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ABSTRACT. A Holder regularity index at given points for density
states of (a, 1, 3)-superprocesses with a > 1+ 3 is determined. It
is shown that this index is strictly greater than the optimal index
of local Holder continuity for those density states.

1. INTRODUCTION AND STATEMENT OF RESULTS

For 0 <a <2 and 148 € (1,2), the (a,d,3)-superprocess X = {X; : t > 0}
in R? is a finite measure-valued process related to the log-Laplace equation

d
(1) —u = Agu 4 au— bu'tP,

dt
where @ € R and b > 0 are any fixed constants. Its underlying motion is de-
scribed by the fractional Laplacian A, := —(—A)%/2 determining a symmetric

a-stable motion in R? of index « € (0,2] (Brownian motion if a = 2), whereas its
continuous-state branching mechanism

(2) v —av+b'tP v >0,

belongs to the domain of attraction of a stable law of index 1+ 4 € (1,2) (the
branching is critical if a = 0).

From now on we assume that d < % Then X has a.s. absolutely continuous
states X;(dx) at fixed times ¢ > 0. Moreover, as is shown in Fleischmann, Mytnik,
and Wachtel [FMWO08], there is a dichotomy for their density function (also denoted
by X;): There is a continuous version X; of the density function if d = 1 and
a > 14 (3, but otherwise the density function X; is locally unbounded on open sets
of positive X;(dz)-measure. (Partial results had been derived earlier in Mytnik and
Perkins [MP03].)

In the case of continuity, Holder regularity properties of X; had been studied in
[FMWO08], too. Let us first recall the notion of an optimal Hélder index at a point.

We say a function f is Holder continuous with index n € (0,1] at the point x if
there is an open neighborhood U(z) and a constant C such that

(3) [f(y) = f(2)] < Cly—a|" forall yeU(z).
The optimal Holder index H(x) of f at the point x is defined as
(4)  H(z) := sup{n € (0,1]: f is Holder continuous at  with index 7},

and set to 0 if f is not Holder continuous at x.

Going back to the continuous (random) density function X;, in what follows,
H(z) will denote the (random) Hélder index of X; at z € R. In [FMWO0S], the
so-called optimal index for local Holder continuity of X, had been determined by

a
(5) Ne : 15 1 € (0,1).
This means that in any non-empty open set U C R with X;(U) > 0 one can find
(random) points x such that H(x) = n.. This however left unsolved the question
whether there are points « € U such that H(z) > 7. .

The purpose of this note is to verify the following theorem conjectured in [FMWO08,
Section 1.3]. To formulate it, let M¢ denote the set of finite measures on R?, and
B.(z) the open ball of radius € > 0 around x € R :
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Theorem 1 (Holder continuity at a given point). Fiz ¢ > 0, z € R, and
Xo=p e Ms. Let d=1 and a > 1+ 3. Then with probability one, for each
n > 0 satisfying

14+«
6 < 7o = mi { f1,1},
(6) n < min 77

the continuous version X, of the density is Hélder continuous of order n at the
point z :

- . | X(z) — Xi(2)]

< oo, €>0.
rE€Be(2), z#2 |‘T - Z|77

Consequently, since n. < 7., at each given point z € R the density state X,
allows some Holder exponents 7 larger than 7., the optimal Hélder index for local
domains. Thus, Theorem 1 nicely complements the main result of [FMWO0S].

On the other hand, Theorem 1 is also only a partial result, since it does not yet
claim that 7. is optimal. So let us add here the following conjecture.

Conjecture 2 (Optimality of 7.). Under the conditions of Theorem 1, for each
n > 7. with probability one,

(8) sup |Xt($) — Xt(Z)|

| z = oo whenever X;(z) >0, €>0. <&
rE€Be(2), z#2 Tr—=z

Statements (7) and (8) together just say by definition that 7. is the optimal
index H(z), for Holder continuity of X, at given points z € R where X;(z) > 0.

