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Abstract. A Hölder regularity index at given points for density
states of (α, 1, β)-superprocesses with α > 1 + β is determined. It
is shown that this index is strictly greater than the optimal index
of local Hölder continuity for those density states.

1. Introduction and statement of results

For 0 < α ≤ 2 and 1 + β ∈ (1, 2), the (α, d, β)-superprocess X = {Xt : t ≥ 0}
in R

d is a finite measure-valued process related to the log-Laplace equation

(1)
d

dt
u = ∆αu + au − bu1+β,

where a ∈ R and b > 0 are any fixed constants. Its underlying motion is de-
scribed by the fractional Laplacian ∆α := −(−∆)α/2 determining a symmetric
α–stable motion in R

d of index α ∈ (0, 2] (Brownian motion if α = 2), whereas its
continuous-state branching mechanism

(2) v 7→ −av + bv1+β, v ≥ 0,

belongs to the domain of attraction of a stable law of index 1 + β ∈ (1, 2) (the
branching is critical if a = 0).

From now on we assume that d < α
β . Then X has a.s. absolutely continuous

states Xt(dx) at fixed times t > 0. Moreover, as is shown in Fleischmann, Mytnik,
and Wachtel [FMW08], there is a dichotomy for their density function (also denoted

by Xt): There is a continuous version X̃t of the density function if d = 1 and
α > 1+β, but otherwise the density function Xt is locally unbounded on open sets
of positive Xt(dx)-measure. (Partial results had been derived earlier in Mytnik and
Perkins [MP03].)

In the case of continuity, Hölder regularity properties of X̃t had been studied in
[FMW08], too. Let us first recall the notion of an optimal Hölder index at a point.

We say a function f is Hölder continuous with index η ∈ (0, 1] at the point x if
there is an open neighborhood U(x) and a constant C such that

(3)
∣

∣f(y) − f(x)
∣

∣ ≤ C |y − x|η for all y ∈ U(x).

The optimal Hölder index H(x) of f at the point x is defined as

(4) H(x) := sup
{

η ∈ (0, 1] : f is Hölder continuous at x with index η
}

,

and set to 0 if f is not Hölder continuous at x.
Going back to the continuous (random) density function X̃t , in what follows,

H(x) will denote the (random) Hölder index of X̃t at x ∈ R. In [FMW08], the

so-called optimal index for local Hölder continuity of X̃t had been determined by

(5) ηc :=
α

1 + β
− 1 ∈ (0, 1).

This means that in any non-empty open set U ⊂ R with Xt(U) > 0 one can find
(random) points x such that H(x) = ηc . This however left unsolved the question
whether there are points x ∈ U such that H(x) > ηc .

The purpose of this note is to verify the following theorem conjectured in [FMW08,
Section 1.3]. To formulate it, let Mf denote the set of finite measures on R

d, and
Bǫ(x) the open ball of radius ǫ > 0 around x ∈ R

d :
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Theorem 1 (Hölder continuity at a given point). Fix t > 0, z ∈ R, and

X0 = µ ∈ Mf . Let d = 1 and α > 1 + β. Then with probability one, for each

η > 0 satisfying

(6) η < η̄c := min
{1 + α

1 + β
− 1, 1

}

,

the continuous version X̃t of the density is Hölder continuous of order η at the

point z :

(7) sup
x∈Bǫ(z), x 6=z

∣

∣X̃t(x) − X̃t(z)
∣

∣

|x − z|η
< ∞, ǫ > 0.

Consequently, since ηc < η̄c , at each given point z ∈ R the density state X̃t

allows some Hölder exponents η larger than ηc , the optimal Hölder index for local
domains. Thus, Theorem 1 nicely complements the main result of [FMW08].

On the other hand, Theorem 1 is also only a partial result, since it does not yet
claim that η̄c is optimal. So let us add here the following conjecture.

Conjecture 2 (Optimality of η̄c). Under the conditions of Theorem 1, for each
η ≥ η̄c with probability one,

(8) sup
x∈Bǫ(z), x 6=z

∣

∣X̃t(x) − X̃t(z)
∣

∣

|x − z|η
= ∞ whenever Xt(z) > 0, ǫ > 0. 3

Statements (7) and (8) together just say by definition that η̄c is the optimal

index H(z), for Hölder continuity of X̃t at given points z ∈ R where X̃t(z) > 0.
The full program however would include proving that for any η ∈ (ηc , η̄c) there

are (random) points x ∈ R such that the optimal Hölder index H(x) of X̃t at x is
exactly η. Moreover, we would like to establish the Hausdorff dimension, say D(η),
of the (random) set

{

x : H(x) = η
}

. The function η 7→ D(η) reveals the so-called
multifractal structure related to the optimal Hölder index at points. As we already
mentioned in [FMW08, Conjecture 1.3], we conjecture that

(9) lim
η↓ηc

D(η) = 0 and lim
η↑η̄c

D(η) = 1.

