ll~) + [ llibtt(t)ll2 
dt 

+ { (llib,(t)11:. + llT,(t)11:.) dt < CG(v,w), (14) 

where 
t* 

G(v, w) =la ( llwt(t) lli2(an) + llvt(t) 11
2 + llv(t) 11

2
) dt 

+ llv(O) 11 2 + llwll~1(0,t*;L2(an)) + ~~~ llw(t) 11~! (oo) · (15) 

Proof: From Theorem 2.1 of [14] we know that there exists a constant 6 > 0 satisfying 

~ (11~,(tlll:, + 11~(t)11:, +Ml:,) + t 01~,,(tlll 2 + llT,(tlli2) dt 

+ l (11~,(t)11:. +llT(t)11:,) dt < 6G(V,w), (16) 

where 
t* 

G(v, w) =la llv(t)ll 2 dt + llwll~1(0,t*;L2(an)) · (17) 

AB in that paper, T satisfies the following linear parabolic boundary value problem. 

8T -1 -8 +T = wloo, 
n an 

cfa1,t~ - cfa2~t + v, 

T(x,0) = 0, \Ix En, 

(18) 

(19) 

where ( = (T1T2)-
1

. Observe that we have ( E L 00 (Q) and V(t E L 2(Q), because of the 
regularity properties of Ti from the existence and uniqueness results (cf. [7, 13]). We 
can now take the time derivative of (18) and (19) to obtain 

Ttt - ~ (rc)t - cfa1,tt-;jJ- cfa2-;jJtt +-;jJ: + Vt 
- f, 

For the initial values of Tt observe that 

Tt(x, O) - (~(re) + cfa1,t-;jJ + cfa2~t) (x, O) + v(x, o) 
- v(x, 0). 
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Furthermore, we observe that 

{ llf(t)ll 2 dt::; c1 G(v,w) + { 11Vt(t)ll 2 dt, (23) 

by the previous results. To continue our proof, we multiply (20) by Tt and integrate 
the resulting equation over n to arrive at 

(24) 

after applying (23) and Young's inequality. The value of 81 will be determined later. 
Next, we observe that 

k \7Tt(t) · \7 ( ((t)T(t) \ dx - k 'lTt(t) · \7 ( (t(t)T(t) + ((t)Tt(t)) dx 

- k ((t) l\7Tt(t)l
2 

dx + k T(t)\7Tt(t) · \l(t(t) dx 

+ k Ct(t)'VTt(t). 'VT(t) dx 

+ k Tt(t)\7T(t) · \l((t) dx 

k ((t) l'lTt(t) 1
2 

dx + I1(t) + 12(t) + 13(t). 

We can estimate the terms on the right of this last inequality individually as follows. 

II1(t)l ~ ll\7Tt(t)ll llT(t)llL4(0) ll"V(t(t)llL4(0) 

::; ~ ll'VTt(t) 11
2 
+ 2~2 ll\7 Ct(t) ll~1 (n) llT( t) 11:,(n)' 

II2(t)I < ll\7Tt(t)ll ll\7T(t)llL4(n) ll(t(t)llL4(n) · 

::; ~ ll'VTt( t) 11
2 

+ 2~3 ll(t(t) li~1 (n) llT(t) ll~(n)' 
IJ3(t)I < ll\7Tt(t)ll llTt(t)ll 11\7((t)llLoo(n) 

::; ~ llV'Tt(t)ll
2 

+ 2~4 llV((t)lli00cnJ llTt(t)ll
2 

• 

In each of these inequalities, one can estimate the integral over t of the second term 
on the right via G(v, w). The values for 8i will be determined later. For the boundary 
term we observe that 
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- f (T: dx - f Tt ( w - T) (t dx - f (Ttwt dx Jen Joo Jen 
+ lan T: ( ( 2 (T1 (w2 - T2) + T2 (w1 - T1))) dx 

+!an TtT ( (2 (T1 (w2 -T2) + T2 (w1 -Ti)) )t dx 

- f (T: dx + J1(t) + J2(t) + J3(t) + J4(t). Jen 

Again, we can estimate the terms individually as follows. 