The full program however would include proving that for any n € (1., 7j.) there
are (random) points z € R such that the optimal Holder index H(z) of X; at z is
exactly 7. Moreover, we would like to establish the Hausdorff dimension, say D(n),
of the (random) set {z: H(x) =n}. The function 1+ D(n) reveals the so-called
multifractal structure related to the optimal Holder index at points. As we already
mentioned in [FMWO08, Conjecture 1.3], we conjecture that
(9) lim D(n) =0 and lim D(n) = 1.

nine s

The investigation of such multifractal structure is left for future work.

Note also that in the case a = 2 for the optimal exponents 7. and 7, we have

(10) n. 10 and ﬁcl% as B 11,
1:

whereas for continuous super-Brownian motion one would have 7. = 5 = 7. This
discontinuity reflects the essential differences between continuous and discontinuous
super-Brownian motion concerning Hélder continuity properties of density states,

as discussed already in [FMWO08, Section 1.3].

After some preparation in the next section, the proof of Theorem 1 will be given
in Section 3.

2. PREPARATION FOR THE PROOF

Let p® denote the continuous a—stable transition kernel related to the fractional
Laplacian A, = —(—A)*/? in R%, and S the related semigroup. Fix Xy = p €
M \{0}
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First we want to recall the martingale decomposition of the («, d, 3)-superprocess
X (see, e.g., [FMWO0S8, Lemma 1.5]): For all sufficiently smooth bounded non-
negative functions ¢ on R% and ¢ > 0,

t

(11) (X1} = (o + [ ds (X Aup) + Mifi) +a L)
0

with discontinuous martingale

(12) t — Mi(p) = / N(d(s,x,r)) ro(x)
(0,t] xRex R4

and increasing process

(13) t— Li(p) = /Ods (Xs, ).

Here N := N — N, where N(d(s,x,r)) is a random measure on R, x R? x R
describing all the jumps rd, of X at times s at sites x of size r (which are the
only discontinuities of the process X). Moreover,

(14) N(d(s,x,r)) = o ds X (dz)r~27Fdr

is the compensator of N, where g := b(1+ 8)5/T(1 — ) with I denoting the
Gamma function.

Suppose again d < % and fix ¢t > 0. Then the random measure X;(dz) is a.s.
absolutely continuous. From the Green’s function representation related to (11)
(see, e.g., [FMWO08, (1.9)]) we obtain the following representation of a version of
the density function of X;(dz) (see, e.g., [FMWO08, (1.12)]):

Xi(z) = pxpf () + / dM(d(s,y)) Pis(r —y)
(15) (0,t]xR

+a/( | df(d(s,y))p?—s(x —y) = ZMNx)+ Z2(z) + Z}(x), xeRY,
0,t]xR

(with notation in the obvious correspondence). Here M (d(s,y)) is the martingale
measure related to (12) and I(d(s,y)) the random measure related to (13).

Let AX; := Xs— Xs—, s> 0, denote the jumps of the measure-valued process
X. Recall that they are of the form rd,. By an abuse of notation, we write r =:
AX;(z). As a further preparation we prove the following analogous of [FMWO08,
Lemma 2.14]:

Lemma 3 (Total jump mass around a given point z). Fiz t > 0, z € R,
and Xo = p € M¢\{0}. Suppose d =1 and o > 1+ . Let € > 0 and v €
(0,(1+B)~1). There exists a constant cpg) = c()(€,7) such that

(16) P(AXS(SC) > cae ((E—s)]z — :L'D/\ for some s <t and x € Bg(z)) < e,

where

1
17 A= ——— — .
(17) 5
Proof. For any ¢ > 0 (later to be chosen as c¢(4)) set

Y = N((s,:c,r): (s,x) €[0,t) x (z—2,2+2), Tzc((t75)|27$|)/\),
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Clearly,

A
a8) P(AXS(.T) >c((t — )|z — |)” for some s < t and z € Bg(z))
- P(Y >1) < EY,

where in the last step we have used the classical Markov inequality. From (14),
t [e%s)
EY = QE/ ds/XS(d:c) 1Bz(z)(:c)/ Ad?" 28
0 R c(|z—z|(t—s))