The investigation of such multifractal structure is left for future work.
Note also that in the case α = 2 for the optimal exponents ηc and η̄c we have

(10) ηc ↓ 0 and η̄c ↓
1
2 as β ↑ 1,

whereas for continuous super-Brownian motion one would have ηc = 1
2 = η̄c . This

discontinuity reflects the essential differences between continuous and discontinuous
super-Brownian motion concerning Hölder continuity properties of density states,
as discussed already in [FMW08, Section 1.3].

After some preparation in the next section, the proof of Theorem 1 will be given
in Section 3.

2. Preparation for the proof

Let pα denote the continuous α–stable transition kernel related to the fractional
Laplacian ∆α = −(−∆)α/2 in R

d, and Sα the related semigroup. Fix X0 = µ ∈
Mf \{0}.
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First we want to recall the martingale decomposition of the (α, d, β)-superprocess
X (see, e.g., [FMW08, Lemma 1.5]): For all sufficiently smooth bounded non-
negative functions ϕ on R

d and t ≥ 0,

(11) 〈Xt, ϕ〉 = 〈µ, ϕ〉 +

∫ t

0

ds 〈Xs, ∆αϕ〉 + Mt(ϕ) + a It(ϕ)

with discontinuous martingale

(12) t 7→ Mt(ϕ) :=

∫

(0,t]×Rd×R+

Ñ
(

d(s, x, r)
)

r ϕ(x)

and increasing process

(13) t 7→ It(ϕ) :=

∫ t

0

ds 〈Xs, ϕ〉.

Here Ñ := N − N̂ , where N
(

d(s, x, r)
)

is a random measure on R+ × R
d × R+

describing all the jumps rδx of X at times s at sites x of size r (which are the
only discontinuities of the process X). Moreover,

(14) N̂
(

d(s, x, r)
)

= ̺ ds Xs(dx) r−2−βdr

is the compensator of N, where ̺ := b (1 + β)β/Γ(1 − β) with Γ denoting the
Gamma function.

Suppose again d < α
β and fix t > 0. Then the random measure Xt(dx) is a.s.

absolutely continuous. From the Green’s function representation related to (11)
(see, e.g., [FMW08, (1.9)]) we obtain the following representation of a version of
the density function of Xt(dx) (see, e.g., [FMW08, (1.12)]):

(15)

Xt(x) = µ∗pα
t (x) +

∫

(0,t]×Rd

M
(

d(s, y)
)

pα
t−s(x − y)

+ a

∫

(0,t]×Rd

I
(

d(s, y)
)

pα
t−s(x − y) =: Z1

t (x) + Z2
t (x) + Z3

t (x), x ∈ R
d,

(with notation in the obvious correspondence). Here M
(

d(s, y)
)

is the martingale

measure related to (12) and I
(

d(s, y)
)

the random measure related to (13).
Let ∆Xs := Xs −Xs− , s > 0, denote the jumps of the measure-valued process

X. Recall that they are of the form rδx . By an abuse of notation, we write r =:
∆Xs(x). As a further preparation we prove the following analogous of [FMW08,
Lemma 2.14]:

Lemma 3 (Total jump mass around a given point z). Fix t > 0, z ∈ R,
and X0 = µ ∈ Mf\{0}. Suppose d = 1 and α > 1 + β. Let ε > 0 and γ ∈
(

0, (1 + β)−1
)

. There exists a constant c(16) = c(16)(ε, γ) such that

(16) P

(

∆Xs(x) > c(16)

(

(t − s)|z − x|
)λ

for some s < t and x ∈ B2(z)
)

≤ ε,

where

(17) λ :=
1

1 + β
− γ.