8511- 112 C5 ( - 2 11- 112 ) 2 IJ1(t)I < 2 Tt(t) L2(en) + 285 llw(t)llL4(&n) + T(t) L4(&n) ll(tllL4(&n)' 

8611- 112 C6 _ 2 IJ2(t)I < 2 Tt(t) L2(en) + 286 llwt(t)llL2(en)' 

IJ3(t)I < c1 llTt(tlll:,<an) :::; ~ llV'Tt(t) 11
2 
+ 21 llTt(tlll2, 

IJ4(t)I < ~ llTt(tlll:,<an) 
+ 2~8 i!Tll:.(an) II ( (2 (T1 (w2 - T2) + T2 ( w1 - T1)) )J:,(an). 

From the trace theorem and the Sobolev imbedding theorem (see, for example, [1] for 
the Sobolev theorem for fractional exponents), we have the continuous imbeddings 

(25) 

Using this, we can bound the time integrals of the second terms on the right by G(v,w). 
After choosing the 8/s sufficiently small, we combine all .the estimates to get after 
integration over t 

~ llTt(t)ll
2
+Cl11Tt(s)11:•(n) ds < C1G(V, w) + ~ llTt(O)ll

2 

< C2G(v, w). 

The result now immediately follows from elliptic regularity estimates. D 

In order to formulate the next result, we introduce the sets 

K±(v, w) = {(h, k) E V x W: 3.A > 0 such that (v ±.Ah, w ± .Ak) E Uad}, (26) 

for (v, w) E Uad. 

Proposition 3 Suppose that (Hl) and (H2) are satisfied and that (v, w) E U00 • 

Then the observation operator 

S: K-+ B, 
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has a directional derivative ('ljJ, 8) = D(h,k)S(v, w) in the direction (h, k). Further-
more, at S( v, w) = ( cp, T), this directional derivative ( 'lj.J, 8) E X 1 x X2 is the unique 
solution to the linear parabolic initial-boundary value problem 

'l/Jt - f::l'ljJ - 1/; G- s~((b)) - ~e, 

et - Ll (:2) - ( <P'l/J )t + h, 

81/; = 0 88 on8fl, 8n +8 = k, 8n ' 
'lfJ(x, 0) - 8(x, 0) = 0, on n. 

A corresponding result holds for the directional derivative D(-h,-k)S(v, w) at (v, w) 
in the direction (h, k) E K-(v, w). 

Proof: As in [14], we let 

Furthermore, we use the notation of the previous proposition and let 

Finally, define 

1 
(=TT>- . 

p = efi - >..1/J , q = T - >..8 . 
It is clear that the linear parabolic system in the statement admits a unique solution 
(1/;, 8) E X 1 x X 2• To continue, suppose that (h, k) E K+(v, w), and suppose that there 
is a x > 0 such that (v + >..h, w + >..k) E uai], 'I/>.. E (0, X). We have to show that 

II (p, q) llB = o(>..), as >.. -7 o+. (27) 

Using our notation, p and q obey the following system of linear parabolic boundary 
value problems. 

Pt - f::lp 

8p =0, 
8n 

We prove (27) in several steps. 
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Step1: In [14] the authors show that 

for a suitable constant C > 0. We continue from there by multiplying (29) by (ffe )t. 
After integrating the resulting equation over n x [O, t], we obtain 

l 11~11 2 ds + ~ llv (;2) (t) 11
2 
- l fan (;2), :n (;) dxds (33) 

- l fr/(;- 2~) dxds- 2 l r·~Tl dxds, 

where f is given by 

From Proposition 1 and the earlier estimates we see that 

for a suitable constant C1 > 0. Furthermore, we have 

due to earlier estimates. For the boundary term we observe 

Therefore, we have 

l ]00 (;2), :n (;) dxds = ll J00 (;), ; 2 (i- ~) dxdsl 

< c111;(t)ll2 + c2 fo' Joo q2 IG),I dxds 

< c18 llv (;2(t))112+eallq(t)112 + c2 fo' llq(s)lli'(an) II(;) JI ds 

< c18 llv (;2(t))112 
+ c4,\4 + cs fo' llq(s)ll~, ds. 