—-1-8 t
¢ ds (t — )~ (0+0) / EX,(dz) 1p,(:(z) [z — x| 70+,
R

gl-f'ﬁ 0

Now, writing C for a generic constant (which may change from place to place),

[ EX.0) 13, )2 = af 0

< I [ uldy) [ do p(e =) Lo (o) |z = af 7O
(19) < Cu(R) S_I/O‘/Rdﬂﬂ gy (o) (@) |2 — 2| VI = gggy s,
where c(19) = c(19)(77). Consequently,
(20) EY < ocqyg 1 /Ot dss~1/e (t— §) "I +A) c(20) 178

with c(20) = ¢(20)(77). Choose now c such that the latter expression equals ¢ and
write c(16) instead of c. Recalling (18), the proof is complete. O

3. PROOF OF THEOREM 1

We will use some ideas from the proofs in Section 3 of [FMWO08]. However, to
be adopted to our case, those proofs require significant changes. Let d = 1 and
fix t,z,p,a,0,n as in the theorem. Consider an x € B;(z). For simplicity we will
assume ¢ < 1 and z > 2. By definition (15) of Z2,

(21) Z2() - Z2(x) = /M M(ds9) p45.9) - /M M(A.9) - (5.0)

where ¢ (s,y) and ¢_(s,y) are the positive and negative parts of p* ,(z — y) —
P (x—y). Tt is easy to check that ¢4 and p_ satisfy the assumptions in [FMWO08,
Lemma 2.15]. Thus, there exist spectrally positive stable processes L' and L? such
that

(22) Z{(z) = Zf(x) = Lp, — L.,

where T ::fot ds [; X,(dy) ((pi(s,y))prﬁ. Fix any ¢ € (0,1/3) and v € (0,(1 +
B)~1). Also fix some J = J(v) and

(23) 0=tpo<prL<-<pj:i=1/a
such that

e (a+1)— > —= << J-1
(24) pela+l) =25 > T g<p<g-1

[\]

1+ 3
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According to [FMWO08, Lemma 2.11], there exists a constant ¢, such that P(V <
¢e) > 1—e, where

(25) Vo= sup Saa(t—s)Xs (Y)
0<s<t,y€Bs(z)

(note that there is no difference in using Bs(z) or its closure for taking the supre-
mum). By Lemma 3 we can fix c(;6) sufficiently large such that the probability of
the event

(26) AS! = {AXs(y) < cae ((t—s)|z — y|)A forall s<tandye€ Bg(z)}

is larger than 1 — . Moreover, according to [FMWO08, Lemma 2.14|, there exists a
constant ¢* = ¢*(g,~) such that the probability of the event

(27) A2 = {AXS(y) < (t—s)foralls <tandye R}
is larger than 1 — e. Set

(28) A = AT N AP N{V <c ).

Evidently,

(29) P(A°) > 1—3c.

Define Z7 := Z21(A°). We first show that Z° has a version which is locally
Holder continuous of all orders 7 less than 7. . It follows from (22) that

P(|27%(2) - 277 (@)| 2 2]z — al")
(30) < P(Ly, > |z—x|", A%) + P(L7 > |z —x[", A°).
Now let us represent the set [0,t) X Ba(z) as a union of the following spaces. Define:
Dy = {(s,y) €[0,4) x Ba(2): y € (2= 2(t— s)/* P 342t — s)l/a*m)},
and for 1 </<J -1,
Dy = {(s, y) €[0,8) x Ba(2) : y € (2= 2(t — s)/o P g 42t — s)l/afwﬂ)},
Dy := Dy \ Dy_q.

If the jumps of M (d(s,y)) do not exceed c(iq) ((t — s)|z — y|)>\ on Dy, then the
jumps of the process u +— f(o u]ngM(d(S’ y)) ¢+ (s,y) are bounded by

A
(31) caey sup ((t—s)|z—yl)” wx(s,9).
(s,y)€Dy
Put
(32) Dyy = {(s,y) €Dyp: (t— s)l/o‘_p“l <|z-— x|},

Dys = {(s,y) € Dy: (t— s)t/a=pers > |z — x|},
Dya(s) = {y € Ba(2) : (5,y) € D1}, s€[0,t),
Dya(s) == {y € Ba(2) : (s,y) € Dy2}, s€0,0).
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Since obviously Dy = Dy 1 U Dy 2 we get that (31) is bounded by

c(16) sg}t)(t — s)/\ sup |z — y|/\ wt(s,y)
S

yGDLl(s)
(33) + ey sup(t — )Y sup |z —y|Moi(s,y) = cae (i + I2).
s<t yEDzyz(S)
Clearly,
(34) o+(s,y) < [pf_s(z—y) —piy(z —y)|, forall s,y.