Proof. For any c > 0 (later to be chosen as c(16)) set

Y := N
(

(s, x, r) : (s, x) ∈ [0, t) × (z − 2, z + 2), r ≥ c
(

(t − s)|z − x|
)λ

)

,
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Clearly,

(18)
P

(

∆Xs(x) > c
(

(t − s)|z − x|
)λ

for some s < t and x ∈ B2(z)
)

= P(Y ≥ 1) ≤ EY,

where in the last step we have used the classical Markov inequality. From (14),

EY = ̺E

∫ t

0

ds

∫

R

Xs(dx) 1B2(z)(x)

∫ ∞

c (|z−x|(t−s))λ
dr r−2−β

= ̺
c−1−β

1 + β

∫ t

0

ds (t − s)−1+γ(1+β)

∫

R

EXs(dx) 1B2(z)(x) |z − x|−1+γ(1+β).

Now, writing C for a generic constant (which may change from place to place),
∫

R

EXs(dx) 1B2(z)(x) |z − x|−1+γ(1+β)

≤ e|a|t
∫

R

µ(dy)

∫

R

dx pα
s (x − y) 1B2(z)(x) |z − x|−1+γ(1+β)

≤ C µ(R) s−1/α

∫

R

dx 1B2(z)(x) |z − x|−1+γ(1+β) =: c(19)s
−1/α,(19)

where c(19) = c(19)(γ). Consequently,

(20) EY ≤ ̺ c(19) c−1−β

∫ t

0

ds s−1/α (t − s)−1+γ(1+β) =: c(20) c−1−β

with c(20) = c(20)(γ). Choose now c such that the latter expression equals ε and
write c(16) instead of c. Recalling (18), the proof is complete. �

3. Proof of Theorem 1

We will use some ideas from the proofs in Section 3 of [FMW08]. However, to
be adopted to our case, those proofs require significant changes. Let d = 1 and
fix t, z, µ, α, β, η as in the theorem. Consider an x ∈ B1(z). For simplicity we will
assume t ≤ 1 and x > z. By definition (15) of Z2

t ,

(21) Z2
t (z) − Z2

t (x) =

∫

(0,t]×R

M
(

d(s, y)
)

ϕ+(s, y) −

∫

(0,t]×R

M
(

d(s, y)
)

ϕ−(s, y),

where ϕ+(s, y) and ϕ−(s, y) are the positive and negative parts of pα
t−s(z − y) −

pα
t−s(x−y). It is easy to check that ϕ+ and ϕ− satisfy the assumptions in [FMW08,

Lemma 2.15]. Thus, there exist spectrally positive stable processes L1 and L2 such
that

(22) Z2
t (z) − Z2

t (x) = L1
T+

− L2
T−

,

where T± :=
∫ t

0
ds

∫

R
Xs(dy)

(

ϕ±(s, y)
)1+β

. Fix any ε ∈ (0, 1/3) and γ ∈
(

0, (1 +

β)−1
)

. Also fix some J = J(γ) and

(23) 0 =: ρ0 < ρ1 < · · · < ρJ := 1/α

such that

(24) ρℓ (α + 1) −
ρℓ+1

1 + β
≥ −

γ

2
, 0 ≤ ℓ ≤ J − 1.
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According to [FMW08, Lemma 2.11], there exists a constant cε such that P(V ≤
cε) ≥ 1 − ε, where

(25) V := sup
0≤s≤t, y∈B2(z)

S2α(t−s)Xs (y)

(note that there is no difference in using B2(z) or its closure for taking the supre-
mum). By Lemma 3 we can fix c(16) sufficiently large such that the probability of
the event

(26) Aε,1 :=
{

∆Xs(y) ≤ c(16)

(

(t − s)|z − y|
)λ

for all s < t and y ∈ B2(z)
}

is larger than 1 − ε. Moreover, according to [FMW08, Lemma 2.14], there exists a
constant c∗ = c∗(ε, γ) such that the probability of the event

(27) Aε,2 :=
{

∆Xs(y) ≤ c∗(t − s)λ for all s < t and y ∈ R

}

is larger than 1 − ε. Set

(28) Aε := Aε,1 ∩ Aε,2 ∩ {V ≤ cε}.

Evidently,

(29) P(Aε) ≥ 1 − 3ε.