(34) 

In the last line of this estimate we have used (25). Combining these estimates, using 
Young's inequality, and choosing 8 > 0 sufficiently small, we obtain 
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It immediately follows 

2 ( ? 
~t~~ jjq(t)llH1 +Jo llqtll- ds :S C4.A4. 

Step 2: In the next step, we take the derivative of (28) with respect to t to get 

We observe that 

I F1,t I - I ( s~ ( </>) - s~ ( </>,\) - .As~ ( </> )1') J 
< I <Pt ( s~ ( </>) - s~ ( </>,\) - s~' ( </> Y~) I + Is~' ( </>) <PtP I 

+ Is~ (</>)Pt I + I ( s~ ( </>,\) - s~ ( </>)) ~ j . 

Using the mean-value theorem, one easily sees that 

for a suitable constant C5 > 0. Next, we observe that 

F?t = Pt - p1t 7-" Aq + 2<P1t q- j_qt + <PtT2( - j_1tT2( 
-· T T 2 T 2 T 3 T 2 T T 2 

</>- <P-2 -- - -+2 TTTt( + TT (t - <f>tT( - </>Tt( - </>T(t . 

Since both <Pt and 1t are elements of C([O, t*]; H 1(D)), we see that 

l 0 

llF2,h)ll 2 ds ~ C6A4, 

(35) 

(37) 

(38) 

for a suitable constant C6 > 0. Hence, if one multiplies (36) by Pt and integrates the 
result over n x [O, t], one immediately gets 

(39) 

We can now apply the standard elliptic regularity estimates to obtain 

max llp(t) llH2 2 < Cs.A4. 
Ost::;t* -

(40) 

Furthermore, we can multiply (36) by Ptt, integrate the result over n x [O, t] and use 
(37) and (38) again, to get 

(41) 

for a suitable constant C9 > 0. 
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Step 3: To continue, we take the time derivative of (29) to obtain 

(42) 

where 

( _ (T2
()) Fa,t = <PtP + <PPt + <P<Pt - 6. T t. 

To simplify notations, we introduce ( = ~' which has the same properties as (. We 
observe that 

~ ( T 2 
() t = 2TtC ~T + 4(Y'T · Y'Tt + 4Tt Y'T · V' ( + 2T( ~Tt + 4TY'Tt · V' ( 

+2TTt~C + 2 lvrl2 
Ct + 2(tT~T + 4TV'T. Y'(t + T 2 ~Ct· 

Using the results of Proposition 1, we can bound jjT(t)l1H
2 

by C10A. for a sufficiently 
large constant. C10 > 0. Furthermore, we know that T has the same regularity as (, 
which enables us to bound terms of the forni 

by constants. Combining these properties, we see that 

for a suitable constant C11 > 0. It follows that 

l' llFa,t ( s) 11 2 ds :S: C12>.. 2. (43) 

We multiply ( 42) by qt and integrate the result over n x [O, t] to get 

~ llqt(t)ll 2 + [ k 'Vqt -'\7 (;2 )t dxds- [kn qt! (;2 )t dxds 
l l 

::; ([ 11Fa,t(s) 11 2 ds) 
2 

([ llqt(s) 11 2 ds) 
2 

::; C1aA3
, 

for a suitable constant C13 > 0. We next observe that 
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One sees that the mixed terms on the right can be treated via Young's inequality, and 
that we can use the fact that 

t* la llqll~ ds:::; C14A4, 

and the other earlier estimates on q. Finally, we note that 

r* { qt~ (!L) dxds = ( { qt (]_ aqt - 2!1!_ aT) dxds Jo Jan an T 2 t Jo Jan T 2 an T 3 an 

+2 ft* { qt (s qTt aT - Ti. t aq - _!l_ aTt) dxds 
Jo Jan T4 an T 3 an T 3 8n 

- r* r q; (i + 2~ 8T) dxds Jo Jan T 2 T 8n 

( { qqt ( aTt, Tt aT) 
- 2 lo Jan T 3 Tt + 8n - 3T2 8n dxds · 

In the first term, we observe that 

1+2~:: E L 00 (8Q). 

In the second term, one has 

~(Ti + aTt, - 3 Tt fJT) E L2(0 t*· L 00 (8f2)) T t an T 2 8n '' . 