First let us bound I; . Note that for any (s,y) € Dy 1,
(35) lz—y| < |z—a| +2(—s)/2Prr < 3|z — gl
Therefore we have

(36) L < 3z—z[sup(t—s)* sup [pi (2 —y) — iz —y)l.
s<t yE€Dy 1(s)

Using [FMWO08, Lemma 2.1] with § = 1. — 2y gives

sup  |pf_ (z —y) — pf_ (@ — )|
y€Dy 1(s)

< Cle—a ™™ (L= )7 sup (pi, (2 = 9)/2) + P, (2~ 9)/2))
yED[,yl(s)

= C |Z _ x|ncf2a'y (t _ S)fnc/a+2'yfl/a

x sup (B(( =)V = )/2) + 3 (6= 5) Vo - 9)/2) ).

y€Dy,1(s)
By the tail behavior of p{ this can be continued with

(37) = Clz— x|nr2a'y (t — S)fnc/a+2’y*1/a+pz(a+1).

Now let us check that

(38) sup (t — s)* (t — s)fnc/”‘+2771/°‘+p"(”‘+1) < 1.
s<t
Recall that n. = ﬁ — 1. Then one can easily get that
(39) A—ne/a+2y—1/a+pi(a+1) = v+ pela+1) > 7,

where the last inequality follows by (24). Therefore (38) follows immediately. Com-
bining (36) — (38) we see that
(40) I < Clz—agMe297 < Oz — g|le” oty

Y

where we used definitions (5) and (6) of 7. and 7., respectively.
Now let us bound Iy. Note that for any (s,y) € Dy 2,

(41) lz—y| < |z—a| +2(t—s)/o Pt < 3(t—s)/aPe,
Therefore we have

(42) L < 3 sup(t—s)MWemre)Xsup p (2 —y) —pi(x — ).
s<t YEDg 2(s)
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Using again [FMWO08, Lemma 2.1] but this time with § = . — (2a+ 1)~y gives

sup  [py_o(z —y) — pi_s(z — y)|
yE€Dy 2(s)

< Clz— z|7’7c—(2a+1)7 (t — S)—ﬁc/a+27+v/a

X sw (P (2= 9)/2) + 9. (2 = )/2))

(43) = C |z — a|Tle=RaFD7 (4 — g)~Te/at2riy/a—1/atpiatl)

By definition (17) of A,

1 Mo 1
)\+(——pe+1)/\777—+2'y+17—+m(04+1)
« « « Q
l/1+« _ Pe+1
== flfc)+ + - 4 p(a+1
a(1+5 o)+ FIP = g pe( )
(44) > /2

where in the last step we used definition (6) of 7. and (24). Thus
(45) sup (t _ S)/\+(1/0¢*Pe+1)A*ﬁc/aJr?’YJr’Y/Of*l/OHrPe(04+1) < 1.
s<t

Combining estimates (42), (43), and (45), we obtain
(46) I, < Clz — x|l oty
If the jumps of M (d(s,y)) are smaller than c¢*(t — s)* on R\ Ba(z) (where ¢* is

from (27)), then the jumps of the process u +— f(O,u]X(R\BQ(z))M(d(S’y)) o1(s,y)
are bounded by

(47) Ft—s)* sup  pi(s,y).
YER\Ba(2)

Using [FMWO08, Lemma 2.1] once again but this time with § = 7. — 2ary, we have

pi_(z —y) =P (@ —y)| < Clz—al 7207 (t —5) 77/

(48) x (P (2= 9)/2) + 5, (2 = 9)/2)).
Since x € By(z),

sup (pis (2= 9)/2) +pi. (@ = 9)/2))

YER\Ba(2)
(49) < C@t—s)Vopt((t—s)7V/2) < O (t - s).
Therefore, (47), (34), (48), and (49) imply
(=9 sup  pi(s,y) < Clz—afl727 (t — g /ot
yER\B2(2)

(50) < ¢(s0) |2 — [T T2
for some constant c(50y = c(50)(€). Here we have used that 7. < (1+a)/(1+3) —1
induces A — 7j./a+ 2y + 1> 1.