Define Z2,ε
t := Z2

t 1(Aε). We first show that Z2,ε
t has a version which is locally

Hölder continuous of all orders η less than η̄c . It follows from (22) that

P

(

∣

∣Z2,ε
t (z) − Z2,ε

t (x)
∣

∣ ≥ 2 |z − x|η
)

≤ P
(

L1
T+

≥ |z − x|η, Aε
)

+ P
(

L2
T−

≥ |z − x|η, Aε
)

.(30)

Now let us represent the set [0, t)×B2(z) as a union of the following spaces. Define:

D0 :=
{

(s, y) ∈ [0, t) × B2(z) : y ∈
(

z − 2(t − s)1/α−ρ1 , x + 2(t − s)1/α−ρ1
)

}

,

and for 1 ≤ ℓ ≤ J − 1,

D̃ℓ :=
{

(s, y) ∈ [0, t) × B2(z) : y ∈
(

z − 2(t − s)1/α−ρℓ+1 , x + 2(t − s)1/α−ρℓ+1
)

}

,

Dℓ := D̃ℓ \ D̃ℓ−1 .

If the jumps of M
(

d(s, y)
)

do not exceed c(16)

(

(t − s)|z − y|
)λ

on Dℓ , then the

jumps of the process u 7→
∫

(0,u]×Dℓ
M

(

d(s, y)
)

ϕ±(s, y) are bounded by

(31) c(16) sup
(s,y)∈Dℓ

(

(t − s)|z − y|
)λ

ϕ±(s, y).

Put

Dℓ,1 :=
{

(s, y) ∈ Dℓ : (t − s)1/α−ρℓ+1 ≤ |z − x|
}

,(32)

Dℓ,2 :=
{

(s, y) ∈ Dℓ : (t − s)1/α−ρℓ+1 > |z − x|
}

,

Dℓ,1(s) :=
{

y ∈ B2(z) : (s, y) ∈ Dℓ,1

}

, s ∈ [0, t),

Dℓ,2(s) :=
{

y ∈ B2(z) : (s, y) ∈ Dℓ,2

}

, s ∈ [0, t).
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Since obviously Dℓ = Dℓ,1 ∪ Dℓ,2 we get that (31) is bounded by

c(16) sup
s<t

(t − s)λ sup
y∈Dℓ,1(s)

|z − y|λ ϕ±(s, y)

+ c(16) sup
s<t

(t − s)λ sup
y∈Dℓ,2(s)

|z − y|λ ϕ±(s, y) =: c(16)(I1 + I2).(33)

Clearly,

(34) ϕ±(s, y) ≤
∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣, for all s, y.

First let us bound I1 . Note that for any (s, y) ∈ Dℓ,1 ,

(35) |z − y| ≤ |z − x| + 2 (t − s)1/α−ρℓ+1 ≤ 3 |z − x|.

Therefore we have

(36) I1 ≤ 3λ |z − x|λ sup
s<t

(t − s)λ sup
y∈Dℓ,1(s)

∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣.

Using [FMW08, Lemma 2.1] with δ = ηc − 2αγ gives

sup
y∈Dℓ,1(s)

∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣

≤ C |z − x|ηc−2αγ (t − s)−ηc/α+2γ sup
y∈Dℓ,1(s)

(

pα
t−s

(

(z − y)/2
)

+ pα
t−s

(

(x − y)/2
)

)

= C |z − x|ηc−2αγ (t − s)−ηc/α+2γ−1/α

× sup
y∈Dℓ,1(s)

(

pα
1

(

(t − s)−1/α(z − y)/2
)

+ pα
1

(

(t − s)−1/α(x − y)/2
)

)

.

By the tail behavior of pα
1 this can be continued with

(37) = C |z − x|ηc−2αγ (t − s)−ηc/α+2γ−1/α+ρℓ(α+1).

Now let us check that

(38) sup
s<t

(t − s)λ (t − s)−ηc/α+2γ−1/α+ρℓ(α+1) ≤ 1.

Recall that ηc = α
1+β − 1. Then one can easily get that

(39) λ − ηc/α + 2γ − 1/α + ρℓ(α + 1) = γ + ρℓ(α + 1) ≥ γ,

where the last inequality follows by (24). Therefore (38) follows immediately. Com-
bining (36) – (38) we see that

(40) I1 ≤ C |z − x|λ+ηc−2αγ ≤ C |z − x|η̄c−(2α+1)γ ,

where we used definitions (5) and (6) of ηc and η̄c , respectively.
Now let us bound I2 . Note that for any (s, y) ∈ Dℓ,2 ,

(41) |z − y| ≤ |z − x| + 2 (t − s)1/α−ρℓ+1 ≤ 3 (t − s)1/α−ρℓ+1 .