Using this, we get 

12 la" Jan~; (r. + °:';: - 3~~ ::) dxdsl S C1s ({ 11;11:,(an) llqlli2(ao) ds) i · 

Observe that 
llq(t) lli2can) :::; C16,,\ 4 • 

This implies that we are left to treat a term of the form 

{ 11;11:2(an) ds. 

We do this by using 

[ ll9(s)lli2(an) ds S 8 [ llY'g(s)ll 2 ds + 6 [ llg(s)ll 2 ds, 

for a suitable constant C > 0. We can now combine all the above estimates and use the 
properties. of T to conclude that 

m llq1(t)il + { llY'q1ll 2 ds S C11A3
, (44) 

for a suitable constant C11 > 0. From elliptic regularity estimates it follows that the 
same estimate holds for 

max llq(t)ll~2. 
Ost9* 

This finishes the proof of the proposition. 0 
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4 Optimality Conditions 
We return to the optimal control problem ( CP) stated in Section 2. We introduced the 
non-linear observation operator 8 in (9)-(10). We can write 8 in components (81, 82) 

as follows. 

8 (v,w) = ( 81(v,w)) = ( <P) . 
82(v, w) T (45) 

Proposition 3 states that this operator is Gateaux differentfa.ble with Gateaux derivative 

D8( )(h k) = ( D81(v, w)(h, k) ) = ( 'ljJ ) 
v, w ' D82(v, w)(h, k) () ' (46) 

given by the following system of linearized equations 

'l/Jt-~'l/J - 1/J G -s~ ( <P)) - ~ (}, (47) 

B,-~(;2 ) - ( <P'l/J )t + h, (48) 

8'l/; =0 8() 
on an, (49) 8n + () = k, 8n ' 

'lf;(x, 0) - ()(x, 0) = 0, onn. (50) 

An application of the Lagrange multiplier rule implies that there exist some .,\ ~ 0 and 
Borel measures µ 1, µ2, µ3, µ4, satisfying 

such that 

µi ( { ( x' t) E Q I T( x' t) f J(i}) = 0' i = 1, 2' 
µi ( {( x' t) E Q I <P ( x' t) f J(i}) = 0' i = 3, 4, 

..\ + !µ11+lµ2I+1µ31+1µ41 > o. 

(51) 
(52) 

The constants J(i are the ones given in the state constraints (7). To continue, we denote 
µ = µ1 - µ2 ' v = µ3 - µ4. 
The abstract optimality system for the control problem under consideration is given 
below by ( *) and ( **). The first condition takes the form 

where ( <P, T) = 8 ( v, w) is a solution to the state equations for optimal ~ontrols ( v, w) E 
Uaa· 
For the second condition, we need to introduce some notation. ·we denote by I(</J, T; v, w) 
the cost functional, i.e. J(v,w) = I(81(v,w),82(v,w);v,w). Then the gradient of the 
cost functional with respect to the controls takes the form 

(DJ(v,w), (h,k)) - (D1I(<jJ,T;v,w),D1 8(<jJ,T)(h,~)) 

+ (D2J( </J, T; v, w ), D28( </J, T) (h, k)) 
+ (D3I(</J,T;v,w),h) + (D4I(</J,T;v,w),k). 
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The second optimality condition is of the form 

(**) A.(DJ(v, w), (h - v, k - w)) + ([DS2(v, w)]*(h - v, k - w)], µ) 2 0, 

for all (h, k) E Uad, where [DS2(v, w)]* denotes the adjoint to [DS2(v, w)]. 

Assuming that the Slater condition is satisfied, we can take .A = 1. Note that in the 
present case the Slater condition (S) means that there exists some (ho, ko) E Uad such 
that for all (x, t) E Q, 

K 1 < T(x, t) + [DS2(v, w)(ho - v, k0 - w)](x, t) < K 2 , 

K3 < </>(x, t) + [DS1( v, w)(ho - v, ko - w)](x, t) < K4. 