Combining (31), (33), (40), (46), and (50), we see that all jumps of the process
u f(07u]xRM(d(s, y)) ¢+ (s,y) on the set A° are bounded by

(51) ces1) 12 — | le~ oty
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for some constant c(51y = c(51y(€). Therefore, by an abuse of notation writing L,
for LlT+ and L2 |

P(Ly, > |z —al", A°)

= P(LTi > |z —a|?, sup AL, < ciyylz — |l 2oty AE)
u<T4

(52) < P( sup L, 1{ sup AL, < c¢1y |z — :c|77°—(2a+1)V} > |z — a7, Ae).
v<T4 u<v
Since
' 1+
53) re< [ as [ @G- - sl
0

applying [FMWO08, Lemma 2.12] with # = 14+ and § = 1, we may fix £1 € (0, ay/3)
to get the bound

(54) Ty < c(sa) (|Z*$|1+ﬁ lg<(amty/2+|z—a|* 7= 152@—1)/2) on {V <c}

for some constant c(s4) = ¢(54)(€). Consequently,

(55) P(Lp, > |z —a|", A%)

< P( sup L,
v<egsa) (|2=2"FP1pc(am1) 2+ |2—2|* P51 155 (0 -1)/2)

X 1{ sup AL, < c¢s1) |z — x|ﬁc*<2°‘+1)"} > |z — x|")

u<v
Now use [FMWO08, Lemma 2.3| with x = 1+ 3, t = ¢(54) (|z — :c|1+51ﬁ<(a_1)/2 +
|z — x|”"5*51152(a_1)/2), |z — z|" instead of z, and y = cz1) |z — x|~ (a7,
and noting that

a—1
2 )

(56) 1+ 8 —n—B(0 —2ay) > (2a+1)y8 on B <

and

-1
(57) a—B—er—n— Bl — (2a+1)7) = 2a+1)78—e1 = ayf on f2 T,
we obtain

-1 — e+ (2a+1
0(51)\,2—1\" flet+ (2 )’Y)

(58) P(LTi > |z — x|, AE) < (c(58) |z — x|avﬁ)(

for some constant c(ss)y = c(ss)(€). Applying this bound with v = % to the

summands at the right hand side in inequality (30), and noting that a3 is also a
positive constant here, we have

c 2—p|(M—0c)/2
(59)  P(|27°(2) — Z2°(@)| 2 2|z~ al") < 2(eqs) |z —af) T
This inequality yields

(60) P(|Zt2’€(z) — 7% ()| > 2]z - z|’7) < Clz—af.
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Using standard arguments, we conclude that almost surely Zt2 ¢ has a version which
is locally Holder continuous of all orders n < 7. By an abuse of notation, from
now on the symbol Zt2 ¢ always refers to this continuous version. Consequently,

Z2,s _ Z2,s
(61) limP( sp LD Z7@) >/<;) _ 0.
koo z€B1(z), x#z |Z - ':C|77
Combining this with the bound
Z2(z) — Z?
(62) P( sup M > k)
z€B1(2), x#z2 |Z - 1'|77

<P

sup
z€B1(z), x#2 |Z*:L'|77

( 175°) = 2 @) k, AE) 4 P(A%)

(with A%° denoting the complement of A%) gives

22 _ 22
(63) lim supP( sup M > k:) < 2e.

kToo z€B1(z), x#z |Z - ':C|77

Since € may be arbitrarily small, this immediately implies

o w12 - 220)

< oo almost surely.
rE€B1(2), x#£2 |Z7':C|77

This is the desired Holder continuity of Z? at z, for all n < fj.. Since Z} and Z}
are Lipschitz continuous (cf. [FMWO08, Remark 2.13]), recalling (15), the proof of
Theorem 1 is complete. (I
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