Therefore we have

(42) I2 ≤ 3λ sup
s<t

(t − s)λ+(1/α−ρℓ+1)λ sup
y∈Dℓ,2(s)

∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣.
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Using again [FMW08, Lemma 2.1] but this time with δ = η̄c − (2α + 1)γ gives

sup
y∈Dℓ,2(s)

∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣

≤ C |z − x|η̄c−(2α+1)γ (t − s)−η̄c/α+2γ+γ/α

× sup
y∈Dℓ,2(s)

(

pα
t−s

(

(z − y)/2
)

+ pα
t−s

(

(x − y)/2
)

)

= C |z − x|η̄c−(2α+1)γ (t − s)−η̄c/α+2γ+γ/α−1/α+ρℓ(α+1).(43)

By definition (17) of λ,

λ +
( 1

α
− ρℓ+1

)

λ −
η̄c

α
+ 2γ +

γ

α
−

1

α
+ ρℓ(α + 1)

=
1

α

(1 + α

1 + β
− 1 − η̄c

)

+ γ + γρℓ+1 −
ρℓ+1

1 + β
+ ρℓ(α + 1)

≥ γ/2(44)

where in the last step we used definition (6) of η̄c and (24). Thus

(45) sup
s<t

(t − s)λ+(1/α−ρℓ+1)λ−η̄c/α+2γ+γ/α−1/α+ρℓ(α+1) ≤ 1.

Combining estimates (42), (43), and (45), we obtain

(46) I2 ≤ C |z − x|η̄c−(2α+1)γ .

If the jumps of M
(

d(s, y)
)

are smaller than c∗(t− s)λ on R \B2(z) (where c∗ is

from (27)), then the jumps of the process u 7→
∫

(0,u]×(R\B2(z))
M

(

d(s, y)
)

ϕ±(s, y)

are bounded by

(47) c∗(t − s)λ sup
y∈R\B2(z)

ϕ±(s, y).

Using [FMW08, Lemma 2.1] once again but this time with δ = η̄c − 2αγ, we have
∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣ ≤ C |z − x|η̄c−2αγ (t − s)−η̄c/α+2γ

×
(

pα
t−s

(

(z − y)/2
)

+ pα
t−s

(

(x − y)/2
)

)

.(48)

Since x ∈ B1(z),

sup
y∈R\B2(z)

(

pα
t−s

(

(z − y)/2
)

+ pα
t−s

(

(x − y)/2
)

)

≤ C (t − s)−1/α pα
1

(

(t − s)−1/α/2
)

≤ C (t − s).(49)

Therefore, (47), (34), (48), and (49) imply

c∗(t − s)λ sup
y∈R\B2(z)

ϕ±(s, y) ≤ C |z − x|η̄c−2αγ (t − s)λ−η̄c/α+2γ+1

≤ c(50) |z − x|η̄c−2αγ(50)

for some constant c(50) = c(50)(ε). Here we have used that η̄c ≤ (1 + α)/(1 + β)− 1
induces λ − η̄c/α + 2γ + 1 ≥ 1.

Combining (31), (33), (40), (46), and (50), we see that all jumps of the process
u 7→

∫

(0,u]×R
M

(

d(s, y)
)

ϕ±(s, y) on the set Aε are bounded by

(51) c(51) |z − x|η̄c−(2α+1)γ
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for some constant c(51) = c(51)(ε). Therefore, by an abuse of notation writing LT±

for L1
T+

and L2
T−

,

P
(

LT± ≥ |z − x|η, Aε
)

= P

(

LT± ≥ |z − x|η, sup
u<T±

∆Lu ≤ c(51) |z − x|η̄c−(2α+1)γ , Aε
)

≤ P

(

sup
v≤T±

Lv 1

{

sup
u<v

∆Lu ≤ c(51) |z − x|η̄c−(2α+1)γ
}

≥ |z − x|η, Aε

)

.(52)

Since

(53) T± ≤

∫ t

0

ds

∫

R

Xs(dy)
∣

∣pα
t−s(z − y) − pα

t−s(x − y)
∣

∣

1+β
,

applying [FMW08, Lemma 2.12] with θ = 1+β and δ = 1, we may fix ε1 ∈ (0, αγβ)
to get the bound

(54) T± ≤ c(54)

(

|z−x|1+β
1β<(α−1)/2+ |z−x|α−β−ε1 1β≥(α−1)/2

)

on {V ≤ cε}

for some constant c(54) = c(54)(ε). Consequently,

P
(

LT± ≥ |z − x|η, Aε
)

(55)

≤ P

(

sup
v≤c(54)(|z−x|1+β1β<(α−1)/2+|z−x|α−β−ε11β≥(α−1)/2)

Lv

× 1

{

sup
u<v

∆Lu ≤ c(51) |z − x|η̄c−(2α+1)γ
}

≥ |z − x|η
)

.