Furthermore, an adjoint state is introduced in order to simplify the latter optimality 
condition. To this end, we rewrite the linearized equations in the form 

.Cn('lfl) + .C12(8) = 0, 

.C21('lfl) + .C22(8) = h, 

with the non-homogeneous boundary condition 

where we denote 

ae · an + e = k, on an, 

L'.11 ( '!/>) = 'I/it - t:J.'I/> - '!/> G -s~ ( r,b)) , 
1 .C12(8) = T 2 8, 

.C21 ( 'ljJ) = - ( <P'l/J )t' 

L'.22(0) = Ot - fJ. (:2) . 

Then, for any pair of functions ( q, p) E V x V it follows that 

(.Cn('lfl) + .C12(8), q)v = 0, 
(.C21('lfl) + .C22(8),p)v = (h,p)v, 

(53) 
(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

and the latter term, by an application of the associated Green formula, can be written 
in the form 

(L'.22(0),p)v = A(O,p) - £ ( ~! +e,p) , (60) 

with an appropriate bilinear form A(·,·), and a boundary form £(·, ·) which will be 
specified below. In particular, for :_ + 8 = 0 it follows that 

(£22(8),p)v = A(B,p). 
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Hence, the system becomes 

(.Cn('l/J) + £12(8), q)v = 0, 
(£21('l/J),p)v + A(B,p) = (h,p)v + l(k,p). 

In ·order to identify the boundary form l(k,p), we need Green formulae for the sub-
sequent terms in the scalar product of the space L 2(Q) which are given below. We 
have 

- (L\ (!_) <P) = (V' (!_) V' <P) - ( (~ (!_) <P) dt 
· T 2 

' L2(Q) T 2 ' L2(Q) lo an T 2 ' L2(&n) ' 

and, in view of the boundary conditions, it follows that 

Similarly, 

( L\ (:2 )' ' L\</J) 
. L2(n) 

- (L\ (!__) acjJ) 
T 2 ' an 12(an)' 

as well as 

- (A (A (:2)) , Ao/) L'(n) - ( \7 (A (:2)) , \7 (Ao/) tn) 

- (~ L\ (!_) L\</J) an T 2 
' L2(an) • 

We also have the following relation on the boundary an, ( cf. [12]), 

where L\r is the Laplace-Beltrami operator on r = an, and where K, denotes the tan-
gential divergence of the normal vector field on r, i.e. K, = divrn, in the notation of 
[12]. 
The adjoint state equations are introduced in the following way. Assume that the 
functions ( q, p) E V x V satisfy the variational equation 

(£11((), q)v + (£12(77), q)v + (£21((),p)v + (£22(77),p)v 
- (D1J(</J, T; v, w), () + j (dv + (D2l(</J, T; v, w), 77) + j 17dµ, (61) 
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for all sufficiently smooth functions (, 77 satisfying homogeneous initial conditions and 
the homogeneous boundary conditions 

8( =0 on ' (62) 

Using the Lions projection theorem (see e.g. [15] for a variant of this theorem), one can 
show that these functions are uniquely determined. 

The system (61) can be rewritten in the form 

(£11((), q)v + (£12('TJ), q)v + (£21((),p)v + A('TJ,p) 

- (D1I(cj>, T; v, w), () + j (dv + (D2I(c/>, T; v, w), 'TJ) + j 17dµ, 

where the boundary condition ~ + 'T} = 0 is imposed directly in the equation. 

If we replace (, 'T} by 'lj;, 'T}, it follows that 

(D1I(c/>, T; v, w), 'lf;) + (D2I(c/>, T; v, w), 8) + j 8dµ + j 'lj;dv 

- (Cn('l/J),q)v + (£12(8),q)v + (£21('l/J),p)v +A(8,p) 
(£11('l/J), q)v + (£12(8), q)v 

+(£21('l/J) + £22(8),p)v + f(k,p) 
(h,p)v + f(k,p) . 

Using the above construction, it follows that for A = 1 the necessary optimality condi-
tions can be given the following form. 

Theorem 1 Assume that condition (S) is satisfied. Then there exist µ, v and 
the adjoint state (q,p) such that the optimality system for the control problem 
includes the state equation, the adjoint state equation, and the condition ( *), as 
well as the variational inequality 

(D3I(c/>, T; v, w), h - v) + (h - v,p)v + (D4I(c/>, T; v, w), k - w) 
+ f(k - w,p) 2:: 0, V (h, k) E Uoo.. 
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