Now use [FMW08, Lemma 2.3] with κ = 1 + β, t = c(54)

(

|z − x|1+β1β<(α−1)/2 +

|z − x|α−β−ε11β≥(α−1)/2

)

, |z − x|η instead of x, and y = c(51) |z − x|η̄c−(2α+1)γ ,

and noting that

(56) 1 + β − η − β(η̄c − 2αγ) ≥ (2α + 1)γβ on β <
α − 1

2
,

and

(57) α−β− ε1− η−β(η̄c −
(

2α+1)γ
)

≥ (2α+1)γβ− ε1 ≥ αγβ on β ≥
α − 1

2
,

we obtain

(58) P
(

LT± ≥ |z − x|η, Aε
)

≤
(

c(58) |z − x|αγβ
)

(

c−1
(51)

|z−x|η−η̄c+(2α+1)γ
)

for some constant c(58) = c(58)(ε). Applying this bound with γ = η̄c−η
2(2α+1) to the

summands at the right hand side in inequality (30), and noting that αγβ is also a
positive constant here, we have

(59) P

(

∣

∣Z2,ε
t (z) − Z2,ε

t (x)
∣

∣ ≥ 2 |z − x|η
)

≤ 2
(

c(58) |z − x|
) c

(58)
|z−x|(η−η̄c)/2

.

This inequality yields

(60) P

(

∣

∣Z2,ε
t (z) − Z2,ε

t (x)
∣

∣ ≥ 2 |z − x|η
)

≤ C |z − x|2.
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Using standard arguments, we conclude that almost surely Z2,ε
t has a version which

is locally Hölder continuous of all orders η < η̄c . By an abuse of notation, from
now on the symbol Z2,ε

t always refers to this continuous version. Consequently,

(61) lim
k↑∞

P

(

sup
x∈B1(z), x 6=z

∣

∣Z2,ε
t (z) − Z2,ε

t (x)
∣

∣

|z − x|η
> k

)

= 0.

Combining this with the bound

P

(

sup
x∈B1(z), x 6=z

∣

∣Z2
t (z) − Z2

t (x)
∣

∣

|z − x|η
> k

)

(62)

≤ P

(

sup
x∈B1(z), x 6=z

∣

∣Z2,ε
t (z) − Z2,ε

t (x)
∣

∣

|z − x|η
> k, Aε

)

+ P(Aε,c)

(with Aε,c denoting the complement of Aε) gives

(63) lim sup
k↑∞

P

(

sup
x∈B1(z), x 6=z

∣

∣Z2
t (z) − Z2

t (x)
∣

∣

|z − x|η
> k

)

≤ 2ε.

Since ε may be arbitrarily small, this immediately implies

(64) sup
x∈B1(z), x 6=z

∣

∣Z2
t (z) − Z2

t (x)
∣

∣

|z − x|η
< ∞ almost surely.

This is the desired Hölder continuity of Z2
t at z, for all η < η̄c . Since Z1

t and Z3
t

are Lipschitz continuous (cf. [FMW08, Remark 2.13]), recalling (15), the proof of
Theorem 1 is complete. �

References

[FMW08] K. Fleischmann, L. Mytnik, and V. Wachtel. Optimal hölder index for density states
of superprocesses with (1 + β)-branching mechanism. WIAS Berlin, Preprint No. 1327,
2008.

[MP03] L. Mytnik and E. Perkins. Regularity and irregularity of (1+β)-stable super-Brownian
motion. Ann. Probab., 31(3):1413–1440, 2003.

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D–

10117 Berlin, Germany

E-mail address: fleischm@wias-berlin.de

Faculty of Industrial Engineering and Management, Technion Israel Institute of

Technology, Haifa 32000, Israel

E-mail address: leonid@ie.technion.ac.il

URL: http://ie.technion.ac.il/leonid.phtml

Mathmatical Institute, University of Munich, Theresienstrasse 39, D–80333 Mu-

nich, Germany

E-mail address: wachtel@mathematik.uni-muenchen.de


